
Iris Zhang (iz2140) COMS 6156 Spring 2016

Why Are We Permanently Stuck in an Elevator?
A Software Engineering Perspective on Game Bugs

Iris Zhang
Columbia University, New York, NY, USA

Abstract — In the past decade, the complexity of video games have increased dramatically
and so have the complexity of software systems behind them [7]. The difficulty in designing
and testing games invariably leads to bugs that manifest themselves across funny video
reels on graphical glitches and millions of submitted support tickets [8] [12]. This paper
presents an analysis of game developers and their teams who have knowingly released bugs
to see what factors may motivate them in doing so. It examines different development
environments as well as inquiring into varied types of game platforms and play-style.
Above all, it seeks out how established research on software development best practices and
challenges should inform understanding of these bugs. These findings may lead to targeted
efforts to mitigate some of the factors leading to glitches, tailored to the specific needs of the
game development team.

I. Introduction

 As a consumer of games, the author of this paper has had personal experiences with a
game’s buggy interface, from suddenly disconnecting in a middle of an intense multiplayer game
to watching their player character fall seemingly forever. As a game developer, the author has
seen her team finding bugs during the testing phase and letting some go while flagging others for
immediate fixes. Some bugs seem to be “acceptable” to the team to have upon release but others
are seen as dire and need to be addressed immediately. Why, if developers know of bugs in their
code, do they willingly release glitchy games?
 The reader will learn about the formal process for categorizing bugs in different types of
video game development teams, gathering current research on current software development
challenges, and categorizing games based on their context of team size and gameplay style. They
will see a survey designed and the teams assessed using these parameters. One emphasis will be
on different types of teams based on personal past experience working in various sized
companies and games. Another factor that will undoubtedly affect the nature of bugs will be the
structure of the gameplay and intended end platform. Most likely, smaller game development
teams will not differ from larger established studio games in that both teams knowingly release
bugs. Complex game systems backed by large studios may tend to suffer more from issues due to
networking, game balance, and visual bugs. Smaller development teams may suffer across the
board but may not tackle more complicated games and thus have less complex bugs. The paper
will seek to confirm and expand upon this hypothesis.

Page � of �1 17

Iris Zhang (iz2140) COMS 6156 Spring 2016

II. Background and Related Works

 Many books and articles exist that prescribe how one can debug their game or merely
documents the existence of them. The web is rife with patch logs, humor reels, and articles
describing the myriad of released glitches [8] [9]. The difficulty lay in finding existing research
that delve deeply into the topic of video game bugs. One particular reading (“Cowboys, ankle
sprains, and keepers of quality: how is video game development different from software
development?”) provides a cursory answer to its titled question [1]. While it provided a unique
view into game developers’ personal opinions on how their work differs from traditional
software development in the specific context of Microsoft Xbox studios, it did not perform a
statistically rigorous survey across different types of game development or break down the types
of games the respondents worked on. Another paper provided a detailed look at how Finnish
game development teams approach testing before a game is released [4]. It outlined in detail the
types of bugs that development teams will typically test for, as well as summarizing the different
roles on the development team.
 Also sought were works that would inform the survey question on game bug types and
reason for their persistence. The paper “What Went Wrong: A Taxonomy of Video Game Bugs”
broke down the types of video game bugs by specifying the subcategories fault, error, and
failure [3]. While not lacking in complexity, the categories were ill-suited for the purposes of
designing a game developer-facing survey so only the examples given in the different categories
were used. A much better aligned work was used to design the survey question around concrete,
software and game development-specific reasons things went wrong [2]. No shortage of web
articles speculated as to the reason games seem to be so buggy these days [14][15]. Although
they hypothesized issues such as shorter development cycles and more complex systems, all
lacked the detail and rigorous empirical research needed to come to satisfying conclusions.

TABLE I: Terminology used in the Survey and Findings

Indie Short for “independent.” Refers to a type of studio owned by
independent game developers. [10]

AAA Known as “Triple A.” Refers to a corporate-type game development
team with large, hierarchical structure [10]

MMO Massive Multiplayer Online. Games that allow a large number of
players to participate simultaneously over an internet connection. These
games usually take place in a shared world that the gamer can access
after purchasing or installing the game software [16].

MOBA Massive Online Battle Arena, similar to MMO in complexity

Single-player Only one player can play the game at a time

Multiplayer/Co-op Multiple people can play the game at once on a single or split screen,
e.g. Mario Kart. Coop specifically refers to gameplay where players are
put on one team and work collaboratively instead of versus each other.

