
 1

Software Engineering Methodologies and Life

Scott Lennon

Columbia University
New York, USA

sl3796@columbia.edu

COMSE6156
{

 sl3796;
}

*Abstract ~ The paradigms of design patterns and
software engineering methodologies are methods that apply
to areas outside the software space. As a business owner and
student, I implement many software principles daily in both
my work and personal life. After experiencing the power of
Agile methodologies outside the scope of software
engineering, I always think about how I can integrate the
computer science skills that I am learning at Columbia in
my life. For my study, I seek to learn about other software
engineering development processes that can be useful in life.
I theorize that if a model such as Agile can provide me with
useful tools, then a model that the government and most of
the world trusts should have paradigms I can learn with as
well. The software model I will study is open source
software (OSS). My research examines the lateral software
standards of (OSS) and closed source software (CSS). For
the scope of this paper, I will focus on research primarily on
Linux as the OSS model and Agile as the CSS model. OSS
has had an extraordinary impact on the software revolution
[1], and CSS models have gained such popularity that it’s
paradigms extend far beyond the software engineering
space. Before delving into research, I thought the
methodologies of OSS and CSS would be radically different.
My study shall describe the similarities that exist between
these two methodologies. In the process of my research, I
was able to implement the values and paradigms that define
the OSS development model to work more productively in
my business. Software engineering core values and models
can be used as a tool to improve our lives.

I. INTRODUCTION
Robert Love's description of the Linux kernel development

process is contradictory to my findings. Love describes the OSS
development process as “chaos [2].” I will posit the OSS
development process is extremely well ordered and strictly
disciplined.

One of the goals of my study is to describe to the reader the
essential paradigms, methodologies, and practices that define
OSS and CSS processes. The analysis will compare CSS and
OSS core practices to establish their similarities and differences
to the reader. I shall discuss findings with an emphasis on which

methodologies result in better code quality. We will also focus
on research that examines code to determine which model
produces code with less security vulnerabilities, and is cohesive
to industry compliance standards. My conclusions shall draw a
direct nexus for the reader between models within the software
engineering paradigm and their use outside of the scope of
software development. I will underscore a variety of themes,
including personal experience and a case study measuring
effectiveness of paradigm implementation. I will present studies
using Agile methods for child rearing [3] to enable the reader to
see possible correlations of software engineering methodologies
as it can apply to challenges in life. I have used myself as an
ongoing case study, a study which undoubtedly will last far
longer than the Spring semester of 2016. I will introduce the
findings of my case study and urge the reader to experiment
themselves with the ideas defined.

A. Audience and Plan
This paper is for anyone interested in learning about how

software engineering paradigms work, and for individuals that
want to know how they can be implemented conceptually in
other areas of life. My goal is to explain and compare two
models used in software development, and show you through
both research and case studies that following these practices can
make you a better developer, manager, husband, wife, mom,
dad, soccer player, or whatever role you wish to apply the
methodologies to.

First, I will introduce some of the basic definitions and
concepts of both paradigms to the reader in the context of the
concepts discussed. I assume only a basic familiarity of
computer science concepts and will explain the topics
succinctly, and strongly encourage the reader to pursue
additional study on any relevent background they deem to be
interesting. Just a basic conceptual understanding and a will to
think outside the box are needed if you wish to implement
programming paradigms in your life. After background
information is defined, I will provide an overview of some of the
research that has been conducted that compare the code quality
and security between enterprise and OSS models. We will look
into a detailed comparison of the values and paradigms of OSS
and CSS models, and briefly discuss some of the tools and
design patterns present on OSS. I will also share the findings of
my personal case studies, with the goal to illustrate that both
CSS and OSS possess methodologies that the reader can
implement.

 2

B. Contradiction
The Cathedral and the Bazaar credits OSS with the

innovation of the software industry and asserts that proprietary
software inhibits permutation and growth[1]. This fact
preempted my interest in learning more about the development
process of OSS. Contrary to what I expected, OSS design
paradigms are well defined and structured. OSS values
encourage collaboration and learning through others, learning
through users, and listening to others. There are formal policies
and procedures to ensure code quality and continuous
integration. The systems and rules in place are detailed and
ensure that its users are methodical in their understanding of
developing software. The practices that have come to define
OSS have shown themselves to be anything but the “chaos” that
Robert Love depicts. A signal of how important OSS is in our
universe can be discerned by reading our government’s opinion
on this concept. The White House hosts a blog and has taken a
formal policy to support OSS. If nothing else, I hope the reader
will gain a better understanding of why the most powerful world
entity would take such a position on OSS. It motivates me to
learn as much as I can about the OSS phenomena.

