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Abstract

Efficient sampling algorithms have been developed for approximating answers to aggregate queries on large data
sets. In some formulations of the problem, concentration inequalities (such as Hoeffding’s inequality) are used
to estimate the confidence interval for an approximated aggregated value. Samples are usually chosen until the
confidence interval is arbitrarily small enough regardless of how the approximated query answers will be used (for
example, in interactive visualizations). In this report, we show how to exploit visualization-specific properties
to reduce the sampling complexity of a sampling-based approximate query processing algorithm while preserving
certain visualization guarantees (the visual property of relative ordering) with a very high probability.

1 Introduction

In order to display interactive visualizations faster, Wu
& Nandi [1] suggest using invertible perceptual and en-
coding functions to approximate query answers. Both
types of functions would be specified as part of vi-
sualization specific language extensions: REN-
DERED BY and PERCEIVED BY clauses would be
used to specify the encoding and perceptual func-
tions respectively. The language extensions are part
of an overarching project called InterVis, which
consists of two major new components: InterVis-
CACHE and InterVis-APPROX. Whereas InterVis-
CACHE handles session-based caching of queries,
InterVis-APPROX facilitates the use of visualization-
aware approximation.

Most approximate query processing systems (piv-
otal examples include [2, 3, 4]) don’t take interaction
into account when computing query answers. The goal
of InterVis is to create a system where every layer is
interaction-aware to better exploit previously unex-
plored optimizations in querying, processing, and visu-
alizing the data. One avenue of optimization is to use
the user-specified perceptual and encoding functions to
approximate query answers in order to limit resource
usage for interactive visualizations. Two types of per-
ceptual functions were presented: univariate and bi-
variate. Univariate perceptual functions of the form
P : R → R map a visually encoded value to the per-
ceived error. On the other hand, bivariate perceptual
functions of the form P : R × R → R map a pair
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of encoded values to the error in the perceived pro-
portional differences. A simple linear perceptual func-
tion like P (v) = 5 · 10−5v means that a user can per-
ceive a 105 pixel height within a margin of error of
±5 pixels. For more complex and realistic perceptual
functions, according to Stevens’ power law of theoret-
ical psychophysics, refer to Section 4.1. On the other
hand, a simple encoding function is E(v) = b v

104 c, for
example, if values in the domain [0, 106] are mapped
to a maximum bar height of 100 pixels. How can we
use encoding and perceptual functions such as
the ones defined above to approximate query
answers?

This report attempts to answer the question by
presenting IFocusviz , a sampling-based approximate
query processing algorithm that utilizes encoding and
perceptual functions to converge faster on the esti-
mated query answers.

2 Approach

For this report, we consider the following abstract
query:
SELECT X, AVG(Y ) FROM R(X,Y ) GROUP BY X

This query can be translated to a map visualization
such as the one in Figure 2. While we restrict
ourselves to queries with a single GROUP BY and a AVG

aggregate, the query processing algorithm presented
can be extended to a much more general class of
queries and visualizations.
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Data: S1, . . . , Sk, δ, E, P
1 Initialize m← 1;
2 Draw sample si from each of S1, ..., Sk
3 to provide initial estimates v1, . . . , vk where vi = si;
4 Initialize A = {1, . . . , k};
5 while A 6= ∅ do
6 m← m+ 1;

7 ε =
√

(1− m/2−1
maxi∈A |Si| )

2 log log(m)+log(π2k/3δ)
2m ;

8 foreach i ∈ A do
9 Draw sample si from Si;

10 vi = m−1
m vi + 1

m (si);

11 end
12 foreach i ∈ A do
13 if [vi − ε, vi + ε] ∩ (

⋃
j∈Ar{i}[vj − ε, vj + ε]) = ∅ then

14 A ← Ar {i};
15 else
16 select j 6= i such that [vj − ε, vj + ε] overlaps most with [vi − ε, vi + ε];
17 ei1 = E(vi − ε);
18 ei2 = E(vi + ε);
19 ej1 = E(vj − ε);
20 ej2 = E(vj + ε);
21 if ei2 − ej1 ≤ P (ei2, ej1) or ej2 − ei1 ≤ P (ej2, ei1) then
22 A← Ar {i};
23 else

24 end

25 end

26 end
Algorithm 1: IFocusviz

k Number of groups

S1, . . . , Sk The k groups themselves.

δ
The confidence intervals of all active groups contains actual
averages for the groups with probability greater than 1− δ

E Encoding function

P Bivariate perceptual function

Table 1: Table of Notation for Algorithm 1
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IFocusviz is an adaptation of the IFo-
cus algorithm presented by Blais et al. [5]. Table 1
describes the symbols used in Algorithm 1.

