
Kensa: Sandboxed, Online Debugging
of Production Bugs with No Overhead

Paper #43 - 14 pages total

Abstract
Short time-to-bug localization and resolution is extremely

important for any 24x7 service-oriented application. In this
work, we present a novel-mechanism which allows debug-
ging of production systems on-the-fly. We leverage user-
space virtualization technology (OpenVZ/LXC), to launch
replicas from running instances of a production application,
thereby having two containers: production (which provides
the real output), and debug (for debugging). The debug con-
tainer provides a sandbox environment for debugging without
any perturbation to the production environment. Customized
network-proxy agents asynchronously replicate and replay
network inputs from clients to both the production and debug-
container, as well as safely discard all network output from
the debug-container. We evaluated this low-overhead record
and replay technique on five real-world applications, finding
that it was effective at reproducing real bugs. In comparison
to existing monitoring solutions which can slow-down pro-
duction applications, Kensa allows application monitoring at
“zero-overhead”.

1. Introduction
Rapid resolution of incident (error/alert) management [40] in
online service-oriented systems [13, 14, 38, 47] is extremely
important. The large scale of such systems means that any
downtime has significant financial penalties for all parties
involved. However, the complexities of virtualized environ-
ments coupled with large distributed systems have made bug
localization extremely difficult. Debugging such production
systems requires careful re-creation of a similar environment
and workload, so that developers can reproduce and identify
the cause of the problem.

[Copyright notice will appear here once ’preprint’ option is removed.]

Existing state-of-art techniques for monitoring production
systems rely on execution trace information. These traces
can be replayed in a developer’s environment, allowing
them to use dynamic instrumentation and debugging tools
to understand the fault that occurred in production. On one
extreme, these monitoring systems may capture only very
minimal, high level information, for instance, collecting
existing log information and building a model of the system
and its irregularities from it [8, 20, 23, 33]. While these
systems impose almost no overhead on the production system
being debugged (since they simply collect log information
already being collected, or have light-weight monitoring),
they are limited in their fault finding and redproduction
power, hence limited in their utility to developers. On the
other extreme, some monitoring systems capture complete
execution traces, allowing the entire application execution to
be exactly reproduced in a debugging environment [6, 19, 29,
37]. Despite much work towards minimizing the amount of
such trace data captured, overheads imposed by such tracing
can still be unacceptable for production use: in most cases,
the overhead of tracing is at least 10%, and it can balloon up
to 2-10x overhead. [48, 53].

We seek to allow developers to diagnose and resolve crash-
ing and non-crashing failures of production service-oriented
systems without suffering any performance overhead. Our
key insight is that for most service-oriented systems, a failure
can be reproduced simply by replaying the network inputs
passed to the application. For these failures, capturing very
low-level sources of non-determinism (e.g. thread scheduling
or general system calls, often with very high overhead) is
unnecessary to successfully and automatically reproduce the
buggy execution in a development environment. We evaluated
this insight by studying 16 real-world bugs (see Section 4),
which we were able to trigger by only duplicating and replay-
ing network packets. Furthermore, we categorized 217 bugs
from three real world applications, finding that most were
similar in nature to the 16 that we reproduced, suggesting
that our approach would be applicable to them as well (see
Section 5.3).

Guided by this insight, we have created Kensa1, which
allows for real-time, online debugging of production services

1 Kensa is the japanese word for testing

1 2016/10/21

Cloned test containers &
network duplication

Debug
output

1.  Zero Overhead
2.  Live debugging
3.  Same system state
4.  Less resources used
5.  Fast time to debug

Tier 1 Tier 2 Tier 3 Tier 4 Tier 5 Tiers n

User observes
error & creates

sandbox
clones

Live
production

system

Sandbox

cloned debug
system

Figure 1. Workflow of Kensa in a live multi-tier production system with several interacting services. When the administrator
of the system observes errors in two of it’s tiers, he can create a sandboxed clone of these tiers and observe/debug them in a
sandbox environment without impacting the production system.

without imposing any performance penalty. At a high level,
Kensa leverages live cloning technology to create a sand-
boxed replica environment. This replica is kept isolated from
the real world so that developers can modify the running sys-
tem in the sandbox to support their debugging efforts without
fear of impacting the production system. Once the replica
is executing, Kensa replicates all network inputs flowing to
the production system, buffering and feeding them (without
blocking the production system) to the debug system. Within
that debug system, developers are free to use heavy-weight
instrumentation that would not be suitable in a production
environment to diagnose the fault. Meanwhile, the produc-
tion system can continue to service other requests. Kensa can
be seen as very similar to tools such as Aftersight [15] that
offload dynamic analysis tasks to replicas and VARAN [31]
that support multi-version execution, but differs in that its
high-level recording level (network inputs, rather than system
calls) allows it to have significantly lower overhead.

Kensa focuses on helping developers debug faults online
— as they occur in production systems. We expect Kensa to
be used in cases of tricky bugs that are highly sensitive to
their environment, such as semantic bugs, performance bugs,
resource-leak errors, configuration bugs, and concurrency
bugs. Although in principle, Kensa can be used to diagnose
crashing bugs, we target primarily non-crashing bugs, where
it is important for the production system to remain running
even after a bug is triggered, for instance, to continue to pro-
cess other requests. We present a more detailed explanation
of these categories in Section 4.

We leverage container virtualization technology (e.g.,
Docker [42], OpenVZ [36]), which can be used to pre-
package services so as to make deployment of complex multi-
tier systems easier (i.e. DockerHub [12, 18] provides pre-
packaged containers for storage, webserver, database services
etc.). Container based virtualization is now increasingly being

used in practice [10]. In contrast to VM’s containers run
natively on the physical host (i.e. there is no hypervisor
layer in between), this means that there is no additional
overhead, and near-native performance for containers [24, 54].
While Kensa could also be deployed using VM’s, container
virtualization is much more light weight in terms of resource
usage.
The key benefits of our system are:
• Zero Overhead Monitoring: While existing approaches

have focused on minimizing the recording overhead. Kensa
uses novel non-blocking network duplication to avoid any
overhead at all in the production environment.

• Sandbox debugging: Kensa provides a cloned sandbox
environment to debug the production application. This
allows a safe mechanism to diagnose the error, without
impacting the functionality of the application.

• Capture large-scale context: Allows capturing the con-
text of large scale production systems, with long running
applications. Under normal circumstances capturing such
states is extremely difficult as they need a long running test
input and large test-clusters.

The rest of the paper is organized as follows. In Section 2, we
describe a motivating scenario. Section 3 and 3.5 describe the
design and implementation of Kensa and each of it’s internal
components. We then present a case study of 16 real-world
bugs successfully reproduced by Kensa in Section 4. This
is followed by the evaluation in Section 5. In Section 6, we
discuss potential applications of Kensa. Finally, we discuss
some challenges in Section 7, give some related work in
Section 8 and conclude.

2. Motivating Scenario
Consider the complex multi-tier service-oriented system
shown in Figure 1 that contains several interacting ser-
vices (web servers, application servers, search and index-

2 2016/10/21

Asynchronous	
Forwarder	

Downstream	
Components	

Buffer	Manager	

Produc:on	
Container	

Debug	Container	

Pass-through	
Forwarder	

Upstream	
Components	

Pass-through	
Forwarder	

Asynchronous	
Forwarder	

Network Duplicator Network Aggregator

Buffer	Manager	

Dummy	Reader	 Dummy	Reader	

Live
Cloned

Clients/User
Requests etc.

Storage/
Database
Services etc.

