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ABSTRACT
Identifying similar code in software systems can assist many
software engineering tasks, including program understand-
ing. While most approaches focus on identifying code that
looks alike, some researchers propose to detect instead code
that functions alike, which are known as functional clones.
However, previous work has raised the technical challenges
to detect these functional clones in object oriented languages
such as Java. We propose a novel technique, In-Vivo Clone
Detection, a language-agnostic technique that detects func-
tional clones in arbitrary programs by observing and mining
inputs and outputs. We implemented this technique tar-
geting programs that run on the JVM, creating HitoshiIO
(available freely on GitHub), a tool to detect functional code
clones. Our experimental results show that it is powerful in
detecting these functional clones, finding 185 methods that
are functionally similar across a corpus of 118 projects, even
when there are only very few inputs available. In a random
sample of the detected clones, HitoshiIO achieves 68+% true
positive rate, while the false positive rate is only 15%.

CCS Concepts
•Software and its engineering → Dynamic analysis;
Object oriented languages; Software maintenance
tools; Software usability; Patterns;

Keywords
I/O behavior; dynamic analysis; code clone detection; data
flow analysis; patterns

1. INTRODUCTION
When developing and maintaining code, software engi-

neers are often forced to examine code fragments to judge
their functionality. Many studies [16, 18, 23] have suggested
large portions of modern codebases can be clones — for in-
stance, code that is copied-and-pasted from one part of a
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program to another. These clones can complicate mainte-
nance (for instance, when a bug is copied), but intuitively,
may also pose interesting implications for programmer un-
derstanding. While traditional code clones refer to syntactic
clones (code fragments that look alike), we are interested in
functional clones (code fragments that have similar function,
but may not look alike).

These functional clones could be used to help develop-
ers understand what a code fragment does, in the context
of other code fragments do (which may look different, and
hence be easier to understand). Similarly, once they are
identified, we may be interested in extracting functional
clones into a common API.

Unfortunately, detecting true functional clones is very tricky:
static approaches must be able to fully reason about code’s
functionality (undecidable in the general case), and dynamic
approaches must be able to observe code under sufficient
inputs to expose sufficiently diverse program executions to
make judgments about general function. Hence, previous
approaches towards detecting functional clones [15, 12, 17,
11] have focused on profiling running code, matching differ-
ent code fragments that show the same outputs for the same
inputs. To expose these functional clones, the clone detector
executes each target code fragment with a randomly gener-
ated input, repeating that same input for different fragments
as well, observing when outputs are the same. Hence, pre-
vious work towards detecting functional clones has focused
on code fragments that are easily compiled and executed in
isolation, allowing for easy control and generation of inputs
and observation of code outputs.

This approach, then, is not feasible to scale to complex,
object oriented codebases, where it can be incredibly chal-
lenging to execute individual methods or code fragments in
isolation (and with generated inputs), due to the complexity
of generating sufficient drivers for the code to get it to run.
Previous works towards detecting functional clones in Java
programs [12, 10] have therefore, seen unsatisfactory results:
a recent study by Deissenboeck et al. reported that across
five Java projects only 28% of the target methods could be
executed with this standard input generation approach [10].
Deissenboeck et al. also reported that across these projects,
most of the inputs and outputs referred to project-specific
data types, meaning that a direct comparison of the inputs
and outputs between two programs could never be declared
exactly equivalent [10].

We present in-vivo clone detection, a technique that is
language-agnostic, and generally applicable to detect func-
tional clones without requiring the ability to execute candi-



date clones in isolation, hence allowing it to work in complex,
object oriented codebases. Our key insight is that most large
and complex codebases include test cases [7], which can be
used to feed inputs to the application as a whole. Then, we
identify the inputs and outputs of each candidate for code
clone matching from these executions, and then cluster sim-
ilar code based on these profiles. Moreover, our approach
allows for a relaxed similarity comparison, enabling efficient
detection of code that has very similar inputs or outputs,
even when the exact structure of those variables differs. We
created HitoshiIO, which implements this approach for the
JVM (targeting languages such as Java), and evaluated it
on 118 projects, finding 874 functional clones, using only
the applications’ existing test suites as inputs, even when
only using a small subset of those inputs.

HitoshiIO considers every method in a project as a poten-
tial functional clone of every other method, recording ob-
served inputs (be they method parameters, or global state
variables read by a method) and observed outputs (exter-
nally observable writes, including return values and heap
variables). The primary contributions of this paper are:

1. A presentation of our technique, In-Vivo Clone Detec-
tion, a language-agnostic technique for detecting func-
tional clones applicable to object-oriented languages

2. Our tool, HitoshiIO for the JVM, which effectively de-
tects functional clones in complex code bases and will
be available under an MIT license after the acceptance
of the paper on GitHub1

2. RELATED WORK
Identifying similar or duplicate code (code clones) can en-

hance the maintainability of the software system. Searching
for these code clones also helps developers to find which
pieces of code are re-usable. At a high level, work in clone
detection can be split into two high level categories: syntac-
tic clone detection, and functional clone detection.

