
Heterogeneous Multi-Mobile Computing

Naser AlDuaij, Alexander Van’t Hof, and Jason Nieh
{alduaij, alexvh, nieh}@cs.columbia.edu

Department of Computer Science
Columbia University

Technical Report CUCS-008-16
August 2016

Abstract

As smartphones and tablets proliferate, there is a growing need
to provide ways to combine multiple mobile systems into more
capable ones, including using multiple hardware devices such
as cameras, displays, speakers, microphones, sensors, and input.
We call this multi-mobile computing. However, the tremendous
device, hardware, and software heterogeneity of mobile systems
makes this difficult in practice. We present M2, a system for
multi-mobile computing across heterogeneous mobile systems
that enable new ways of sharing and combining multiple devices.
M2 leverages higher-level device abstractions and encoding and
decoding hardware in mobile systems to define a client-server
device stack that shares devices seamlessly across heterogeneous
systems. M2 introduces device transformation, a new technique
to mix and match heterogeneous input and output device data
including rich media content. Example device transformations
for transparently making existing unmodified apps multi-mobile
include fused devices, which combine multiple devices into a
more capable one, and translated devices, which can substitute use
of one type of device for another. We have implemented an M2
prototype on Android that operates across heterogeneous hardware
and software, including multiple versions of Android and iOS
devices, the latter allowing iOS users to also run Android apps.
Our results using unmodified apps from Google Play show that
M2 can enable apps to be combined in new ways, and can run
device-intensive apps across multiple mobile systems with modest
overhead and qualitative performance indistinguishable from using
local device hardware.

1. Introduction

Users increasingly rely on tablets and smartphones for their every-
day computing needs. Individual users often own multiple mobile
systems of various shapes and sizes [23], and groups of users often
have many mobile systems at their disposal. As mobile systems
become ever more ubiquitous, there is an increasing demand to
provide users with a seamless experience across multiple mobile
systems, not just use them as separate, individual systems. For
example, the Netflix app and its supporting cloud infrastructure
allows a user to start a movie on a smartphone, then switch to
a tablet to continue watching the same movie with a bigger and
better display instead of starting over from scratch and manually

Figure 1: Multi-mobile computing using fused displays/input

skipping around the movie to find where he left off. While this
limited example only allows using one mobile system at a time, it
points to an emerging trend of even more powerful ways of using
mobile systems in which multiple mobile systems can combine
their functions into a more capable one, enabling new applications.
We call this multi-mobile computing.

Three simple examples help to illustrate just a few of the pos-
sibilities of multi-mobile computing. First, remote control of other
devices such as cameras is often useful, but each app developer
today is forced to reinvent the wheel each time to provide such
functionality across systems. Multi-mobile computing makes it
straightforward to have an app on one system control devices on
another without additional implementation complexity. Second,
rather than being limited to using a touchscreen for input to control
a game, multi-mobile computing would enable smartphones to be
used as Wii-like game controllers for a game running on another
system to provide a richer gaming experience. Third, desktop
computers often use multiple display monitors combined together
to provide a unified, larger screen real estate on which to work.
In a similar way, as shown in Figure 1, multi-mobile computing
would enable users to combine their tablets together in a grid to
provide a unified display and input surface across all the tablets,
for a better viewing experience for all the users. Unlike simple
one-to-one mirroring approaches such as AirPlay [2] which can
display content from a smartphone to an AppleTV, multi-mobile
computing goes a step further with the ability to combine multiple
devices from multiple systems together in new ways.

Although multi-mobile computing has the potential to provide a
wide range of powerful new app functionality, two key challenges
must be met to turn this potential into reality. First, smartphones
and tablets are highly heterogeneous; on Android alone, more
than 20,000 different systems available [19]. They are tightly inte-
grated hardware platforms that incorporate a plethora of different



hardware devices using non-standard interfaces. Many different
versions of software run on these systems, including many versions
of iOS and Android, especially the latter given the fragmentation
of the Android market. This level of device, hardware, and soft-
ware heterogeneity makes it difficult to combine multiple devices
together across mobile systems while ensuring good performance.
Second, smartphone and tablet devices consume and produce a
wide range of disparate input and output data via heterogeneous
interfaces, from a variety of sensor readings to rich audio and video
media content. This level of data heterogeneity makes it difficult to
combine and share smartphone and tablet devices so that different
types of devices can be redirected, mixed, and matched together
across mobile systems.

The lack of system support for combining multiple devices
across heterogeneous mobile systems together forces each app
developer who would like to provide such functionality to start
from scratch, making such development difficult and error prone
at best and forcing each and every developer to incur the same
recurring development costs. Each app developer who attempts
to develop such multi-mobile apps may come up with different
approaches and user-facing user interfaces, resulting in ad hoc and
unexpected interactions between multiple multi-mobile apps and
an inferior user experience.

To address these problems, we introduce M2, a system for multi-
mobile computing that redirects and transforms heterogeneous
device input and output across heterogeneous mobile systems to
enable new ways of sharing and combining multiple devices. To
solve the device heterogeneity problem, we observe that mobile
systems use devices in a manner quite different from traditional
desktop and server systems. Vertically integrated mobile systems
offer a tall interface from apps to hardware devices through several
layers of software stack. Mobile apps do not access hardware
devices through a thin layer between apps and the operating sys-
tem, but rather through user-level system services that manage the
hardware devices. There are some exceptions, mainly networking
and storage, for which widely-used cross-platform abstractions
already exist for sharing; our focus in this paper is on user-facing
devices common on mobile systems such as sensors, cameras,
audio, and display. Furthermore, system services manage hardware
devices using native frameworks that provide interfaces similar
to public application programming interfaces (APIs) used by apps.

Based on these observations, M2 takes a unique approach to par-
titioning device functionality between a device server, a system that
serves its devices to other systems making them remotely accessi-
ble, and a device client, a system that runs an app using the remote
device. On the server, M2 provides device access by simply run-
ning an app that uses existing public APIs to access devices. On the
client, M2 modifies user-level system services to support remote
devices, allowing apps to make use of remote devices. Apps see the
same device abstraction for remote devices as they do for existing
local devices, enabling app developers to use the same familiar,
existing public APIs for accessing remote devices. M2 leverages
higher-level user-level APIs and services to operate across heteroge-

neous hardware and software stacks with local performance similar
to the existing user-level device software stack in mobile systems.

To mix and match heterogeneous devices across different mo-
bile systems, M2 introduces device transformation, a framework
that enables disparate devices across different systems to be sub-
stituted and combined with one another. For example, rather than
using the local camera for input, device transformation allows
an app to use any remote video device for input, including a
remote camera or remote display output. To enable unmodified
apps to become multi-mobile, M2 introduces two types of device
transformations: fused devices and translated devices.

Fused devices provide a single device abstraction based on
fusing information from multiple devices. For example, a fused dis-
play device could be defined based on the local display and three
other remote displays such that all four displays are to be treated as
a 2x2 matrix unified together as one larger display. Instead of requir-
ing each app developer to incur the recurring cost of creating his
own mechanism or algorithm for deciding how to use multiple de-
vices of the same type, fused devices allow developers to leverage
predefined ways of combining multiple devices that may be created
by other developers, thereby simplifying multi-mobile app devel-
opment. Fused devices also provide a way for unmodified apps
designed to interact with only one device of a given type to transpar-
ently take advantage of M2 to enable multi-mobile functionality.

Translated devices allow devices to be reinterpreted in different
but contextually meaningful ways. For example, a translated device
could transform sensor data from the accelerometer into input
touches, so a hand gesture can be considered as a left or right input
swipe. M2 can thereby transform a smartphone into a Nintendo
Wii-like remote and enjoy interactive, unmodified games on a
nearby tablet.

