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ABSTRACT
Cyber-physical systems (CPS) are defined by their unique
characteristics involving both the cyber and physical do-
mains. Their hybrid nature introduces new attack vectors
but also provides an opportunity to design of new secu-
rity architectures. In this work, we present YOLO,— You
Only Live Once — a security architecture that leverages two
unique physical properties of a CPS, inertia: the tendency
of objects to stay at rest or in motion, and its built-in reli-
ability to intermittent faults to survive CPS attacks.

At a high level, YOLO aims to use a new diversified vari-
ant for every new sensor input to the CPS’. The delays in-
volved in YOLO, viz., the delays for rebooting and diver-
sification, are easily absorbed by the CPS because of the
inherent inertia and their ability to withstand minor per-
turbations. We implement YOLO on an open source Car
Engine Control Unit, and with measurements from a real
race car engine show that YOLO is imminently practical.
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1. INTRODUCTION
Cyber-physical systems (CPS) represent the synthesis of

computational and physical processes encompassing a wide
range of applications including transportation, medical de-
vices, robots and power grids. CPS are defined by their
unique characteristics involving feedback control loops with
the physical world. The hybrid nature of CPS introduces
new attack vectors that encompass both the physical and
cyber realms, leading to a number of incidents in recent
years [25, 1, 2, 38]. The goal of these attacks is to elicit in-
correct and potentially dangerous behavior by compromising
the physical operation of the system.

In this paper, we propose a new security architecture that
leverages unique properties of CPS to assure secure opera-
tion for CPS controllers. The YOLO (You Only Live Once)
principle aims to provide this assurance by limiting the dura-
tion and attack surface of a system. A key innovation in our
approach is that we take advantage of physical properties
of CPS such as inertia and its built-in reliability to inter-
mittent faults to survive attacks. YOLO is best explained
with an example. Consider a car: even if power is cut off

Figure 1: YOLO Overview. A security architecture for CPS
involving reboot and diversification.

to the car engines, the car will continue to run due to iner-
tia; similarly, even if one or few sensor inputs are incorrect,
the car will continue to work correctly because intermittent
sensor errors happen in nature and controllers are designed
to handle this case. In YOLO, we take advantage of these
features. We intentionally reboot the system periodically to
clear “tainted” state left by an attacker. During reboots, we
rely on system inertia for the system to continue working.
To mitigate vulnerabilities between reboots, we rely on di-
versification to force the attacker to develop a new attack
strategy for every input.

Figure 1 gives an idealized overview of this concept. In
this context, a YOLO-ized controller is a stateless, event
driven program. At time t0 a particular program variant is
loaded into a sandbox where it waits for an input. At time
t1 an input arrives where program variant is used to process
it. Once the input has been processed, its output leaves the
sandbox, the sandbox is reinitialized, i.e., rebooted, and a
second program variant is loaded. This continues through-
out the lifetime of the controller. Each sensor input and
each variant are only allowed to effect the control system
over a well defined life span, thus the YOLO acronym. Any
attacker that succeeds in gaining control over the sandboxed
program will only have control until some expected runtime
of the system expires, and the program is replaced by a new
variant.

The challenge in realizing this model in CPS is that most



systems have feedback loops that operate on prior state.
Constant and naive rebooting at unexpected times may cause
errors in the control algorithm. Further the computational
resources are fairly constrained compared to traditional sys-
tems. In this paper we show how these challenges can be mit-
igated to capture the benefits of YOLO in pragmatic ways.
We make two key contributions that allows us to overcome
these challenges: first, we observe that even though most
control systems are closed loop systems, for the brief period
during reboot they can be considered as open loop systems.
During this period we rely on inertia to overcome incorrect
outputs from the control algorithm. Second, we show how
to change the state estimation routines in CPS to account
for tainted state. The basic idea here is to estimate the state
using a sliding window that contains all but the latest in-
put to estimate state. While this creates a small error in
state estimation, the effect is similar to a single faulty sen-
sor reading that most CPS control algorithms are already
designed to handle. Thus we “piggy-back” on existing safety
mechanisms to mitigate security risks.

We evaluate the YOLO concept on an Engine Control
Unit (ECU) of a car. Using an open source engine con-
troller (rusEFI), and measurements from a real car engine,
we first discuss how existing code can be refactored with
small changes to take advantage of the YOLO model, and
then measure the performance and safety impacts of the
YOLO model. We show that with our implementation and
optimizations the two key costs of YOLO: the cost of re-
boots and the cost of diversification can be hidden from user.
Specifically, we show that for our car engine, rebooting every
8th revolution at 4500 RPM does not incur any overheads,
and that between reboots the system can be protected with
extant diversification techniques such as control-flow diver-
sification without missing any deadlines.

To summarize the main contributions of the paper are:
(1) An observation that Cyber Physical System have unique

properties such as system inertia and resilience to intermit-
tent faults that can be leveraged to improve security.

(2) A new security architecture called YOLO that com-
bines periodic rebooting and diversification to take advan-
tage of the unique properties of CPS’. As such YOLO is
agnostic to specific rebooting or diversification techniques
as long as they do not impact the safety of the system.

(3) Mechanisms to optimize two aspects of YOLO, reboot-
ing and diversification, in the context of Cyber Physical Sys-
tems. While both rebooting and diversification are known
techniques, the main novelty is the using them in combi-
nation in the context of CPS. We develop micro-rebooting
techniques and low resource diversification techniques that
are suitable for CPS’.

(4) Implementation and measurement of YOLO on an
open source Car Engine to demonstrate the challenges and
feasibility of YOLO.