Page � of �2 17

Iris Zhang (iz2140) COMS 6156 Spring 2016

III. Methodology and Survey Design

 The goal of the survey is to understand why bugs are released by game development
teams. It attempts to address several questions:

• Do game developers knowingly release buggy games? One should not just take as reality it is
“now par for the course that games release with bugs and glitches” [15]. I must demonstrate
that it is supported by empirical evidence.

• Were there significant differences between types of bugs reported based on the types of games
that developers worked on or the types of development team? The second question aims at
researching if self-reported bugs are more common based on differing contexts, such as
intended end platforms or the size of the supporting game studio. It is also hypothesized that
the nature of the bugs will differ based on these parameters.

• Why did the bugs go unaddressed before release? This final question gets to the heart of the
issue, which asks in what contexts do bugs go unaddressed? It will attempt to validate
common perceptions such as development schedule being a major factor. It will also examine
different contexts as per the second research question to see if any significant differences
arose between Indie and AAA teams, or the types of games being developed.

A. Protocol

 I designed a 5 minute Google Forms survey with enough detail to glean what I needed. I
asked the audience to consider a single game that they have released or helped release in the past
5 years when answering these survey questions. This was to narrow down the scope of the
questions so that they would have the bugs of one specific representative game in mind, and not
all the bugs they have ever seen in their career. It would also give specific context to the nature
of these bugs in terms of type of game and development environment.
 First, the respondent had to check that they fulfilled the qualifications for taking the
survey. The first two questions were demographics-based, establishing the role of the survey
taker in their team and the nature of their team. The second half dealt with their knowledge of
released bugs, their nature, and the reasons for the bugs remaining. All questions were required
except for the last two, which dealt with the types of bugs and the reasons why bugs went
unfixed. If a respondent answered no to the question about releasing a game with known bugs,
they could leave those two questions blank.

B. Audience

 The survey was aimed at a technical audience, although one does not necessarily need to
have extensive game development experience, merely enough knowledge of technical details of
bugs to answer. The audience must have worked on a game developed recently (released in the
past 5 years.) In disseminating my survey, I reached out across several social media platforms:

NPC Non-player character. Refers to opponents or characters in the game
controlled by AI.

Page � of �3 17

Iris Zhang (iz2140) COMS 6156 Spring 2016

through the Reddit community /r/gamedev, a game development group on Facebook, my
personal Twitter and Facebook account, and word of mouth through friends.
 In total there were 34 respondents, with the majority choosing to answer questions about
their experience on an Indie team (64.7%) and the remaining on a AAA team (35.3%), as seen in
Table II. There is no hard and fast rule about what is considered Indie and what is considered
AAA. In the industry these are loose and fast terms, but generally it is a difference in
management approach, creative control, and/or finances [10]. “Indie,” industry colloquial for
“independent,” gets its designation from teams that have few owners who usually work closely
in development. Members of the team generally contribute to more than one area of the game,
with the designer, the developer and the artist often blending roles or simply being a single role.
Usually this means a general difference in size of development team, since Indie teams fall on
the small side. AAA refers to large studios with deep pockets that often have specialized teams
led by specific executives [10]. Large, complex games, usually 3D and with multiplayer
elements offering hours of gameplay are often published by AAA studios, although certain large
games such as League of Legends were published by indie developers before they became AAA
[13]. After considering the format for this type of question from differing angle, such as size or
management style, the survey left this question purposefully vague so as to not bias the
respondent. They simply picked the best fit based on common industry knowledge.

TABLE II: Indie and AAA development teams surveyed

 The survey also asked about the role of the survey taker on the development team
(Appendix I, question 2.) The roles themselves are taken from a mixture of established
prescribed roles for larger game studios as well as other research that had use for these
categorizations [4] [6]. A brief description of each of these roles follows, but going into detail is
out of this paper's scope.

• Developer/Engineer: This member is responsible for “creating the technical design
document, building the game and delivering a high quality game that follows the
requirements set in the game design document and the technical design document” [4].
The focus of this survey will be in the responses of developers.

• Testing/QA: This role is “responsible for developing the testing plan and managing the
testers during a game project” [4]. For most smaller Indie studios, quality assurance
may be handled by everyone on the team, and not as a separate role.

• Designer: The design team typically consists of “level designers, scripters, interface
designers, writers, researchers and game tuners” [7].

• Artist: This member works with visual aspects of the game, from illustrations to menu
interfaces to button textures.

Indie AAA

What best describes your development team? 22 12

Page � of �4 17

Iris Zhang (iz2140) COMS 6156 Spring 2016

• Product Manager/Producer: “Their job is to report progress, … solve different issues
as they arise and to ensure that the game is done on schedule, within budget, and as
close as possible to the vision presented in the game design document” [4].