II. DEFINITIONS

A. Background
A CSS model is a set of software processes where the

enterprise does not release the actual source code to the public.
The internal team that produces the software maintains their
product. A company ships proprietary code in a compiled
executable state and the source code is secret to the user. A
company can patent and enforce intellectual property rights to
ensure that their secret recipe cannot be used by anyone else.
This concept is present in many industries and can be referred to
as trade secrets. An example of an CSS operating system is
Microsoft’s Windows. Additional examples of CSS software
include the popular web browsers Internet Explorer and Safari.

An open source community develops OSS in a manner that
allows users to view and modify a project's source code. The
source code is open to the world to use, change, and fix to meet
the needs of its users. Instead of the design of a project being
done within the confines of a private company, an infinite
number of sources can collaborate in the OSS model. OSS is
freely available and distributes under different licenses. The
glaring difference between OSS and CSS is code visibility.
Space, patents, enterprise, geography, logistics, and intellectual
property rights do not confine the development of OSS.
Participation in OSS projects is often voluntary to any and all
users [4]. We will compare the activities of software
development as well as the values and paradigms of both
models. An example of an OSS web browser is Mozilla, and an
example of an OSS operating system is Linux.

B. OSS (Linux)
OSS development is defined analogously as, "a great

babbling bazaar of differing agendas and approaches out of
which a coherent and stable system could seemingly emerge
only by a succession of miracles [1]." The OSS development
model that we will focus on for research is Linux. In 1991, a
student at the University of Helsinki created the Linux Operating
System. Linus Torvalds wished for a free operating system that

he could modify, so in the absence of what he wanted he
developed his own project to satisfy his needs [2]. Linux grew
exponentially due to its collaborative nature and today has
thousands of applications that implement a version of the Linux
kernel. Linux runs on systems and devices that we use every day.

C. Design
Linux development consists of a series of phases where

developers work on new features for users until a feature freeze
is declared [2]. Although the process is evolutionary according
to the needs of the customer, there are clear development steps
in the process. The stages of patch integration are design, early
review, a comprehensive broad review, constant peer analysis,
and finally, and rarely, integration into the kernel.

The documentation of requirements occurs during the design
phase. Documentation will describe implementation details of
the requirements. The purpose of putting the design in writing is
to describe what the project is attempting to accomplish and the
plan the project will implement to deliver the software. Initial
documentation will identify the actors and the problem that
needs to be solved. If applicable, documentation can contain
legal, regulatory information, and anything else within the scope
of the context of your project. The written design is a significant
part of the development process, and proper documentation and
review will help determine the plan of action when the time
comes for actual coding. When implemented correctly a
project’s documentation can save time, energy, and money later
down the development pipe. In the Linux documentation design
phase, it is encouraged that the execution of this step involves
the community.

D. Review, Review, and More Review
The first early review stage requires posting the design

documentation to an email distribution list. During this first
review, peer developers that participate in a community
subscribe to email distribution groups unique to specific
features. The members will give feedback on the initial design
through the mailing list. At this stage, the design is checked to
make sure a current design pattern has not already solved the
problem. Peer developers evaluate and comment on the design.
This initial review enables the community to uncover any design
issues that demonstrate bad practices or may lead to further bugs
in the code. If the documentation does not specify the project’s
goals and define the solution in a clear and simple way, the
development process will stall until sufficient specifications are
met to support the project.

Subsequently, the next development stage is a broad
analysis. The Linux kernel is managed by subsystem
maintainers that manage branches of the project. A Linux kernel
maintainer performs a rigorous design and implementation
study at this stage. After the formal review is further extensive
community scrutiny while integrating the feature with other
work. The development procedure methodically continues with
iterations of cycles of debugging and testing. If the community
and maintainers approve the feature, and no new bugs arise
during integration, the last iteration culminates in a stable release
which will include the patch [5]. The development phases are
graphically depicted in Figure 1 for the reader.

 3

TABLE I. OSS DEVELOPMENT PROCESS

a. By M. Abbing - Own work (Original text: self-made), CC BY-SA 2.5

Fig. 1. Example of OSS development process

E. CSS (Agile)
CSS follows an iterative model such as Agile, which adheres

to the fundamental principles of communication, adjustment,
and perception. Agile describes paradigms and methodologies
for iterative software engineering. Agile paradigms invoke
beliefs that emphasize teamwork, synergy, and collaboration.
The model stresses continuous integration, plan devising, and
rigorous testing.