The rest of the paper is organized as follows: In Section 2
of the paper we provide an overview of the system and threat
model; then in the way of background we discuss the unique
properties of CPS’ in Section 3. In Section 4, we discuss the
YOLO architecture and specific optimizations for rebooting
and diversification. In Section 5 we describe a YOLO-ized
Engine Control Unit and in Section 6 we describe the results
of our evaluation. Section 7 describes related work and we
conclude in Section 8.

Figure 2: CPS System Model. A minimalist view of a cyber-
physical system.

2. SYSTEM AND THREAT MODEL
Like any other system, security in CPS’ is a full-system

property. This means that all aspects of the system includ-
ing its configuration, construction and operation should be
secure for the system to be secure. A CPS, broadly speaking,
has three attack surfaces: the CPS’ interface to the physical
world through sensors and actuators, the controller and all
software running on it, and the network that connects the
controller to the sensors and actuators (See Figure 2).

In this paper we consider a minimalist CPS model. This
means that the ECU we will evaluate is devoid of ”bells and
whistles” software such as a Bluetooth stack, CD player, an
open Wifi port etc. Said differently, in our model we assume
that the hardware and software functionality available in
the system is solely that required to support correct control
over the physical plant of the system. The rationale for this
choice is to focus our attention on aspects that are unique
to CPS.

The minimalist CPS offers attackers a rich set of attack
vectors. As can be seen from the canonical CPS reference
figure, the attackers can spoof/corrupt sensor inputs, or at-
tack the network connection between the controller and the
sensor, say through debug ports, or overwrite the configura-
tion state and/or the control algorithm using some physical
access.

We make the following assumptions about adversarial ca-
pabilities:

• The adversary’s main objective is to inhibit correct
operation of the physical process being controlled.

• The adversary has access to the source code of the
system and/or the underlying control algorithms being
used. This is a strong assumption about adversarial
capabilities.

• We assume the adversary can only spoof input sig-
nals for some bounded duration until correct signals
are again received. Sensor data authentication tech-
niques, such as GPS authentication, or physically dis-
tributed redundant sensors [7], can be used to provide
this guarantee.

• The controller software is not bug-free. The exact na-
ture of the bugs is not really important to our work
except we assume that at least one of these bugs can
be exploited through bad inputs either from spoofed
sensors or network injection messages. For instance,
a bad sensor input may result in a integer overflow
vulnerability that be escalated to number of different
vulnerabilities.

With these assumptions in mind, many forms of classi-
cal attack vectors are available. For example, in an ECU,



certain engine configuration parameters are application and
engine specific. The car is tuned by empirical observation,
and therefore even a minimal engine controller must support
reconfiguration over an external interface, which is usually
accessible through a network. Such an interface presents an
opportunity for both remote or local exploits.

3. UNIQUE CPS PROPERTIES
Cyber-physical systems have important properties that al-

low for interesting security techniques to be explored. These
properties can be divided into two categories, one influenced
by the physical requirements and the other by software en-
gineering requirements.

System Properties: The first is the physical property
of inertia. It is the resistance of an object to any change
in its motion. This principle is essential as it asserts that
the physical components of the system should continue op-
erating in some state without any external forces. In fact,
physical systems are sometimes engineered to take advan-
tage of this property. One early example of such a system
was the hit-and-miss engine [27] in which the engine fires
and the coasts for some time and fires again to maintain
its average speed. Today, high performance cars will allow
the driver temporarily disable fuel ignition in order to shift
gears quickly without depressing the accelerator [40].

The second property is that of resilience in the control al-
gorithms. Many CPS are expected to perform in situations
where their inputs are subject to unavoidable sources of en-
vironmental noise and interference. Thus, algorithms are de-
signed to tolerate certain amounts of error and still function
correctly. While this tolerance may not necessarily provide
robustness against a malicious attacker, it allows for defenses
that can exploit this robustness. These defenses could po-
tentially invalidate some aspects of the running state under
the assumption that there is some level of tolerance to input
noise.

Software Architecture: CPS systems are typically struc-
tured as event driven programs. The control flow of the
program follows sensor updates, triggering the system to
calculate new state estimates derived from that data which
then affect its behavior. This programming style lends itself
to being more easily restructured and modeled.

CPS controller software typically requires state history to
estimate observations of the physical environment. We use
the following taxonomy to describe each type of state.

1. Application Configuration State - State which is once
set is rarely set again. Examples include controller
gains and user defined constants.

2. Hardware Configuration State - State that can differ
from what was originally configured to what is cur-
rently set in the hardware. Examples include the priv-
ilege level or the clock source of the processor, and
hardware peripherals.

3. Cached Event State - State which records sensor in-
puts. Examples include buffered analog inputs and
buffered communication channels.

4. Multi-period State - State that is estimated across mul-
tiple periods of the system. Examples include speed
and acceleration estimations.

At a minimum, a cyber-physical system should be ex-
pected to have statefulness of category 1 and 2. Any feed-
back loops in the system imply the existence of category 3
and 4.

4. YOLO SECURITY ARCHITECTURE
When considering any system, especially those that are

updated rarely such as CPS, it seems impossible to build
a defense that can protect against all possible future intru-
sions. Instead, YOLO aims to prevent persistent threats
from establishing a stronghold on the system. It does so by
emphasizing recoverability methods which attempt to re-
store the system to a well-modeled state.