At a high level, the IFocus algorithm works by
maintaining, for each group, a confidence interval
within with the algorithm believes the true average of
each group lies. The groups whose confidence intervals
overlap with other groups are called active groups. The
algorithm proceeds in rounds. For each round, a single
additional sample is taken per active group. The algo-
rithm terminates when there are no remaining active
groups. The estimated averages v1, . . . , vk are then re-
turned to the caller. Figure 1 is an illustrative diagram
showing intermediate processing of the approximate
departure delay times for some U.S. states. Section 3
further describes results from running IFocusviz on
a flights data set.

Figure 1: Intermediate Processing of Average Delay
Times

IFocusviz is different from IFocus in its determi-
nation of active groups. In IFocusviz , active groups
are groups whose overlap with confidence intervals
of other groups is perceptually discernible. We use
perceptual and encoding functions to determine what
overlap is perceptually discernible. An illustrative
example of how IFocusviz determines active groups
is given below.

Example: Suppose we have groups S1, . . . , S5

and δ = 0.05 ( IFocusviz obeys the visual ordering
property with probability greater than 0.95). Also, as-
sume we are given perceptual and encoding functions of
P (·, ·) = 0 (the most conservative perceptual function)
and E(v) = b v10c respectively. At the rth (m = r, r ≥ 1
in Algorithm 1) iteration, with ε = 10.0, the confidence
intervals for groups S1, . . . , S5 are:

S1 → [11, 31]

S2 → [523, 543]

S3 → [603, 623]

S4 → [621, 641]

S5 → [625, 645]

Then, in the range of the encoding function, the con-
fidence intervals are:

S1 → [1, 3]

S2 → [52, 54]

S3 → [60, 62]

S4 → [62, 64]

S5 → [62, 64]

At this stage, both IFocus and IFocusviz will iden-
tify groups S1, S2 as non-active since their confidence
intervals don’t overlap with any other groups. On the
other hand, groups S4, S5 are active since their con-
fidence intervals overlap and the length of the over-
lap (in the range of the encoding function) is greater
than P (·, ·) = 0. As for S3, IFocus will identify the
group as active since there is a non-empty overlap
([62, 62]) between the confidence intervals for S3 and
S4. But IFocusviz will consider group S3 to be non-
active since the length of the overlap is less than or
equal to the perceptual function P (·, ·) (which implies
that the overlap is not perceptually discernible).

3 Experiments

Figure 2: Visualization of approximate average depar-
ture delay times for U.S. states from January to April
2015

We compare IFocusviz to IFocus in terms of sam-
ple complexity and run time performance. For our
experiments, we use a dataset of domestic flights ob-
tained from the website of the Bureau of Transporta-
tion Statistics [6], which provides some data about ev-
ery commercial flight in the United States since 1987.
We narrow our focus to data produced during the first
4 months of 2015. January, February, March, and
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April had 480898, 493673, 409132, and 458311 flight
records respectively.

Specifically, we are interested only in the state and
the delay (in minutes) fields per record as we want to
answer the following query (albeit approximately):

SELECT state, AVG(delay)

FROM flight_delays

GROUP BY state;

We set δ = 0.05 (IFocus and IFocusviz will obey
the visual ordering property with probability greater
than 0.95), the encoding function E(v) = b v10c, and
the perceptual function P (·, ·) = 0 (the most conser-
vative perceptual function – assuming no perceptual
error). Since we are grouping on the state field, the
groups S1, . . . , S53 contain the departure delay times
for flights in each U.S. state.

We run our experiments on a 16GB RAM double
core computer with a 2.6GHz Intel Core i5 proces-
sor. Both IFocus and IFocusviz are implemented in
the Scala programming language running on Apache
Spark.

Figure 3 displays the results of our experiments.
Figure 3(a) shows, as expected, that for both IFo-
cus and IFocusviz the percentage of the total data
size sampled decreases as the data size increases. Fur-
thermore, on average, IFocusviz samples less than
IFocus . This is because IFocusviz converges faster
since it uses the encoding function to determine what
groups are still active whereas IFocus is oblivious to
the encoding function. Figure 3(b) shows the run-
time performance of IFocus and IFocusviz . As ex-
pected, IFocusviz has a slightly better average run-
time than IFocus .

Even though we are using the most conservative per-
ceptual function (P (·, ·) = 0), IFocusviz still outper-
forms IFocus in terms of sampling complexity and
run-time performance. The sampling strategy used
is uniform sampling – for its simplicity. An alterna-
tive is stratified sampling (proportionate or dispropor-
tionate) [7]. We hypothesize that IFocusviz would
have had an even better sampling complexity than
IFocus if we had used a less conservative perceptual
function.