M2 leverages higher-level device abstractions and widely de-
ployed mobile system hardware features to optimize the transfer of
device data across mobile systems. For higher-bandwidth devices
such as cameras, display, and audio, M2 takes advantage of encod-
ing and decoding hardware widely deployed on mobile systems
to efficiently compress device data and transfer it in well-known
video and audio formats. This simple approach overcomes the
performance problems of previous remote display mechanisms
and yields a high quality visual and audio experience across a
wide range of content, including 3D graphics.

We have implemented an M2 prototype on Android and demon-
strate its effectiveness at providing multi-mobile computing func-
tionality transparently with existing unmodified Android apps
using both Android and iOS remote devices. M2 allows any stock
Android or iOS system to become a device server by running
an app which can be made available in Google Play or the Ap-
ple App Store, and only requires modest user-level framework
modifications to allow an Android system to become a device
client. We show that M2 operates seamlessly across heterogeneous
mobile software and hardware systems, including iOS 8.2, iOS
9.3.1, and four recent and widely used major Android versions,
Marshmallow, Lollipop, KitKat and Jelly Bean running on dif-
ferent tablet and smartphone systems. We demonstrate that M2

2



provides multi-mobile functionality with low latency and only
modest performance overhead across even high-bandwidth devices
such as cameras, display, and audio, even for 3D graphics-intensive
apps. Using both standard WiFi networks and WiFi Direct, our
experiences show that the display performance using multiple
remote devices with a wide range of popular apps from Google
Play is visually indistinguishable from using local devices.

2. Usage Model

M2 is designed to be simple to use. A mobile system is a device
server if it has a device that is being shared with other systems, and
is a device client if it is accessing a device being shared by another
server. Apps that access remote devices are run on the client,
whereas servers simply make their devices accessible. A client may
use multiple servers, a server may be in use by multiple clients, and
a mobile system can be both a server and a client at the same time.

Users can turn their mobile systems into servers by simply
downloading the M2 app from the respective app store, an M2
Android app from Google Play or an M2 iOS app from the Apple
App Store. No other software is needed to allow a mobile system
to share its devices with other systems. By default, no devices are
shared. Using the app, the user can share one or more devices
by creating a device profile. A device profile consists of a profile
name, a list of devices being shared, a password, and optional
access control options that can restrict the systems that can access
the device based on IP. For each device listed in the profile, the
user can specify a limit on how many clients can access a device at
the same time. Devices not listed in a profile are not shared. Device
profiles can be disabled at any time. For simplicity, only one device
profile can be enabled at a time on a given device server.

Device data on the server is processed by the M2 app. Whenever
the app is running, device data can be captured and sent to the
client. User-related input and output is processed when the app
is visible to the user. For example, when the input device is shared,
input data is captured by running the M2 app by processing touch-
screen and button input just like any other app and forwarding it
to the client. Similarly, when the display device is shared, display
output data from the client is made visible by drawing the data to
the server’s screen when the M2 app is running in the foreground
and visible to the user. From M2’s perspective, the M2 app simply
makes the devices on the server system accessible remotely, and
otherwise treats the server like a dumb peripheral system. At the
same time, if using an Android system, the M2 app runs like any
other Android app and users can switch between the M2 app,
treating the system like a dumb peripheral, and any other Android
app, treating the system as a full-fledged Android computer.

To run apps that access remote devices on other mobile systems,
the M2 native frameworks must be installed on the device client.
Once installed, a user can make remote servers accessible by down-
loading and running the M2 app on the client. The M2 app enables
the user to see all available peers on the network currently offering
to share devices. Multicast DNS (mDNS) [9] is used to facilitate
peer discovery. Using the app, the user can specify a device profile
on a server, input the required password, and the respective remote
devices will then be accessible on the client. Apps running on the

client can then access those remote devices. The M2 app shows
both currently active device profiles as well as previously accessed
device profiles that are not currently active, the latter to make them
easy to access again in the future. Accessing device profiles can
also be done by other apps in a programmatic fashion.

Device profiles provide security to prevent outsiders not running
on the user’s system from accessing the user’s devices. Our goal
with M2 is to ensure that it does not increase security risks with
remote device access compared to the security currently provided
by mobile systems. In the case of standard Android apps, once
a user has granted the app permission to access various devices
such as location services, cameras, and the network, an app is free
to capture that data and send it elsewhere. As a result, M2 works
to prevent unauthorized access from outside the local system, but
does not guard against unauthorized access to local devices by apps
already given permission by the user to run on the local system.

Given that a number of devices may be available on a client, M2
allows users to define usage profiles to indicate which collection of
devices are to be used by an app. A usage profile specifies which
devices from which server profiles are to be used. Usage profiles
are ordered, so that M2 will select the first usage profile for which
all its devices are available. For example, if a usage profile for using
a particular server tablet’s display is ordered before a usage profile
for using the local system’s display, then M2 will use the remote dis-
play whenever it is available and only use the local system’s display
if the server tablet is not available. Usage profiles can be defined to
be system-wide, or can be used on a per application basis so that dif-
ferent applications may use different usage profiles at a given time.

A usage profile not only indicates which server devices are to be
used, but may also indicate further information about how they are
to be used. For example, how a set of devices is used may depend
on the relative positioning of the mobile systems. We expect that
in the future, M2 will provide mechanisms to automatically detect
the relative position of mobile devices as positioning changes
dynamically [34], but for simplicity, relative position is currently
determined based on user input, either statically as part of the usage
profile or dynamically when the usage profile is selected for use.
This information can then be used by other apps, for example in
determining how to display visual content across multiple screens,
or how to output different channels of audio content to different
speakers.

Usage profiles can specify server devices directly or server
devices via device transformation. Two common device transfor-
mations that M2 provides to support unmodified apps are fused
devices and translated devices. Fused devices provide a single
device abstraction based on fusing information from multiple
devices, allowing existing apps designed for use with one device
to see multiple devices as one. The idea is similar to fused location
providers in Android [7], which combine GPS, WiFi, and cellular
to improve location accuracy. For example, a fused display device
could be defined based on the local display and three other server
displays such that all four are to be treated as a 2x2 matrix unified
together as one larger display. Similarly, a fused camera device

3



Binder IPC

System Services

Java Framework

Java Native Interface (JNI)

Native Framework

Linux Kernel

SensorService CameraManagerService

AudioFlinger InputFlinger

Camera Mic GPS

…

…

Native Framework

Hardware Interface Layer (HAL) / Proprietary Libs

Figure 2: Android architecture

could be defined to combine the previews of multiple cameras
together by tiling them in a single preview display.

Translated devices enable one type of device to be used as
another, allowing existing apps designed for use with one type
of device to use another as a substitute. For example, a translated
accelerometer sensor to input would use linear acceleration as
input to another device. Hand gestures would be interpreted as
either input touches or swipes resulting in a Nintendo Wii-like
experience. A similar example is to use visual input cues from the
camera by translating the camera data into actual input touches.

3. M2 Architecture

The M2 architecture addresses three key issues to support multi-
mobile computing. The first is how should device functionality be
partitioned across systems to support the device, hardware, and soft-
ware heterogeneity in mobile systems. The second is ensuring good
performance even for using high-bandwidth devices across the net-
work. The third is how to enable disparate devices across different
systems with heterogeneous data formats to be mixed and matched.

3.1 Client-Server Device Stack

To understand how to partition device functionality across mobile
systems in such a way that supports heterogeneous devices, hard-
ware, and software, it is helpful to first provide a brief overview of
the way devices are used in mobile systems, using Android as an
exemplary system. As shown in Figure 2, Android can be thought
of as having a tall interface to devices through multiple layers
of software. Apps are written in Java and call Java frameworks,
which function as libraries that provide the core public APIs
used by developers for Android functionality including accessing
devices. Frameworks use Java Native Interface (JNI) to package
up calls and pass them through Android’s Binder IPC mechanism
to communicate with Android system services, which are shared,
long-running system processes that run in the background and are
used to manage devices. Almost without exception, apps do not
interact with devices directly, but instead via system services that
manage access to their respective devices across multiple apps.