Syntactic clones: Roy et al. [29] conducted a survey re-
garding the 4 types of code clones and the corresponding
techniques to detect them (ranging from those that are exact
copy-paste clones to those that are more semantically simi-
lar, despite syntactic differences). Most of the approaches to
detect syntactic clone involve static analysis, which aims at
identifying the code that looks alike. In general, these syn-
tactic approaches first parse programs into a type of interme-
diate representation statically and then develop correspond-
ing algorithms to identify similar patterns. As the complex-
ity of the intermediate representation grows, the computa-
tion cost to identify similar patterns is higher. Based on
the types of intermediate representations, the existing ap-
proaches can be classified into token-based [5, 16, 23], AST-
based [6, 14] and graph-based [13, 25, 19, 22]. Among these
3 classes, the graph-based approaches are the most com-
putationally expensive, but they have better capabilities to
detect complex clones according to the report of Roy et al.
[29]. Another line of clone detection involves creating fin-
gerprints of code, for instance by tracking API usage [26, 9],
to identify clones.

Compared with these approaches that find look alike code,
HitoshiIO searches for functionally alike code. To search for

1https://github.com/Programming-Systems-Lab/ioclones

such functionally similar code, HitoshiIO applies the tech-
niques of dynamic analysis.

Functional clones: Our approach is most relevant to pre-
vious work in detecting code that is functionally similar,
despite syntactic differences. For instance, Elva & Leavens
proposed detecting functional clones by comparing the out-
puts of methods that have the exact same outputs and in-
puts [12]. The MeCC system summarizes the abstract state
of a program after each method is executed (relating that
state to the method’s inputs), allowing for exact matching
of outputs [17]. Our approach differs from both of these
in that we allow for matching functionally equivalent meth-
ods, even when there are minor differences in the formats of
inputs and outputs.

Carzaniga et al. studied different measures of redundancy,
and how to quantify how functionally redundant two code
fragments might be, identifying both the code statements
executed and data operations performed [8]. Our notion of
functionally similar code is very similar to their notion of
redundant code, although we put significantly more weight
on comparing inputs and output values, rather than just
the sequence of inputs and outputs (we consider all values,
even those of complex variables, while Carzaniga et al. only
consider Java’s basic types).

Jiang and Su’s EQMiner [15] and Deissenboeck et al.’s
comparable system for Java [10] are two highly relevant
recent examples of dynamic detection of functional clones.
EQMiner first chops code into several chunks and randomly
generates input to drive them. By observing output values
from these code chunks, the EQMiner system is able to clus-
ter programs with the same output values. The EQMiner
system successfully identified clones that are functional equiv-
alent. Deissenboeck et al. follows the similar procedure
to re-implement the system in Java. However, they report
low detection rate of functional clones in their study sub-
jects. We list 3 of the technical challenges reported by Deis-
senboeck et al. and our direct solutions:

• How to appropriately capture I/Os of programs: Com-
pared with the existing approaches that pre-define which
variables can be inputs or outputs of the program, In-
Vivo Clone Detection applies data flow analysis to cap-
ture which input sources contribute to output sinks at
instruction level.

• How to generate meaningful inputs to drive programs:
Deissenboeck et al. reported between 20% − 65% of
methods that they cannot generate inputs. One possi-
ble reason is that when the input parameter refers to
an interface or abstract class, it is hard to choose the
correct implementation to instantiate. Thus, instead
of generating random inputs, we invent In-Vivo Clone
Detection, which uses real workloads to drive programs
(inspired by our prior work in runtime testing [27]).

• How to compare project-specific types of objects be-
tween different applications: We will elaborate the sim-
ilar issue further in §4.5: different developers can de-
sign different classes to represent similar data across
different applications/projects. For comparing com-
plex (non-primitive) objects, In-Vivo Clone Detection
computes and compares a deep identity check between
these objects.
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Figure 1: High level overview of In-Vivo Clone Detection. First, individual inputs and outputs of methods are
identified, then the application is transformed so that its inputs and outputs can be easily recorded while it is executed under
an existing workload. Finally, these recorded inputs and outputs are analyzed to detect functionally similar methods.

3. DETECTING CLONES IN-VIVO
At a high level, our approach detects code which appears

functionally similar, by observing that for the similar in-
puts, two different methods produce the similar output (i.e.,
are functional clones). Our key insight is that we can detect
these functional clones in-vivo to the context of a full system
execution (e.g. as might be exercised by unit tests), rather
than relying on targeted input generation techniques. Fig-
ure 1 shows a high level overview of the various phases in our
approach. First, we identify the inputs and outputs of each
method in an application, then we instrument the applica-
tion so that when running it with existing workloads, we can
record the individual inputs and outputs to each method, for
use in an offline similarity analysis.

3.1 The Input Generation Problem
Previous approaches towards detecting functional clones

in programs rely on input generation: where tools gener-
ate (randomly, or systematically) inputs to individual meth-
ods or code fragments, allowing a tool to observe that on
the same generated input, the output is the same. Espe-
cially in the case of object oriented languages (like Java), it
may be difficult to generate an input to allow an individ-
ual method to be executed because each method may have
many different inputs, each of which may have an immense
range of potential values. For instance, Randoop [28] uses
a guided-random approach, in which random sequences of
method calls are executed (to bring a system to a state to
which an individual method can be executed), guided only
by the knowledge of which previous sequences failed to gen-
erate a ‘valid’ state, making it difficult to use in many cases
[30]. Many other techniques have been developed to auto-
matically generate inputs for individual methods, but the
problem remains unsolved in the general case. For instance,
in their 2012 study of input generation for clone detection,
Deissenboeck et al. found that input generation and execu-
tion failed for approximately 28% of the methods that they
examined across five projects.