The initial phase in Agile consists of documenting
requirements. Agile requires actor and stakeholder involvement
in creating user stories and use cases. The customer should be
involved in determining the project’s requirements. Each
iteration cycle requires user story creation, adjustment of tasks,
team planning and design, pair programming, and repeated
testing. Every iteration includes building working software that
the customer can use to provide feedback on the project as often
as possible. Regular team reflections and behavioral adjustments
on how to become more efficient are important collaborative
Agile properties [11]. I learned Agile methodologies in
Advanced Software Engineering and began experimenting with
Agile paradigms. It was at this time I was able to connect
programming principles to problems I was trying to solve at
work. The core values of Agile are very intuitive once abstracted
from software engineering. Teamwork, reviews, testing,
collaboration, continuous customer feedback, adapting to new
issues, tracking progress, and empowering team members are all
intuitve practices.

Figure 2 is a graphical diagram of the Agile development
model to help the reader visualize the iteritive nature of Agile
programming.

TABLE II. AGILE METHODOLOGY

b. By Benzirpi (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)]

Fig. 2. Example of Agile Methodology

III. RESEARCH
The 2015 Future of Open Source Survey is an analysis

conducted by Black Duck Software. The study found that the
number of companies using OSS is continuously increasing [7].
The findings reveal that 78 percent of businesses run their
operations on OSS.

A. Defects
78 percent of companies use open source and I analyzed

research and studies to find out why. To determine which
software engineering paradigm produces the best quality and
most secure code we dissect some of the research. One analysis
of the code quality of four operating systems kernels used
metrics to study the code quality comparing OSS to CSS and
found no differences [8]. The study focused on FreeBSD, Linux,
Solaris, and the Windows operating system kernels. However,
subsequent analysis and reports by Coverity that tested ten
billion lines of OSS and CSS source code found contradictory
results. Coverity is a company instantiated by the United States
Department of Homeland Security [10]. Coverity Scan, which is
now managed by Synopsis, is the largest research project in the
world focusing on OSS quality and safety [9]. Synopsis provides
free scan analysis to the OSS community as well as CSS
enterprises. The Coverity and Synopsis tools aid developers by
scanning and testing for code quality and checking for security
vulnerabilities. Coverity and Synopsis are industry standard
services for calculating the state of software quality as well as
security vulnerabilities [9].

The Coverity studies that span from 2006 through 2015
found that “Linux (OSS) remains the benchmark for quality”
[10] and concludes that OSS consistently has a lower defect
density than CSS. In The Cathedral and the Bazaar, Eric
Raymond postulated fifteen years before the Coverity Report an
explanation for this consistent outcome. Raymond theorizes that
“given enough eyeballs, all bugs are shallow [1]." The greater
and wider the review, the better code. The continuous feedback
cycle that OSS perpetuates correlates to the defect density

 4

analysis. Fifteen years after Raymond’s hypothesis, Linux
continues to maintain this focus. Collaborative review puts an
exponential amount of eyeballs on the code. Implementation of
additional testing requires security audits to catch even the bugs
that the reviewer’s eyeballs miss.

Figure 3 depicts an analysis of defects that the Coverity scan
performed.

TABLE III. LINUX ANALYSIS: 2006-2015

c. Coverity and Synopsis Scan [10]

Fig. 3. Linux Defect Analysis

B. Security
An interesting finding of the most recent 2014 Coverity

study found that although OSS results in lower defect density
and higher code quality, CSS is more compliant and secure [9].
Coverity tests compliance and security by scanning the code for
The Open Web Application Security Project (OWAP) top ten
security vulnerabilities. Coverity theorizes that because OSS is
becoming more feature-rich. People need software to do certain
things which drive OSS, so adding features is more important
than bug fixing during the development cycle. Conversely,
competition and compliance drive CSS, which results in security
taking the highest precedence [9].

By analyzing results over eight years, the Coverity Scan
finds that both OSS and closed source are continually
improving. Case studies on Linux discovered that by focusing
on new bugs, the bugs were easier to fix. As code gets older
bugs get harder to fix [9]. This data is represented in Figure 3 for
the reader.

Considering the research, it is not clearly evident why
companies choose OSS over CSS. Yes, code quality and feature
development speed are paramount, but in my experience,
compliance and security are above everything. Perhaps this gap
in logic can be explained by further findings in the Black Duck
survey analyzing how these companies that choose OSS manage
their OSS components.

