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ABSTRACT
Detecting “similar code” is fundamental to many software
engineering tasks. Current tools can help detect code with
statically similar syntactic features (code clones). Unfor-
tunately, some code fragments that behave alike without
similar syntax may be missed. In this paper, we propose the
term“code relatives”to refer to code with dynamically similar
execution features. Code relatives can be used for such tasks
as implementation-agnostic code search and classification of
code with similar behavior for human understanding, which
code clone detection cannot achieve. To detect code relatives,
we present DyCLINK, which constructs an approximate
runtime representation of code using a dynamic instruction
graph. With our link analysis based subgraph matching
algorithm, DyCLINK detects fine-grained code relatives
efficiently. In our experiments, DyCLINK analyzed 290+
million prospective subgraph matches. The results show that
DyCLINK detects not only code relatives, but also code
clones that the state-of-the-art system is unable to identify.
In a code classification problem, DyCLINK achieved 96%
precision on average compared with the competitor’s 61%.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: [Distribution, Maintenance,
and Enhancement]; I.1.5 [Pattern Recognition]: [Cluster-
ing]

General Terms
Algorithms, Experimentation, Design

Keywords
Code relative, runtime behavior, link analysis, subgraph
match, code clone

1. INTRODUCTION
Code clones [37], which represent textually or syntactically

similar code fragments, have been widely adopted to detect
similar software. However, code clone detection systems
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focus on identifying static patterns in code, so some relevant
code fragments that behave similarly at runtime, though
with different syntax, are missed. Detecting code fragments
that accomplish the same tasks or share similar behavior is
pivotal for understanding, and improving the performance
of software systems. With such functionality, it is possible
to automatically replace an old algorithm in a legacy system
with a new one. It also allows quick search and understanding
of large codebases, and deobfuscation of code. In general,
identifying similar code functionality or behavior is difficult,
because it involves understanding the semantics of code
fragments [32].

To represent runtime similarity in software, we introduce
the concept of Code Relatives. Code relatives are continuous
or discontinuous code fragments that exhibit similar behavior,
but may be expressed in structurally or even conceptually
different ways. Code fragments that have a characteristic
routine, say a unique linear algebra function, are code rela-
tives due to the fact they execute their functions using similar
operations. They are still code relatives, in spite of differ-
ences in implementation, data structures, or coding style. By
our definition, existing dynamic approaches that detect code
fragments with similar behavior [19, 14] at different levels,
such as output values and sequence of method calls, are all
code relative detection techniques.

In this paper we present our system, DyCLINK, which
detects code relatives with fine granularity. DyCLINK traces
a program’s execution, and constructs a dynamic instruction
graph, which encodes denser behavioral information than
is found in the program’s sequence of method calls or in
its functional I/O. To effectively identify code relatives, we
apply link analysis on the instruction graph, exposing the
program’s core behavior. Specifically, we have developed
a new algorithm, LinkSub, which mitigates the prohibitive
time complexity of subgraph matching in program analysis.
LinkSub treats the dynamic instruction graph as a network,
and ranks the nodes via the PageRank algorithm [28] to
identify the most important ones. The important nodes form
the centroids of the dynamic instruction graphs, which help
in selecting candidate nodes for subgraph matching. The
use of link analysis not only reduces the cost of traditional
graph isomorphism detection, but also produces program
representations independent of how the computations are
expressed in the code.

We choose Java [22] as the exemplary programming lan-
guage in this paper, but our methodology applies to most
high level languages. By analyzing 7 libraries, for which
execution benchmarks are available, and 118 Google Code



Jam projects, we find promising code relatives across the
codebases efficiently. To the best of our knowledge, no exist-
ing subgraph matching algorithm can handle such high order
dynamic instruction graphs. The main contributions in this
paper are:

• We define Code Relatives (code sharing similar dynamic
behavior) and their utility.

• We design and implement the DyCLINK system to
detect code relatives with fine granularity. DyCLINK
uses dynamic instruction graphs for identifying code
relatives.