• Audio/Music Producer: They are “responsible for all of the audio in the game from
sound effects, music to dialogue” [4].

• Other: I included this free-form category for survey respondents who felt a single
category did not accurately represent their role.

 By far the biggest plurality
were developers or engineers
(47%), with designers a large
portion of the rest (29%). A
small number were artists,
product managers, and one
respondent was a member of the
QA team. One also identified as
Other and clarified they were a
mix of artist and developer, but I
grouped them with the
developers for purposes of
analysis (Figure 1).

C. Data Specification
 The scope of identifying my
target audience was not limited
to demographics. I also asked
about the types of games that
were developed in order to
narrow down their context (see

Appendix I, Full Survey, question
4.) While games have a myriad of categories [6] [17], all categories presented as options on the
survey were picked to pinpoint the differences of developing for types of games on based on
three criteria:

1) Platform. The platform refers to the end platform that the user will play the game on.
While hybridization tools and game engines such as Unity have made it easier for
developers to have one codebase while releasing for multiple platforms, the difference
between console, desktop/laptop and mobile games is still vast by nature of their
differing UI and native needs.
2) Framework. 2D and 3D games were considered on the basis that they face differing
needs in terms of testing and fixing glitches. While completely text-based multiplayer
online games do exist, they fall outside the scope of this paper.

Page � of �5 17

Figure 1: Role of survey respondents in
game development team

Testing/QA
3%

Product Manager
9%

Artist
12%

Designer
29%

Developer/Engineer
47%

Iris Zhang (iz2140) COMS 6156 Spring 2016

3) Networking needs and complexity of gameplay. While not a perfect indicator of
complexity, whether a game is single player or massive multiplayer should give clues as
to how the complexity of state must be within a game at a given point in time.

 The second consideration to data specification was to the nature of the bugs surveyed.
The survey taker was asked to consider the bugs released as a whole for the singular game so as
to not bias them towards choosing a bug that they had personally worked on, or favoring a
particular bug that they wish had been addressed. The categories themselves were narrowed
down from numerous sources, of which the Taxonomy paper had emphasis on 3D complex
games with networking elements. The purpose of the paper was to help establish abstract types
of game bug categories to help guide human testing and “provide a framework to validate the
coverage of new testing paradigms that may emerge” [7]. As a result, there was much more
emphasis on the technical root cause of the bugs themselves, and not how they manifest to the
player. The survey designed for the purposes of this paper did take into consideration the
category of bugs related to Information and Actions, as well as the concrete examples they gave
in Table 1 and 2. (Action refers to bugs in which something a player can normally do or access
cannot be done.) In contrast the Lahti paper offered some broad category of bugs that were more
accessible to the end user, such as Visual, Audio, Artificial Intelligence, Stability, Performance,
Compatibility and Physics, all of which made its way into the final survey [4]. It also helped that
it provided some subcategories for those broad categories which allowed the survey to provide
extra detail in helping the survey taker determine the best choice to describe their type of bug. A
full list of categories of bugs can be seen in Appendix I, question 6.
 The final question related to the reasons bugs went unfixed was designed mostly around a
paper called “What Went Wrong? A Survey of Problems in Game Development.” The premise
was to collect data on game bugs from game postmortems (document that summarizes the
project development experience) and “exploring their similarities and differences to well-known
problems in traditional information systems” [12]. Therefore, I found it very useful to take from
this paper the reasons bugs may go unfixed from both a software engineering perspective as well
as a narrower game development scope. The problems of scheduling, budget, and management
(later categorized in the survey with communication) were common to both industries so they
were included as reasons that could be chosen [12]. Among unique problems in the game
industry, unrealistic scope and feature creep seemed to have the most relevance to software
development, as well as technology tools, testing/QA, and failures in 3rd party APIs. There were
some categories, such as crunch time and lack of documentation which I felt either fit better as a
subcategory or were altogether too narrow. Overall, there were 10 categories that survey takers
could select from that identified reasons bugs went fixed, as well as an Other category where
they could fill in the blank. To see more detailed descriptions and examples of these reasons, see
Appendix I, question 7.

IV. Analysis of Results

 Here I revisit the questions proposed in the methodology. Do game developers knowingly
release buggy games? Did that change based on what role that developer played, or what kind of

Page � of �6 17

Iris Zhang (iz2140) COMS 6156 Spring 2016

team they were on? Were there significant differences between types of bugs reported based on
the types of games that developers worked on or the types of development team? I evaluated this
in the context of the types of games, contrasting 2D with 3D games, across multiple platforms,
and also game complexity using format of players. I also evaluated the same question looking at
indie versus AAA developer. Why did the bugs go unaddressed before release? This question was
addressed looking at aggregate data across the board, as well as team type and the role of the
respondent on the game team.