Mobile apps do not see the traditional file-based device abstrac-
tion provided by the kernel, but instead interact with whatever
abstraction is provided by system services. Each type of device has
an associated system service which provides its own specialized
abstraction. Table 1 lists the major types of user-facing I/O de-

vices supported in Android and the respective device abstractions
used. For example, the SensorService manages sensor devices,
AudioFlinger manages audio devices, and the CameraService
manages the camera device. System services implement vendor-
independent software-related device functionality using a plethora
of native frameworks provided by Android. Services interface with
the Hardware Abstraction Layer (HAL), a standardized Android
interface for accessing hardware, to call vendor-specific libraries,
some of which are proprietary, which implement vendor-specific
device functionality. These libraries interface with the Linux operat-
ing system kernel to access the device hardware via device drivers.
Other mobile ecosystems such as iOS have similar software stacks
for accessing devices in which higher-level frameworks communi-
cate with underlying system services via an IPC mechanism, and
those system services then manage lower-level device functionality.

Given this background regarding the Android device infrastruc-
ture, there are a number of ways in which device functionality can
be partitioned between server and client. One approach would be
to partition the device stack at the kernel interface using traditional
device files as the abstraction between server and client. The
server where the device resides has the real device file, and the
client has a virtual device file which forwards device interactions
to the server. However, this approach will not work for hetero-
geneous systems for at least three reasons. First, since this is
done below the HAL, it only works for systems which use the
same vendor-specific hardware devices and any attempt to operate
across heterogeneous hardware is problematic. Second, common
device-level operations on mobile systems involve vendor-specific
ioctls with variable inputs and possibly memory references
which are difficult to identify and reproduce correctly across
different systems. Finally, substantial device functionality may be
implemented inside proprietary vendor libraries rather than the
driver itself and these libraries may manipulate device state via
shared memory in any opaque manner such that simply forwarding
device files calls is insufficient to replicate device state.

Another approach would be to partition the device stack at
the HAL layer given that it is a device abstraction layer, but this
approach also has problems supporting heterogeneous systems.
First, because the HAL layer is low-level and Android dependent,
providing device servers at the HAL layer would require firmware
modifications that preclude using this approach with stock An-
droid systems, and would make it difficult at best to use this
approach with non-Android systems. Second, it may be important
for performance and heterogeneity to be able to process device
data before sending it over the network, but this is an issue at the
HAL layer. Furthermore, since the HAL layer is low-level, higher-
level abstractions provided by Android are unavailable, making it
problematic to leverage higher-level semantics for processing data.
Finally, system services expect to manage underlying devices on
behalf of Android apps running on the server, so avoiding device
conflicts with unmodified system services becomes problematic
as they would be unaware of the devices being used by a remoting
mechanism at the lower HAL layer.

4



device abstraction system service
sensor event type SensorService
input source type InputFlinger
location provider name LocationManagerService
mic audiosource type AudioFlinger
camera camera id CameraService
audio implicit AudioFlinger
display surface name SurfaceFlinger

Table 1: Android device abstractions

Native Framework

Hardware Interface Layer (HAL)/Proprietary Libs

Linux Kernel

Java Framework
(using M2 API)

Java Native 
Interface (JNI)

Native 
Framework

M2-Aware App

Client (Apps)

Java 
Framework

Java Native 
Interface (JNI)

Native 
Framework

Unmodified App

System Services

Server (Remote Devices)

Native Framework

Hardware Interface Layer (HAL)/Proprietary Libs

Linux Kernel

System Services

M2 
App

Java 
Framework

Java Native 
Interface (JNI)

Native 
Framework

M2 App

Figure 3: M2 architecture; Android modifications in grey
A third approach would be to partition at the IPC interface to

system services by forwarding IPC calls remotely, but this will
not work for heterogeneous systems. First, forwarding requires
the exact same IPC interfaces to system services on both systems,
but these interfaces vary between Android versions making inter-
operability problematic across Android versions not to mention
non-Android systems. Second, IPC interfaces do not encapsulate
all necessary communication between apps and devices. Device
data may be exchanged via shared memory, the file system, or
Unix domain sockets as opposed to IPC callback functions. For
example, apps write display data directly to surfaces backed by
shared graphical memory, sensor data is sent to apps via Unix
domain sockets, and apps can request that the CameraService
write pictures directly to disk on their behalf.

We make three observations regarding the device software stack
in mobile systems that suggest an approach for partitioning device
functionality between server and client in M2 to address the prob-
lem of device, hardware, and software heterogeneity. First, for the
hardware devices of interest such as input, camera, audio, display,
sensors, and GPS, mobile apps do not access such hardware de-
vices directly but go through system services. As a result, there is
no need to provide apps with device abstractions corresponding to
remote devices at lower layers of the software stack below system
services because apps will never see them; anything below the level
of system services is irrelevant as far as apps are concerned. Second,
the primary interface between apps and devices is at user-level, not
kernel-level. System services are entirely implemented at user-level.
This suggests that a user-level approach to remote device access is
likely to be sufficient given that a user-level approach is used for lo-
cal device access. In this context, traditional arguments in favor of
kernel-level approaches for performance reasons are less likely to
apply to mobile systems given their device software stacks. Finally,

the native frameworks used to implement system services provide
many of the same interfaces and functions as the Java frameworks
used by apps. Although the former represents an internal API, its
similarities in the context of device access to the public API used
by apps suggests that, for those similar APIs, they are likely to
remain relatively stable across different Android versions.

Based on these observations, M2 takes a unique approach to
partitioning device functionality between server and client that
leverages the characteristics of mobile systems. On the server,
M2 provides device access by implementing it using public APIs
provided by Java frameworks to apps; this access via Java frame-
works is forwarded on to the client. On the client, M2 modifies
system services to support remote devices and expose them to
apps. Instead of only accessing local devices, system services and
their supporting native frameworks are modified to also access
remote devices. Figure 3 shows an overview of the M2 architecture
in Android, which supports new multi-mobile apps using an M2
API and existing unmodified apps.

This split architecture provides multiple benefits. On the server,
because device access at the server is provided at user-level entirely
using public APIs, server device access can be provided entirely by
running an app without any changes to the software stack on the
server. This provides maximum flexibility and ease of development
as providing device access is no more difficult to developing other
mobile apps. By building on public APIs that are supported for all
Android apps across all Android versions, it is easy and straight-
forward to support any Android hardware and software platforms,
enabling device remoting across heterogeneous devices. Since the
server is just an app, its interactions with devices are managed by
system services along with any other app, allowing remoting of
devices and use of those devices by apps running on the system to
co-exist seamlessly using existing mechanisms. As demonstrated
by our support of iOS and given that servers are built on public
APIs typical of most mobile ecosystems, we expect that building
servers for other non-Android systems is relatively straightforward.

On the client, because device access is implemented within
system services, remote devices are made available to apps through
the existing system service interfaces used for local devices. This
makes it easy for apps to use remote devices in the same manner as
they use local devices. By implementing remote devices at the sys-
tem service layer, M2 can leverage higher-level semantics available
at that layer to simplify its implementation and avoid low-level
implementation complexities and device-specific dependencies.
By avoiding device-specific dependencies, M2 easily supports
heterogeneous Android hardware devices. Since system services
are implemented using native frameworks, M2 leverages those
same frameworks to reduce implementation complexity rather than
having to reimplement low-level interfaces such as the HAL. These
native frameworks often provide similar functionality to the Java
frameworks that provide the public API for apps. This makes it
easy to map from one to the other, often providing straightforward
implementation support within system services for various remote
devices. Although native frameworks are considered internal APIs
that may change, M2’s use of a subset of native frameworks that

5



are mostly similar to those used to support public APIs reduces
the likelihood of changes to the specific internal APIs used by
M2, making it easier to port and support across different Android
versions. As evidence for this, our M2 prototype implementation
has been tested to work, reusing the exact same code, across four
recent and widely used major Android versions, Marshmallow,
Lollipop, KitKat, and Jelly Bean.

