

Cambits:

A Reconfigurable Camera System

Makoto Odamaki and Shree K. Nayar

Computer Science Department

Columbia University
New York, NY 10027

mo2615@columbia.edu
nayar@cs.columbia.edu

Technical Report CUCS-002-16
February 12, 2016

Abstract

Cambits is a set of physical blocks that can be used to build a wide variety of cam-
eras with different functionalities. A unique feature of Cambits is that it is easy and
quick to reconfigure. The blocks are assembled using magnets, without any screws
or cables. When two blocks are attached, they are electrically connected by spring-
loaded pins that carry power, data and control signals. With this novel architecture
we can use Cambits to configure various imaging systems. The host computer al-
ways knows the current configuration and presents the user with a menu of func-
tionalities that the configuration can perform. We demonstrate a wide range of
computational photography methods including HDR, wide angle, panoramic, col-
lage, kaleidoscopic, post-focus, light field and stereo imaging. Cambits can even be
used to configure a microscope. Cambits is a scalable system, allowing new blocks
and accompanying software to be added to the existing set.

1. Introduction

The cameras in our phones and tablets have turned all of us into avid photogra-
phers. Today, we regularly use these devices to capture special moments and to
document our lives. One attractive feature of camera phones is that they are com-
pact and fully automatic, enabling the user to simply point and shoot without hav-
ing to adjust various settings. When we need to capture photos of high aesthetic
quality, however, we resort to a more sophisticated DSLR camera where a variety
of lenses and flashes can be used in an interchangeable fashion. This flexibility to
reconfigure the camera is important to span the entire range of real-world imaging
scenarios as well as to enable the user to be more creative.

A few attempts have been made to make the camera a more flexible device, both in
terms of hardware and software. For example, Ricoh’s GXR camera has inter-
changeable lens units, each with a different type of sensor [1]. Some manufactur-
ers make their cameras more flexible by releasing application program interfaces
(APIs). Developers can use the APIs to control various camera parameters and to
create new image processing tools. For example, in 2015, Olympus released the
Open Platform Camera, which can be controlled via Wi-Fi and Bluetooth [2]. At the
high end of the market, RED released a modular camera that has interchangeable
parts - lenses, battery packs and broadcast modules [3]. Although they provide
some level of flexibility, the above products are limited in the types of images they
can produce.

In the realm of research, Levoy et al. [4] proposed a computational photography
platform, Frankencamera, which has an API, a sensor interface and an image pro-
cessing unit. This system can be used to implement various computational imaging
methods. However, its hardware is relatively rigid which limits the extent to which
it can be reconfigured. Manakov et al. [5] proposed a camera system that can ac-
commodate different optical add-ons. The system uses kaleidoscope-like imaging to
make optical copies of the captured image. Different filters are then used to pro-

duce HDR, multispectral, polarization and light field images. This system provides
some reconfigurability, but is bulky and hard to scale in terms of functionality. Fi-
nally, reconfigurability is a well-explored topic in the field of robotics [6]. For in-
stance, Eric and Gross [7] have developed a robot kit for science education, which
include blocks with different functionalities called Cublets.

In this paper, we present Cambits, a set of physical blocks that can be used to build
a wide variety of cameras with different functionalities. The blocks include sensors,
actuators, lenses, optical attachments and light sources. The blocks are assembled
using magnets, without any screws or cables. When two blocks are attached, they
are electrically connected by spring-loaded pins that carry power, data and control
signals. The host computer always knows the current configuration and automati-
cally presents the user with a menu of imaging functionalities to choose from. We
use Cambits to demonstrate a wide range of computational photography methods
including HDR, wide angle, panoramic, collage, kaleidoscopic, post-focus, light field
and stereo imaging. It is also used to configure a microscope. Cambits is a scalable
system, allowing new blocks and computational photography algorithms to be add-
ed to the existing set.

2. Concept

Figure 1(a) shows the set of blocks that constitute Cambits. The blocks come in dif-
ferent colors, each color indicating a specific function. We have white for base, red
for image sensor, blue for flash, green for actuators and spacers, yellow for lenses,
and orange and purple for optical attachments. As shown in Figure 1(b), the host
computer always knows the current configuration of Cambits. It uses a suite of
computational photography algorithms to produce a variety of images. The system
has been designed to have the following attributes:

1. Ease of assembly: The blocks are attached using magnets, without any
screws or cables. The configuration of blocks can be changed without requir-
ing a reboot of the hardware or the software.