Process P1
Process P2
Process P3
Process P4

Process P1
Process P2
Process P3
Process P4

Legend: Duplicator
Legend: Aggregator

Clone Manager

Figure 2. High level architecture of Kensa, showing the main components: Network Duplicator, Network Aggregator, and
Cloning Manager. The replica (debug container) is kept in sync with the master (production container) through network-level
record and replay. In our evaluation, we found that this light-weight procedure was sufficient to reproduce many real bugs.

ing, database, etc.). The system is maintained by operators
who can observe the health of the system using lightweight
monitoring that is attached to the deployed system. At some
point, an unusual memory usage is observed in the glass-
fish application server, and some error logs are generated in
the Nginx web server. Administrators can then surmise that
there is a potential memory leak/allocation problem in the
app-server or a problem in the web server. However, with a
limited amount of monitoring information, they can only go
so far.

Typically, trouble tickets are generated for such problems,
and they are debugged offline. However using Kensa, admin-
istrators can generate replicas of the Nginx and Glassfish
containers as Nginx-debug and glassfish-debug. Kensa’s net-
work duplication mechanism ensures that the debug replicas
receive the same inputs as the production containers and that
the production containers continue to provide service without
interruption. This separation of the production and debug en-
vironment allows the operator to use dynamic instrumentation
tools to perform deeper diagnosis without fear of additional
disruptions due to debugging. Since the replica is cloned from
the original potentially “buggy” production container, it will
also exhibit the same memory leaks/or logical errors. Addi-
tionally, Kensa can focus on the “buggy” parts of the system,
without needing to replicate the entire system in a test-cluster.
This process will greatly reduce the time to bug resolution,
and allow real-time bug diagnosis capability.

The replica can be created at any time: either from the start
of execution, or at any point during execution that an operator
deems necessary, allowing for post-facto analysis of the error,
by observing execution traces of incoming requests (in the
case of performance bugs and memory leaks, these will be
persistent in the running system). Within the debug replica,
the developer is free to employ any dynamic analysis tools
to study the buggy execution, as long as the only side-effect
those tools is on execution speed.

3. Kensa
In Figure 2, we show the architecture of Kensa when applied
to a single mid-tier application server. Kensa consists of 3
modules: Clone Manager: manages “live cloning” between
the production containers and the debug replicas, Network
Duplicator: manages network traffic duplication from down-
stream servers to both the production and debug containers,
and Network Aggregator: manages network communication
from the production and debug containers to upstream servers.
The network duplicator also performs the important task of
ensuring that the production and debug container executions
do not diverge. The duplicator and aggregator can be used
to target multiple connected tiers of a system by duplicating
traffic at the beginning and end of a workflow. Furthermore,
the aggregator module is not required if the debug-container
has no upstream services.

3.1 Clone Manager
Live migration [16, 28, 43] refers to the process of moving
a running virtual machine or container from one server to
another, without disconnecting any client or process running
within the machine (this usually incurs a short or negligible
suspend time). In contrast to live migration where the original
container is destroyed, the “Live Cloning” process used in
Kensa requires both containers to be actively running, and
be still attached to the original network. The challenge here
is to manage two containers with the same identities in the
network and application domain. This is important, as the
operating system and the application processes running in
it may be configured with IP addresses, which cannot be
changed on the fly. Hence, the same network identifier should
map to two separate addresses, and enable communication
with no problems or slowdowns.
We now describe two modes (see Figure 3) in which cloning
has been applied, followed by the algorithm for live cloning:

3 2016/10/21

P1

NAT	

D1

NAT	

Clone	
 Manager	

Agent	
 Agent	

To/From Duplicator

P1 D1

Clone	
 Manager	

Agent	

To/From Duplicator

External Mode Internal Mode

	

	

	

	

IP	
 namespace	
 2	

	

	

	

	

IP	
 namespace	
 1	

Figure 3. External and Internal Mode for live cloning: P1 is
the production, and D1 is the debug container, the clone man-
ager interacts with an agent which has drivers to implement
live cloning.

Internal Mode: In this mode, we allocate the production and
debug containers to the same host node. This would mean
less suspend time, as the production container can be locally
cloned (instead of streaming over the network). Additionally,
it is more cost-effective since the number of servers remain
the same. On the other hand, co-hosting the debug and
production containers could potentially have an adverse effect
on the performance of the production container because of
resource contention. Network identities in this mode are
managed by encapsulating each container in separate network
namespaces [3]. This allows both containers to have the
same IP address with different interfaces. The duplicator
is then able to communicate to both these containers with no
networking conflict.
External Mode: In this mode we provision an extra server
as the host of our debug-container (this server can host
more than one debug-container). While this mechanism can
have a higher overhead in terms of suspend time (dependent
on workload) and requires provisioning an extra host-node,
the advantage of this mechanism is that once cloned, the
debug-container is totally separate and will not impact the
performance of the production-container. We believe that
external mode will be more practical in comparison to internal
mode, as cloning is likely to be transient, and high network
bandwidth between physical hosts can offset the slowdown
in cloning performance. Network identities in external mode
are managed using NAT [2] (network address translator) in
both host machines. Hence both containers can have the same
address without any conflict.2

2 Another additional mode can be Scaled Mode: This can be viewed as a
variant of the external mode, where we can execute debug analysis in parallel
on more than one debug-containers each having its own cloned connection.
This will distribute the instrumentation load and allow us to do more analysis

Algorithm 1 describes the specific process for cloning
some production container P1 from Host H1 to replica D1 on
Host H2.

Algorithm 1 Live cloning algorithm using OpenVZ

1. Safety checks and pre-processing (ssh-copy-id operation
for password-less rsync, checking pre-existing container
ID’s, version number etc.)

2. Create and synchronize file system of P1 to D1
3. Set up port forwarding, duplicator, and aggregator
4. Suspend the production container P1
5. Checkpoint & dump the process state of P1
6. Since step 2 and 5 are non-atomic operations, some files

may be outdated. A second sync is run when the container
is suspended to ensure P1 and D1 have the same state

7. Resume both production and debug containers

The suspend time of cloning depends on the operations
happening within the container between step 2 and step 4 (the
first and the second rsync), as this will increase the number
of dirty pages in the memory, which in turn will impact the
amount of memory that needs to be copied during the suspend
phase. This suspend time can be viewed as an amortized
cost in lieu of instrumentation overhead. We evaluate the
performance of live cloning in Section 5.1.

3.2 Network Duplicator and Aggregator
The network proxy duplicator and aggregator are composed
of the following internal components:

• Synchronous Passthrough: The synchronous passthrough
is a daemon that takes the input from a source port, and
forwards it to a destination port. The passthrough is used
for communication from the production container out to
other components (which is not duplicated).

• Asynchronous Forwarder: The asynchronous forwarder
is a daemon that takes the input from a source port, and
forwards it to a destination port, and also to an internal
buffer. The forwarding to the buffer is done in a non-
blocking manner, so as to not block the network forwarding.

• Buffer Manager: Manages a FIFO queue for data kept
internally in the proxy for the debug-container. It records
the incoming data, and forwards it a destination port.

• Dummy Reader: This is a standalone daemon, which reads
and drops packets from a source port

Proxy Network Duplicator: To successfully perform online
debugging in the replica to work, both production and debug
containers must receive the same input. A major challenge
in this process is that the production and debug container
may execute at different speeds (debug will be slower than

concurrently, without overflowing the buffer. We aim to explore this in the
future.

4 2016/10/21

production): this will result in them being out of sync. Addi-
tionally, we need to accept responses from both servers and
drop all the traffic coming from the debug-container, while
still maintaining an active connection with the client. Hence
simple port-mirroring and proxy mechanisms will not work
for us.