YOLO takes advantage of two orthogonal, but comple-
mentary security techniques: reboot and diversification. In
combination with the inherent inertial properties of CPS,
these two techniques can be used to construct an ideal envi-
ronment where a particular diversified program is used once
to process an incoming input before another variant is used.
YOLO asserts that any input must have a bounded time
horizon over which it can affect the system. Ideally, any
exploitable subsystem only affects the system for the min-
imum possible time before being terminated, replaced, or
reinitialized. Additionally, no single exploit should succeed
on a particular subsystem more than once.

There are two key properties of CPS that make the task of
YOLO-izing a system particularly difficult: statefulness and
the observability of the physical state. Many control algo-
rithms require state history to estimate certain values. This
state history is even more important when it is used to bridge
the gap between program state and physical properties that
can only be observed intermittently, such as switch or clock
signals. These two aspects require that YOLO be able to
maintain or re-synchronize consistency with the physical en-
vironment to ensure correct behavior.

4.1 Rebootability
Why reboot?: Even among expert users, rebooting is

the prefered solution for nearly any problem in the comput-
ing world. It is a simple and universally applicable panacea
for software problems. The simple intuition behind the un-
reasonable effectiveness of rebooting is that the software is
tested most often in its pristine, freshly rebooted state [31,
14].

From the point of view of thwarting an attacker, the restora-
tion of state typically involved with a reboot helps prevent
an attacker’s ability to gain a persistent method of exe-
cution. In a reboot, important hardware parameters such
as core registers and peripheral configurations that define
things such as interrupts, are brought back to a default
value. At any later phase in execution, the combinatoric
explosion of potential states makes validation more difficult.
The conditions of the reboot sequence provide predictable
and well defined.

Although realistic CPS require stateful, closed feedback
loops, we observe that due to CPS properties such as inertia,
one can operate as an open feedback system for a bounded
period of time. This allows us to reboot the system and
return to a well defined state when a particular piece of
state becomes corrupted.

Cost: In most situations, simple rebooting can incur a
high penalty especially in the context of a cyber-physical
system degrading optimal performance. Several factors can



contribute to the high overhead, the first being the downtime
the chip requires to effect a reboot. The second involves the
default values taken by peripheral devices which may have
unintended physical consequences. The last factor involves
the efficiency of the startup routines and warm-up times of
certain functionality.

Unlike traditional computing environments, where reboot-
ing occurs at the second time scale, rebooting times for
microcontrollers and CPS software is an order of magni-
tude faster occurring at the millisecond scale. Additionally,
the physical components typically controlled occur at hu-
man time scales which allow us to tolerate the reboot times.
However, to reduce this cost and achieve closer to optimal
performance, we define a layered approach of micro-reboots
where each consecutive layer is more expensive and intru-
sive. Micro-reboots involve the individual rebooting of fine-
grained application components, commonly known as mi-
croservices, and have been previously explored in the con-
text of web applications [8] and low-level system software
[24].

Optimization: YOLO’s overarching strategy of micro-
reboot layers is to explicitly attempt to forget a given input
as quickly as possible, limiting the effects of any malicious
input. We accomplish this by recalculating the system state
as though that input had not been observed. The control
algorithms can tolerate this missed input as if it were noise,
leading to imprecise estimations that still allow us to con-
tinue operation, if however sub-optimally. If this cannot
be done, the state may be reset to some default value and
all micro-services which depend on the discarded values are
recursively recomputed. Unlike micro-reboots discussed in
Candea et al. [8], when all else fails, we reboot the hard-
ware platform and rely on inertia to allow recovery without
catastrophic failure.

4.2 Diversification
Why diversify?: The goal of YOLO is to increase our

confidence that the system is functioning as designed the
majority of the time. The principle method we have dis-
cussed so far for assuring this condition is periodic microre-
boot actions that return the system to a well-modeled state.
This opens a vulnerability window in which an attacker can
exploit the system between microreboots. Diversification
lowers the likelihood that an attacker can successfully ex-
ploit the system between reboots. Paired with rebootabil-
ity, highlights the tradeoff between the integrity and perfor-
mance of the system. Further with diversification, YOLO
can perform these microreboot actions less often, reducing
the performance penalties associated with them.

Cost: The YOLO paradigm is agnostic to the diversifica-
tion technique. However, the additional delays imposed by
these techniques should not affect the real-time deadlines of
the CPS. These overheads vary from strategy to strategy,
but are usually the result of encryption/decryption, random
number generators, and additional read/writes required for
their implementations. By leveraging the security that di-
versification provides while the program is running, we study
the performance tradeoff varying system uptime and reboot
frequency. These results are discussed in our evaluation (See
Section 7).

Optimization: YOLO can mitigate the impact of diver-
sification by performing computation tasks as background
jobs. However, the complexity incurred by delegating di-

Figure 3: rusEFI ECU. The opensource platform with the
STM32F4 Discovery board.

Figure 4: ECU Overview. The software architecture used to
model the engine control unit.

versification tasks to background jobs is unnecessary as we
observe that typical delays imposed are significantly smaller
when compared to the real-time deadlines of the physical
subsystem.

5. YOLO-IZING AN ECU
We implement the YOLO paradigm on an engine control

unit (ECU). The ECU is an often used system representative
of many CPS as it realizes a broad cross section of the chal-
lenges that make them different from traditional computer
systems. An ECU is the brain of an engine, designed to
directly process inputs from a series of sensors and manage
actuators to control the process of internal combustion.

As is common in CPS, an ECU must perform a set of
real-time tasks to ensure proper engine functionality. For an
engine to produce power, it must inject fuel into its internal
chamber, mix it with air by controlling the timing of valves,
and finally ignite the air-fuel mixture so that it combusts
and rotate the shafts connected to the transmission. Typical
engines perform these steps in what is called the four-stroke
cycle. For the ECU to enable the actuators that control this
process, it must be able to correctly decode the position of
the engine with respect to the four-stroke cycle.