A. The Modern Reality of Buggy Games

 The overwhelming majority of survey respondents said yes, they released bugs
knowingly. However, a breakdown of this answer by the role of the survey taker and their team
reveals some differences in how developers and other members of the team may perceive the
glitches of their game. What
immediately stood out was that
the majority of product managers
denied releasing buggy games
(67%), which goes against the
overwhelming majority of
developers, designers and artists.
Of interesting note, 100% of AAA
team members said they released
buggy games, whereas only 82%
of indie developers did. Either
AAA studios are more aware of
the bugs they release compared to
their indie counterparts, or some
other compounding factor inflates
those numbers. Certainly, this
seems to confirm one article’s
speculation that releasing buggy games has become the norm among studios [14]. One lone indie
developer stated they released a non-buggy game, but later in the survey clarified that the bug
was unknown until after release, when customers pointed it out.

B. Platform, Format, and Gameplay Wars: Nobody Wins

 To accurately assess the prevalence of certain bugs, I pulled aggregate data on number of
times types of bugs were reported for each type of game. Then I mapped it to the total number of
games of that type reported, giving a percentage. For example, of all twelve 2D games surveyed,
only three reported having bugs related to performance, giving it a 25% occurrence for that game
type. I had suspected that there will be many overlaps between the types of games and bug types,
but there were noticeable differences (see Table 3). In aggregate it seems as though bugs related
to performance and stability were the most prevalent upon release, with about half of all

Page � of �7 17

Figure 2: Percentage of Game Developers Admitting to
Buggy Games

Ind
ie

AAA

Dev
elo

pe
r

Prod
uc

t M
an

ag
er

Ove
ral

l

88%

33%

93%100%
82%

Iris Zhang (iz2140) COMS 6156 Spring 2016

respondents identifying them as being issues. This was a bit unexpected as these are not among
the bugs most complained about among game players. One would think that bugs of such nature
are given priority and addressed prior to release, although such bugs may be harder to test for
and address from a technical standpoint.

 When looking strictly at 2D and 3D games, I found it surprising that performance and
stability were significantly worse for 3D releases than 2D ones. I would have thought much
higher instances of graphics, assets, or physics related bugs for 3D, but 2D seems to have just as
much if not more. In addition, about a third of 2D games suffered from compatibility issues
whereas only 1 of the 15 3D games identified did. Since many 3D games these days are made
with game engine tools such as Unity or Unreal allowing ease of transport to multiple platforms,
it may have contributed this low rate. It’s unclear why 2D games have a higher rate of
compatibility issues given the prevalence of 2D game tools equivalent to Unity or Unreal.
 In examining releases to different platforms, not much difference existed in the
prevalence of performance or stability bugs, which hovered in the 40’s and 50’s percentage
across the board. Of note none of the console games surveyed had any asset nor compatibility
issues. While the lack of asset bugs seems baffling, I can see why games designed explicitly and
natively for the console would not suffer from compatibility, especially if it’s only released for
one platform. In addition console games had a 50% occurrence of physics-related glitches, which
is double that of PC/Mac and dwarfs mobile’s. While I would have had to delve deeper into