The Black Duck survey indicates that more than 55 percent
of enterprises who use OSS said their business lacks a formal
policy or procedure for OSS use [7]. The Black Duck survey
also found that less than 16 percent of the enterprise using OSS
use automated testing tools [7]. Over 50 percent of the
companies using OSS are dissatisfied with their understanding
of security vulnerabilities and even less plan to monitor OSS for
cyber security. The Black Duck results show that enterprises that
use OSS need to implement formal and documented policies and
procedures, and perhaps unknowingly, choose development
speed and implementation of new features over security and
compliance.

It is evident both models have strengths and weaknesses. A
method leveraging the strengths of both methodologies will
yield the best results. An optimal paradigm needs to produce
harmony between security and development speed. With a
combination of values and models in OSS, software tools,
compliance standards adhered to in CSS, along adherence to
software engineering life-cycle principles will produce not just
quality code, but also compliance and secure software.

IV. COMPARING PARADIGMS AND PRINCIPLES
I analyze a few fundamental principles taken from the Agile

Manifesto [11] and paradigms from OSS best practices
documentation to compare both models. Both models are similar
in many aspects and share many of the same core values. For
instance, both CSS and OSS models share the value that
delivering working code should frequently for feedback. A core
practice of all software engineering is to release early and release
often. Shipping working software continuously illustrates the
idea that delivering working software is optimal for
implementing changes based on user feedback. For design
comparisons, we need to dig a little deeper into the processes.

A. Role of the Customer
In Agile, the stakeholder plays an integral role in the feature

requirements and the creation of user stories or use cases. User
stories are succinct statements to describe a software feature, and
identify the type of user, what they want, and why they want it.
In OSS, there are documented requirements for the design
development resulting in a similar process when drafting initial
requirements. The Linux Foundation provides recommended
questions for the developer to ask to establish the initial plan.
When planning a kernel development project, the developer
shall assess the project by asking; “What, exactly, is the problem
which needs to be solved? Who are the users affected by this
issue? Which use cases should the solution address? How does
the kernel fall short in addressing that problem now?” [5] Both
methodologies meticulously revolve around solving a solution
for a user from the user’s perspective. Agile rigorously supports
a change in requirements throughout the iterative process and
requirements may, and, in fact, should, evolve over the project
cycle. Initial requirements are often vague and incomplete, but
continuous customer feedback encourages a constant evolution
of the needs during each iteration [11]. The OSS cycle starts with
precise user requirements, but like Agile, new features, and
requirement development can be implemented continuously.
Contrast that exists when comparing the models is that in OSS,
the user can be the developer, and the community or system

 5

maintainers decide on feature implementation (as opposed to the
customer).

B. Motivation and Teamwork
Motivation is an essential valued in OSS and CSS. Building

software in a culture of teamwork and motivation is an important
principle in the Agile manifesto. Given motivation and an
empowering culture, the developers will get the job done [11].
Looking at this CSS principle, we can see both models share this
value. OSS is motivation-driven. OSS developers can choose to
work on a project that motivates them. If a developer has no
motivation to participate in a project they can choose not to
engage. Because OSS is voluntary, interest in the project is
usually guaranteed. The Agile manifesto proclaims that the best
ideas develop from teams [11]. Teamwork and peer cooperation
are paramount to the design process in OSS, demonstrating the
similarity of this core principle.

Another critical aspect of the Agile development cycle
involves face-to-face communication within the team and
customer [11]. The OSS model differs when comparing this
particular practice such that there is less physical peer
communication because developers live across the world.
However, there is greater written communication via
exponentially growing community email distribution lists.
Linux and many other OSS communities require continuous
communication and review over global communication tools
such as a mailing list. So while actual physical face-to-face
interactions may lack in OSS, the peer involvement aspect
remains the same across paradigms.

The Agile Manifesto proclaims continuous software builds
measures the pace of a project. Another principle stresses
attention to simplistic detail, and meticulous design procedures
make projects agile [11]. Both methodologies predicate
simplicity and great design. Andrew Morton depicts the most
important task for a Linux developer. "Make sure that the kernel
runs perfectly at all times on all machines which you can lay
your hands on [5]." Both OSS and CSS place critical value that
software should always work the way it is supposed to. Both
models promote tracking development progress via a board and
burn-down chart so that the team can adapt and adjust planning
to maintain a constant and infinite pace [11].

We look at the Agile principle that encourages that the team
reflects together and change their behavior to become more
efficient [11] as our last principle comparison. OSS
communities participate in self-evaluation and adapt over time
as well. Linux and Apache both started with a primitive
organizational architecture, and evolved to include foundations
with employees, layers of maintainers, management, and
executives [12].