TCP is a connection-oriented protocol and is designed for
stateful delivery and acknowledgment that each packet has
been delivered. Packet sending and receiving are blocking
operations, and if either the sender or the receiver is faster
than the other the send/receive operations are automatically
blocked or throttled. This can be viewed as follows: Let us
assume that the client was sending packets at XMbps (link
1), and the production container was receiving/processing
packets at YMbps (link 2), where Y < X . Then automat-
ically, the speed of link 1 and link 2 will be throttled to
YMbps per second, i.e the packet sending at the client will
be throttled to accommodate the production server. Network
throttling is a default TCP behavior to keep the sender and
receiver synchronized. However, if we also send packets to
the debug-container sequentially in link 3 the performance
of the production container will be dependent on the debug-
container. If the speed of link 3 is Z Mbps, where Z < Y ,
and Z < X , then the speed of link 1, and link 2 will also
be throttled to Z Mbps. The speed of the debug container
is likely to be slower than production: this may impact the
performance of the production container.

Our solution is a customized TCP level proxy. This proxy
duplicates network traffic to the debug container while main-
taining the TCP session and state with the production con-
tainer. Since it works at the TCP/IP layer, the applications
are completely oblivious to it. To understand this better let us
look at Figure 2: Here each incoming connection is forwarded
to both the production container and the debug container .
This is a multi-process job involving 4 parallel processes (P1-
P4): In P1, the asynchronous forwarder sends data from client
to the production service, while simultaneously sending it
to the buffer manager in a non-blocking send. This ensures
that there is no delay in the flow to the production container
because of slow-down in the debug-container. In P2, the pass-
through forwarder reads data from the production and sends
it to the client (downstream component). Process P3, then
sends data from Buffer Manager to the debug container, and
Process P4 uses a dummy reader, to read from the production
container and drops all the packets

The above strategy allows for non-blocking packet for-
warding and enables a key feature of Kensa, whereby it
avoids slowdowns in the debug-container to impact the pro-
duction container. We take the advantage of an in-memory
buffer, which can hold requests for the debug-container, while
the production container continues processing as normal. A
side-effect of this strategy is that if the speed of the debug-
container is too slow compared to the packet arrival rate in
the buffer, it may eventually lead to an overflow. We call the

time taken by a connection before which the buffer overflows
its debug-window. We discuss the implications of the debug
window in Section 3.3.
Proxy Network Aggregator: The proxy described in Sec-
tion 3.2 is used to forward requests from downstream tiers to
production and debug containers. While the network dupli-
cator duplicates incoming requests, the network aggregator
manages incoming “responses” for requests sent from the
debug container. Imagine if you are trying to debug a mid-
tier application container, the proxy network duplicator will
replicate all incoming traffic from the client to both debug
and the production container. Both the debug container and
the production, will then try to communicate further to the
backend containers. This means duplicate queries to backend
servers (for instance, sending duplicate ‘delete’ messages
to MySQL), thereby leading to an inconsistent state. Never-
theless, to have forward progress the debug-container must
be able to communicate and get responses from upstream
servers. The “proxy aggregator” module stubs the requests
from a duplicate debug container by replaying the responses
sent to the production container to the debug-container and
dropping all packets sent from it to upstream servers.

As shown in Figure 2, when an incoming request comes
to the aggregator, it first checks if the connection is from the
production container or debug container. In process P1, the
aggregator forwards the packets to the upstream component
using the pass-through forwarder. In P2, the asynchronous
forwarder sends the responses from the upstream component
to the production container, and sends the response in a non-
blocking manner to the internal queue in the buffer manager.
Once again this ensures no slow-down in the responses sent to
the production container. The buffer manager then forwards
the responses to the debug container (Process P3). Finally, in
process P4 a dummy reader reads all the responses from the
debug container and discards them.

We assume that the production and the debug container are
in the same state, and are sending the same requests. Hence,
sending the corresponding responses from the FIFO queue
instead of the backend ensures: (a) all communications to
and from the debug container are isolated from the rest of the
network, (b) the debug container gets a logical response for
all it’s outgoing requests, making forward progress possible,
and (c). similar to the proxy duplicator, the communications
from the proxy to internal buffer is non-blocking to ensure
no overhead on the production-container.

3.3 Debug Window
Kensa’s asynchronous forwarder uses an internal buffer to
ensure that incoming requests proceed directly to the produc-
tion container without any latency, regardless of the speed
at which the debug replica processes requests. The incoming
request rate to the buffer is dependent on the user, and is
limited by how fast the production container manages the
requests (i.e. the production container is the rate-limiter). The
outgoing rate from the buffer is dependent on how fast the

5 2016/10/21

debug-container processes the requests. Instrumentation over-
head in the debug-container can potentially cause an increase
in the transaction processing times in the debug-container.
As the instrumentation overhead increases, the incoming rate
of requests may eventually exceed the transaction process-
ing rate in the debug container. If the debug container does
not catch up, this in turn can lead to a buffer overflow. We
call the time period until buffer overflow happens the debug-
window. This depends on the size of the buffer, the incoming
request rate, and the overhead induced in the debug-container.
For the duration of the debugging-window, we assume that
the debug-container faithfully represents the production con-
tainer. Once the buffer has overflown, the debug-container
may be out of sync with the production container. At this
stage, the production container needs to be re-cloned, so that
the replica is back in sync with the production and the buffer
can be discarded. In case of frequent buffer-overflows, the
buffer size needs to be increased or the instrumentation to be
decreased in the replica, to allow for longer debug-windows.

The debug window size also depends on the application
behavior, in particular how it launches TCP connections.
Kensa generates a pipe buffer for each TCP connect call, and
the number of pipes are limited to the maximum number
of connections allowed in the application. Hence, buffer
overflows happen only if the requests being sent in the
same connection overflow the queue. For webservers, and
application servers, the debugging window size is generally
not a problem, as each request is a new “connection.” This
enables Kensa to tolerate significant instrumentation overhead
without a buffer overflow. On the other hand, database and
other session based services usually have small request sizes,
but multiple requests can be sent in one session which is
initiated by a user. In such cases, for a server receiving a
heavy workload, the number of calls in a single session may
eventually have a cumulative effect and cause overflows.

To further increase the debug window, we propose load
balancing debugging instrumentation overhead across multi-
ple debug-containers, which can each get a duplicate copy of
the incoming data. For instance, debug-container 1 could have
50% of the instrumentation, and the rest on debug-container
2. We believe such a strategy would significantly reduce the
chance of a buffer overflow in cases where heavy instrumen-
tation is needed. Section 5.2 explains in detail the behavior
of the debug window, and how it is impacted by instrumenta-
tion.

3.4 Divergence Checking
In Kensa it is possible that non-deterministic behavior (dis-
cussed in Section 7) in the two containers or user instrumen-
tation, causes the production and debug container to diverge
with time. To understand and capture this divergence, we
compare the corresponding network output received in the
proxy. This is an optional component, which gives us a black-
box mechanism to check the fidelity of the replica based
on its communication with external components. In our cur-

rent prototype, we use a hash on each data packet, which is
collected and stored in memory for the duration that each
packet’s connection is active. The degree of acceptable di-
vergence is dependent on the application behavior, and the
operator’s wishes. For example, an application that includes
timestamps in each of its messages (i.e. is expected to have
some non-determinism) could perhaps be expected to have a
much higher degree of acceptable divergence than an applica-
tion that should normally be returning deterministic results.

3.5 Implementation
The clone-manager and the live cloning utility are built
on top of the user-space container virtualization software
OpenVZ [36]. Kensa extends VZCTL 4.8 [26] live migration
facility [43], to provide support for online cloning. To make
live cloning easier and faster, we used OpenVZ’s ploop
devices [5] as the container disk layout. The network isolation
for the production container was done using Linux network
namespaces [3] and NAT [2]. While Kensa is based on light-
weight containers, we believe that Kensa can easily be applied
to heavier-weight, traditional virtualization software where
live migration has been further optimized [17, 50].

The network proxy duplicator and the network aggregator
was implemented in C/C++. The forwarding in the proxy
is done by forking off multiple processes each handling
one send/or receive a connection in a loop from a source
port to a destination port. Data from processes handling
communication with the production container, is transferred
to those handling communication with the debug containers
using Linux Pipes [1]. Pipe buffer size is a configurable input
based on user-specifications.