Baseline System: For our case study we use the rusEFI
open-source ECU (See Figure 3) and a Honda CBR600RR
engine, a very commonly hacked engine used by enthusiasts.
rusEFI’s main responsibilities include controlling fuel injec-
tors, ignition, fuel pumps, and the valves as discussed above.
The source-code is written in C/C++ running on top of



Table 1: ECU State Categorization

Application Configuration Engine settings, Tuning parameters
Hardware Configuration GPIO, Interrupt Vector Table

Cached Event
Sensor inputs: coolant temperature,
airflow, etc.

Multi-Period RPM, Engine Position Trigger

an open-source Real-Time OS (RTOS) called ChibiOS and
is designed to run on a STM32F4-Discovery Board. This
board contains a 168 MHz ARM Cortex-M4 processor with
192 Kbytes of SRAM and 1 MB of flash. As is typical for
these devices the instruction fetching path is optimized for
flash. Compared to flash instructions issued from the SRAM
suffer a 50% performance penalty.

The Honda CBR600RR engine weighs around 130lbs and
involves the rotation of various shafts along the engine. The
inertia inherent in these rotations is crucial to our implemen-
tation of YOLO. In fact, certain shifting methods such as
powershifting, take advantage of this property. Powershift-
ing, involves cutting the injection and ignition, effectively
allowing the engine to rotate freely as shifting completes.

The rusEFI ECU is structured as an event driven program
shown in Figure 4. There are usually two types of sensors:
polled and interrupt driven. Engine position events and cer-
tain ADC sensors generate interrupts that must be handled
immediately to ensure engine operation. Other less critical
sensors such as coolant temperature and engine air flow can
be polled on demand as needed. Data from the sensors is
then processed and used for state estimation. Control algo-
rithms then schedule hard real-time tasks such as: injection
and ignition, and soft real-time tasks such as reporting speed
to the speedometer.

5.1 Implementing Reboots
We implement different strategies for effectively dealing

with the different classes of state mentioned in Section 3.
The goal of each layer is to enable partial reboots to help
reduce the overhead compared to simple rebooting, but do
so in a way that does not compromise the isolation that
rebooting is meant to achieve. Table 1 gives examples of
how certain state tracked by rusEFI can be categorized.

5.1.1 Application Configuration State
An adversary that manages to attack this state can cor-

rupt the calibration parameters of engine temperature sen-
sors causing it to overheat. To remedy this type of attack
YOLO exploits the static nature of most configuration state,
to perform validation. Engine tuning parameters and con-
figuration are cryptographically signed when updated. The
signature is validated against the current configuration peri-
odically in non-realtime background threads. When config-
uration states differ from the expected value, a valid default
is checked out from a secure store. The secure store in the
STM32F4 is implemented by allocating a memory region
protected by the MPU.

5.1.2 Hardware Configuration State
We observe that the default hardware state for different

peripherals can trigger actuators at incorrect times. For ex-
ample, consider a peripheral which is configured to control
an actuator expecting a logic low to trigger and the default
peripheral reboot state sets it to be a logic low. Under this

Figure 5: An illustration of the engine position decoder with
replication. U and S, represent whether a decoder is un-
synchronized or synchronized, respectively.

scenario, rebooting the peripheral can adversely affect the
engine’s optimal performance by issuing an injection or igni-
tion event at inappropriate times. We alleviate these issues
by triggering the peripheral reboot as a last resort. YOLO
does so by implementing a device driver abstraction to main-
tain correct hardware state synchronization.

Our approach requires that each device driver contain
three methods: validate, initialize, and reset. In the validate
method we verify the consistency of device control registers.
For example, we verify whether a GPIO pin is configured
to be logic high. Initialize returns the device to a consis-
tent state using the configuration state without resetting
the hardware. This avoids inconsistencies where resetting an
output pin can trigger incorrect ignition event timing. Fi-
nally, reset escalates to rebooting the hardware peripheral.
The STM32F4 only allows us to reset GPIO banks made up
of multiple ports. Therefore, all previously set configuration
for all ports is lost causing us to reinitilialize all associated
drivers.

We highlight our approach through an example. The
STM32F4 contains a method to freeze the configuration of
a GPIO bank which requires a reset to unlock its effects.
If we assume an attacker that freezes the configuration of
a bank after modifying an output to an input pin we fol-
low the steps taken by our defense: the validation method
will detect the incorrectly configured pin, which will escalate
to the initialization method. The initialization method will
then attempt to write the correct configuration to the bank,
but fail because it is frozen. Finally, the reset method will
then issue a hardware reset of the bank.

5.1.3 Cached Event State
From the perspective of an attacker cached state can be

used to feed malicious inputs to other parts of the system.
YOLO handles cached event state as non-authoritative, dis-
posable state. Depending on the cached event in question,
other microreboot layers can invalidate this state as neces-
sary. If the cached data is invalidated, we simply poll the
sensor again. Making this state non-authoritative limits the
effects an attacker’s corruption of these values could have.

5.1.4 Multi-period State
State estimation usually occurs through several consec-

utive observations of input data potentially across multiple
periods. An attacker can exploit the time it takes to observe
these events to force the ECU’s engine position decoder to
believe it is synchronized for an indeterminate amount of
time. By allowing the ECU to believe it is synchronized,
ignition and injection events can be incorrectly scheduled



which may cause physical harm to the engine. We take two
approaches to ameliorating these attacks.