2. Self-identification: The host computer can detect the current configuration
of the system. This information is conveyed to the user via a 3D visualization
and a menu of functionalities that it can perform.

3. Diverse functionality: Since there are many different types of blocks and
many of them can be controlled, a diverse set of camera systems can be
configured where each one produces a different type of image.

4. Scalability: The design of the architecture of the hardware and the software
of the system makes it inherently scalable. New blocks and computational
photography algorithms can be easily added to the existing set.

Figure 1: (a) The components of Cambits. (b) One configuration of Cambits. The host
computer displays a 3D visualization of the current configuration and a menu of func-
tionalities it can perform. (c) The list of Cambits blocks and their specifications.

(a)

(b) (c)

3. System Architecture

The key attributes of Cambits described in the previous section are made possible
by the design of its hardware and software architecture. We now describe the de-
tails of the architecture.

3.1 Mechanical and Electrical Connections

Each Cambits block is 40mm along at least two of its three dimensions. The chassis
of each block is 3D printed. The chassis includes sockets close to its corners that
hold magnets. The magnets are used to not only attach blocks to each other but
also mechanically align them, as shown in Figure 2(a). The alignment is aided by
convex and concave bumps on the surface of the chassis. The polarities of the
magnets in each block are also chosen such that it is not possible for the user to
attach two blocks that are incompatible. For instance, a lens block cannot be direct-
ly attached to an actuator block. When two blocks are attached, a set of either 4 or
6 spring-loaded pins on one block (see Figure 2(b)) are aligned and electrically
connected to contact pads on the other block. The system uses USB 2.0 for the da-
ta signal and I2C for the control signal.

3.2 Tree Structure with Bucket Brigade

Each Cambits block has three types of pins to convey power, data signals, and con-
trol signals. The data signal conveys image data from the sensor block. The control
signal conveys the configuration data upstream and various commands, such as the
actuator block’s rotation parameters or the flash’s strobing parameters, down-
stream.

These signals have a tree structure. The host device, the root of the structure, pro-
vides electrical power to all the blocks in the configuration, detects the current con-
figuration of the entire tree structure, and control all the blocks within the tree.
Each block is allowed to connect with multiple blocks. Upstream is defined as the
direction toward the host device, and downstream is defined as the direction in
which components proceed forward from the host device (see Figure 3).

The data signal flows upstream directly from each sensor block to the host device.
However, the control signals are passed in a bucket brigade manner from one com-
ponent to the next. Each block can communicate via control signals only with blocks
that are connected to it. When a block is attached to the system, it scans the com-
ponents downstream. If it detects any blocks, it reads the configuration data of the
blocks that are downstream, adds its own identity and address to the data, and
sends this information upstream. As a result, the host device can detect the com-
plete order of the configuration. Instead of this architecture, if we had used a con-
ventional electrical bus for the control signals, the system would not have been able
to detect the order of the blocks. In addition, a conventional bus would not be able
to detect configurations in which multiple blocks have the same address, which is a
possibility when using the I2C interface.

When the host device seeks to control a specific block in the tree structure, it will
send its command and the address of the block to the base block. The base block

and subsequent blocks pass the command downstream in a bucket brigade fashion.
The addressed block receives the command and executes it.

Figure 2: (a) Mechanical assembly and alignment of blocks using magnets. (b) Electri-
cal connection between blocks using spring-loaded pins that carry power, data and con-
trol signals.

Figure 3: Tree architecture used to implement Cambits. Power flows downstream, data
flows upstream, and control signals are communicated in a bucket brigade fashion.

3.3 The Controller Board

A key aspect of our design is the controller board which sits insides the base, actua-
tor, spacer and sensor blocks. It includes a microcontroller unit (MCU) (Texas In-
struments MSP430F5510), which has two serial ports for the bucket brigade. The
controller board has an upstream interface and a downstream interface (see Figure
4).

When a block with the controller is attached to the system, it automatically turns on
and then the firmware on its MCU starts to scan downstream repeatedly for approx-
imately 100 msec to communicate with its adjacent blocks. When the block is re-
moved from the system, it loses power and the firmware stops.

(a) (b)

Each block has a power circuit to prevent inrush current and voltage drop when it is
attached. This circuit can maintain a steady input voltage. Owing to this circuit, the
system can be reconfigured without requiring a reboot of the hardware (blocks) or
the software running on the host computer.