V. TESTING TOOLS AND SECURITY

A. Testing

In software engineering, there are testing and code
refactoring tools to identify smelly code. A code smell is a flaw
or issue in the design or code that can lead to software bugs.
Both CSS and OSS continuously use these tools as part of each
iteration of the development cycle. The tools employed in OSS

test source code statically and dynamically. Linux uses a
“lockdep” which dynamically measures dependencies among
states [13]. OSS developers working on the Linux kernel use a
debugging practice that “poisons” empty chunks of memory so
unauthorized access leading to segmentation faults and buffer
security issues will be mitigated [14].

The Best Practices Criteria for Free and Open Source
Software (FLOSS) created documentation of requirements for
developers to follow as quality guidelines. OSS developers use
issue trackers such as Jira or Git to track all bugs and changes.
Also, Linux requires that issue tracking is documented and
updated on the specified email list. OSS developers need to test
100% of the project's source code iteratively using an automated
test suite [15]. FLOSS also requires continuous project testing
with a static and dynamic code analysis tool.

B. Security
An OSS project must include a lead programmer that is

knowledgeable on developing secure software. FLOSS insists
the developer must implement the eight principles from Saltzer
and Schroeder [16]. Saltzer and Schroder emphasize simplistic
software design. OSS must enforce access decisions on user
permission over exclusion. Access to objects must require a
check for the privilege. Each and every program and the user of
the software program must work using the lowest set of
authority rights to do the task. OSS must mitigate a load of
procedure shared by multiple system users and depend on by the
system users. The software design must implement a method
that requires two keys to access protected regions. The plan
should be open and not be secret. The last principle involves
psychological acceptability, which states that the interface
design is implemented for simplicity of use so that users can
apply the security procedures correctly [16]. OSS uses a
community badge system to identify and encourage adherence
to OSS security, design and coding best practices [15].

VI. DESIGN PATTERNS
Knowledge and use of design patterns are essential in

software engineering. A design pattern is a solution that has been
proven effective to a recurring design problem [17]. Both CSS
and OSS utilizes design patterns as part of the design phase.

The Linux Foundation requires kernel programmers to
engage in peer review during the design iteration by posting the
plan to the relevant email distribution list. In addition to the
discovery of design flaws, another reason for the early review is
to ensure that the developer is not trying to re-invent the wheel.
The email distribution list is the process for OSS developers to
discover existing solutions to recurring problems. “Code which
reinvents existing wheels is not only wasteful; it will also not be
accepted into the mainline kernel [5]." OSS members are a mass
resource of current and evolving design patterns.

In 4156, we learned about the Model-View-Controller
(MVC) Pattern, which uses a proven design for implementing
user interfaces. A discussion of design patterns is beyond the
scope of this paper, but it is important for the context of this
paper, to mention design patterns do exist in OSS. An example
of a particular design pattern used in the Linux kernel is the
process of using a counting variable to manage the CPU's
resources. Reference counting implements an object which

 6

tracks used and free resources for the kernel to manage memory
[13]. The Linux kernel uses data structures uniquely handled by
smaller, simpler structures. An example of this is the way the
kernel handles the task structures for all the processes running
on the CPU. Linux places embedded head nodes in objects to
construct a linked list, instead of creating linked list structures
out of the objects themselves.

VII. LIFE

A. Agile For Child Rearing
The core values OSS and CSS methodologies hold in

common can be extracted and used in any space. Bruce Feiler
conducted a case study on his family using Agile paradigms to
manage his family [3]. Family participation during stand-up
meetings at dinner increased communication and empowered
everyone to give input to problem-solving scrums. A big board
was used to track family challenges, and Feiler empowered his
children to create punishments. By using just a few values from
Agile, Feiler was able to transform his team. The fundamental
idea above all was creating a culture of adaptation. When goals
are broken down into small steps, team reflection can frequently
be done. The continuous self-reflection and peer feedback make
it easy and natural to stay on course to the goal [3].

B. Personal Goals
Like Bruce Feiler, I implement many of these paradigms to

help me reach my personal and professional goals. For instance,
I seek continuous and iterative feedback from my clients and
employees. The process of participating in self-reflection and
constructive criticism from peers opens virtual pathways leading
to creative ideas to solutions that I face each day. Involving and
empowering my employees creates a shared vision for the values
I build my company culture with. I simplify tasks to approach
them iteratively and break down tasks methodically until they
are small primitive blobs. We use the term blob to refer to a
problem that we cannot break down any further. Once a problem
is reduced to a blob, the pieces of the problem when attacked
individually are that difficult to solve anymore. With core
software paradigms embedded in my head, I stress the
importance of simplicity and correctness during employee
training. No shortcuts, and no easy way out. My employees and
peers are empowered to be creative, and we reflect and self-
adjust regularly. I implement these ideas every day in my
professional, personal and academic life. Using iterative goal
planning has helped bring order to my life and have enabled me
to accomplish more each day.