By relying on the decoupling of apps from devices provided
by system services, M2 treats remote devices as dumb peripherals.
This provides useful properties in the presence of intermittent net-
work disconnections between server and client due to system mo-
bility or other environment conditions affecting wireless networks.
App state is entirely on the client and network disconnections do
not cause app failures. For example, app-related graphics and dis-
play state is entirely on the client encapsulated in state in the app as
well as display surfaces managed by SurfaceFlinger, the
Android display-related system service. If a disconnection happens,
the app continues to function properly and can continue to draw to
its respective display surface, oblivious as to whether the system
service is still able to send the data to the remote display device.

3.2 Data and Network Communication

M2 clients and servers communicate over standard network sockets
and are designed to interact over WiFi and WiFi Direct networks.
For control messages and devices which expect precise, lossless
data, M2 uses TCP which retransmits data if needed to ensure
reliable data delivery. For devices such as display, audio, and the
camera preview, UDP is used instead because it is more important
for data to be delivered on time than to ensure that all data is trans-
mitted reliably. Data that is late as indicated by timestamps or not
delivered due to packet loss is simply discarded. The same times-
tamps are combined with NTP and best practices to ensure media
synchronization across devices [12, 17, 22, 24]. The microphone
is an interesting case as it can operate in both ways where TCP is
used for recording and UDP for streaming. Note that we currently
do not use UDP multicast with multiple remote devices as existing
implementations have poor performance and frequently are not
even supported with current WiFi routers. As multicast implemen-
tations improve in the future, this may become a viable option to
using point-to-point network protocols. An alternative is Micro-
Cast [10] which uses pseudo-broadcast, but it requires changes to
WiFi drivers/firmware and the use of custom Android firmware.

To optimize network performance and security, M2 leverages
common hardware features of mobile systems to provide security
and high performance. M2 provides secure client-server commu-
nications using 128-bit AES encryption, leveraging widespread
adoption of AES hardware acceleration support in mobile devices.
M2 leverages video and audio encoding and decoding hardware
available on mobile systems to efficiently support high-bandwidth
devices. M2 encrypts data with separate session keys for each
device as opposed to separate session keys for every client system.
This way, device data is only encrypted once regardless of the
number of clients, but still prevents, for example, one system with
access to a remote sensor device from accessing display data being
shared with a different system. Should the user alter the mobile

systems allowed to access a device, that device session key is
regenerated and retransmitted to all clients.

Since high-bandwidth devices send visual and audio data, M2
simply uses hardware video encoding to compress display data
and hardware audio encoding to compress audio data before
transmitting it across the network. At the server, the data is decoded
and outputted. A benefit of this approach is that the bandwidth
required to display high fidelity content is limited by the display
resolution and frame rate, so even complex 3D graphics scenery
does not require more bandwidth than 2D imagery. M2 uses
H.264 video encoding and AAC audio encoding for display and
audio devices, respectively, which are commonly available on
smartphones and tablets, though other encoding formats can also be
used. These encoders can be configured to use different resolutions,
bit rates, and frame rates, which M2 can adjust based on what
devices are being used and available bandwidth; M2 by default
uses 30 fps frame rates since they are visually indistinguishable
from higher frame rates for end users [27]. Both camera and
microphone also send video and audio data, which can also be
encoded. In the case of camera, M2 encodes the camera preview
data, which can be bandwidth intensive if sending raw frames, but
does not encode the actual pictures taken, which are transmitted
much less frequently. Since hardware is needed for real-time
encoding, each system can encode and decode a limited number
of data streams. Given the limited number of encoder/decoder
streams supported, M2 encodes the complete data and transmits
the same encoded data to all remote devices even if each device
only uses a portion of the data, such as when multiple displays
are used as one and each device only displays a portion of the
data. Although this uses some additional bandwidth, it saves on the
number of encoders used at the client. The display data can then be
scaled and resized appropriately for viewing at the remote display
based on the hardware characteristics of the respective screen.

3.3 Device Transformations

M2 provides a straightforward extension of the Android APIs for
sensors, input, location, microphone, camera, audio and display
devices to support new multi-mobile apps that desire explicit
control of multiple remote and local devices. The API makes
multiple devices available so that apps can programmatically
access and combine them. However, existing apps are generally
not designed to use multiple devices of a given type, so the M2
extension API cannot be used by them unless they are modified.
Given the large number of existing apps that can benefit from
multi-mobile computing, M2 introduces a device transformation
framework that makes it possible for existing apps to transparently
use mixes of local and remote devices, making them multi-mobile
without modification. For example, M2 supports fused devices, a
device transformation that combines multiple devices of the same
type together into one. An existing app built to use one display
device can instead use a fused display device to be able to display
to multiple displays instead of just one.

A transformation consists of an input device abstraction, an
output device abstraction, and a transformation function. The
device abstraction includes its type and data format. The trans-

6



device identifiers, data types, and formats
sensor sensor type, data fields (x, y, z)
input gesture (e.g. touch vs swipe), coords. (x, y)
location location type, coords. (x, y, z), aux data (e.g., speed)
mic media format (e.g. AAC), channels, sample rate
camera functionality (pic vs. video), media format, resolution
audio media format (e.g. AAC), channels, bit/sample rate
display media format (e.g. H.264), resolution, bit rate,

fps, position, scaling

Table 2: M2 formats and types per hardware device
formation function is used to convert the input device abstraction
to the output device abstraction, and can operate on device data
or control information. Table 2 provides a summary of formats
and types for each hardware device. The definition of these types
and formats under M2 is essential in order to provide a portable
translation medium across different Android versions, hardware
devices, and platforms (e.g., iOS to Android and vice versa).

To support fused devices, translated devices, and other custom
transformations, M2 provides a transformation plugin framework
that operates in conjunction with the M2 app on either a device
server or client. Plugins provide a way for developers to write their
own transformations, which can be integrated into M2. In Android,
a plugin is a standalone Android Application Package (APK) that
can be downloaded through the Google Play Store. The M2 app ex-
poses an RPC interface implemented via the Android Interface Def-
inition Language (AIDL) that allows these plugins to register with
the M2 app to receive device control and data information from de-
sired device(s). The plugin can then transform this data and return
the result to the M2 app as a new output device abstraction to be di-
rected to local or remote device(s) or exposed as a new shareable de-
vice. With regard to input device abstractions, plugins have access
to devices whenever the M2 app would have access to them. On the
device server, where only the app runs, plugins can have access to
most devices at any time, but input only when the app is in the fore-
ground. On the device client, plugins can have access to devices at
any time by leveraging their modified frameworks for background
access. Client-side transformation output is passed back to system
services via the loopback network interface, appearing to system
services in the same manner as remote devices. In iOS, transforma-
tions are currently implemented within the M2 app, but we envision
using iOS action app extensions [3] to support plugins for iOS.

This framework provides three key benefits. First, by allowing
plugins to operate on the server or client, it provides maximum
flexibility to support a wide range of transformation functionality.
Second, by leveraging standard plugin functionality via APKs,
it makes it possible for developers to make use of higher-level
application interfaces and semantics to ease programming of trans-
formation functionality. Finally, since plugins communicate with
devices via the M2 app using the same mechanisms that support
remote device server functionality, they are similarly isolated. The
risk of misbehaving plugins is therefore limited to only the apps
that are actively using them as specified in the user profile, while
mitigating the risk to the system as a whole.