4. Case Studies
One of our core insights is that for most SOA systems, pro-
duction bugs can hence be triggered by network replay alone.
To validate this insight, we selected sixteen real-world bugs,
applied Kensa, reproduced them in a production container,
and observed whether they were also simultaneously repro-
duced in the replica. For each of the sixteen bugs that we
triggered in the production environments, Kensa faithfully
reproduced them in the replica.

We selected our bugs from those examined in previous
studies [41, 55], focusing on bugs that involved performance,
resource-leaks, semantics, concurrency, and configuration.
We have further categorized these bugs whether they lead to a
crash or not, and if they can be deterministically reproduced.
Table 1 presents an overview of our study. We now discuss
these bugs and our experience reproducing them with Kensa
in greater detail:
Semantic Bugs: The majority of the bugs found in produc-
tion SOA systems can be categorized as semantic bugs. These
bugs often happen because an edge condition was not checked
during the development stage or there was a logical error in
the algorithm etc. Many such errors result in an unexpected

6 2016/10/21

Bug Type Bug ID Application Symptom/Cause Determ-
inistic Crash Trigger

Performance
MySQL #15811 mysql-5.0.15 Bug caused due to multiple calls in a loop Yes No Repeated insert into table
MySQL #26527 mysql-5.1.14 Load data is slow in a partitioned table Yes No Create table with partition and load data
MySQL #49491 mysql-5.1.38 calculation of hash values inefficient Yes No MySql client select requests

Concurrency

Apache #25520 httpd-2.0.4 Per-child buffer management not thread safe No No Continuous concurrent requests

Apache #21287
httpd-2.0.48,

php-4.4.1 Dangling pointer due to atomicity violation No Yes Continuous concurrent request

MySQL #644 mysql-4.1 data-race leading to crash No Yes Concurrent select queries
MySQL #169 mysql-3.23 Race condition leading to out-of-order logging No No Delete and insert requests
MySQL #791 mysql-4.0 Race - visible in logging No No Concurrent flush log and insert requests

Semantic

Redis #487 redis-2.6.14 Keys* command duplicate or omits keys Yes No Set keys to expire, execute specific reqs
Cassandra #5225 cassandra-1.5.2 Missing columns from wide row Yes No Fetch columns from cassandra
Cassandra #1837 cassandra-0.7.0 Deleted columns become available after flush Yes No Insert, delete, and flush columns

Redis #761 redis-2.6.0 Crash with large integer input Yes Yes Query for input of large integer

Resource Leak Redis #614 redis-2.6.0 Master + slave, not replicated correctly Yes No Setup replication, push and pop some
elements

Redis #417 redis-2.4.9 Memory leak in master Yes No Concurrent key set requests

Configuration Redis #957 redis-2.6.11 Slave cannot sync with master Yes No Load a very large DB
HDFS #1904 hdfs-0.23.0 Create a directory in wrong location Yes No Create new directory

Table 1. List of real-world production bugs studied with Kensa

output or possibly can crash the system. We recreated 4 real-
world production bugs from Redis [14] queuing system, and
Cassandra [38] a NoSQL database.

For instance, one such bug Redis#761 is an integer over-
flow error. This error is triggered, when the client tries to
insert and store a very large number. This leads to an unman-
aged exception, which crashes the production system. Others
such as Redis#487 resulted in expired keys still being retained
in Redis, because of an unchecked edge condition. While this
error does not lead to any exception or any error report in
application logs, it gives the user a wrong output. In the case
of such logical errors, the application keeps processing, but
the internal state can stay incorrect. In our experiments, we
were able to clone the input of the production in the debug
containers and easily observe both these errors.
Performance Bugs: These bugs do not lead to crashes but
cause significant impact to user satisfaction. A casestudy [32]
showed that a large percentage of real-world performance
bugs can be attributed to uncoordinated functions, executing
functions that can be skipped, and inefficient synchronization
among threads (for example locks held for too long etc.).
Typically, such bugs can be caught by function level execution
tracing and tracking the time taken in each execution function.
Another key insight provided in [32] was that two-thirds of
the bugs manifested themselves when special input conditions
were met, or execution was done at scale. Hence, it is difficult
to capture these bugs with traditional offline white-box testing
mechanisms.

For one of the bugs in MySQL#15811, it was reported
that some of the user requests which were dealing with com-
plex scripts (Chinese, Japanese), were running significantly
slower than others. To evaluate Kensa, we re-created a two-
tier client-server setup with the server (container) running

a buggy MySQL server and sent queries to the production
container with complex scripts (Chinese). These queries were
asynchronously replicated, in the debug container. To further
investigate the bug-diagnosis process, we also turned on exe-
cution tracing in the debug container using SystemTap [21].
This gives us the added advantage, of being able to profile and
identify the functions responsible for the slow-down, without
the tracing having any impact on production.
Resource Leaks: Resource leaks can be either memory
leak or un-necessary zombie processes. Memory leaks are
common errors in service-oriented systems, especially in
C/C++ based applications which allow low-level memory
management by users. These leaks build up over time and can
cause slowdowns because of resource shortage, or crash the
system. Debugging leaks can be done either using systematic
debugging tools like Valgrind, which use shadow memory to
track all objects, or memory profiling tools like VisualVM,
mTrace, or PIN, which track allocations, de-allocations, and
heap size. Although Valgrind is more complete, it has a
very high overhead and needs to capture the execution from
the beginning to the end (i.e., needs application restart). On
the other hand, profiling tools are much lighter and can be
dynamically patched to a running process.

Let us take Redis#417 for instance, here we had a redis
master and slave set up for both production and debug
container. We then triggered the bug by running concurrent
requests through the client which can trigger the memory leak.
The memory leak was easily visible in the debug container by
turning on debug tracing, which showed a growing memory
usage.
Concurrency Bugs One of the most subtle bugs in produc-
tion systems is caused due to concurrency errors. These bugs
are hard to reproduce, as they are non-deterministic, and may

7 2016/10/21

or may not happen in a given execution. Unfortunately, Kensa
cannot guarantee that if a buggy execution is triggered in the
production container, an identical execution will trigger the
same error in the debug container. However, given that the
debug container is a live-clone of the production container,
and that it replicates the state of the production container
entirely, we believe that the chances of the bug also being
triggered in the debug container are quite high. Additionally,
the debug container is a useful tracing utility to track thread
lock and unlock sequences, to get an idea of the concurrency
bug.
Configuration Bugs: Configuration errors are usually caused
by wrongly configured parameters, i.e., they are not bugs in
the application, but bugs in the input (configuration). These
bugs usually get triggered at scale or for certain edge cases,
making them extremely difficult to catch.

A simple example of such a bug is Redis#957, here the
slave is unable to sync with the master. The connection with
the slave times out and it’s unable to sync because of the large
data. While the bug is partially a semantic bug, as it could
potentially have checks and balances in the code. The root
cause itself is a lower output buffer limit. Once again, it can
be easily observed in our debug-containers that the slave is
not synced, and can be investigated further by the debugger.

5. Evaluation
To evaluate the performance of Kensa, we pose and answer
the following research questions:
RQ1: How long does it take to create a live clone of a pro-
duction container and what is it’s impact on the performance
of the production container?
RQ2: What is the size of the debugging window, and how
does it depend on resource constraints?
RQ3: Can we generalize the results of our case study to see
if Kensa can target even more real bugs?

We evaluated the internal mode on two identical VM’s
with an Intel i7 CPU, with 4 Cores, and 16GB RAM each in
the same physical host (one each for production and debug
containers). We evaluated the external mode on two identical
host nodes with Intel Core 2 Duo Processor, 8GB of RAM.
All evaluations were performed on CentOS 6.5.