C. Challenges For the Reader
Start each day with a quick meeting, this will allow your

team or family to keep progressing towards your goals. If you
are stalling in your journey, adapt so you can continue. Always
seek constructive feedback from peers, co-workers, family, or
whoever. Break up problems into small primitive blobs, this will
help you find the solution to the big picture faster and more
efficiently. Self-reflect often and think about other ways you
could have approached a challenge. Self-reflection can be used
as a process of self-evaluation of yourself, not just in a
collaborative environment. These ideas, as well as many others
in software engineering, are excellent tools we can utilize to help
us be more productive and simplify problems we face every day.

VIII. CASE STUDY

A. The Idea
Juggling the jobs life tosses at us is a common problem we

all face in our everyday lives. My particular challenges come
from running a business full time, getting a graduate degree, and
balancing a work-school-life balance.

TABLE IV. LICENSE PLATE RECOGNITION DATA

d. PRI incorporated, 2016

Fig. 4. Example Of LPR Data Verification

Without clouding the reader with specifics about the specific
details that define the operations of my business, to demonstrate
the impact paradigms can have, I will discuss my business in the
context of verifications.

My business provides license plate recognition historical
geolocation data to clients. Hardware coupled with software
captures the locations of millions of parked cars every day.
Financial institutions, insurance companies, and government
agencies buy this information and analyze the data to identify
behavioral habits. For confidentiality and brevity, I provide
purposely vague details with the hopes that the reader can
abstract the purpose of the elements discussed as they apply only
to the context of my study.

The license plate recognition algorithm is not as perfect as a
human eye, and approximately one percent of our scans contain
a defected read. A typical example of this bug can be illustrated
when the software determines a zero to be the letter O. This type
of error is not a priority issue in my business. Each scan has

 7

multiple hits, so clients and my analysts can use the data from
other reads to complete the verification. A hit is defined as a scan
that reads and stores the correct license plate and maps it to the
geolocation of the vehicle. Figure 4 depicts a valid hit. So, if we
have twenty verified hits on a vehicle, chanches are the one with
an error is not going to reveal any surprising data. With this
understanding, the tedious process involved with cross
referencing data and motor vehicle records, as well as
physically verifying the data to meet compliance regulations
takes the least precedence in terms of our daily operations. The
data is placed in a repository for verification, and if and when,
there is time to catch up, a member of my team will work on that
task. The reason we care at all about the missing piece of data is
that every once in a while, albeit rarely, that one scan may
provide the location data the client needs to complete the last
piece of a puzzle they need to solve.

I have always rigorously demanded a culture that reflects a
the mission of attention to detail. So for me, letting any tasks pile
up is not practicing a clean operation. In effort to address this
issue, I chose to experiment with software paradigms to see if it
was possible for my team to catch up on low priority tasks. As a
case study, I decided to track these low priority verifications
while implementing new methods in my business model during
the Fall semester of 2015. My goal was to determine if I could
measure an improvement in performance simply by applying
software engineering methods to my business. Further details of
the verification process or my company are beyond the scope for
the context of my research. The reader can abstract the idea of
verifications to any low priority issue or task. To put it in the
context of software engineering, the defect analogous to a
verification would be a feature that does not affect the
functionality, security, or performance of a project and is strictly
cosmetic or optional. An abstraction of something outside of
software engineering could also be something as trivial of
having a goal to learn a new language for fun and or spending
an extra 20 minutes in the gym. On the days when you have
some spare time you devote an hour to Rosetta Stone, maybe
while you are in the gym on the treadmill, but obviously, work,
school, family, and life's high priority commitments take
precedence. Although low priority verifications are not urgent,
they pile up quickly over time and eventually the data may
become outdated and loses value for my clients. For me, its
sloppy operations, and it is not the service I promise to my
clients. So it was a natural choice to track level- verifications for
me because it is easily trackable and a goal I want my team to
conquer. Level- or level negative is a flag my company uses to
identify low priority tasks.

To validate my analysis, I kept all other factors equal except
adding a few software engineering paradigms to our workflow.
I did not hire additional employees, I did not work extra hours
on verifications instead of doing homework, and I did not tell
my employees they must work overtime. I kept all other factors
equal.