Table III: Percentage of aggregate game bugs over game types

Grap
hics

Asse
t

Audio Physic
s

Info AI Actio
n

Netwo
rking

Perfor
manc
e

Stabili
ty

C
o
m
p
a
tabilit
y

2D 50.0% 25.0% 25.0% 25.0% 25.0% 25.0% 25.0% 25.0% 25.0% 41.7% 33.3%

3D 33.3% 20.0% 6.7% 20.0% 6.7% 26.7% 26.7% 40.0% 66.7% 60.0% 6.7%

Mobile 33.3% 33.3% 6.7% 33.3% 6.7% 0.0% 0.0% 13.3% 40.0% 40.0% 20.0%

Console 12.5% 0.0% 12.5% 0.0% 12.5% 37.5% 37.5% 37.5% 37.5% 50.0% 0.0%

PC 43.8% 18.8% 18.8% 18.8% 18.8% 37.5% 37.5% 31.3% 56.3% 50.0% 25.0%

Single 35.3% 11.8% 11.8% 11.8% 11.8% 35.3% 35.3% 11.8% 47.1% 47.1% 17.6%

Multi 25.0% 25.0% 25.0% 25.0% 25.0% 25.0% 25.0% 50.0% 50.0% 62.5% 12.5%

MMO 50.0% 50.0% 0.0% 50.0% 0.0% 50.0% 50.0% 50.0% 75.0% 50.0% 0.0%

Overall 37.5% 25% 9.4% 21.9% 18.8% 28.1% 12.5% 18.8% 46.9% 50.0% 15.6%

Page � of �8 17

G
ra

ph
ic

s

A
ss

et
s

A
ud

io

Ph
ys

ic
s

In
fo

rm
at

io
n

A
I

A
ct

io
n

N
et

w
or

ki
ng

Pe
rf

or
m

an
ce

St
ab

ili
ty

C
om

pa
tib

ili
ty

Iris Zhang (iz2140) COMS 6156 Spring 2016

game types to understand what causes this definitively, one can see why console and desktop
games would lend itself better to more complex, 3D games rather than mobile.
 In the land of gameplay format, only single-player vs. multiplayer vs. MMO were
considered. One would expect that MMO’s have the highest rates of bugs given their complexity,
and this reflects itself in the data. The single highest aggregate rate of bugs for any given
category was performance in MMO’s (75%), followed by stability in Multiplayer (62%). While
single player games did have lower rates of bugs compared to their counterparts, they made a
significant showing in the rate of performance and stability bugs as well, hovering right around
the overall average. The only single higher bug rate for single player was in the existence of
graphics-related bugs.

C. Indie vs AAA: Final Showdown
 Overall the data confirms that bugs related to networking, performance, and stability
were higher for AAA teams than indie, which would make sense as they attempt to publish more
ambitious game systems. However, this belies the trend that AAA teams suffered from higher
prevalence of bugs across all categories except for Information and Action, where the rates were
comparable. Regardless, both types of teams released bugs across all categories (Figure 4).

Page � of �9 17

Figure 4: Bug Types, Indie vs. AAA

Graphic

Asset

Audio

Physics

Information

AI

Action

Networking

Performance

Stability

Compatibiliy

Rate of occurrence
25% 50% 75% 100%

13.6%

27.3%

36.4%

4.5%

13.6%

13.6%

18.2%

9.1%

4.5%

18.2%

27.3%

16.7%

58.3%

58.3%

41.7%

8.3%

50.0%

16.7%

41.7%

16.7%

33.3%

50.0%

Indie AAA

Iris Zhang (iz2140) COMS 6156 Spring 2016

 Of note, Physics, AI, Networking , Audio, and Stability bug rates for AAA were more
than double than those for indie. Information, Action, and Compatibility bugs were more or less
the same for both.

D. A Bug’s Causes

 Why do game developers knowingly release buggy games? As the data tells us, reasons
are numerous but somewhat predictable: scheduling and lack of adequate time and effort given to
testing and quality assurance were the top one and two reasons overall, respectively. This aligns
with previous surveys that point out that “crunch time”—an arbitrary date a game has to ship
either for production reasons or to be on budget— and delays leads to having to bring an
imperfect product to market [2]. While I expected budget to make it into the top reasons, it was
behind feature creep and the abundance of defects, which were the next highest rate. There were
much smaller occurrences of companies that pointed out problems in the design phase or
communication, which I had thought might have contributed to more bugs given that common
knowledge leads one to believe that more complex systems contribute to more chances of faulty
code [15].