To illustrate how the framework can be used, we describe a
few example device transformations. One example is a fused

display device, illustrated in Figure 1, in which four tablets are
combined in a 2x2 matrix to provide a larger display and input
surface. The app is running on one tablet and displaying content
on four M2 provided remote display devices, with the local
client accessing its “remote” display device through the loopback
network interface. Additionally, the app is receiving touch input
from the four touchscreen devices exposed by M2. To provide
fused display, each device runs a plugin with a display input device
abstraction and a display output abstraction. The plugins use the
display ID information, which identifies each display’s position in
the 2x2 grid, to adjust the output abstraction such that it is scaled to
be four times as large and positioned relative to which quarter needs
to appear. Since the plugin only manipulates control information
while leaving the data processing to system services and the
underlying hardware, the display fusion is fast and efficient. Note
that in this scenario the local client is simultaneously providing
display output while its screen part of the fused display. To achieve
this, M2 makes a small modification to the client’s SurfaceFlinger
to allow for recording only those surface layers below the M2 app.

To provide fused input, M2 runs a plugin on just the device
client where the app runs. The plugin registers to receive input
device abstraction data from the four remote input devices and
scales the coordinates of each input device so that each touch-
screen appears to only cover a quarter of the input surface. This
is done based on the display ID information to determine each
touchscreen’s position in the 2x2 grid. It then combines the input
data into a single fused input device which is seen by the app.

As another example, consider a translated input device in which
accelerometer sensor data is instead translated into touchscreen
input to provide a Wii-like remote controller in place of normal
touchscreen input for an app. Providing this translated device can
be accomplished using either a server or client plugin, but for
brevity, we just discuss the server plugin option. M2 runs a plugin
on the device server which converts sensor data into different
touchscreen inputs. For example, accelerometer data showing a
left-to-right movement of the device is translated into a left-to-right
touchscreen swipe. The output device abstraction from the device
server is a touchscreen input device, which is sent to the device
client where a tennis or swordfight app can run to take advantage
of the more natural Wii-like gaming experience. The device client
simply sees a remote input device and does not need to know that
the input was translated from an actual accelerometer device.

4. Evaluation

Using the Android Open Source Project (AOSP), we implemented
an M2 prototype and measured its performance across a range
of Android hardware and software, including both tablets and
smartphones. We also implemented an M2 iOS device server app
for iOS systems, demonstrating the ability to access remote devices
across Android and iOS. We first describe some ways in which
we have used M2, then present some quantitative performance
measurements.

We ran M2 across four different major versions of Android and
two different major versions of iOS on five different smartphones
and tablets, namely Nexus 4 (768x1280 display, Qualcomm Snap-

7



dragon S4 Pro 1.5GHz quad-core CPU) smartphones with Android
4.3 Jelly Bean and Android 4.4 KitKat, Nexus 7 (1200x1920 dis-
play, Qualcomm Snapdragon S4 Pro 1.5GHz quad-core CPU)
tablets with Android 6.0 Marshmallow, Nexus 9 (1536x2048
display, Nvidia Tegra K1 2.3GHz dual-core CPU) tablets with
Android 5.0 Lollipop, a 1st generation iPad mini (768x1024 dis-
play, Apple A5 1GHz dual-core CPU) tablet with iOS 8.2, and an
iPhone 6S (750x1334 display, Apple A9 1.85GHz dual-core CPU)
running iOS 9.3.1. We conducted experiments with both WiFi Di-
rect and regular WiFi, the latter by connecting systems to an ASUS
RT-AC66U WiFi router; the router was used by default unless
otherwise indicated. Only the Nexus 9 and iPhone 6S support and
use IEEE 802.11ac, while the other systems use IEEE 802.11n.

4.1 Example Use Cases

We first downloaded and installed various unmodified apps from
Google Play to use with M2 in four different configurations. First,
we simply made iOS remote devices available to Android apps,
allowing an iPhone 6S with the latest iOS to effectively run unmod-
ified iOS and Android apps from the same system for the first time.

Second, we used fused devices for display and input to allow
four systems in a 2x2 layout to be combined as one. Display and
input are split across all screens providing a larger multi-headed
display experience. Because displaying across multiple devices
can be bandwidth-intensive and therefore is a useful stress test
of the system, we used this M2 configuration for many of our
performance measurements in Section 4.2. Section 4.2 also lists
ten display-intensive apps that we used with a fused display and
input device configuration.

Third, we used a translated device from accelerometer sensor
data to input touches to provide a Wii-like experience for various
unmodified Android games. We map five movements based on
accelerometer changes, right to left, left to right, up, down, and
forward, to five respective touchscreen gestures, swipe left, swipe
right, swipe up, swipe down, and swiping in a Z shape. The map-
pings were chosen to match various first-person Android game
experiences. We used this translated device configuration for two
Android games, Epic Swords 2 and 3D Tennis. Our experience
using a smartphone to control the game running on a tablet showed
that M2 provided a much more realistic gaming experience than
the native game used with touchscreen input. The Epic Swords
2 game feels more realistic swinging a smartphone to control
sword movements during a swordfight than swiping across the
touchscreen. This is especially true for stabbing with the sword,
which corresponds to a realistic stabbing movement by moving the
smartphone forward and back with M2 but requires an unnatural
Z swipe in the case of using the touchscreen due to the practical
limitations of what a touchscreen can do.

The 3D Tennis game also feels more realistic swinging a
smartphone to control the tennis racquet while playing tennis
than swiping across the touchscreen. For example, swinging the
smartphone from right to left is similar to a tennis forehand stroke,
unlike a confusing left swipe on a touchscreen. The same is true
for swinging from left to right for a backhand, swinging down to
hit a serve, swinging up to add topspin to a stroke, and swinging

down to slice. Because it is designed for use with a touchscreen,
a limitation of the 3D Tennis game is that it is not possible to both
control the stroke and spin of the tennis ball, and the speed of the
swing has no impact on the speed of the ball. We did not have
access to the game’s source code, otherwise modifying the game
directly to use the M2 API would provide an even better multi-
mobile gaming experience. This example illustrates both the useful
ways in which M2 can make existing apps multi-mobile as well
as the limits of what can be done without any app modifications.

Fourth, we used translated devices to record movies playing
on another system. Instead of having the audio and video data
go to remote audio and display devices, we mapped the audio to
go to the remote microphone and the video to go to the remote
camera device. In this scenario, both systems act as M2 device
clients. This effectively allows an existing unmodified camera
app on the remote system to view and record the audio and video
output of another system. The transformation plugin we used
for video ignores the secure flag for display surfaces so that it
can be viewed on non-secure displays and later recorded. We
used this configuration to play a movie on one Android system
using the Netflix app, and record it on another using the stock
Android camera app. We also recorded a video being played by
the YouTube app in the same manner. The recordings were high
quality with audio and video well synchronized, and were playable
using the Android stock video player, allowing the user to play
them at a later time without needing to be online.

4.2 Performance Measurements

We next ran benchmarks and unmodified Android apps from
Google Play [6] to quantify M2 performance. We first focus on
measuring display performance since it is crucial for mobile sys-
tems and a key challenge for remoting performance. This is done
by configuring one or more systems as display and input device
servers for a client running an Android app. To measure real app
performance, we used the widely-used Android PassMark bench-
mark [20]. PassMark conducts a wide range of resource intensive
tests to evaluate CPU, memory, I/O, and graphics performance. If
display servers drop frames, the reported benchmark results may
not reflect the performance perceived at the servers since the app
does not account for this in reporting benchmark performance.
To account for this difference, we scale the performance results
based on the percentage of frames displayed at the server, similar
to metrics from slow-motion benchmarking [18]. For example,
if only half of the frames are displayed by the server, then the
benchmark measurement reported by the app is reduced by half.