5.1 Live Cloning Performance
As explained in Section 3, a short suspend time during live
cloning is necessary to ensure that both containers are in the
exact same system state. The suspend time during live cloning
can be divided in 4 parts: (1) Suspend & Dump: time taken
to pause and dump the container, (2) Pcopy after suspend:
time required to complete rsync operation (3) Copy Dump
File: time taken to copy an initial dump file. (4) Undump &
Resume: time taken to resume the containers. To evaluate
“live cloning”, we ran a micro-benchmark of I/O operations,
and evaluated live-cloning on some real-world applications
running real-workloads.

Basi
c

Apa
ch

e

Thtt
pd

Trad
eB

ea
ns

Trad
eS

oa
p

PetS
tor

e

0

5

10

Ti
m

e(
se

co
nd

s)

Suspend & Dump Pcopy after suspend
Copy Dump File Undump & Resume

Figure 4. Suspend time for live cloning, when running a
representative benchmark

Real world applications and workloads: To begin to study
the overhead of live cloning, we performed an evaluation
using five well-known applications. Figure 4 presents the sus-
pended times for five well-known applications when cloning
a replica with Kensa. We ran the httperf [44] benchmark on
Apache and thttpd to compute max throughput of the web-
servers, by sending a large number of concurrent requests.
Tradebeans and Tradesoap are both part of the dacapo [11]
benchmark “DayTrader” application. These are realistic work-
loads, which run on a multi-tier trading application provided
by IBM. PetStore [4] is also a well known J2EE reference ap-
plication. We deployed PetStore in a 3-tier system with JBoss,
MySQL and Apache servers, and cloned the app-server. The
input workload was a random set of transactions which were
repeated for the duration of the cloning process.

As shown in Figure 4, for Apache and Thttpd the container
suspend time ranged between 2-3 seconds. However, in
more memory intensive application servers such as PetStore
and DayTrader, the total suspend time was higher (6-12
seconds). Nevertheless, we did not experience any timeouts
or errors for the requests in the workload3. However, this
did slowdown requests in the workload. This shows that
short suspend times are largely not visible or have minimal
performance impact to the user, as they are within the time
out range of most applications. Further, a clean network
migration process ensures that connections are not dropped,
and are executed successfully. We felt that these relatively fast
temporary app suspensions were a reasonable price to pay to
launch an otherwise overhead-free debug replica. To further

3 In case of packet drops, requests are resent both at the TCP layer, and the
application layer. This slows down the requests for the user, but does not
drop them

8 2016/10/21

characterize the suspend time imposed by the live cloning
phase of Kensa, we created a synthetic micro-benchmark to
push Kensa towards its limit.

103 104

5

10

15

I/O ops(Kbps)

Ti
m

e
(s

ec
s)

read-internalMode read-externalMode
write-internalMode write-externalMode

Figure 5. Live Cloning suspend time with increasing
amounts of I/O operations

Micro Benchmark using I/O operations: The main factor
that impacts suspend time is the number of “dirty pages” in
the suspend phase, which have not been copied over in the
pre-copy rsync operation (see section 3.1). To understand
this better, we use fio (flexible I/O tool for Linux) [7], to
gradually increase the number of I/O operations while doing
live cloning. We run the fio tool to do read and writes of
random values with a controlled I/O bandwidth. Additionally,
we ensure that the I/O job being processed by fio is long
enough to last through the cloning process.

As shown in figure 5, read operations have a much smaller
impact on suspend time of live cloning compared to write
operations. This can be attributed to the increase of “dirty
pages” in write operations, whereas for read, the disk image
remains largely the same. The internal mode is much faster
than the external mode, as both the production and debug-
container are hosted in the same physical device. We believe,
that for higher I/O operations, with a large amount of “dirty-
pages”, network bandwidth becomes a bottleneck: leading to
longer suspend times. Overall in our experiments, the internal
mode is able to manage write operation up to 10 Mbps, with a
total suspend-time of approx 5 seconds. Whereas, the external
mode is only able to manage up to 5-6 Mbps, for a 5 sec
suspend time.

To answer RQ1, live cloning introduces a short sus-
pend time in the production container dependent on
the workload. Write intensive workloads will lead
to longer suspend times, while read intensive work-
loads will take much less. Suspend times in real work-

load on real-world systems vary from 2-3 seconds
for webserver workloads to 10-11 seconds for ap-
plication/database server workloads. Compared to
external mode, internal mode had a shorter suspend
time. A production-quality implementation could re-
duce suspend time further by rate-limiting incoming
requests in the proxy, or using copy-on-write mech-
anisms and faster shared file system/storage devices
already available in several existing live migration
solutions.

5.2 Debug Window Size
To understand the size of the debug-window and it’s depen-
dence on resources, we did some experiments on real-world
applications, by introducing a delay while duplicating the
network input. This gave us some real-world idea of buffer
overflow and it’s relationship to the buffer size and input
workload. Since it was difficult to observe systematic be-
havior in a live system to understand the decay rate of the
debug-window, we also did some simulation experiments, to
see how soon the buffer would overflow for different input
criteria.

Input Rate Debug Window Pipe Size Slowdown

530 bps, 27 rq/s 8 4096 1.8x
530 bps, 27 rq/s 8 sec 4096 3x
530 bps, 27 rq/s 72 sec 16384 3x
Pois., λ = 17 rq/s 16 sec 4096 8x
Pois., λ = 17 rq/s 18 sec 4096 5x
Pois.,λ = 17 rq/s 8 65536 3.2x
Pois.,λ = 17 rq/s 376 sec 16384 3.2x

Table 2. Approximate debug window sizes for a MySQL
request workload

Experimental Results: We call the time taken to reach a
buffer overflow the “debug-window”. As explained earlier,
the size of this debug-window depends on the overhead of
the “instrumentation”, the incoming workload distribution,
and the size of the buffer. To evaluate the approximate size of
the debug-window, we sent requests to both a production and
debug MySQL container via our network duplicator. Each
workload ran for about 7 minutes (10,000 “select * from table”
queries), with varying request workloads. We also profiled
the server, and found that is able to process a max of 27 req/s4

in a single user connect session. For each of our experiments,
we vary the buffer sizes to get an idea of debug-window.
Additionally, we generated a slowdown by first modeling
the time taken by MySQL to process requests (27 req/s or
17req/s), and then putting an approximate sleep in the request
handler.

4 Not the same as bandwidth, 27 req/s is the maximum rate of sequential
requests MySQL server is able to handle for a user session

9 2016/10/21

Initially, we created a connection and sent requests at
the maximum request rate the server was able to handle (27
req/s). We found that for overheads up-to 1.8x (approx) we
experienced no buffer overflows. For higher overheads the
debug window rapidly decreased, primarily dependent on
buffer-size, request size, and slowdown.

Next, we mimic user behavior, to generate a realistic
workload. We send packets using a Poisson process with
an average request rate of 17 requests per second to our
proxy. This varies the inter-request arrival time, and let’s
the cloned debug-container catch up with the production
container during idle time-periods in between request bursts.
We observed, that compared to earlier experiments, there was
more slack in the system. This meant that our system was
able to tolerate a much higher overhead (3.2x) with no buffer
overflows.

400 500 600 700

0

100

200

300

Overhead(in percentage)

D
eb

ug
W

in
do

w
(i

n
ho

ur
s)

arrival 4MB/s
arrival 2MB/s
arrival 1MB/s

Figure 6. Simulation results for debug-window size. Each
series has a constant arrival rate, and the buffer is kept at
64GB.