3.2 Exploiting Existing Inputs
With our In-Vivo approach, it is feasible to detect func-

tional clones even in the cases where automated input gener-
ators are unable to generate valid inputs. We observe that in

many cases, existing workloads (e.g. test cases) likely exist
for applications, at which point we can exploit the individ-
ual inputs used by each method. Key to our approach is a
simple static analysis to detect variables that are inputs, and
those that are outputs for each method in a program. From
this static analysis, we can inform a dynamic instrumenter
to record these values, and later, compare them across dif-
ferent methods.

The output of a method is any value that is written within
the method and is potentially observable from another point
in the program: that is, it will remain a live variable even
after that method concludes. The input of a method, then,
is any value that is read within that method and influences
any output (either directly through data flow or indirectly
through control flow). By this definition, variables that are
read within a method, but not computed on, are not consid-
ered inputs, reducing the scope of inputs to only those may
impact the output behavior of a method.

Lemma 1. An input source for a method is the value that
exists before execution of this method, is read by this method,
and contributes to any outputs of the method.

A output of a method is the computational result of this
method that a developer wants to use. As Jiang and Su
stated [15], it is hard to define the output for a method,
because we don’t know which values derived/computed by
the method will be used by the developer. So, we define the
outputs, OSinks, for a method in a conservative way:

Lemma 2. An output sink of a method is the value derived
or computed by this method. This computational value still
exists in memory after the execution of this method.

To identify inputs given outputs, we statically identify the
following dependencies:

• Computational Dependency: This dependency records
which values depends on the computation of which val-
ues. Take int k = i + j as the example. The value of
k depends on the values of i and j. This dependency
helps identify which inputs can affect the computations
of outputs.

• Ownership Dependency: This dependency records which
values (fields) owned by which objects and/or arrays.



1 public class Person {
2 public String name;
3 public int age;
4 public Person [] relatives;
5 public int relAge;
6 }
7
8 public static int addRelative(Person me, //input
9 String rName , int rAge , int pos ,
10 double useless) {
11
12 Person newRel = new Person ();
13 newRel.name = rName;
14 newRel.age = rAge;
15
16 if (pos > 0) {
17 insert(me, newRel , pos);
18 }
19 int ret = sum(me.relatives);
20
21 double k = useless + 1;
22
23 System.out.println(pos); // output
24 return ret; // output
25 }
26
27 public static void insert(Person me, Person rel ,

int pos) {
28 me.relatives[pos] = rel;
29 }
30
31 public static int sum(Person [] relatives) {
32 int sum = 0;
33 for (Person p: relatives) {
34 sum += p.age;
35 }
36 return sum;
37 }

Figure 2: A simple code example in Java with input source
and output sinks identified.

The ownership dependency is transitive, which means
that the value owned by an object/array is also owned
by the owner of this object/array, if it has any owners.
Take a.b.c = 5 as the example, where a and b are ob-
jects and c is an integer. In this example, the c field
owned by the b object is written. Because the a object
owns b, our approach will know that the a object has
been written by the method, even though this write
does not happen directly on a. This dependency helps
identify which values can be from inputs.

3.3 Example
To demonstrate our general approach, we use the method

addRelative in Figure 2. Note that while the code pre-
sented is written in Java, our technique is generic, and not
tied to any particular language. The addRelative method
takes a Person object, me, as the input, and create a new
relative, based on the other two input parameters, rName

and rAge. The insert method, which is a callee of addRel-
ative, inserts newRel into the array field owned by me. The
sum method, which is the other callee, computes and return
the total age of all relatives owned by me.

We use the output sinks to identify the input sources, so
we first define the output sinks of addRelative. ret is the
return value, which is a natural output. Because pos flows
to an OutputStream, it is recognized as an output. me is
written in the callee insert, so it is also an output.

Before we discuss the input sources, we summarize the
data dependencies in addRelative. We use the variable

Table 1: The data dependencies in the addRelative method.

Deps. Notes

relatives
c.−→ret ret is the computational re-

sult of sum, which depends on
me.relatives.

me
o.−→relatives relatvies is a field of me.

newRel
c.−→me me is written in the callee insert,

where newRel is the input.

pos
c.−→me The same reason as the above.

rName
c.−→newRel newRel is written by rName.

rAge
c.−→newRel newRel is written by rAge.

Table 2: The input sources in the addRelative method.

Var. Notes

me me has the computational dependency to
the output sink ret.

rName rName is written to the output sink me.
rAge rAge is written to the output sink me.
pos pos has the computational dependency to

the output sink me.

name to represent the value they contain. And we use x
c.−→ y

to represent that y is computational-dependent on x, and
x

o.−→ y to depict that y is owned by x. The dependencies
in addRelative can be read in Table 1. The Deps. col-
umn records the dependency between two variables, and the
Notes column explains why these two variables have the
dependency. We only show the direct dependencies between
variables.