One approach involves replication similar to those used by
other fault tolerant techniques that exploit the idea of con-
sensus between untrusted observers [18, 32]. Typically, such
systems use consensus testing among multiple observers in
a distributed system to overcome some number of untrusted
actors. In this case, our goal is not to come to a consensus
on the individual messages, but on the state of the system
given a time series of messages. We consider each message as
potentially being compromised, and therefore test the con-
sensus of the observers across a sliding window of received
messages, discarding the old input as soon as it is feasible.
This limits the lifespan of a compromised message to the
duration of the minimum sequence of messages necessary to
make an estimation. The number of replicated observer in-
stantiations depends on the state being observed, as we wish
to have a new estimate become available on every observed
message. This approach is mainly appropriate when a state
estimator which requires multiple messages over time is im-
plemented in an object oriented manner, and we want to
enable reboot of that estimator as often as possible without
violating the encapsulation of that estimator. This strat-
egy allows us to define a reboot for that object without a
performance penalty.

The implementation of this strategy for an engine posi-
tion decoder is demonstrated in Figure 5. For the engine
position decoder, as long as one of the instantiations does
not observe the attacker’s input, it should not affect that
instantiations estimation. This allows recovery of the cor-
rect estimate. For the engine position decoder, the shape
of the signal determines the number of decoder replicants.
Figure 5 illustrates a simplified signal shape observed by the
decoders, where U and S correspond to when the decoder
considers itself unsynchronized or synchronized. Any repli-
cant which believes that it is synchronized must agree on
its estimate of the state. At each time step, all replicants
process the event signal. If at any point we detect any dis-
crepancies in the decoder synchronization states, our system
goes into a ’reboot’ phase, where we consider ourselves to be
unsynchronized until we have observed enough events that
at least one replicant believes it is synchronized.

A second approach involves explicitly regenerating any
state that does not require observations from the outside
world to be reconstructed. One example would be constant
recomputation of task schedules such as ignition and injec-
tion events. Specifically, for engine position events which
regularly schedule these tasks, we periodically discard the
existing one and recompute. This approach is similar to the
rejuvenation discussed in [8]. By following this approach
we prevent an attacker from compromising the controller by
inserting their own task into the schedule.

5.2 Diversification
Embedded platforms typically found in cyber-physical sys-

tems, much like the STM32F4 used by rusEFI, have limited
resources. These constraints restrict our choice of diversi-
fication methods to those which can be implemented effi-
ciently on embedded devices. Performance is not the only
restriction, the diversification strategies must also provide
protection against memory vulnerabilities. Among the vari-
ous strategies available, we focus on a small subset: LR2 [6],
Isomeron [12] and ISR [33, 36]. Each approach has various

levels of runtime cost. We discuss this later in Section 7.

5.2.1 LR2

LR2 or Leakage-Resilient Layout Randomization, enforces
execute-only-memory(XoM) in software. It makes use of
hardware that can enforce (W⊕X) which is commonly pro-
vided by either an MPU or MMU. LR2 divides the memory
address space into two regions: code and data. It uses this
division and load masking to enforce the property that load
operations cannot access code pages, limiting the attackers
ability to create ROP gadget chains. Our implementation
follows the original closely.

5.2.2 Isomeron
Isomeron introduces a hybrid defense approach that com-

bines code randomization with execution path randomiza-
tion. The main security objective of Isomeron is to mitigate
code-reuse attacks. The high level idea is the following: two
copies of the program code are loaded into the same address
space and execution is randomly transferred between the
two on every function call. One copy of the program, A is
the original application code, while the other, B, is diversi-
fied using any fine-grained ASLR. This ensures that gadgets
across both versions are at different addresses. Thus, since
the attacker cannot predict when either A or B will be exe-
cuted, they cannot construct a correct gadget chain.

The original implementation of Isomeron uses dynamic bi-
nary instrumentation techniques. This approach is not fea-
sible on resource constrained devices, hence we implement
Isomeron using static techniques. Leveraging existing BinU-

tils functionality and a custom binary rewriting tool, our
implementation makes it suitable for resource constrained
devices.

There are three major components to implementing Iso-
meron: program twinning, execution randomization, and
function call instrumentation. We discuss each briefly to
provide an overview of our static implementation. Pro-
gram twinning is done in three steps: cloning, patching,
and linking. For cloning, we first begin by separating out
code from data using the appropriate compiler flags such as
-ffunction-sections and -fdata-sections. Then, using
the binary rewriter, we patch the data relocation informa-
tion of version B to point to A. Finally, we have the linker
stitch things up to create the final ELF file. Execution ran-
domization is performed using a source of randomness, in
our case a hardware random number generator (RNG). The
values from the RNG are stored into a protected memory
region and used to perform execution randomization at the
granularity of a function call. The final component involves
instrumenting function calls to allow for randomized execu-
tion paths. This step is performed using linker flags such as
-wrap and shadow stacks, in order to encapsulate function
entry and exit with function trampolines.

5.2.3 Isomeron + LR2

LR2 can be used to strengthen and improve Isomeron’s
performance, and Isomeron can be used for adding extra se-
curity benefits to LR2. We implement a hybrid approach
that leverages the features of both schemes. Using LR2 to
provide the foundation in order to handle memory protection
mechanisms and Isomeron’s execution path randomization
to increase the entropy of the program, results in a diver-
sification strategy with better performance than Isomeron



alone.

5.2.4 Instruction Set Randomization
Instruction Set Randomization (ISR) is a technique that

mitigates attacks by encoding instructions. A simple way to
accomplish this is to XOR every word in text pages offline
with a unique key and use the same key again online to
decode them just before execution.