Simulation Results: In our next set of experiments, we simu-
late packet arrival and service processing for a buffered queue
in SOA applications. We use a discrete event simulation based
on an MM1 queue, which is a classic queuing model based
on Kendall’s notation [34], and is often used to model SOA
applications with a single buffer based queue. Essentially,
we are sending and processing requests based on a Poisson
distribution with a finite buffer capacity. In our simulations
(see Figure 6), we kept a constant buffer size of 64GB, and
iteratively increased the overhead of instrumentation, thereby
decreasing the service processing time. Each series (set of
experiments), starts with an arrival rate approximately 5 times
less than the service processing time. This means that at 400%
overhead, the system would be running at full capacity (for
stable systems SOA applications generally operate at much
less than system capacity). Each simulation instance was
run for 1000000 seconds or 277.7 hours. We gradually in-

creased the instrumentation by 10% each time, and observed
the hitting-time of the buffer (time it takes for the buffer
to overflow for the first time). As shown there is no buffer
overflow in any of the simulations until the overhead reaches
around 420-470%, beyond this the debug-window decreases
exponentially. Since beyond 400% overhead, the system is
over-capacity, the queue will start filling up fairly quickly.
This clarifies the behavior we observed in our experiments,
where for lower overheads (1.8-3.2x) we did not observe any
overflow, but beyond a certain point, we observed that the
buffer would overflow fairly quickly. Also as shown in the
system, since the buffer size is significantly larger than the
packet arrival rate, it takes some time for the buffer to over-
flow (several hours). We believe that while most systems will
run significantly under capacity, large buffer sizes can ensure
that our debug-container may be able to handle short bursts
in the workload. However, a system running continuously
at capacity is unlikely to tolerate significant instrumentation
overhead.

To answer RQ2, we found that the debug-container
can stay in a stable state without any buffer overflows
as long as the instrumentation does not cause the
service times to become less than the request arrival
rate. Furthermore, a large buffer will allow handling
of short bursts in the workload until the system
returns back to a stable state. The debug-window can
allow for a significant slowdown, which means that
many existing dynamic analysis techniques [25, 46],
as well as most fine-grained tracing [23, 33] can be
applied on the debug-container without leading to an
incorrect state.

5.3 A survey of real-world bugs
In Table 3, we present the results of a survey of bug reports

of three production SOA applications. In order to understand
how we did the survey, let us look at MySQL as an example.
We first searched for bugs which were tagged as “fixed” by
developers and dumped them. We then chose a random time-
line (2013-2014) and filtered out all bugs which belonged to
non-production components - like documentation, installation
failure, compilation failure. We then manually went through
each of the bug-reports, filtering out the ones which were
mislabeled or were reported based on code-analysis, or did
not have a triggering test report (essentially we focused only
on bugs that happened during production scenarios). We then
classified these bugs into the categories shown in Table 3
based on the bug-report description, and the patch fix, to-do
action item for the bug.

One of the core-insights provided by this survey was that
most bugs (93%) triggered in production systems are deter-
ministic in nature (everything but concurrency bugs), among
which the most common ones are semantic bugs (80%). This
is understandable, as they usually happen because of unex-

10 2016/10/21

Category Apache MySQL HDFS

Performance 3 10 6
Semantic 36 73 63

Concurrency 1 7 6
Resource Leak 5 6 1

Total 45 96 76

Table 3. Survey and classification of bugs

pected scenarios or edge cases, that were not thought of dur-
ing testing. Recreation of these bugs depend only on the state
of the machine, the running environment (other components
connected when this bug was triggered), and network input
requests, which trigger the bug scenario. Kensa is a useful
testing tool for testing these deterministic bugs in an exact
clone of the production state, with replicated network input.
The execution can then be traced at a much higher granularity
than what would be allowed in production containers, to find
the root cause of the bug.

On the other hand, concurrency errors, which are non-
deterministic in nature make up for less than 7% of the
production bugs. Owing to non-determinism, it is possible
that the same execution is not triggered. However concurrent
points can still be monitored and a post-facto search of
different executions can be done to find the bug [25, 51]
to capture these non-deterministic errors.

To answer RQ3, we found that almost 80% of bugs
were semantic in nature, while less than 6% of the
bugs are non-deterministic. About 13-14% of bugs
are performance and resource-leak bugs, which are
generally persistent in the system.

6. Applications of Live Debugging
Statistical Testing: One well-known technique for debug-
ging production applications is statistical testing. This is
achieved by having predicate profiles from both successful
and failing runs of a program and applying statistical tech-
niques to pinpoint the cause of the failure. The core advantage
of statistical testing is that the sampling frequency of the in-
strumentation can be decreased to reduce the instrumentation
overhead. However, the instrumentation frequency for such
testing to be successful needs to be statistically significant.
Unfortunately, overhead concerns in the production environ-
ment limit the frequency of instrumentation. In Kensa, the
buffer utilization can be used to control the frequency of
such statistical instrumentation in the debug-container. This
would allow the user to utilize the slack available in the
debug-container for instrumentation to it’s maximum, with-
out leading to an overflow. Thereby improving the efficiency
of statistical testing.

Record and Replay: Record and Replay techniques have
been proposed to replay production site bugs. However, they
are not yet used in practice as they can impose unacceptable
overheads in the service processing time. Kensa replicas can
be used to do recording at a much finer granularity (higher
overhead), allowing for easy and fast replays offline. Similar
to existing mechanisms, the system can be replayed can
then be used for offline debugging, without imposing any
recording overhead to the production container.
Patch Testing: Bug fixes and patches to resolve errors, often
need to undergo testing in the offline environment and are
not guaranteed to perform correctly. Patches can be made
to the replica instead. The fix can be traced and observed if
it is correctly working, before moving it to the production
container. This is similar in nature to AB-Tesing, which is
applied to find if a new fix is useful or works [22]

7. Discussion and Limitations
Through our case studies and evaluation, we concluded that
Kensa can faithfully reproduce many real bugs in complex
applications with no running-overhead. However, there may
be several threats to the validity of our experiments. For
instance, in our case study, the bugs that we selected to study
may not be truly representative of a broad range of different
faults. Perhaps, Kensa’s low-overhead network record and
replay approach is less suitable to some classes of bugs. To
alleviate this concern, we selected bugs that represented a
wide range of categories of bugs, and further, selected bugs
that had already been studied in other literature, to alleviate
a risk of selection bias. We further strengthened this studied
with a follow-up categorization of 217 bugs in three real-
world applications, finding that most of those bugs were
semantic in nature, and very few were non-deterministic,
and hence, having similar characteristics to those 16 that we
reproduced.

There are also several underlying limitations and assump-
tions regarding Kensa’s applicability:
Non-determinism: Non-determinism can be attributed to
three main sources (1) system configuration, (2) application
input, and (3) ordering in concurrent threads. Live cloning of
the application state ensures that both applications are in the
same “system-state” and have the same configuration param-
eters for itself and all dependencies. Kensa’s network proxy
ensures that all inputs received in the production container
are also forwarded to the debug container. However, any
non-determinism from other sources (e.g. thread interleaving,
random numbers, reliance on timing) may limit Kensa’s abil-
ity to faithfully reproduce an execution. While our current
prototype version does not handle these, we believe there
are several existing techniques that can be applied to tackle
this problem in the context of live debugging. However, as
can be seen in our case-studies above, unless there is signifi-
cant non-determinism, the bugs will still be triggered in the
replica, and can hence be debugged. Approaches like statis-

11 2016/10/21

tical debugging [39], can be applied to localize bug. Kensa
allows debugger to do significant tracing of synchronization
points, which is often required as an input for constraint
solvers [25, 27], which can go through all synchronization
orderings to find concurrency errors. We have also tried to
alleviate this problem using our divergence checker (Sec-
tion 3.4)
Distributed Services: Large-scale distributed systems are of-
ten comprised of several interacting services such as storage,
NTP, backup services, controllers and resource managers.
Kensa can be used on one or more containers and can be used
to clone more than one communicating . Based on the nature
of the service, it may be (a). Cloned, (b). Turned off or (c).
Allowed without any modification. For example, storage ser-
vices supporting a replica need to be cloned or turned off (de-
pending on debugging environment) as they would propagate
changes from the debug container to the production contain-
ers. Similarly, services such as NTP service can be allowed
to continue without any cloning as they are publishsubscribe
broadcast based systems and the debug container cannot im-
pact it in anyway. Furthermore, instrumentation inserted in
the replica, will not necessarily slowdown all services. For
instance, instrumentation in a MySQL query handler will not
slowdown file-sharing or NTP services running in the same
container.