Additionally, the controller board can control other devices such as the servo motor
in the actuator block and the LED controller in the flash block by using the I2C bus,
pulse width modulation (PWM), and general purpose input outputs (GPIO), based
on commands it receives from the host device. For example, when an actuator
block receives the command for rotation, the MCU generates the pulse signal need-
ed to drive its servo motor.

In term of scalability, the I2C interface is useful, because it is widely used in the
field of embedded systems. This allows us to add various devices such as a light
sensor, acoustic sensor, IR sensor, GPS, IMU and multispectral light source to the
current Cambits set.

Figure 4: The base, actuator, spacer and sensor blocks include a controller board
which allows a block to communicate with its adjacent blocks.

3.4 Lens Blocks and Optical Attachments

The lens block has an identification board that includes an I2C expander device. It
can detect the identification number of the lens type itself and an additional optical
attachment connected to the lens such as a soft focus filter, lens array or teleido-
scope. The optical attachment does not have any electrical parts. Instead, it has up
to three bumps that push against mechanical switches on the lens block to generate
a 3-bit code that the lens block can use to identify the attachment. This information
is sent by the lens block upstream.

3.5 Sensor Block

The sensor block includes a Point Grey camera board (BFLY-U3-13S2C-CS). The
board can produce 1.3 megapixel video in various formats, including YUV411 and
RGB8, and send the video upstream as a USB 2.0 data signal. The length of the da-

ta signal line and the number of connectors are minimized so as to enable high fre-
quency (480Mbps) transmission, which is needed to preserve the integrity of the
video [8]. Various imaging parameters of the sensor board, such as exposure time
and gain, are controllable from the host device.

3.6 Software

The software system that runs on the host device captures images from the Cam-
bits system, provides the user a 3D visualization of the current configuration, and
allows the user to apply various computational photography methods to the cap-
tured images. Our current implementation runs on Windows and is based on open
source libraries such as Open CV-v2.4.10 and Cinder v1.20 (see Figure 5). It also
uses the Point Grey SDK Flycapture2 to control the image sensors.

The Cambits API can receive images from the Point Grey SDK and control camera
parameters such as exposure time and gain. Also, the API can control various de-
vices on the tree architecture, such as servo motors, linear actuators, and LEDs, via
serial ports. The API and the open libraries allow developers to easily add new
blocks and image processing algorithms to the current system.

Figure 5: Software architecture of Cambits.

4. Functionalities

We have used Cambits to assemble a wide range of computational cameras. Figures
6 show a few examples of the systems we have configured. To construct a basic
camera we use a base, a sensor block and an 8mm lens block. In high dynamic
range mode, the camera captures a set of images with different exposures, com-
putes an HDR image and then tone maps it [9][10]. This basic camera can also be
moved around to capture a set of images that are fused to obtain a scene collage.
We detect the features in each image using SIFT, reduce the outliers by using RAN-
SAC, and find corresponding features between all pairs of images. The image that
has the most corresponding features with all the remaining images is used as the
center image of collage. The remaining images are transformed to align with the
center image and overlaid to obtain the collage [11]. Cambits includes a variety of
lenses. A fisheye lens can be used to capture a wide-angle image. Since the host
knows the type of lens that is being used, the software automatically maps the cap-
tured image to a perspective one without barrel distortion [12].

As with the lenses, a wide variety of optical filters can be attached to the lens of the
imaging system. These include simple optical filters like diffusion and polarization,
as well as more complex ones like a lens array and a teleidoscope. The lens array
attachment has 7 ball lenses and produces a 4D light field image of the scene [13].
The teleidoscope attachment produces a kaleidoscope image. A ball lens in the front
of the attachment captures the scene image and a set of planar mirrors between
the ball lens and the lens block creates multiple rotated copies of the image.

Our focal stack lens block includes a linear actuator that physically sweeps the lens
to capture a set of images that correspond to different focus settings. This stack of
images is then processed using our refocusing algorithm to generate an interactive
image where the user can simply click on any part of the image to bring it into fo-
cus [14][15].

We can insert a rotary actuator between the base and the sensor to scan a pano-
rama of the scene. Left and right strips can be taken from the same sequence of
images to generate a stereo panorama for virtual reality [16]. A second rotary ac-
tuator can be added to the system to configure a pan/tilt camera system.