What I did do is start using a big board to track our goals,
progress, and issues of our normal business operations. I started
having morning stand-up meetings and encouraged my
management to implement stand-up meetings in their
departments. I broke up each week into iterations with specific
goals and as a team we planned, set goals, tracked our velocity,

and continuously adapted our design. My employees participate
in morning meetings and contribute ideas in our brainstorming
sessions. Employees are empowered to adjust the plan according
to our progress, which we measure and track. My employees
now play an exponentially greater role in molding our policies
and procedures. My staff takes more ownership in
responsibilities, and efficiency and employee engagement is
evident when our iterations flow. The key element of this case
study is when we were able to inject low priority verifications,
along with additional optional tasks into our iterations. Tasks
that sat in the level negative queue began to find their way onto
the task board.

Outstanding verifications at the end of each day is zero,
including the low priority verifications that were backlogged
since I started my journey at Columbia. We achieved this with
less employees and a record amount of business requests from
our clients.

Figure 5 tracks the number of outstanding level negative
verifications over the course of the study.

TABLE V. ANALYSIS OF PARIDIGMS ON CASE STUDY TASKS

e. PRI dATa Incorporated 2016

Fig. 5. LPR Level- Verifications Analyzed Implementing Methodologies

A bonus side effect of my case study is we reduced client
complaints by 26%. Instead of reactive management, we
methodically detect issues early. Proactive team behavior
increased our internal customer satisfaction score.

B. More Paradigm Experiments
Over the course of the semester, I began to implement OSS

paradigms to experiment their effectiveness. One specific
activity I modified was I started utilizing community message
boards to share some my business challenges with peers instead
of trying to solve everything myself and thinking that only my
approach works best. I found myself more open to peer
feedback, willing to approach a problem with methods outside
of my comfort zone and to search for design patters to solve
business solutions.

 8

For academic challenges I use incremental cycles to break
down reading assignments. I divide my homework up into
smaller tasks. First, I read over the introduction to each section
and read the questions presented at the end of the assignment.
From this documentation, I draft up requirements and user
stories to create a learning design model to document my goals
of the assigned material. I track my progress and adapt. If I
discover material I am not comfortable with, I modify my plan
to include additional resources about the additional concept. By
using iterative cycles with frequent self-testing, I can retain more
of the material.

My life is chaotic owning a business and being in graduate
school, so finding time for relationships has always been a
challenge for me. I decided to implement software design
strategies to help me in this department as well.

My girlfriends have complained I work too much or spend
too much time studying. I convinced my current girlfriend
Natalie to experiment with ten minute meetings in the morning,
and for five months continuously we have our stand-up meetings
every day. We effectively discuss our schedules and goals for
the week and plan our time together. In the past, when work or
school commitments unexpectedly come up, I wait until a few
hours before date night to break the news that plans must change.
Natalie is not innocent to this shortcoming either, as a lawyer
she continuously has unplanned commitments come up and
needs to cancel plans. By having our meeting each day, we play
an active role in our commitments, and it has brought us closer.
I feel that we have a better understanding of each other. We
found our communication to each other is clearer, and we adapt
to each other’s needs. Most importantly, we are agile and work
together as a team on planning our quality time together.
Planning as a couple has also made us both more dedicated to
making sure we spend quality time together. We also implement
feedback from each other and bounce our personal, professional,
and academic goals together to plan our iterations together.
Implementing software paradigms brought us together as a
couple and increased our quality time together by 25%.

Figure 6 is a recent snapshot of my board that I manage tasks
on. I folllow a combination of CSS and OSS methodologies in
my life and have found the tools they offer to be indispensable.
I encourage the reader to engage in further study of software
methodologies. Paradigms will make you a better programmer
and will make teams more productive. They can also make you
more productive in life and help you plan a path to your goals!

TABLE VI. MY BIG BOARD

f. [My personal Big Board.]

Fig. 6. My Big Board to manage workflow.

IX. CONCLUSION
CSS and OSS paradigms predicate on many of the same core

values. Both models emphasize frequently building working
software, continuous reviews, and testing. Principles encourage
simplicity and keeping the design as simple as possible. Values
stress working in a culture of collaboration and teamwork.
Listening and learning from your users during development can
create bigger and better ideas. Equally important are values that
require engaging in peer and self-reflection, adapting to change,
and the focus on doing the job right, even when no one is
looking.

The commonality of paradigms was something I was
surprised to learn. Before I started this project, the idea that CSS
and OCC methodologies shared core values was a contradiction.
OSS was to me symbolic with large distributed teams creating
software in a chaotic and unorganized nature. I was surprised to
find the OSS development cycle to be so well-defined and
methodical.