8. Related Work
Record and Replay Systems: Record and Replay [6, 19, 29,
30, 52] has been an active area of research in the academic
community for several years. These systems offer highly
faithful re-execution in lieu of performance overhead. For
instance, ODR [6] reports 1.6x, and Aftersight [15] reports
5% overhead, although with much higher worst-case over-
heads. Kensa avoids run-time overhead, but its cloning sus-
pend time may be viewed as an amortized cost in comparison
to the overhead in record-replay systems. Among record and
replay systems, the work most closely related to ours is After-
sight [15]. Aftersight records a production system and replays
it concurrently in a parallel VM. While both Aftersight and
Kensa allow debuggers an almost real-time diagnosis facility,
Aftersight suffers from recording overhead in the produc-
tion VM. Additionally, it needs the diagnosis VM to either
catch up with the production VM, which further slows down
the application, or to allow it to proceed with divergence.
The average slow-down in Aftersight is 5% and can balloon
upto 31% to 2.6x for worst-case scenario. VARAN [31] is
an N-version execution monitor that maintains replicas of an
existing app, while checking for divergence. Kensa’s debug
containers are effectively replicas: however, while VARAN
replicates applications at the system call level, Kensa’s lower
overhead mechanism does not impact the performance of
the master (production) app. Unlike lower-level replay based
systems, Kensa tolerates a greater amount of divergence from

the original application: i.e., the replica may continue to run
even if the analysis slightly modifies it.
Real-Time techniques: This is a category of approaches
which attempt to do real-time diagnosis. Chaos Monkey [9]
uses fault injection in real production systems to do fault tol-
erance testing. It randomly injects time-outs, resource hogs
etc. in production systems. This allows Netflix to test the ro-
bustness of their system at scale, and avoid large-scale system
crashes. Another approach called AB Testing [22] probabilis-
tically tests updates or beta releases on some percentage of
users, while letting the majority of the application users work
on the original system. AB Testing allows the developer to
understand user-response to any new additions to the soft-
ware, while most users get the same software. Unlike Kensa,
these approaches are restricted to software testing and directly
impact the user.
Live Migration & Cloning Live migration of virtual ma-
chines facilitates fault management, load balancing, and low-
level system maintenance for the administrator. Most existing
approaches use a pre-copy approach that copies the memory
state over several iterations, and then copies the process state.
This includes hypervisors such as VMWare [45], Xen [16],
and KVM [35]. VM Cloning, on the other hand, is usually
done offline by taking a snapshot of a suspended/ shutdown
VM and restarting it on another machine. Cloning is helpful
for scaling out applications, which use multiple instances of
the same server. There has also been limited work towards
live cloning. For example Sun et al. [49] use copy-on-write
mechanisms, to create a duplicate of the target VM with-
out shutting it down. Similarly, another approach [28] uses
live-cloning to do cluster-expansion of systems. However,
unlike Kensa, both these approaches starts a VM with a new
network identity and may require re-configuration of the du-
plicate node.

9. Conclusion & Future Work
Kensa is a novel framework that uses redundant cloud re-
sources to debug production SOA applications in real-time.
It can be combined with several existing bug diagnosis tech-
nique to localize errors. Compared to existing monitoring
solutions, which have focused on reducing instrumentation
overhead, our tool is able to avoid any performance slow-
down at all, at the same time potentially allow significant
monitoring for the debugger.

In the future, we will explore: (1) Applications: we aim
to apply our system to real-time intrusion detection and
statistical debugging. (2) Analysis: we wish to define “real-
time” data analysis techniques for traces and instrumentation
done in Kensa. (3) We plan to reduce the suspend time of live
cloning, by utilizing several recent works in live migration.
We will make Kensa available on GitHub for use by other
researchers and practitioners. For each of the 16 faults studied
in our case study, we will also release a docker container (with
README) that can be launched to trigger the bug.

12 2016/10/21

References
[1] Linux ipc pipes. http://man7.org/linux/man-

pages/man7/pipe.7.html.

[2] NAT: Network address translation.
http://en.wikipedia.org/wiki/Network address translation.

[3] Network namespaces. https://lwn.net/Articles/580893/.

[4] Petstore a sample java platform, enterprise edition reference ap-
plication. http://www.oracle.com/technetwork/java/petstore1-
1-2-136742.html.

[5] Ploop: Containers in a file. http://openvz.org/Ploop.

[6] G. Altekar and I. Stoica. ODR: output-deterministic replay
for multicore debugging. In Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles, pages 193–
206. ACM, 2009.

[7] J. Axboe. Fio-flexible io tester. uRL: http://freecode. com/pro-
jects/fio, 2008.

[8] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using
Magpie for request extraction and workload modelling. In
OSDI, volume 4, pages 18–18, 2004.

[9] C. Bennett and A. Tseitlin. Netflix: Chaos Monkey released
into the wild. netflix tech blog, 2012.

[10] D. Bernstein. Containers and cloud: From lxc to docker to
kubernetes. IEEE Cloud Computing, 1(3):81–84, 2014.

[11] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, et al. The dacapo benchmarks: Java benchmarking
development and analysis. In ACM Sigplan Notices, volume 41,
pages 169–190. ACM, 2006.

[12] C. Boettiger. An introduction to docker for reproducible
research. ACM SIGOPS Operating Systems Review, 49(1):
71–79, 2015.

[13] D. Borthakur. Hdfs architecture guide. HADOOP APACHE
PROJECT http://hadoop. apache. org/common/docs/curren-
t/hdfs design. pdf, page 39, 2008.

[14] J. L. Carlson. Redis in Action. Manning Publications Co.,
2013.

[15] J. Chow, T. Garfinkel, and P. M. Chen. Decoupling dynamic
program analysis from execution in virtual environments.
In USENIX 2008 Annual Technical Conference on Annual
Technical Conference, pages 1–14, 2008.

[16] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield. Live migration of virtual machines.
In Proceedings of the 2nd conference on Symposium on Net-
worked Systems Design & Implementation-Volume 2, pages
273–286. USENIX Association, 2005.

[17] U. Deshpande and K. Keahey. Traffic-sensitive live migration
of virtual machines. Future Generation Computer Systems,
2016.

[18] DockerHub. Build ship and run anywhere.
https://www.hub.docker.com/.

[19] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M.
Chen. Revirt: Enabling intrusion analysis through virtual-
machine logging and replay. ACM SIGOPS Operating Systems
Review, 36(SI):211–224, 2002.

[20] F. C. Eigler and R. Hat. Problem solving with systemtap. In
Proc. of the Ottawa Linux Symposium, pages 261–268. Citeseer,
2006.

[21] F. C. Eigler, V. Prasad, W. Cohen, H. Nguyen, M. Hunt,
J. Keniston, and B. Chen. Architecture of systemtap: a linux
trace/probe tool. 2005.

[22] B. Eisenberg and J. Quarto-vonTivadar. Always be testing: The
complete guide to Google website optimizer. John Wiley &
Sons, 2009.

[23] U. Erlingsson, M. Peinado, S. Peter, M. Budiu, and
G. Mainar-Ruiz. Fay: Extensible distributed tracing
from kernels to clusters. ACM Trans. Comput. Syst.,
30(4):13:1–13:35, Nov. 2012. ISSN 0734-2071. . URL
http://doi.acm.org/10.1145/2382553.2382555.