Finally, we can define the input sources based on the
out sinks and the dependencies between variables. A input
source is the one that have direct or transitive dependencies
to any of the output sinks. We first define the candidate
input sources in addRelative as

ISourcec(addRelative) = {me, rName, rAge, pos, useless}
(1)

Given 3 output sinks and all dependencies in Table 1, we
can infer the parents of these two output sinks as

Parents({ret, me, pos}) = {me, rName, rAge, pos} (2)

We then intersect these two sets and conclude the input
sources of addRelative in Table 2. We can see that not
all input parameters are considered as input sources. The
variable useless contributes to no output sinks, so we do
not consider it as an input source.

We consider the values that may change the outputs of
the method as the control variables. In Figure 2, pos serve
as the control variables, since they can decide if newRel is
should be inserted or not. In our approach, the values from
all control variables are recorded as inputs.

After a static analysis determines which variables are in-
puts and which are outputs, collecting them is simple: dur-
ing program execution, we record the value of each input
and output variable when a method is called, creating an
I/O record for each method. Over the course of the program
execution, many unique I/O records will likely be collected
for each method.

3.4 Mining Functionally Equivalent Methods



1 long getSum(long[] n,
int L, int R) {

2 long sum = 0;
3 if (R >= 0) {
4 sum = n[R];
5 }
6 if (L > 0) {
7 sum -= n[L - 1];
8 }
9 return sum;
10 }

1 public static long sum(
int a, int b)

2 {
3 if(a > b)
4 {
5 return 0;
6 }
7
8 return array[b + 1] -

array[a];
9 }

Figure 3: A functional clone detected by HitoshiIO

After collecting all of these I/O records, the final phase in
our approach is to evaluate the pairwise similarity between
these methods based on their I/O sets. However, there are
likely to be many different invocations of each method, and
many methods to compare, requiring O(

(
m
2

)
(n)2) compar-

isons between m methods and n invocation histories for each
method. To simplify this problem, we first create summaries
of each method, which are cheaply compared, and then use
these summaries to perform high-level similarity matching.
The result may be that two methods have slightly differ-
ent input and output profiles, but nonetheless are flagged
as functional clones. This is a completely intentional result
from our approach, based on the insight that in some cases,
developers may use different implementing data structures
to represent the same result.

Consider the two code listings shown in Figure 3 — real
Java code found to be functional clones by HitoshiIO. Note
that at first, the two methods accept different (formal) input
parameters: but in reality, both use an array as inputs (the
second example accesses an array that is a static field, while
the first accepts an array as a parameter). For the case of
L <= R, a <= b, the behavior will be very similar in both
examples: the result will be the difference between two array
elements, one at b+ 1 (or R), and the other at a (or L− 1).
We want to consider these functions behaviorally similar,
despite these minor differences.

Before detailing our similarity model, we define the nota-
tions here.

• mi: The ith method in the codebase.

• invr|mi
: The rth invocation of mi.

• ISet(invr|mi
): the input set of invr|mi

.

• OSet(invr|mi
): the output set of invr|mi

.

• ISetdh(invr|mi
): the deep hash set of ISet(invr|mi

).

• OSetdh(invr|mi
): the deep hash set of OSet(invr|mi

).

• MPij : A method pair contains two methods from the
codebase, where i 6= j.

• IPr|i,s|j : An invocation pair contains invr|mi
and invs|mj

.

To compare an IPr|i,s|j from two methods, mi and mj , we
first computes the Jaccard coefficients for ISets and OSets
as the basic components for the functional similarity. The
definition for the Jaccard similarity [21] is as follows:

J(Seti, Setj) =
Seti ∩ Setj
Seti ∪ Setj

(3)

If either set is empty, this will compute their coefficient as
0. To simplify the notations, we define the basic similarities

between ISets and OSets as follows.

SimI(IPr|i,s|j) = J(ISetdh(invr|mi
), ISetdh(invs|mj

))

(4a)

SimO(IPr|i,s|j) = J(OSetdh(invr|mi
), OSetdh(invs|mj

))

(4b)

The basic similarity represents how similar two ISets or
OSets are. To summarize the I/O functional similarity for
a pair of methods, we propose an exponential model

Sim(IPr|i,s|j) =
(1− β ∗ eSimI ) ∗ (1− β ∗ eSimO )

(1− β ∗ e)2 (5)

, where β is a constant. This exponential model punishes
the invocation pairs that have either similar ISet or OSet,
but not the other. By this similarity model, we can sharply
differentiate invocation pairs having similar I/Os from the
ones that solely have similar inputs or outputs. We can
finally define the similarity for a method pair MPij as the
best similarity of their invocation pairs IPr|i,s|j .

Sim(MPij) = maxSim(IPr|i,s|j) (6)

4. HitoshiIO
To demonstrate and evaluate in-vivo clone detection, we

create HitoshiIO, with a name inspired by the Japanese word
for “equivalent”: hitoshi. HitoshiIO records and compares
the inputs and outputs between Java methods, considering
every method as a possible clone of every other (in principle,
we could extend HitoshiIO to consider code fragments - in-
dividual parts of methods, but we leave this implementation
to future work). HitoshiIO is implemented using the ASM
bytecode rewriting toolkit, and will be published on GitHub
with the acceptance of the paper.