Cambits is not restricted to a single image sensor. Our second base can be used
with two sensor blocks and lenses to create a stereo camera system. The left and
right video streams from this system are processed in real time to produce a gray
coded depth video of the scene.

Finally, Cambits can be used to assemble a microscope. Our microscope attachment
includes an objective lens, a mechanism to adjust the height of the sample slide to
bring the sample into focus, and an LED light to bright-field illuminate the sample. Al-
ternatively, the ambient illumination in the environment can be used to back-light the
sample.

Figure 6: Examples of results produced using Cambits

5. Conclusion

Cambits in a versatile modular imaging system that enables the user to create a
wide range of computational cameras. Our current prototype is a proof-of-concept
that we have used to demonstrate the key attributes of Cambits – ease of assem-
bly, self-identification and diverse functionality. Using our current implementation,
we have shown that Cambits can be a powerful platform for computational photog-
raphy, enabling the user to express their creativity along several dimensions. An
important aspect of Cambits is that it is design to be an open platform that is scala-
ble. One can add several other hardware blocks such as structured light sources,
multispectral sources, telescopic optical attachments and even non-imaging sensors
for measuring acceleration, orientation, sound, temperature, pressure, etc. One can
imagine developing algorithms that use such a diverse set of sensors to trig-
ger/control various image capture and processing strategies.

Acknowledgements

This research was done at the Computer Vision Laboratory at Columbia University,
while Makoto Odamaki was a Visiting Scientist from Ricoh Company, Ltd., Japan.
The authors thank William Miller for designing and 3D printing the chases of the
Cambits blocks, Wentao Jiang for his contribution to the user interface, and Daniel
Sims for editing the demonstration video. Divyansh Agarwal, Ethan Benjamin, Jihan
Li, Shengyi Lin and Avinash Nair implemented several of the computational photog-
raphy algorithms. The authors thank Anne Fleming for proofreading this paper.

Bibliography

[1] https://www.ricoh.com/r_dc/gxr/
[2] https://opc.olympus-imaging.com/en_sdkdocs/index.html
[3] http://www.red.com/products
[4] Adams, Andrew, et al. "The Frankencamera: an experimental platform for com-
putational photography." ACM Transactions on Graphics (TOG). Vol. 29. No. 4.
ACM, 2010.
[5] Manakov, Alkhazur, et al. "A reconfigurable camera add-on for high dynamic
range, multispectral, polarization, and light-field imaging." ACM Transactions on
Graphics 32.4 (2013): 47-1.
[6] Yim, Mark, et al. "Modular self-reconfigurable robot systems [grand challenges
of robotics]." Robotics & Automation Magazine, IEEE 14.1 (2007): 43-52.
[7] Schweikardt, Eric, and Mark D. Gross. "roBlocks: a robotic construction kit for
mathematics and science education." Proceedings of the 8th international confer-
ence on Multimodal interfaces. ACM, 2006.
[8] High Speed USB Platform Design Guidelines Rev. 1.0
http://www.usb.org/developers/docs/hs_usb_pdg_r1_0.pdf
[9] Debevec, Paul E., and Jitendra Malik. "Recovering high dynamic range radiance
maps from photographs." ACM SIGGRAPH 2008 classes. ACM, 2008.
[10] Reinhard, Erik. "Parameter estimation for photographic tone reproduc-
tion."Journal of graphics tools 7.1 (2002): 45-51.

[11] Nomura, Yoshikuni, Li Zhang, and Shree K. Nayar. "Scene collages and flexible
camera arrays." Proceedings of the 18th Eurographics conference on Rendering
Techniques. Eurographics Association, 2007.
[12] Schneider, D., E. Schwalbe, and H-G. Maas. "Validation of geometric models
for fisheye lenses." ISPRS Journal of Photogrammetry and Remote Sensing 64.3
(2009): 259-266.
[13] Georgiev, Todor, et al. "Spatio-Angular Resolution Tradeoffs in Integral Pho-
tography." Rendering Techniques 2006 (2006): 263-272.
[14] Ng, Ren, et al. "Light field photography with a hand-held plenoptic camera."
Computer Science Technical Report CSTR 2.11 (2005): 1-11.
[15] Zhou, Changyin, Daniel Miau, and Shree K. Nayar. "Focal sweep camera for
space-time refocusing." (2012).
[16] Peleg, Shmuel, and Moshe Ben-Ezra. "Stereo panorama with a single camera."
Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference
on.. Vol. 1. IEEE, 1999.