Page � of �10 17

Figure 5: Reasons for Bugs, Indie vs. AAA vs. All

0%

20%

40%

60%

80%

Sc
he

du
lin

g

Bu
dg

et

U
nr

ea
lis

tic
 S

co
pe

Fe
at

ur
e

C
re

ep

D
es

ig
n

3r
d

Pa
rty

 A
PI

s

C
om

m
un

ic
at

io
n

Te
ch

 T
oo

ls

Te
st

in
g/

Q
A

H
um

an
 R

es
ou

rc
es

To
o

m
an

y
de

fe
ct

s

O
th

er

Indie AAA Overall

Iris Zhang (iz2140) COMS 6156 Spring 2016

 When broken down by team type, the reasons for game glitches reveals more about the
challenges faced in these unique environments. Both indie and AAA teams shared scheduling as
the primary reasons bugs went unfixed. However, indie teams suffered from feature creep and
too many defects as their second highest reason, perhaps because poor planning of code
architecture from the onset lead to confusion over which issues should be given priority when it
came down to game release. This makes sense given the higher instance of “design” and
“unrealistic scope” issues cited by indie teams. By contrast AAA teams had feature creep as their
forth most commonly cited cause of bugs and a very low rate of design-related and unrealistic
scope problems, so while poor code architecture was a factor, poor planning or lack of vision as a
whole didn’t seem to affect these teams as much.
 Interesting of note is that indie teams suffered from scheduling issues at a significantly
higher rate than their AAA counter parts, even though common knowledge dictates that due to
their independent nature they should not be beholden to outside influences such as a board of
directors or third party publishers [10]. In addition, AAA teams suffering more from budget
issues seems to directly counter the claim that AAA teams have “deep pockets” [10]. One
possible scenario that leads to this contradiction might be that many indie developers put their
livelihoods on the line when making games and prioritize getting more games to market rather
than thinking of the money they could they making doing another job as a “budget” issue. Indie
teams also suffered from communication problems and not enough human resources, which
given the less hierarchical nature of such teams may mean less direction from project managers
and leaders [10].
 Both teams cited time and effort given toward testing as being a significant reason for
buggy games (around 40%.) Given that some AAA teams have dedicated testing units, it’s
unclear why this rate is so close to that of indie teams’. Perhaps telling, the single respondent
who identified as being from QA did not cite testing as a reason for bugs.

V. Limitations and Looking Ahead

 Given the paper we read in class (“Cowboys”) much effort was taken to avoid falling into
the same trap of doing a very broad, cursory survey from which only flimsy conclusions could be
drawn [1]. Nevertheless this paper suffers from the same sampling bias due to the limited
number of respondents and the self-selecting nature of those who took the survey. One cannot
confidently say that those who took this survey accurately reflect the game industry as a whole.
Another concerns is the lack of survey respondents were not enough in certain categories. For
example, to draw conclusions about MMO games as a whole given that only 4 games of that type
were identified seems misleading.
 There were also weaknesses in survey design. Some of the questions may have confused
survey takers in their wording. Although care was taken to cover all types of game bugs, some
filled in the “Other” category with bugs related to UI or public API calls, showing that not all the
categories covered its scope in entirety. I suspect that many also confused the Asset bug category
with Graphics/Vision and Audio, given the limited examples supplied. Overall, the bug
categories could have been better specified and fine-tuned so as to not muddy the data. Question
4 could have better addressed the type of games that the survey respondent released (Appendix

Page � of �11 17

Iris Zhang (iz2140) COMS 6156 Spring 2016

I.) Instead of being a check all that applies question, it would have been better if the survey were
designed with the three distinct axis along which analysis would be performed (platform,
gameplay, framework) in mind. If I could go back in time, this would be a three-part question
with multiple choice answers so that individuals must pick from all different specifications for
their game. Thus entries where only “2D” was picked as a game category would be populated
with much better data, as this does not reveal the game’s platform or networking capabilities,
although every game does possess such.
 Further research would delve deeper into the types of testing done at game development
companies, although the Finnish game paper does go into quite a bit of depth about this topic [4].
It would stand to benefit from performing analysis across types of tests with differing categories
of games and game teams. Another direction to go in would be to see how game companies
approach addressing bugs after release, and whether or not a formal process for submitting
support tickets from players correlates to the prevalence of game bug release rates.

VI. Conclusion

 Game developers are faced with many dilemmas these days to produce a perfect product.
On one hand, regardless of whether their team is independent or AAA, they face tremendous
pressure to bring their product to market in a timely manner. On the other hand, they face
scrutiny from players and journalist who publicly complain about and document their buggy
games for the world to see [11] [12] [14] [15]. I learned that in the fight to balance the two,
glitches win out. Through a survey disseminated to self-identified game developers, I determined
that game teams overwhelmingly release buggy games, and they do so knowingly. The
developers cite scheduling as a primary reason, followed by lack of dedicated testing time and
adding additional features without proper planning of software architecture.
 When analyzing the challenges faced by game teams, differences in the prevalence of
different bug types and the reasons for their existence became apparent. In general I learned that
performance and stability related bugs occurred regardless of game type, but as games becomes
more complicated (3D, MMO elements, multi-platform) bugs such as networking or
compatibility become more common. In addition, indie teams tend to suffer more from issues
related to lack of vision and leadership, such as poor project scoping and feature creep. Both
types of teams could benefit from a longer, more fine-tuned testing phase dedicated to game
polish. Product and project managers could stand to understand their audience better in the
quality of games when deciding upon a schedule for release. Although in the case for certain
studios with earned reputations for glitches and doggedly refuse to increase their teams and
budget [11], it seems as though players must continue to coexist with bugs.

Page � of �12 17

Iris Zhang (iz2140) COMS 6156 Spring 2016

Works Cited

[1] E. Murphy-Hill, T. Zimmermann and N. Nagappan, “Cowboys, Ankle Sprains, and Keepers
of Quality: How Is Video Game Development Different from Software Development?”
Proceedings of the 36th International Conference on Software Engineering (pp. 1-11). ACM May
2014.