4.1 Java Background
Before describing the various implementation complexities

of HitoshiIO, we first provide a brief review of data organi-
zation in the JVM. According to the official specification of
Java [24], there are two categories of data types: primitive
and reference types. The primitive category includes 8 data
types: boolean, byte, character, integer, short, long, float
and double. The reference category includes 2 data types:
objects and arrays. Objects are instances of classes, which
can have fields [24]. A field can be a primitive or a reference
data type. An array contains element(s), where an element
is also either a primitive or a reference data type.

Primitive types are passed by value, while reference types
are passed by reference. HitoshiIO considers all types of
variables as inputs and outputs.

4.2 Identifying Method Inputs and Outputs
Our approach relies on first identifying the outputs of a

method, and then backtracking to the values that influence
those outputs, in order to detect inputs. The first step, then,
is identifying the outputs of a given method. For a method
m, its output set O consists of all variables that are written
by m that are observable outside of m. An output, then,
could be a variable passed to another method, returned by
the method, written to a global variable (static field in
the JVM), or written to a field of an object or array passed
to that method. By default, HitoshiIO only considers the
formal parameters of methods, ignoring the owner object (if



the method call is at instance level) in this analysis, although
this behavior is configurable.

This approach would, therefore, consider every variable
passed from method m1 to method m2 to be an output
of m1. As an optimization, we perform a simple intra-
procedural analysis to identify methods that do not prop-
agate any of their inputs outside of their own scope (i.e.,
they do not effect any future computations). For these spe-
cial cases, HitoshiIO identifies that at call-sites of these spe-
cial methods, their arguments are not actually outputs, in
that they do not propagate through the program execution.
To further reduce the scope of potential output variables,
we also exclude variables passed as parameters to methods
that do not directly write to those variables as inputs. We
found that these heuristics work well towards ensuring that
HitoshiIO can execute within a reasonable amount of time,
and discuss the overall performance of HitoshiIO in §5.

Once outputs are identified, HitoshiIO performs a static
data and control flow analysis for each method, identifying
for each output variable, all variables which influence that
output (through either control or data dependencies). Vari-
able vo is dependent on vi if the value of vo is derived from
vi (data dependent), or if the statement assigning vo is con-
trolled by vi. We recursively apply this analysis to determine
the set of variables that influence the output set OSinks,
creating the set of variables Parents(OSinks). Variable vi
in method m is an input if it is Parents(OSinks) and its
definition occurs outside of the scope of m. HitoshiIO then
identifies the instructions that load inputs and return out-
puts, for use in the next step - instrumentation.

4.3 Instrumentation
Given the set of instructions that may load an input vari-

able or store an output, HitoshiIO inserts instrumentation
hints in the application’s bytecode to record these values
at runtime. Table 3 describes the various relevant byte-
code instructions, their functionality, and the relevant cate-
gorization made by HitoshiIO (Input instruction or Output
instruction). HitoshiIO treats the values consumed by the
control instructions as inputs. Just after an instruction that
loads a value judged to be an input, HitoshiIO inserts in-
structions to record that value; just before an instruction
that stores an output value, HitoshiIO similarly inserts in-
structions to record that value.

4.4 Recording Inputs and Outputs at Runtime
The next phase of HitoshiIO is to record the actual inputs

and outputs to each method as we observe the execution
of the program. Although the execution of the program
is guided by relatively high level inputs (e.g. unit tests,
which each likely call more than one single method), the
previous step (input and output identification) allows us to
carve out inputs and outputs to individual methods - it is
these individual inputs and outputs that we record.

HitoshiIO’s runtime recorder serializes all previously iden-
tified inputs immediately as they are read by a method, and
all outputs immediately before they are written. For Java’s
primitive types (and Strings), the I/O recorder records the
values directly. For objects, including arrays, HitoshiIO fol-
lows [10] to adopt the XStream library [4] to serialize these
objects in a generic fashion to XML. Once the method com-
pletes an execution, this execution profile is stored as a single
XML file in a local repository for offline analysis in the next

Table 3: The potential instructions observed by HitoshiIO.

Opcode Type Description

xload In. Load a primitive from a local vari-
able, where x is a primitive.

aload In. Load a reference from a local vari-
able.

xaload In. Load a primitive from a primitive
array, where x is a primitive.

aaload In. Load a reference from a reference
array.

getstatic In. Load a value from a field owned
by a class.

getfield In. Load a value from a field owned
by an object.

arraylength In. Read the length of an array.
invokeXXX Out. Call a function
xreturn Out. Return a primitive value from the

method, where x is a primitive.
areturn Out. Return a reference from the

method.
putstatic Out. Write a value to the field owned

by a class.
putfield Out. Write a value to the field owned

by an object.
xastore Out. Write a primitive to a primitive

array.
aastore Out. Write a reference to a reference ar-

ray.
ifXXX Con. Represent all if instructions.

Jump by comparing value(s) on
the stack.

tableswitch,

lookupswitch

Cont. Jump to a branch based on the in-
dex on the stack.

step.