Figure 2 shows the result of a single run of the
IFocusviz algorithm on the flights data set. Darker
states, on average, have more flight delays.

4 Related Work

4.1 Perceptual Functions

According to Stevens’ power law of theoretical psy-
chophysics [8], the perception of a value is a function
of the actual value related by p(a) = k · aα where p(a)

Figure 3: (a) Impact of data size on sampling percent-
age (b) Run-time performance of IFocus vs. IFo-
cusviz
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and a are the magnitude of the sensation and the in-
tensity of the stimulus respectively, k is a proportion-
ality constant that depends on the units used, and α
is the power exponent dependent on the type of stim-
ulation [9]. For example, when the visual stimulus is
brightness, S.S Stevens hypothesized that p = 10·a0.33.
Similar to Stevens’ law, the Weber–Fechner law also
relates the magnitude of the sensation to the intensity
of the stimulus but unlike Stevens’ law, the relation-
ship between the two entities is logarithmic [10]. To
obtain a perceptual function as defined in section 1,
we can examine Weber’s law:

∆I = Kw · I

where I represents the initial stimulus intensity, Kw

is a constant, and ∆I is the difference threshold (the
just noticeable difference or JND for short). For
a particular person, if we can obtain ∆I, then the
perceived error for brightness, using Stevens’ law, is
P = 10 · (∆I)0.33 which is the perceptual function that
can be used in the above algorithms. Obtaining ∆I
for a particular visualization and person (let alone a
group of people that will be using a particular inter-
active visualization) can be daunting. Because of the
intractability, we can use error values obtained from
previous studies [8] to approximate perceptual func-
tions. For example, Wu & Nandi [1] suggest using a
perceptual function of P (v) = 0.02 ·v when comparing
adjacent bars.

4.2 Data Visualization Management
Systems

There has been some recent work [11] on integrated
Data Visualization Management Systems (DVMS)
based on a declarative visualization language that fully
compiles the end-to-end visualization pipeline into a
set of relational algebra queries. This approach is non-
traditional as most visualizations today are produced
in a decoupled manner: first, raw data is retrieved
from a database and then using a specific visualiza-
tion tool, the data is then processed and eventually
rendered. With a DVMS, all database features can
be made available for visualization and since all lay-
ers of the DVMS are interaction-aware, appropriate
optimizations can be applied to support interactivity.
Furthermore, a DVMS is equipped with database man-
agement system features relevant to interactivity. For
example, with lineage query support, we can automat-
ically link related geometric objects across views by
tracking overlap in the input records that generated
them.

Both IFocus and IFocusviz can be integrated into
a DVMS since every layer of the DVMS is interaction-
aware and should thus have access to (or have the

ability to infer) the encoding function(s) used for in-
teractive visualizations.

4.3 Dynamic Reduction of Query Re-
sult Sets

Sampling to reduce information presented to the user
– for both efficiency and visual clarity – has been used
by resolution reduction systems. ScalaR [12] is such
a system that performs resolution reduction on query
results. It dynamically determines if the result of a
DBMS query is too large to be effectively rendered
on existing screen real estate. Based on this informa-
tion, ScalaR offers a three-tiered solution: insert ag-
gregation, sampling, and/or filtering operations into
the query.

4.4 Sampling Strategies

In this paper, we have left the choice of sampling strat-
egy to the user. For our experiments, we utilized uni-
form sampling. Other approximate query processing
algorithms use a conventional round-robin stratified
sampling [13] strategy. For example, online aggrega-
tion [2] uses this sampling strategy to construct con-
fidence intervals for estimates of averages of groups.
Selected samples are not chosen a-priori. On the other
hand, offline approximate query processing systems
such as BlinkDB [14] and Aqua [15] select stratified
samples a-priori, typically tailored to a specific work-
load or a small set of queries.

Uniform random sampling is strictly worse than
round-robin stratified sampling when the data set is
skewed. On such data sets, IFocusviz can be made
to select samples using an optimum allocation strati-
fied sampling strategy.

5 Conclusion & Challenges

In this report, we presented IFocusviz , a sampling-
based approximate query processing algorithm that
uses perceptual and encoding functions to converge
faster towards an approximated value. Based on pre-
liminary experiments, we find that user-specified en-
coding and perceptually functions can be used to dis-
play more interactive visualizations by sampling less
and more quickly.

For experiments above, the most conservative per-
ceptual function P (·, ·) = 0 was used. A major chal-
lenge still remains: how can we tractably determine
perceptual functions and how do perceptual functions
generalize to different groups of people? As presented
in this report, the use of encoding functions alone is
sufficient to decrease the sampling complexity.
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