[2] F. Petrillo, M. Pimenta, F. Trindade and C. Dietrich, “What went wrong: A survey of
problems in game development,” Comput. Entertain., vol. 7, Feb 2009.

[3] R. Ramadan and Y. Widyani, “Game Development Life Cycle Guidelines,” ICACSIS 2013.

[4] M. Lahti, “Game Testing in Finnish Game Companies,” Master’s Thesis, Aalto University.
School of Science. November 2014.

[5] A. Ampatzoglou and I. Stamelos, "Software engineering research for computer games: A
systematic review,” Information and Software Technology, vol. 52, no. 9, pp. 888-901, 2010.

[6] H. M. Chandler, The Game Production Handbook, 2008. Second edition, Hingham, Mass.:
Infinity Siene Press.

[7] C. Lewis, J. Whitehead, and N. Wardrip-Fruin. “What Went Wrong: A Taxonomy of Video
Game Bugs.” Proceedings of the Fifth International Conference on the Foundations of Digital
Games. Pages 108-115. ACM. 2010.

[8] Author Unknown. Patch Notes, Riot Games. [Web]. http://na.leagueoflegends.com/en/news/
game-updates/patch/ Visited March 2016.

[9] C. Plante. “How not to get permanently stuck in Fallout 4’s elevator like this schmuck.” The
Verge. TL;DR. 9 November 2015. [Web]. http://www.theverge.com/2015/11/9/9696186/
fallout-4-bugs Visited March 2016.

[10] Author Unknown. “Anonymous' Answer to What is the difference between working for an
indie gaming studio and working for an AAA gaming company?" Quora. 30 October 2014. Web.
https://www.quora.com/What-is-the-difference-between-working-for-an-indie-gaming-studio-
and-working-for-an-AAA-gaming-company Visited 12 March 2016.

[11] McClendon, Z. “Fallout 4 is Full of Bugs, but Fixing Them Could Ruin It.” Wired. 18
November 2015. [Web]. http://www.wired.com/2015/11/fallout-4-bugs/ Visited March 2016.

[12] McVinnie, James. The beauty of a GTAV bug. 14 April 2015. [Video file]. Retrieved from
https://www.youtube.com/watch?v=plKRcrDTd50

Page � of �13 17

http://na.leagueoflegends.com/en/news/game-updates/patch/
http://www.theverge.com/2015/11/9/9696186/fallout-4-bugs
https://www.quora.com/What-is-the-difference-between-working-for-an-indie-gaming-studio-and-working-for-an-AAA-gaming-company
http://www.wired.com/2015/11/fallout-4-bugs/
https://www.youtube.com/watch?v=plKRcrDTd50

Iris Zhang (iz2140) COMS 6156 Spring 2016

[13] Brice, K. “Blizzard developers join Riot Games’ online title.” 25 June 2009. [Web]. http://
www.gamesindustry.biz/articles/blizzard-developers-join-riot-games-online-title Visited March
2016.

[14] Makuch, E. “Why are some games so buggy?” 6 March 2014. [Web]. http://
www.gamespot.com/articles/why-are-some-games-so-buggy/1100-6418151/ Visited March
2016.

[15] Birch, Aaron. “Have bugged video games now become the norm?” 14 January 2015. [Web].
http://www.denofgeek.com/games/bugged-videogames/33602/have-bugged-videogames-now-
become-the-norm Visited March 2016.

[16] Author unknown. “Massively Multiplayer Online Game (MMOG).” Def. 1. Technopedia
Online. [Web]. https://www.techopedia.com/definition/27054/massively-multiplayer-online-
game-mmog Visited March 2016.

[17] J. Hight and J. Novak, Game Development Essentials. Game Project
Management, New York: Delmar. 2007.

Page � of �14 17

http://www.gamesindustry.biz/articles/blizzard-developers-join-riot-games-online-title
http://www.gamespot.com/articles/why-are-some-games-so-buggy/1100-6418151/
http://www.denofgeek.com/games/bugged-videogames/33602/have-bugged-videogames-now-become-the-norm
https://www.techopedia.com/definition/27054/massively-multiplayer-online-game-mmog

Iris Zhang (iz2140) COMS 6156 Spring 2016

Appendix I. Survey

Game Developers and Bugs Survey
 This survey’s intended audience is for anyone with at least .5+ years experience developing or
designing games in a professional setting. You must have published a game within the past 5
years. Although you are not required to have experience developing the game, you must have
enough knowledge about the technical details of the game itself to answer questions related to it.
The results of this survey will be completely anonymized. If you have any questions, please
contact the survey designer at iz2140@columbia.edu.