4.5 Similarity Computation
Recall that our goal is to find similarly functioning meth-

ods, not methods that present the exact same output for the
exact same input. Hence, our similarity computation mech-
anism needs to be sufficiently sensitive to identify when two
methods behave “significantly” differently for the same in-
put, but at the same time ignore trivial differences (e.g. the
specific data structure used, order of inputs, additional in-
put parameters that are used). To capture this similarity, we
use a Jaccard coefficient (as described in §3.4) - a relatively
efficient and effective measure of the similarity between two
sets. A high Jaccard coefficient indicates a good similarity,
and a low coefficient indicates a poor match.

While it is relatively straightforward to compare simple,
primitive values (including Strings) in Java directly, com-
paring complex objects of different structures is non-trivial:
one of the key technical roadblocks reported in Deissenbock
et al.’s earlier work [10]. To solve this problem, we adopt
the DeepHash [3] approach, creating a hash of each object.
The general idea of DeepHash is to recursively compute the
hash code for each element and field, and sum them up to
represent non-primitive data types. For this purpose, for
floating point calculations, we round them to two decimal
places, although this functionality is configurable. With the
DeepHash function, HitoshiIO can parse a set containing dif-



ferent objects into a representative set of deep hash values,
which facilitate our similarity computation.

The strategy of the DeepHash is as follows:

• If there is already a hashCode function for the value to
be checked, then call it directly to obtain a hash code.

• If there is no existing hashCode function for an object,
then recursively collect the values of the fields owned
by the object and call the DeepHash to compute the
hash code for this object.

• For arrays and collections, compute the hash code for
each element by DeepHash and sum them up as the
hash code.

• For maps, compute the hash code of each key and val-
ues by the DeepHash and sum them up.

The similarity model of HitoshiIO follows §3.4. For opti-
mizing the parameter setting for HitoshiIO’s similarity model
is extremely expensive. For each different setting, we need
to conduct a user study to determine if more or less func-
tional clones can be detected, which is inapplicable. After
multiple small scale experiments done by us, we set β to 3 for
the exponential model of Eq. 6 in HitoshiIO. HitoshiIO has
two other parameters that control its similarity matching
procedure: InvT and SimT . We recognize that some hot
methods may be invoked millions of times — while others
invoked only a handful. InvT provides an upper-bound for
the number of individual method input-output profiles that
are considered for each method. SimT provides a lower-
bound for how similar two methods must be to be reported
as a functional clone. We have evaluated various settings for
these parameters, and discuss them in greater detail in §5.1.

5. EXPERIMENTS
To evaluate the efficacy of HitoshiIO, we conduct a large

scale experiment in a codebase to examine functional clones
detected by HitoshiIO. We set out to answer the following
three research questions:

RQ1: Does HitoshiIO find functional clones, even given
limited inputs and invocations?

RQ2: Is the false-positive rate of HitoshiIO low enough to
be usable by developers?

RQ3: Is the performance of HitoshiIO sufficiently reason-
able to use in practice?

Because HitoshiIO is a dynamic system that requires a
workload to drive programs, we selected the Google Code
Jam repository [2], which provides input data, as the code-
base of our experiments. The Google Code Jam is the annual
online programming competition hosted by Google. The
participants need to solve the programming problems pro-
vided by Google Code Jam and submit their solutions as ap-
plications for Google to test. The projects that pass Google’s
tests are published online.

Each annual competition of Google Code Jam usually has
several rounds. We examined the projects from four years
(2011-2014), and consider the projects that passed the third
round of competitions. We only pick the projects that do
not require a user to input the data, which can facilitate
the automation of our experiments. Descriptive details for
these projects, which form our experimental codebase, can
be found in Table 4. For measurement purposes, we only

Table 4: A summary of the experimental codebase contain-
ing projects from the Google Code Jam competition.

Total # of Avg per-method

Year Problem Set Projects Methods Invocations LOC

2011 Irregular Cake 30 201 24 11.2
2012 Perfect Game 34 241 21 6.4
2013 Cheaters 21 163 26 9.2
2014 Magical Tour 33 220 20 8.1

Across all projects 118 825 22 8.6
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Figure 4: The number of functional clones detected by Hi-
toshiIO with different parameter settings.

consider methods defined in each project — and not those
provided by the JVM, but used by the project. We also
exclude constructors, static constructors, toString, hash-

Code and equals methods, since they usually don’t provide
business logic.

HitoshiIO observes the execution of each of these methods,
exhaustively comparing each pair of methods. In this eval-
uation, we configured HitoshiIO to ignore comparing meth-
ods for similarity that were written by the same developer
in the same year. This heuristic simulates the process of
a new developer entering the team, and looking for func-
tionally similar code that might look different — reporting
functional clone m2 of m1 where both m1 and m2 were writ-
ten by the same developer at the same time is unlikely to be
particularly helpful or revealing, since we hypothesize that
these are likely syntactically similar as well.

We performed all of our similarity computations on Ama-
zon’s EC2 infrastructure [1], using a single c4.8xlarge ma-
chine, equipped with 36 cores and 60GB of memory.