[24] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. An
updated performance comparison of virtual machines and linux
containers. In Performance Analysis of Systems and Software
(ISPASS), 2015 IEEE International Symposium On, pages 171–
172. IEEE, 2015.

[25] C. Flanagan and P. Godefroid. Dynamic partial-order
reduction for model checking software. In Proceedings of the
32Nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’05, pages 110–121, New
York, NY, USA, 2005. ACM. ISBN 1-58113-830-X. . URL
http://doi.acm.org/10.1145/1040305.1040315.

[26] M. Furman. OpenVZ Essentials. Packt Publishing Ltd, 2014.

[27] M. K. Ganai, N. Arora, C. Wang, A. Gupta, and G. Balakrish-
nan. Best: A symbolic testing tool for predicting multi-threaded
program failures. In Proceedings of the 2011 26th IEEE/ACM
International Conference on Automated Software Engineering,
ASE ’11, pages 596–599, Washington, DC, USA, 2011.
IEEE Computer Society. ISBN 978-1-4577-1638-6. . URL
http://dx.doi.org/10.1109/ASE.2011.6100134.

[28] A. Gebhart and E. Bozak. Dynamic cluster expansion
through virtualization-based live cloning, Sept. 10 2009. URL
https://www.google.com/patents/US20090228883.
US Patent App. 12/044,888.

[29] D. Geels, G. Altekar, P. Maniatis, T. Roscoe, and I. Stoica.
Friday: Global comprehension for distributed replay. In NSDI,
volume 7, pages 285–298, 2007.

[30] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu, M. F.
Kaashoek, and Z. Zhang. R2: An application-level kernel
for record and replay. In Proceedings of the 8th USENIX
conference on Operating systems design and implementation,
pages 193–208. USENIX Association, 2008.

[31] P. Hosek and C. Cadar. Varan the unbelievable: An ef-
ficient n-version execution framework. In Proceedings
of the Twentieth International Conference on Architec-
tural Support for Programming Languages and Operating
Systems, ASPLOS ’15, pages 339–353, New York, NY,
USA, 2015. ACM. ISBN 978-1-4503-2835-7. . URL
http://doi.acm.org/10.1145/2694344.2694390.

[32] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu. Un-
derstanding and detecting real-world performance bugs.
In Proceedings of the 33rd ACM SIGPLAN Confer-
ence on Programming Language Design and Imple-

13 2016/10/21

mentation, PLDI ’12, pages 77–88, New York, NY,
USA, 2012. ACM. ISBN 978-1-4503-1205-9. . URL
http://doi.acm.org/10.1145/2254064.2254075.

[33] B. Kasikci, B. Schubert, C. Pereira, G. Pokam, and
G. Candea. Failure sketching: A technique for auto-
mated root cause diagnosis of in-production failures. In
Proceedings of the 25th Symposium on Operating Sys-
tems Principles, SOSP ’15, pages 344–360, New York,
NY, USA, 2015. ACM. ISBN 978-1-4503-3834-9. . URL
http://doi.acm.org/10.1145/2815400.2815412.

[34] D. G. Kendall. Stochastic processes occurring
in the theory of queues and their analysis by the
method of the imbedded markov chain. Ann.
Math. Statist., 24(3):338–354, 09 1953. . URL
http://dx.doi.org/10.1214/aoms/1177728975.

[35] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm:
the linux virtual machine monitor. In Proceedings of the Linux
Symposium, volume 1, pages 225–230, 2007.

[36] K. Kolyshkin. Virtualization in linux. White paper, OpenVZ, 3:
39, 2006.

[37] O. Laadan, N. Viennot, and J. Nieh. Transparent, lightweight
application execution replay on commodity multiprocessor
operating systems. In ACM SIGMETRICS Performance Evalu-
ation Review, volume 38, pages 155–166. ACM, 2010.

[38] A. Lakshman and P. Malik. Cassandra: a decentralized struc-
tured storage system. ACM SIGOPS Operating Systems Review,
44(2):35–40, 2010.

[39] B. R. Liblit. Cooperative Bug Isolation. PhD thesis, University
of California, Berkeley, Dec. 2004.

[40] J.-G. Lou, Q. Lin, R. Ding, Q. Fu, D. Zhang, and T. Xie.
Software analytics for incident management of online services:
An experience report. In Automated Software Engineering
(ASE), 2013 IEEE/ACM 28th International Conference on,
pages 475–485. IEEE, 2013.

[41] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou. Bugbench:
Benchmarks for evaluating bug detection tools. In Workshop
on the evaluation of software defect detection tools, volume 5,
2005.

[42] D. Merkel. Docker: lightweight linux containers for consistent
development and deployment. Linux Journal, 2014(239):2,
2014.

[43] A. Mirkin, A. Kuznetsov, and K. Kolyshkin. Containers
checkpointing and live migration. In Proceedings of the Linux
Symposium, pages 85–92, 2008.

[44] D. Mosberger and T. Jin. httperfa tool for measuring web server
performance. ACM SIGMETRICS Performance Evaluation
Review, 26(3):31–37, 1998.

[45] M. Nelson, B.-H. Lim, G. Hutchins, et al. Fast transparent
migration for virtual machines. In USENIX Annual Technical
Conference, General Track, pages 391–394, 2005.

[46] N. Nethercote and J. Seward. Valgrind: a framework for
heavyweight dynamic binary instrumentation. In PLDI ’07,
2007.

[47] S. Newman. Building Microservices. ” O’Reilly Media, Inc.”,
2015.

[48] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie.
Pinplay: a framework for deterministic replay and reproducible
analysis of parallel programs. In Proceedings of the 8th annual
IEEE/ACM international symposium on Code generation and
optimization, pages 2–11. ACM, 2010.

[49] Y. Sun, Y. Luo, X. Wang, Z. Wang, B. Zhang, H. Chen, and
X. Li. Fast live cloning of virtual machine based on xen.
In Proceedings of the 2009 11th IEEE International Con-
ference on High Performance Computing and Communica-
tions, HPCC ’09, pages 392–399, Washington, DC, USA, 2009.
IEEE Computer Society. ISBN 978-0-7695-3738-2. . URL
http://dx.doi.org/10.1109/HPCC.2009.97.

[50] P. Svärd, B. Hudzia, S. Walsh, J. Tordsson, and E. Elmroth.
Principles and performance characteristics of algorithms for
live vm migration. ACM SIGOPS Operating Systems Review,
49(1):142–155, 2015.

[51] P. Thomson and A. F. Donaldson. The lazy happens-before
relation: Better partial-order reduction for systematic
concurrency testing. In Proceedings of the 20th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP 2015, pages 259–260, New
York, NY, USA, 2015. ACM. ISBN 978-1-4503-3205-7. . URL
http://doi.acm.org/10.1145/2688500.2688533.

[52] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M.
Chen, J. Flinn, and S. Narayanasamy. Doubleplay: Paral-
lelizing sequential logging and replay. ACM Trans. Comput.
Syst., 30(1):3:1–3:24, Feb. 2012. ISSN 0734-2071. . URL
http://doi.acm.org/10.1145/2110356.2110359.

[53] Y. Wang, H. Patil, C. Pereira, G. Lueck, R. Gupta, and
I. Neamtiu. Drdebug: Deterministic replay based cyclic de-
bugging with dynamic slicing. In Proceedings of annual
IEEE/ACM international symposium on code generation and
optimization, page 98. ACM, 2014.

[54] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange,
and C. A. De Rose. Performance evaluation of container-based
virtualization for high performance computing environments.
In 2013 21st Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, pages 233–240.
IEEE, 2013.

[55] D. Yuan, Y. Luo, X. Zhuang, G. R. Rodrigues, X. Zhao,
Y. Zhang, P. U. Jain, and M. Stumm. Simple testing can prevent
most critical failures: An analysis of production failures in
distributed data-intensive systems. In 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 14),
pages 249–265, 2014.

14 2016/10/21