We ran M2 with PassMark in seven system configurations using
a Nexus 9 (N9) to run the app: (1) stock Android Lollipop, (2) M2
installed but idle, (3) M2 displaying locally on the same system,
(4) using two N9 systems, splitting the display across the N9 client
and another N9 display server, (5) using four N9 systems in a 2x2
configuration combined as one display, splitting the display across
the N9 client and three other N9 display servers, (6) using a mix of
four heterogeneous systems, one-to-many mirroring the N9 display
to a N9, a Nexus 7 (N7), and a Nexus 4 (N4), and (7) using a mix of
four heterogeneous systems, one-to-many mirroring the N9 display

8



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
c
e

One Two Four Mixed Mixed iOS

Figure 4: PassMark performance; lower is better

0

2

4

6

8

10

12

CPU, Disk,
Memory

2D Tests 3D Simple 3D Complex

B
a
n
d
w

id
th

 (
M

b
p
s
)

One Two Four Mixed Mixed iOS

Figure 5: PassMark per device bandwidth

to a N7, a N4, and an iPad mini. We used the full 1536x2048
native display resolution for all N9 experiments; display encoding
was done at a variable fps limited to 30 fps and a 10 Mbps bit rate.
The high resolution and bit rate were used to stress the system.
For the mixed cases we used a 720x1280 display resolution for
all experiments since there is a resolution limit imposed by the N7
H.264 hardware decoder; display encoding was done at 30 fps and
a 4 Mbps bit rate. To demonstrate the ability to run M2 without
additional network infrastructure, all tests were done using WiFi
Direct, except for the last one, which used the WiFi router since
the iPad mini does not support WiFi Direct.

Figure 4 shows the PassMark benchmark measurements nor-
malized to stock Android Lollipop performance; lower is better.
M2 idle is omitted since it performed essentially the same as stock
Android. The individual tests are grouped under CPU, disk, and
memory using PassMark’s overall score for those categories, while
the 2D and 3D individual tests are shown separately. For the two
and four system experiments, we present results for the worst
remote device; in all cases, the remote devices performed similarly.
Figure 4 shows that M2 incurs some additional overhead as the
number of remote display devices increases, but it is modest and
in some tests uncorrelated with the number of devices used. In all
cases, the network was not a performance bottleneck and dropping
frames or packets was not an issue. In fact, we also ran the Mixed
iOS scenario with a dozen other tablets and laptops connected to
the WiFi router playing YouTube HD videos, and the performance
was the same as shown in Figure 4. In comparing the mixed display
and homogeneous display measurements, both using four Android
systems, the performance is similar even though the homogeneous
case uses a much higher resolution and bit rate, showing that M2
scales well with increasing devices and higher video quality. When
using multiple displays, the display quality across the devices
appeared qualitatively the same. The lone device case shows only
slightly better performance since it does not send packets out to
the network. This is more apparent with the solid vectors, image
filters, complex 3D tests which use more bandwidth due to the
higher number of changes and therefore, encoded frames.

Performance for the remote display devices was visually in-
distinguishable from stock Android, but quantitatively shows a
range of performance overhead from less than 1% for the 3D
simple test to around 60% for the 2D solid vectors test. This is
the worst case quantitative performance due to the extra encoding,

decoding, encryption, and other steps involved. PassMark is
designed to stress test the system, so its quantitatively performance
is a conservative measure of real app performance.

Figure 5 shows the per device average network bandwidth re-
quired while running the PassMark tests, aggregated into the mini-
mally graphical CPU, disk, and memory tests, 2D tests, 3D simple
test, and 3D complex test. Note that the network bandwidth re-
quired on the client running the benchmark is the bandwidth shown
times the number of remote devices as it sends the display data to
each of the remote devices. For the CPU, disk, and memory tests,
the bandwidth required was less than .3 Mbps as the only display
updates are for a progress bar for each test and the display of the test
results. For the 2D tests, the bandwidth required was up to a little
over 10 Mbps for the 1536x2048 remote display tests and up to 4
Mbps for the 720x1280 remote display tests. Our results show that
WiFi networks can meet the bandwidth requirements for even 3D
graphics-intensive display data, providing good M2 performance.

We next focus on measuring camera latency performance. Un-
fortunately, there is a lack of standardized Android camera perfor-
mance app benchmarks, so we simply ran the default Android cam-
era app for each system and instrumented it to measure the time to
take a picture including committing it to persistent storage, and in
the case of using a remote camera, the bandwidth requirements for
both the camera preview and transferring the picture taken from the
remote camera to the default local storage for the app. We measured
the performance using stock Android on all three Android systems,
the N9, N7, and N4, and compared to four different remote camera
scenarios, the N7 using a remote N4 camera, the N7 using a remote
N9 camera, the N4 using a remote N9 camera, and the N4 using a
remote N7 camera. The first two remoting scenarios illustrate using
a higher quality remote camera to take pictures as both the N4 and
N9 cameras are higher quality than the N7. The second two remot-
ing scenarios illustrate using a small form factor system, the N4,
to control cameras on larger form factor tablets, the N9 and N7.

Figure 6 shows the camera performance measurements. For the
time to take a picture, we show capture time, the time from the
button press until the picture is saved to storage, and total time,
the time until the picture is synced to persistent storage, including
transferring it over the network in the case of remote devices. Note
that the capture time is not the same as the time it takes for the user
interface to indicate that it is ready to take another picture, which is
faster but not a true measure of actual camera performance. For the

9



0

5

10

15

20

25

30

35

40

0

500

1000

1500

2000

2500

3000

N4 AOSP N7 AOSP N9 AOSP N7 using N4 N7 using N9 N4 using N9 N4 using N7

B
a
n
d
iw

d
th

 (
M

b
p
s
)

T
im

e
 (

m
s
)

Scenario

Capture Time Total Time Preview Bandwidth Transfer Bandwidth

Figure 6: Camera latency for taking/storing pictures

0

100

200

300

400

500

600

8.0 kHz,
20 ms

44.1 kHz,
20 ms

48.0 kHz,
20 ms

8.0 kHz,
80 ms

44.1 kHz,
81.3 ms

48.0 kHz,
80 ms

T
im

e
 (

m
s
)

N7 AOSP N7 Idle
N7 w/ Remote Speaker N7 w/ Remote Mic
N7 w/ Remote Mic & Speaker N7 w/ Remote N4 Mic
N7 w/ Remote N9 Speaker

Figure 7: Zoiper audio latency

stock systems using the local camera, the capture and total time are
roughly the same, taking less than 1.5 seconds in all cases with the
N4 camera being the fastest; syncing time is negligible compared
to capture time. For the remote camera scenarios, capture time
is comparable to the respective local camera capture time, with
the remote N4 camera being the fastest as well. The capture times
show that M2 incurs negligible additional latency versus local
camera use. Total time for the remote camera scenarios is much
higher because of the time it takes to transfer the picture over the
network to the default local storage of the app on the client. In the
worst case of the N7 using the N4 remote camera, the total time
is almost a second more than the capture time due to transfer time.
In contrast, the difference between the capture and total time for
the remote N9 camera scenarios was only half a second because
it uses the faster 802.11ac networking standard. Figure 6 also
shows the bandwidth requirements for the camera preview and
picture transfer. The camera preview runs at a lower resolution
than the native display resolution, so its bandwidth requirements
are less than 3 Mbps. The picture transfer bandwidth is higher
simply because M2 sends the picture as fast as it can from the
remote camera server to the client, so it uses as much bandwidth
as possible, almost 35 Mbps for the faster N9.