Our ISR method uses an MPU to perform Just-In-Time
decryption of the instruction stream, analogously to the im-
plementation in [37]. The MPU provided in STM32F4 has
eight regions. We use four of them to protect flash and
SRAM and also to enforce W⊕X. We use the remaining
four regions to set a work memory area for ISR on SRAM.

Each MPU region is set to cover 1KB since the maximum
size of a function in rusEFI is less than 4KB. There are eight
subregions for each MPU region allowing text pages to be
decoded in 128B units. In general, the unit size is a design
parameter and should be tuned for specific applications.

We use overlay and function wrapping features provided
in GNU toolchains to create an executable image with ISR.
The overlay feature sets the effective address of each function
to the work memory area and the wrapping feature inserts a
trampoline before each function. In the trampoline function,
we implement an overlay manager that modifies the MPU.

We have implemented two versions of ISR. In the first ver-
sion each overlay section contains only one function whereas
in the second version each section contains multiple func-
tions.

An overlaid function is executed in the following manner.
All the access to the work memory is disabled on boot. A
call to an overlaid function starts with a call to a trampo-
line. The trampoline first pushes the return address and
currently mapped function load address to a special stack
associated with each thread. Then, the currently mapped
load address and the load address of the function to be called
are compared. If they don’t match, all the MPU regions for
the work memory are disabled. After that, the trampoline
calls the target function.

As the function goes on to execute and accesses an en-
crypted region, a memory access fault exception is raised.
In the exception handler, the corresponding 128B is enabled
and decoded into the work memory.

Since the work memory has to be reset between every func-
tion call, this makes this approach expensive. To mitigate
this, a second optimized version of ISR that puts multiple
functions into one overlay based on the execution profile of
the first version was conceived.

From execution of the first version, we collect the history
of functions decoded into the work memory allowing us to
group together those functions with the highest number of
occurrences. From this history, we create a weighted graph
as in Figure. 6. Each node in the graph represents a decoded
function and each edge represents how many times the con-
nected nodes appear together. Consider picking node A,
which has the highest occurrence in the graph. We then
pick an edge with the largest weight, which is the edge be-
tween node A and C in this example. We then check if
these two functions fit within the work memory and if so
put them in the same group. After that, we pick an edge
with the largest weight from this group and continue until
all edges are considered. If there is any node that is not part
of any group, we pick the one with the highest occurrence
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Figure 6: Work Memory Transition Shown as Graph
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and repeat the same process.
Note that with our optimized implementation of ISR, 128B

blocks in the work memory can contain decoded texts from
different overlays as in Figure 7. These blocks are held in
the work memory like a cache entry, but any access to them
is forbidden by MPU until that overlay section is mapped
again. When that region is enabled again, we reuse the
cached decoded text.

6. EVALUATION
We analyzed the performance penalty of our proposed re-

booting and diversification methods on a CBR600RR en-
gine. Rebooting the ECU has the effect of cutting power
temporarily for the time taken to reinitialize the controller.
To emulate this behavior, we instrumented a commercial,
closed source MOTEC M84 ECU1 to cut out its output to
the engine over a range of engine speeds (hereafter, frequen-
cies) and durations using the powershifting mode to disable
injection events for fixed intervals. Using a commercial ECU
allows us to analyze performance against a robust implemen-
tation which is widely used, expertly tuned implementation
on this specific engine, as opposed to our custom implemen-
tation and parameters of an open source controller. We then
compare these results to the performance penalties realized
by our rebooting strategies. To analyze the effect of diversi-
fication, we implement our diversification strategies on the
opensource rusEFI ECU, and then emulate the engine func-

1http://www.motec.com/m84/m84overview/



Figure 8: Engine Test Bench with Honda CBR600RR
mounted.

tioning at specific speeds while we measure the amount by
which scheduled deadlines are missed, and the amount of
CPU idle time. We then compare these results with the un-
diversified version to measure the cost of the diversification.

6.1 Reboot
In this section we first provide the latency of reboots on

our RusEFI implementation, and then study the perfor-
mance costs of rebooting on the MoTEC ECU, and under-
stand the best case performance for rebooting.

Reboot Cost on rusEFI: There are two sources of re-
boot overheads: the first is simply the cost of rebooting the
chip and reinitializing the controller. The second cost is
the number of engine cycles taken to measure certain state
properties such as engine speed that must be measured over
multiple engine periods. If each engine period takes a mil-
lisecond (say) then completing these essential tasks will take
multiple milliseconds thus limiting the maximum reboot fre-
quency.

The baseline implementation of rusEFI requires 40 ms to
restart. We optimized the startup routine by removing triv-
ial functionality like logging, and were able to create a 20 ms
reboot. While further optimization may be possible, it will
be difficult to realize them without compromising basic se-
curity features like wiping the stack region between reboots.
The second cost, the cost of multi-period measurements is
driven by two main stateful components: these are a) the
code to estimate when the trigger is decoded and b) the
code that estimates the speed of the engine. Both of these
require a full rotation of the engine to warm up their phys-
ical state estimation routines. Assuming a nominal engine
speed of 4500 RPM (i.e., approx 75 Hz), each engine cycle
takes 13 ms. So the state estimation tasks related to YOLO
take at another 26 ms (two cycles for estimation). Thus our
best case reboot latency is 46 ms. In this time roughly three
engine revolutions can complete at 4500 RPM.

Impact of Reboot on Engine Speed/Power: Next,

we performed an experiment on a real engine to explore the
cost of rebooting as measured by the drop in engine speed,
and how it varies with how often the engine is rebooted and
the length of each reboot. Running the Honda CBR600RR
engine on a test bench (See Figure 8) we captured the en-
gine’s rotational speed for different duration and frequencies
of ECU reboots.