There is much to learn and implement from OSS. My hope
for the reader after reading this paper is to be at least willing to
try some of the paradigms from a software engineering in your
life. I learned that like Agile, I can also now utilize OSS models
and methodologies as my personal design patterns in life. I look
forward to studying methods from additional spaces to see how
humans can implement them outside their intended industry.

 9

REFERENCES

[1] E. S. Raymod, "The Cathedral and the Bazzar," Tim O'Reilly (Ed.).
O'Reilly & Associates, Inc., Sebastopol, 1999.
[2] R. Love, Linux Kernel Development, 3rd ed. ed., I. Person
Education, Ed., Boston: Addison-Wesley, 2010.
[3] B. Feiler, Writer, Agile programming - for your family.
[Performance].
http://www.ted.com/talks/bruce_feiler_agile_programming_for_your_fa
mily, 2013.
[4] V. Potdar and E. Chang, "Open Source and Closed Source Software
Development Methodologies," in Feller, J. and Fitzgeralg, B. and Hissam,
S. and Lakhani, K. (ed), ICSE 2004: Twenty Sixth International
Conference on Software Engineering (with) Collaboration Conflict and
Control: Proceedings of the Fourth Workshop on Open Source Software
Engineering, Edinburgh, 2004.
[5] J. Corbet, "How to Participate in the Linux Community," Linux
Foundation, 13 May 2011. [Online]. Available:
http://www.linuxfoundation.org/content/1-guide-kernel-development-
process.
[6] M. Bar and K. Fogel, Open Source Development with CVS, 3rd
Edition ed., J. Duntemann, Ed., Scottsdale, Arizona: Paraglyph Press,
2003.
[7] Black Duck Software, "The Ninth Annual Future of Open Source
Survey," 15 April 2015. [Online]. Available:
https://www.blackducksoftware.com/future-of-open-source.
[8] D. Spinellis, "A Tale Of Four Kernels," CSE '08: Proceedings of the
30th International Conference on Software Engineering, pp. 381-390, 1
May 2008.
[9] Coverity Scan, "Open Source Report 2014," Synopsis, Inc, San
Fransisco, 2014.
[10] Coverity, "2012 Coverity Scan Open Source Report," Coverity, San
Francisco, 2013.

[11] K. Beck, "Twelve Principles of Agile Software," 1 January 2001.
[Online]. Available: http://agilemanifesto.org.
[12] R. Goldman and R. P. Gabriel, "Innovation Happens Elsewhere:
Open Source as Business Strategy," 25 April 2005. [Online]. Available:
http://www.dreamsongs.com/IHE/IHE-28.html.
[13] N. Brown, "Linux Weekly .Net," 8 June 2009. [Online]. Available:
https://lwn.net/Articles/336224/.
[14] S. McConnell, Code Complete, 2nd ed. ed., Walla Walla: Microsoft
Press, 2004.
[15] D. Wheeler, "Best Practices Criteria for Free/Libre and Open Source
Software (FLOSS) (version 0.5.0)," Linux Foundation, Portland, 2016.
[16] J. H. Saltzer and M. D. Schroeder, "The Protection of Information
in Computer Systems," Project MAC and the Department of Electrical
Engineering and Computer Science, Massachusetts Institute of
Technology, Cambridge.
[17] E. Gamma, Design Patterns: Elements of Reusable Object-Oriented
Software, Zurich: Addison-Wesley, 1994.
[18] D. Bovet, Understanding the Linux Kernel, 3rd ed. ed., Sebastopol:
O'Reilly Media, Inc, 2006.
[19] I. Bowman, "Linux as a Case Study: Its Extracted Software
Architecture," ICSE, pp. 555-563, 1999.
[20] P. Hinds, "Distrubuted Work," in Distrubuted Work, Cambridge,
The Mit Press, 2002, pp. 382-481.
[21] A. Silberschatz, Operating System Concepts, New Haven: Wiley,
2014.
[22] M. Kerrisk, The Linux Programming Interface, San Francisco: no
starch press.
[23] A. Tannenbaum, "Modern Operating Systems," in Linux: A Case
Study, Amsterdam, Pearson, 2015, pp. 713-857.
[24] A. Ampatzoglou, "An Empirical Study on Design Pattern Usage on
Open-Source Software," in ENASE 2010 - Proceedings of the Fifth
International Conference on Evaluation of Novel Approaches to Software
Engineering, Athens, 2010.
.