We next focus on measuring audio and microphone latency
performance. We used the Zoiper [25] audio benchmarking app,
which measures the time from playing a beep through the speaker,
recording it through the microphone, and retrieving the audio
buffer. Zoiper tests different sample rates for recording the audio,
from 8 to 48 KHz, and different audio buffer sizes for storing
the audio, from recording 20 to 80 ms of audio through the mi-
crophone. The results depend on the native sample rate of the
respective system along with echo cancellers and filters in the
audio path. We tested seven combinations of local and remote
speakers and microphones: (1) local speaker and microphone with
stock Android on N7, (2) local speaker and microphone with M2
idle on N7, (3) local microphone with N7 and remote speaker with
another N7, (4) local microphone with N7 and remote speaker with
N9, (5) local speaker with N7 and remote microphone with another
N7, (6) local speaker with N7 and remote microphone with N4,
and (7) N7 using remote speaker and microphone on another N7.

Figure 7 shows the audio latency measurements. For most of
the tests, M2 adds negligible latency compared to stock Android,
even for using remote microphones and speakers, indicate that

M2’s push model and device partitioning architecture provide
good low latency performance. The one case in which M2 incurs
higher performance overhead is when running the benchmark with
both remote speaker and microphone at the 44.1 KHz sample rate
and 81.3 ms buffer size settings for Zoiper, resulting in roughly
100 ms of additional latency and almost 20% overhead.

To measure audio performance in terms of audio streaming
along with using other remote devices, we used seven Android
systems together in a multi-mobile setup with a N9 client running
the apps, a N4 providing remote sensor and touchscreen input,
three other N9s and the N9 client in a 2x2 configuration for a
combined larger display, and two N7s providing remote speakers
with separate left and right audio channels, respectively, for stereo
output across two devices. Remote display used full 1536x2048
native display resolution with video encoding at a variable 60 fps
and a 10 Mbps bit rate, and remote audio was unencoded PCM.
To stress the system, we ran ten Android apps from Google Play,
nine of the most popular gaming apps along with the VLC [31]
movie player app for comparison purposes. The gaming apps and
their respective Google Play top game chart ranking were Angry
Birds (#38), Candy Crush Saga (#10), Candy Crush Soda (#3),
Clash of Clans (#6), Crossy Road (#1), Jelly Jump (#5), Racing
Fever (#20), Subway Surfers (#7), and Surgery Simulator (#12).
Each game was played intensively for a minute, and the VLC
movie player was used to play and skip around for a minute of
Big Buck Bunny, the widely used open movie project.

M2’s qualitative performance for all of the apps was indistin-
guishable from running on a N9 with stock Android Lollipop.
Audio was clear with no drops, and display was smooth with
no noticeable skipped frames or display degradation. Figure 8
shows the per device average bandwidth consumption for running
the various apps. Input and sensor remoting requires only a few
Kbps of bandwidth even for intensive gaming. Audio remoting
required 1 Mbps of bandwidth for PCM raw data, though AAC
encoding would reduce this further. Display remoting for gaming
required the most average bandwidth per device, ranging from 6.3
Mbps for Candy Crush Soda to 17.6 Mbps for Subway Surfers.
By comparison, VLC only required 4.4 Mbps.

5. Related Work

Some aspects of remote device sharing have been previously ex-
plored, both for mobile and desktop computing, but not across the
broad range of heterogeneous devices and systems supported by

10



0.001

0.01

0.1

1

10

100

Input/Sensors Audio Display

B
a

n
d

w
id

th
 (

M
b

p
s
)

Data Type

Angry Birds Candy Crush Saga
Candy Crush Soda Clash of Clans
Crossy Road Jelly Jump
Racing Fever Subway Surfers
Surgery Simulator VLC (HD Movie)

Figure 8: 3D games on seven Nexus 4/7/9 using M2

M2. Rio [1] provides device mirroring for homogeneous Android
systems, so that for example, the camera from one system can
be remotely accessed from another. However, Rio partitions the
device stack at the kernel interface using traditional device files as
the abstraction between client and server, making it not workable
for heterogeneous mobile systems as discussed in Section 3. As a
result, Rio only works across Galaxy Nexus phones with the exact
same version of Android, and even in that case, has no display
device support and poor remote audio and camera performance.
This is problematic in practice given the heterogeneity of the
Android market. Unlike M2, Rio does not support multiplexing
or using multiple devices simultaneously.

Although Rio does not support display sharing, a number of
other approaches have explored this in the context of desktop
computing, including VNC [21], Microsoft’s Remote Desktop
Protocol (RDP) [16], GoToMyPC [5], THINC [4], X [28, 33],
and the general emergence of Virtual Desktop Infrastructure
(VDI) [15]. Some of these systems support remoting audio
content as well, but none of them support the broad range of
devices available on mobile systems. These approaches use various
forms of display commands to transport display content over the
network, but do best with non-graphics intensive workloads and are
inadequate in providing good display performance for 2D and 3D
graphics intensive content, if such content is viewable at all. Other
approaches have considered remoting graphics by sending OpenGL
commands over the wire [8], but require substantial network
bandwidth and do not support the myriad of OpenGL extensions
used in mobile systems. None of these approaches work effectively
if at all for display sharing across tablets and smartphones.

Newer versions of Apple’s AirPlay [2] enable display mirroring
from iOS mobile systems to AppleTV by taking advantage of
H.264 encoding hardware available on those systems to simply
encode and decode raw display frames, but AirPlay is proprietary,
only works on Apple hardware, and does not provide display
mirroring between tablets and smartphones. M2 takes a similar
approach of using video encoding and decoding hardware to
make it possible to efficiently enable display sharing across WiFi
networks between mobile systems with excellent display quality
even for 3D graphics-intensive workloads. Some apps such as
MobiUS [26] share a display, in the case of MobiUS by splitting
a video across mobile devices by using software decoding on
both devices. MobiUS only works with two mobile devices, has

weak performance due to software decoding, supports video files
only, and is restricted to display sharing only within the app.
Unlike previous approaches, M2 goes beyond display mirroring to
enable using multiple display devices simultaneously and provides
support for the broad range of heterogeneous devices other than
display available on mobile systems.

Universal Plug and Play (UPnP) [29] is a standard of network
protocols used to stream media content from a server to a UPnP
capable system such as an Xbox 360. We are not aware of any
UPnP solutions that operate between tablets and smartphones.
UPnP focuses on network discovery and access of services and
is complementary to M2. MediaTek’s previously announced
CrossMount [13, 14], which builds on UPnP to connect systems
wirelessly so that for example, you can be streaming video on a TV
then switch to watching it on a tablet. No actual demonstrations or
public technical details are available, and the latest documentation
still lists it as becoming available in late 2015, which has past.

Various approaches explore extended protocols typically associ-
ated with traditional cabling to connect systems to output devices.
For example, Miracast [32] defines a protocol to connect a TV
monitor to a device over WiFi. These approaches are typically
limited to a particular class of device and do not support general
device sharing across multiple mobile systems.

Other approaches have recently been explored for using mul-
tiple mobile systems, such as Flux [30]. It migrates apps across
Android systems to enable a user using an app on a smartphone
to continue using it on another tablet. Unlike M2, Flux does not
support combining multiple mobile systems together for use.

Various cloud-based approaches have also been used to aggre-
gate some device functionality across multiple mobile systems, for
example by creating new apps that obtain sensor data from multi-
ple systems to predict earthquakes [11]. M2 provides multi-mobile
functionality locally across the broad range of devices available
on mobile systems, including those that are highly data-intensive,
without additional cloud infrastructure.