5.1 RQ1: Clone Detection Rate
We manipulate two parameters in HitoshiIO, invocation

threshold, InvT and similarity threshold, SimT, to observe
the variation of the number of the detected functional clones.
The invocation threshold represents how many unique I/O
records should be generated from invocations of a method.
The way that we define the uniqueness of I/O records is
by the hash value derived from their ISets and OSets. Hi-
toshiIO stops generating I/O records for a method, when



Table 5: The distributions of clones detected by HitoshiIO
cross the problem sets.

Number of Clones Analysis
Time (mins)Year Pair ≤ 5 LOC > 5 LOC Total

2011− 2011 20 14 34 1.17
2012− 2012 100 32 132 0.9
2013− 2013 18 144 162 0.8
2014− 2014 41 65 106 0.9
2011− 2012 25 26 51 1.9
2011− 2013 16 24 40 1.8
2011− 2014 36 40 76 2.2
2012− 2013 29 30 59 1.7
2012− 2014 59 61 120 1.5
2013− 2014 41 53 94 1.6

Total 385 489 874 14.5

its invocation threshold is achieved. Intuitively, more func-
tional clones can be detected with a higher invocation thresh-
old. The similarity threshold sets the lower-bound for how
similar two methods must be to be reported as a clone.

Figure 4 shows the number of functional clones detected
by HitoshiIO while varying the similarity threshold (x-axis)
and the invocation threshold (each line). With InvT ≥
50, the number of the detected functional clones does not
increase too much. However, there is a remarkable increase
from InvT = 25 to InvT = 50. If we fix the SimT to 85%,
the difference of detected clones between InvT = 25 and
InvT = 50 is 114, but the difference between InvT = 50 and
InvT = 100 is only 72. Figure 4 also shows that the number
of clones does not sharply decrease between SimT = 0.8 to
SimT = 0.9. Thus, for the remainder of our analysis, we set
InvT = 50 and SimT = 0.85, and evaluate the quality and
number of clones detected with these parameters.

Given this default setting, HitoshiIO detects a total of 874
clones, which contain 185 distinctive methods that average
10.5 lines of code each (the methods found to be clones were,
therefore, slightly larger on average than most methods in
the dataset). Table 5 shows the distribution of clones, bro-
ken down between the pair of years that each method was
found in, and the size of each clone (less than or equal to
five lines of code, or larger). In total, HitoshiIO found 385
clones with LOC ≤ 5 (44%), while 489 of them are larger
than 5 LOC (56%).

While we did find many clones (our total clone rate, de-
fined to be the number of methods that were clones over the
total number of methods, was 185/825 = 22%, it is difficult
for us to approximate whether HitoshiIO is detecting all of
the functional clones in this corpus, as there is no ground
truth available. Other relevant systems, e.g. Elva & Leav-
ens’ IOE clone detector, were unavailable, despite repeated
contacts to the authors [12]. Deissenboeck et al.’s Java sys-
tem [10], although not available to us, found far fewer clones
(with a roughly 1.64% clone rate on a different dataset),
largely due to technical issues running their clone detection
system. Assuming that the clones we detected truly are
functional clones, then we are pleased with the quantity of
clones reported by HitoshiIO: there are plenty of reports.

5.2 RQ2: Quality of Functional Clones
To evaluate the precision of HitoshiIO, we randomly sam-

pled the 874 clones reported in this study (RQ1), selecting

114 of the clones (approximately 13% of all clones). These
114 functional clones contain 111 distinctive methods with
7.3 LOC in average. For these clones, we recruited two
masters students from the Computer Science Department
at Columbia University to each examine half (57) of the
sampled clones, and determine if they truly were functional
clones or not. These students had no prior involvement with
the project (and were unfamiliar with the exact mechanisms
originally used to detect the clones), but were given a high
level overview of the problem, and were requested for each
pair of clones, to report if they truly appeared to be func-
tional clones. The first verifier had 1.5 year of experiences
with Java, including constructing research prototypes. The
second verifier had 3 years of experiences with Java, includ-
ing industrial experiences as a Java developer.

We asked the verifiers to mark each clone they analyzed by
3 categories: false positive, true positive, and unknown. To
prevent our verifiers from being stopped by some complex
clones, we set a (soft) 3-minute threshold for them to analyze
each functional clone, at which point they mark the clone as
unknown. Both verifiers completed all verifications between
2 to 2.5 hours.

Among these 114 functional clones, 78(68.4%) are marked
as true positive, 19(16.6%) are marked as unknown and
17(14.9%) are labeled as false positive. If we only consider
the categories of false and true positive, the precision can be
defined as

precision =
#TP

#FP + #TP
(7)

The precision of HitoshiIO over all sampling functional clones
is 0.82.

Our developer-guided precision evaluation is difficult to
compare to previous functional clone works (e.g. [10, 15,
12], as previous works haven’t performed such an evalua-
tion. However, overall, we believe that this relatively low
false positive rate is indicative that HitoshiIO can be used
in practice to find functionally similar code.