Figure 9a shows the change in engine speed, and thus
stored energy, as the engine power is cut at 1 Hz (i.e., once
every second, or once every 75th engine revolution) for dura-
tions of 20, 220, and 460 ms. These results show that if the
duration and frequency of the reboot is low (20 ms at 1 Hz)
then there is no observable loss in engine speed. As the re-
boot duration increases we see there are significant changes
in engine speed.

In addition to engine speed, another metric of interest
which is probably more relevant is the engine’s rotational
kinetic energy. Under normal operation at a constant engine
speed, the engine controller maintains the average amount
of energy in the system at a relatively constant level. We can
measure the degradation in the performance of the ECU as
the loss of that average energy as compared to the nominal
level. As we increase the frequency of reboots, at some point,
the ECU is not able to generate enough energy to overcome
friction, and the engine comes to a stop after a number of
revolutions, which is ultimately a complete failure of the
engine. We refer to the specific engine speed at which this
failure occurs as the stalling threshold.

Figure 9b shows the effect of modifying the frequency and
duration of the reboot on engine’s energy. Each line in the
graph represents one frequency of reboot as the duration
of the reboot is changed. We plot 1, 2, 4, 8, and 16 Hz
reboots (75, 37.5, 18.75, 9.375, 4.687 and engine revolutions
respectively at 4500 RPM). The duty cycle of the engine is
the fraction of time in which the engine controller is active
and able to produce power. As the duty cycle of the engine
decreases, the engine loses more energy.

As we reboot more frequently, we observe lower engine
speeds without crossing the stalling threshold during opera-
tion. The actual stall threshold varies nonlinearly with the
frequency and length of the reboots, but we observe that for
most of our curves, the engine stalls when it drops below
a 50% active duty cycle, with lower engine speeds possi-
ble at higher frequencies. This implies that lower latency
reboots can be accommodate much higher reboot frequen-
cies without compromising critical functionality, although
the performance degradation may be significant.

Performance of Optimized Reboots: The purest form
of the YOLO design would have us rebooting the engine ev-
ery time a new sensor input is received, which is once per
revolution. However, for our YOLOized ECU, two revolu-
tions are required to derive the minimum state necessary
to control the engine correctly. Control output can only be
generated during the second of these two revolutions. As-
suming the reboot itself takes only as long as a single engine
cycle, this results in a 33% duty cycle.

Our results in Figure 9b show that the duty cycle of 33%
realized by the idealized YOLO controller will cause the en-
gine to stall, or at least perform very poorly. Even opti-
mizing the reboot time to reduce the amount of time taken
to reboot, we will always be below a 50% active duty cycle
because of the missed cycle required for state estimation.

Our discussion of these idealized behaviors shows that
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Figure 9: Reboot Evaluation. Measuring the impact of reboot on engine speed/power.

simply rebooting as often on every sensor input is not a vi-
able strategy for maintaining high confidence that the sys-
tem returns to a well modelled state because the perfor-
mance penalties are large. This insight demonstrates the ne-
cessity of considering less computationally expensive meth-
ods such as those described in Section 5.1.4. When no error
or inconsistency is detected, these methods suffer essentially
no performance penalty. When an inconsistency is detected,
our optimized microreboot strategies incur an overhead of
one revolution in order to properly recover. For a small re-
boot period where a single revolution of ignition is missed,
there is virtually no distinction between normal engine noise
and the effects of rebooting even at 8 Hz, as shown in Figure
9b. So long as an attacker is only able to force the system
into an inconsistent state at most eight times a second, we
should not observe any performance degradation with the
optimized version.

6.2 Diversification
The results of the previous section indicate that micro-

reboot techniques can be used effectively at the granularity
of multiple revolutions. To reduce vulnerabilities between
reboots we diversify. Diversification when used in conjunc-
tion with rebooting allows YOLO to limit the attacker from
consistently exploit the system in a predictable manner.

While diversification is a relatively well-studied area, there
has been very little work on applying diversification, and
measuring the overheads of diversification, on CPS units
such as the ECU. As such the goal of our experiments in
this section is to determine the limits/applicability of dif-
ferent types of diversification strategies in the context of a
YOLOized ECU system. Specifically, we seek to answer the
following questions: 1) can diversification be accomplished
without harming a CPS operation? In other words can di-
versification result in missed deadlines? 2) If deadlines are
missed how does it impact the overall operation of the sys-
tem?

Computational Overhead: Here, we present an eval-
uation of diversification techniques presented in Section 5.2
with respect to the effect that their performance penalties
have on our model realtime system, the rusEFI ECU. We
applied simulated inputs to the ECU at a range of engine
speed inputs. This allowed us to evaluate the overhead of
each strategy by comparing the overall computational over-
head of the change in latency of hard realtime events as
compared to the baseline implementation.

To measure the overall computational overhead, we com-
pared the amount of time that the processor spent idling by
examining the cycle counter every time the program entered
and left the idle loop. These results are shown in Figure 10a.

The idle time performance is shown as a percentage of the
total running time. LR2’s performance was found to be on
par with the baseline rusEFI primarily due to its efficient
load-masking technique. At the other end, we found that
both ISR implementations strongly deviated from the base-
line. The high overhead is mainly due to the constant copy-
ing and decoding of code sections into the work memory,
as well as, the overhead of issuing instructions from SRAM.
The interesting result is Isomeron and Isomeron with LR2.
The difference in idle time between the two stems from the
implementation with respect to code pointer hiding. For Iso-
meron, a shadow stack is used, while when paired with LR2

the original stack is used along with XOR encryption result-
ing in less writes to memory. While we have seen that the
different strategies affect the idle time, the context switches
to the idle thread remain unchanged since they are not caus-
ing processing of events to overlap with each other.