6. Conclusions

We have designed, implemented, and evaluated M2, the first system
for multi-mobile computing across heterogeneous mobile systems.
By observing how mobile systems use higher-level abstractions
and taller interfaces, M2 splits device functionality between client
and server at user-level across app frameworks and system services
to share devices remotely across heterogeneous mobile hardware
and software. By leveraging widely available mobile encoding
and encryption hardware, M2 provides encrypted device remoting
across WiFi networks even for data-intensive devices with good
performance. By introducing device transformations such as fused
and translated devices, M2 transparently enables existing apps
to share, redirect, and combine devices. Our experimental results
across multiple versions of Android and iOS with heterogeneous
hardware show that M2 enables new multi-mobile functionality
for existing apps such as multi-headed displays, Wii-like gaming,
and running Android apps on iOS systems, incurs only modest
overhead, and provides qualitative performance similar to local
device hardware even for 3D games.

11



7. Acknowledgments

This work was supported in part by a Google Research Award, and
NSF grants CNS-1162447, CNS-1422909, and CCF-1162021.

References
[1] Ardalan Amiri Sani, Kevin Boos, Min Hong Yun, and Lin Zhong.

Rio: A system solution for sharing i/o between mobile systems. In
Proceedings of the 12th Annual International Conference on Mobile
Systems, Applications, and Services, MobiSys ’14, pages 259–272,
Bretton Woods, NH, 2014.

[2] Apple Inc. Apple - AirPlay Play content from iOS devices on
Apple TV. http://www.apple.com/airplay/, 2014.

[3] Apple, Inc. App Extension Programming Guide: App Extensions
Increase Your Impact. https://developer.apple.
com/library/ios/documentation/General/
Conceptual/ExtensibilityPG/, March 2016.

[4] Ricardo A. Baratto, Leonard N. Kim, and Jason Nieh. Thinc: A
virtual display architecture for thin-client computing. In Proceedings
of the Twentieth ACM Symposium on Operating Systems Principles,
SOSP ’05, pages 277–290, New York, NY, USA, 2005. ACM.

[5] Citrix Systems, Inc. Remote Access — GoToMyPc.
http://www.gotomypc.com/remote-access/, 2015.

[6] Google Inc. Google play. http://play.google.com,
2015.

[7] Google Inc. Location APIs — Android Developers.
https://developer.android.com/google/play-
services/location.html, 2015.

[8] Greg Humphreys, Mike Houston, Ren Ng, Randall Frank, Sean
Ahern, Peter D. Kirchner, and James T. Klosowski. Chromium:
A stream-processing framework for interactive rendering on clusters.
In Proceedings of the 29th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’02, pages
693–702, San Antonio, Texas, 2002. ACM.

[9] Internet Engineering Task Force (IETF). RFC 6762 - Multicast DNS.
https://tools.ietf.org/html/rfc6762, February
2013.

[10] Keller, Lorenzo and Le, Anh and Cici, Blerim and Seferoglu, Hulya
and Fragouli, Christina and Markopoulou, Athina. MicroCast:
Cooperative Video Streaming on Smartphones. In Proceedings of
the 10th International Conference on Mobile Systems, Applications,
and Services, Low Wood Bay, Lake District, UK, June 2012.

[11] Qingkai Kong, Richard M. Allen, Louis Schreier, and Young-Woo
Kwon. Myshake: A smartphone seismic network for earthquake
early warning and beyond. Science Advances, 2016.

[12] Alexander Löffler, Luciano Pica, Hilko Hoffmann, and Philipp
Slusallek. Networked displays for VR applications: Display as a
Service (DaaS). In Virtual Environments 2012: Proceedings of Joint
Virtual Reality Conference of ICAT, EuroVR and EGVE (JVRC),
Oct 2012.

[13] MediaTek Inc. MediaTek Introduces a New Conver-
gence Standard for Cross-device Sharing with Cross-
Mount. http://mediatek.com/en/news-
events/mediatek-news/mediatek-introduces-a-
new-convergence-standard-for-cross-device-
sharing-with-crossmount/, March 2015.

[14] MediaTek Inc. Unite your devices: Open up new possibili-
ties. http://www.mediatek.com/en/features/
crossmount/, October 2015.

[15] Microsoft, Corp. Virtual Desktop Infrastructure
overview. http://www.microsoft.com/en-
us/server-cloud/products/virtual-desktop-
infrastructure/default.aspx, 2015.

[16] Microsoft Corporation. Remote Desktop Protocol
(Windows). http://msdn.microsoft.com/en-
us/library/aa383015.aspx, 2014.

[17] Sungwon Nam, Sachin Deshpande, Venkatram Vishwanath,
Byungil Jeong, Luc Renambot, and Jason Leigh. Multi-application
inter-tile synchronization on ultra-high-resolution display walls.
In Proceedings of the First Annual ACM SIGMM Conference on
Multimedia Systems, MMSys ’10. ACM, 2010.

[18] Jason Nieh, S. Jae Yang, and Naomi Novik. Measuring thin-client
performance using slow-motion benchmarking. ACM Transactions
on Computer Systems (TOCS), 21(1):87–115, February 2003.

[19] OpenSignal. Android Fragmentation Visualized. http:
//www.opensignal.com/reports/2014/android-
fragmentation/, August 2014.

[20] PassMark Software, Inc. Passmark performancetest - android apps
on google play. https://play.google.com/store/
apps/details?id=com.passmark.pt_mobile, June
2013.

[21] Tristan Richardson. The RFB Protocol. http://www.
realvnc.com/docs/rfbproto.pdf, November 2010.

[22] Kay Römer. Time synchronization in ad hoc networks. In
Proceedings of the 2nd ACM International Symposium on Mobile
Ad Hoc Networking and Computing, MobiHoc ’01. ACM, 2001.

[23] SC Magazine. 2013 mobile device survey. http:
//www.scmagazine.com/2013-mobile-device-
survey/slideshow/1222/, 2013.

[24] A. Schmitz, M. Li, V. Schnefeld, and L. Kobbelt. Ad-hoc
multi-displays for mobile interactive applications. 2010.

[25] Securax LTD. Zoiper audio latency benchmark - android apps
on google play. https://play.google.com/store/
apps/details?id=com.zoiper.audiolatency.
app, November 2014.

[26] Guobin Shen, Yanlin Li, and Yongguang Zhang. Mobius: Enable
together-viewing video experience across two mobile devices. In
Proceedings of the 5th International Conference on Mobile Systems,
Applications and Services, MobiSys ’07, New York, NY, USA,
2007. ACM.

[27] Ben Shneiderman and Catherine Plaisant. Designing the User
Interface: Strategies for Effective Human-Computer Interaction (4th
Edition). Pearson Addison Wesley, 2004.

[28] The Linux Information Project. An introduction to X
by The Linux Information Project (LINFO). http:
//www.linfo.org/x.html, 2006.

[29] UPnP Forum. UPnP Forum. http://www.upnp.org/,
2015.

[30] Alexander Van’t Hof, Hani Jamjoom, Jason Nieh, and Dan Williams.
Flux: Multi-Surface Computing in Android. In Proceedings of the

12



10th European Conference on Computer Systems (EuroSys 2015),
Bordeaux, France, April 2015.

[31] VideoLAN Organization. VideoLAN - Official page for VLC media
player. https://www.videolan.org, 2016.

[32] Wi-Fi Alliance. Wi-Fi CERTIFIED Miracast: Extend-
ing the Wi-Fi experience to seamless video display.
http://www.wi-fi.org/system/files/wp_

Miracast_Industry_20120919.pdf, September 2012.

[33] X.Org Foundation. X.Org. http://www.x.org, 2015.

[34] Zengbin Zhang, David Chu, Xiaomeng Chen, and Thomas Mosci-
broda. Swordfight: Enabling a new class of phone-to-phone action
games on commodity phones. In Proceedings of the 10th Interna-
tional Conference on Mobile Systems, Applications, and Services,
MobiSys ’12, pages 1–14, New York, NY, USA, 2012. ACM.

13