5.3 RQ3: Performance
There are several factors that can contribute to the run-

time overhead of HitoshiIO: the time needed to analyze and
instrument the applications under study, the time to run
the applications and collect the individual input and output
profiles, and the time to analyze all of the results, actually
identifying the clone pairs. The most dominant factor for ex-
ecution time in our experiments was the clone identification
time: application analysis was relative quick (order of sec-
onds), and the input-output recorder added only a roughly
10x overhead compared to running the application without
any profiling (which was also on the order of seconds). As
shown in Table 5, the total analysis time for similarity com-
putation needed to detect these 874 clones was relatively
quick though: only 14.5 minutes.

The analysis time is very directly tied with the InvT pa-
rameter, though: the number of unique input-output pro-
files considered for each method in the clone identification
phase. We varied this parameter, and observed the number
of clones detected, as well as the analysis time needed to
identify the clones, and show the results in Table 6. For
each value of InvT , we show the number of clones detected,
the clone rate, the number of clones that were verified as
true positives (in the previous section), but missed, and the
total analysis time.



Table 6: The precision of sampling functional clones de-
tected by HitoshiIO.

Clones Detected
Clones
Missed

Analysis
Time (mins)InvT Total Clone Rate

10 678 20.6% 10 0.6
25 762 21.6% 4 3.8
50 874 22.4% 0 14.5
75 916 22.5% 0 32.5

100 945 22.8% 0 56.6

Even considering very few invocations (10) with real work-
loads, HitoshiIO still detects most of the clones, with very
low analysis cost. The time complexity to compute the sim-
ilarities for all invocations is O(n2), where n is the number
of invocations from all methods. This implies that the pro-
cessing time under InvT = 25 is about 25% of the baseline,
but it can detect 95% of the ground truth with real work-
loads. This result is compelling because: (1) it shows that
HitoshiIO’s analysis is scalable, and can be used in practice,
and (2) it shows that even with very few observed executions
(e.g. due to sparse pre-existing workloads).

5.4 System Limitations and Future Work
For the next step of HitoshiIO, we have the following direc-

tions. Currently, HitoshiIO can detect the potentially direct
or indirect write to the input object from the caller method,
even though this write occurs in its callee. However, if the
caller method passes a value owned by the input object to
its callee, the write to this value in the callee will not be
reflected on its owner object in the caller. Enhancing such
limitation is our highest priority. We plan to develop a mod-
ule for HitoshiIO to detect inputs and outputs from external
environment. All of these enhancements at the system level
can help HitoshiIO identify more input sources and output
sinks that are relevant to the computation of the program.
In addition to the system level enhancements, we are also
interested in adopting Machine Learning techniques to re-
fine and optimize the similarity computation mechanism of
HitoshiIO.

6. THREATS TO VALIDITY
In designing our experiments, we attempted to reduce as

many potential risks to validity as possible, but we acknowl-
edge that there may nonetheless be several limitations. For
instance, we selected 118 projects from the Google Code Jam
repository for study, each of which may not necessarily rep-
resent the size and complexity of large scale multi-developer
projects. However, this choice allowed us to control the
variability of the clones: we could look at multiple projects
within a year (which would show us method-level functional
clones between projects that have the same overall goal) and
projects across different years (which would show us those
method-level clones between projects that have completely
different overall goals). Future evaluations of HitoshiIO will
include additional validation that similar results can be ob-
tained on larger, and more complex codebases.

For our evaluation of false positives, we recognize the sub-
jective nature of having a human recognize that two code
fragments are functionally equivalent. However, we believe
that we provided adequate training to well-experienced de-
velopers who could therefore, judge whether code was func-

tionally similar or not (especially given the relatively small
size of most of the clones examined). Given additional re-
sources, crowdsourcing an evaluation of the precision of Hi-
toshiIO might be an interesting way to increase our confi-
dence even further.

Ideally, we would be able to test HitoshiIO against a
benchmark of functional clones: a suite of programs, with
inputs, that have been coded by other researchers to pro-
vide a ground truth of what functional clones exist. Un-
fortunately, clone benchmarks (e.g. [20]) are designed for
static clone detectors, and do not include any workloads to
use to drive the applications, making them unsuitable for a
dynamic clone detector like HitoshiIO.

There are also several implementation limitations that
may be causing the number of clones that HitoshiIO detects
to be lower than it should be: for instance, the heuristics
that it uses to decide what an output is are not sound (§4.2),
and hence, may result in identifying fewer outputs than it
ought to. However, these limitations do not effect the valid-
ity of our experimental results, as any implementation flaws
would hence be reflected in the results.

7. CONCLUSIONS
The difficulty of detecting functionally similar code has

been proved by the prior work. How to generate meaningful
inputs to driver problems and how to appropriately define
I/Os for programs are two major issues. In this paper, we
present the HitoshiIO system, which implements our idea of
In-Vivo Clone Detection. Instead of fixing the definitions of
program I/Os, HitoshiIO applies the technique of data flow
analysis to identify potential input sources and output sinks.
By using the real workloads to drive programs, HitoshiIO
collects I/O values from programs. Based on the similarity
model developed by us, HitoshiIO detects 800+ functionally
similar clones in the projects of Google Code Jam. The true
positive rate of HitoshiIO is more than 68%, while the false
positive rate is only 15%. The experimental results have
been verified by two student developers who are not authors,
in a random sample of the detected functional clones.
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