1. I have read the description and agree. *
 [] Yes

2. Consider a game you released within the past 5 years. Think of the one that you know the
most technical details about, and were most closely involved with. What was your main role
on the game development team? *

Developer/Engineer
Testing/QA
Designer (level, gameplay, map etc.)
Artist
Audio/Music Producer
Product Manager/Producer
Other: [fill in the blank]

3. Pick the description that best described your game development team.*

(help text) : Indie refers to small game companies where the owners typically are involved in the development. AAA
are typically larger companies with hierarchical structures. Owners may not necessarily be involved in designing or
developing.

Indie
AAA

4. What was the nature of this game you worked on? Check all that apply.*
MOBA/MMO or any game with massive multiplayer elements
2D
3D
Mobile
Console
PC/Mac
Single-player
Multiplayer or Co-op (4 max)
Other: [fill in the blank]

5. Have you or your team released this game with known bugs/glitches? * (Yes/No)

Page � of �15 17

Iris Zhang (iz2140) COMS 6156 Spring 2016

6. What were the nature of these bugs? Check all that apply.
Graphical/Visual (clipping, z-position mismatch, missing textures)
Audio (skipping, distortion, audio drop)
AI (NPC bugs, pathfinding bugs)
Performance (Installation bugs, loading time, frame rate)
Stability (crashes, freezing)
Networking (Lag, dropped connections, invisible players)
Compatibility (Operating System or console-specific bugs)
Information-related (presented out of order, missing, or invalid presented to player)
Physics
Action not possible or not allowed
Asset (missing or wrong art, missing or wrong sound effect, audio/text mismatch,
typos)

7. What are the reasons the bug went unfixed? Check all that apply.
Scheduling (e.g., underestimating how long features take, having to meet a hard
deadline)
Budget
Unrealistic Scope (game was too ambitious from the onset)
Feature Creep (New features are added without planning software architecture)
Problems in Design Phase (Design was unrealistic or impossible to implement from
technology standpoint)
Failures in 3rd party APIs for platform or hardware
Communication problems - (e.g., management, cross-team collaboration, etc.)
Technology tools: (e.g.developers did not use version control or used it incorrectly,
build times too high)
Testing/QA (Testing was not robust enough or not given enough time nor emphasis)
Loss or lack of human resources (Not enough people with experience who have
actually released a game, not enough developers or artists.)
Too many defects (Bugs were just too numerous to fix all)

*Required questions

Appendix II. Game Developer Role and Buggy Games, Raw Data

No Yes Grand Total

Artist 4 4

Designer (level, game play, map etc.) 1 9 10

Developer/Engineer 1 14 15

Mix art, animation and programming 1 1

Page � of �16 17

Iris Zhang (iz2140) COMS 6156 Spring 2016

Appendix III. Game Types and Game Bug Types, Raw Data

Appendix IV. Game Team Types and Game Bug Types, Raw Data

Appendix V. Game Team Types and Bug Reasons, Raw Data

Product Manager/Producer 2 1 3

Testing/QA 1 1

Grand Total 4 30 34

No Yes Grand Total

Graphic Asset Audio
Physi
cs

Inform
ation AI Action

Networ
king

Perfor
mance

Stabilit
y

Comp
atibiliy

AAA 6 4 2 5 2 6 1 5 7 7 2

Indie 6 4 1 2 4 3 3 1 8 6 3

Page � of �17 17

Graphic Audio Asset AI
Perfor
mance

Stabili
ty

Netw
orking

Comp
atibiliy

Inform
ation

Physic
s Action

Mobile 5 1 5 0 6 6 2 3 3 1 1

Console 1 1 0 3 3 4 3 0 1 4 2

PC/Mac 7 3 3 6 9 8 5 4 3 4 2
Single
Player 6 2 2 6 8 8 2 3 4 4 3

Multi 2 2 2 2 4 5 4 1 2 4 1

MMO 2 0 2 2 3 2 2 0 0 1 0

Sched
uling

Budg
et

Unrea
listic
Scope

Featu
re
Cree
p

Desig
n

3rd
Party
APIs

Com
muni
catio
n

Techn
tools

Testin
g/QA

huma
n
resour
ces

Too
many
defect
s Other

AAA 9 2 5 6 3 1 4 1 5 1 6 2

Indie 11 6 1 5 1 3 1 0 9 5 3 0

Overall 20 8 6 11 4 4 5 1 14 6 9 2