Real-Time Delays: In a CPS, real time events such as
sensor inputs are scheduled by configuring a realtime timer
to trigger an event handler when it expires. There is some
overhead in processing each real time scheduled event due
to the scheduler and whatever processing the handler does
to calculate the appropriate output for the scheduled event.
This overhead is anticipated by the algorithm designer, and
must be negligible on the time scale of the expected precision
of the CPS. As long as the additional overhead imposed by
the diversification method is on the order of these inherent
overheads, it can also be considered negligible with respect
to the expected behavior of the CPS.

From the perspective of the ECU, the overhead causes
errors in the coordination of the event with respect to the
physical system. This error may be measured either in terms
of time or in terms of the expected angle of the crank shaft.
The average overhead for events in the baseline implemen-
tation is 80 microseconds, which corresponds to 2.16◦ at the
nominal 75 Hz engine speed described in the previous sec-
tion. In Figure 10b, we present the computational overhead
of each diversification method normalized against this base-
line overhead. We see that for LR2, the computational delay
overhead is the lowest at around 13% percent above base-
line, corresponding to 2.441◦. The hybrid LR2 and Isomeron
have an approximate overhead of 213% (4.601◦) while plain
Isomeron is 392% (8.467◦). Finally, the worst performer is
the unoptimized ISR, at around 1476% (31.88◦). To put
these numbers in context, in commercial systems such as
the MoTeC ECU, the real-time events are usually accurate
to within 2 − 3◦. Except for the unoptimized ISR most of
the diversification strategies fall within the acceptable devi-
ations.

To summarize, what we found was that the hard real-



time deadlines of the ECU can be met despite the increased
overhead. While the delay overhead may seem large, due to
the time scale at which the physical events occur, the better
performing strategies actually have minimal overhead.

7. RELATED WORK
CPS Security: Interest in CPS security is intensifying.

Kim et al. [20] reviewed the emerging importance of cy-
berphysical systems to society at large. Neuman et al. [29]
and Cardenas et al. [10] summarized the challenges and cri-
teria to consider in cyber-physical security. Yampolskiy et
al. [41] describe a taxonomy of CPS system attacks. Sev-
eral authors have surveyed existing cyberphysical systems
and security paradigms for them, including [19, 26, 35, 21].
Moving target defenses for cyberphysical systems with ref-
erences to techniques such as diversification and replication
were reviewed in detail by Fang et al. [15]. Koscher et al.
[22] analyzed modern automobile architectures for security
vulnerabilities. Mitchell et al. [28] surveyed many intru-
sion detection methods for cyberphysical systems. Chow
et al. [11] proposed intrusion detection through analyzing
data patterns. Burmestera et al. [7] presented a math-
ematical model for securing distributed cyberphysical sys-
tems through byzantine fault tolerance. Fawzi et al. [16]
presented a secure controller for distributed linear systems.
Pajic et al. [32] presented a model for analyzing controller
robustness including timing issues and jitter. Alho et al. [4]
presented a service based real-time distributed CPS system
with microreboots for teleoperation. Azab et al.[5] described
Chameleonsoft, a highly conceptual framework of abstrac-
tions for CPS systems that includes a high degree of repli-
cation and virtualization, including diversified microservices
capable of microreboot. Many of the above defensive works
are complementary to proposed work.

Reboot: Resilient operation through recursive micro-
reboot was introduced by Candea et al. [8, 9]. Le et al. [24]
explored the additional difficulty of applying this paradigm
to low level system software that interacts directly with
hardware. Oh et al. [30] introduced a method for detect-
ing errors in computation through replication and handling
them by repeating the computation. Several authors ([17,
3, 39] have described detecting and replacing failed or sub-
verted computations through replication and replay.

Diversification and Code Reuse Defenses: Diver-
sification is a popular and expanding security technology
that provides resilience against attacks by shifting the at-
tack surface. Larsen et al. [23] and Davi et al. [13] presented
a review of the state of the art in protection against code
reuse attacks. Davi et al.[12] also presented Isomeron, a qua-
sistatic defense used in this work. Braden et al. [6] presented
LR2, a method for enforcing execute only memory suitable
for embedded devices. Pappas et al. [34] introduced ISR, a
code obfuscation method that hides usable ROP widgets.

While some of these works have analyzed security ap-
proaches for CPS systems in general, to the best of our
knowledge none have directly approached the problems of
implementation of these ideas in the context of low-level con-
trollers with high computational demands. Our work aims
to address this gap.

8. CONCLUSION
We present a new security paradigm called YOLO, that

leverages unique properties of cyber-physical systems such
as inertia and control algorithm resilience by combining di-
versification with micro-rebooting. The paradigm aims to
emulate the inherent security and robustness properties of
a stateless, idempotent system even though cyber-physical
systems are generally stateful and not fully observable. We
compensate for these violations of the ideal situation by care-
fully considering how system state should be treated to be
verified or regenerated on demand. We demonstrate YOLO
on an Engine Control Unit. We detail the challenges of
dealing with state used by control algorithms to estimate
the physical state of the system and implement solutions
to address them through a combination of techniques that
support the complex, nonlinear state estimation required
for correct engine operation. Our experiments demonstrate
that YOLO is possible on a real world CPS. We show that
the overheads imposed by the instrumentation necessary for
YOLO are tolerable by a real engine.
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