• The key to our scalability and effectiveness is our use
of link analysis on the dynamic instruction graphs. We
devise the LinkSub algorithm, which efficiently solves
the subgraph isomorphism problem for programs with
thousands of instructions and dependencies.

• We present a highly-accurate method for classifying pro-
grams, by running the K Nearest Neighbors (KNN) [1]
algorithm among code relatives.

2. BACKGROUND
Before discussing the details of DyCLINK, we first define

the key terms used in this paper and discuss some use cases
of code relatives.

2.1 Basic Definitions

• Code clone: We quote the definition from Roy et
al. [37]: “A code fragment CF2 is a clone of another
code fragment CF1 if they are similar by some given def-
inition of similarity.” We express Roy’s et al. definition
as follows. CF1 and CF2 are code clones if:

Sim(CF1, CF2) ≥ thresh (1)

, where Sim is a similarity function and thresh is a
pre-defined threshold.

• Code skeleton: Either a continuous or discontinuous
set of code lines.

• Code relative: An execution of a code skeleton, CS,
generates some behavioral representation, Exec(CS), of
that skeleton. Any behavioral representation, such as
output values, may be used in detecting code relatives.
In DyCLINK, we choose a dynamic instruction graph
as the behavioral representation. Given a Sim and
a thresh, two code skeletons, CS1 and CS2, are code
relatives if Eq. 2 holds.

Sim(Exec(CS1), Exec(CS2)) ≥ thresh (2)

Four types of code clones have been identified [21, 5, 6,
25, 23, 29, 18, 24, 26, 30, 37]. The most advanced one,
“Type 4” [37], represents code fragments that are functionally
similar. These are close to code relatives, however, as per
on the study by Roy et al., Type 4 clone detectors are still
static. This implies that they only approximate program
behavior based on source code. In contrast, code relatives
are programs that exhibit similar real runtime behavior. This
is the reason that we separate code relatives from the four
existing types of code clones.

2.2 Motivation
Detecting similar programs is beneficial in supporting sev-

eral software engineering tasks: helping developers under-
stand and maintain systems [32], identifying code plagia-
rism [30], and enabling API replacement [26]. Although code
clone detection systems can efficiently detect syntactically
similar code fragments, they may still miss some cases for
optimizing software and/or hardware that require informa-
tion about runtime behavior [12]. We know that programs
which have syntactically similar code fragments usually have
similar behavior; however, our hypothesis is that programs
can still have similar behavior even if their code is not alike.

Software clustering and Code search are two domains that
require detecting similarity between programs. Software clus-
tering aims to locate and aggregate programs having similar
code or behavior. The clusters support developers under-
standing code semantics [27, 31], prototyping rapidly [8], and
locating bugs [13]. Code search helps developers determine
whether their codebase contains programs/APIs befitting
their requirements [32]. In general, a code search system
takes program specifications as the input, and returns a list
of programs, ranked by their relevance to the specification.

Software clustering and code search can be based on static
and/or dynamic analysis. Static analysis relies on features
such as usage of APIs to approximate the behavior of a
program. Dynamic analysis identifies traits of executions,
such as input/output values and sequences of method calls
to represent the real behavior. If we can develop a system,
which captures more details and represents program behavior
more effectively, then we can more precisely detect similar
programs in support of both software clustering and code
search. Based on the use cases above, instead of identifying
static code clones, we have designed a system to detect
dynamic Code Relatives, which represent similar runtime
behavior between programs.

Our approach, DyCLINK, which will be discussed in § 3,
detects code relatives with fine granularity at the instruc-
tion level. We will answer the following research questions
regarding DyCLINK in this paper:

• RQ1: Can DyCLINK identify a greater number of
similar programs than the state-of-the art code clone
detection system?

• RQ2: Are the code relatives detected by DyCLINK
more precise for classifying relevant programs than are
the clones found by the state-of-the-art system?

3. DYNAMIC CODE RELATIVE DETECTION
BY LINK ANALYSIS

3.1 System Architecture
The high-level procedure of DyCLINK is shown in Fig-

ure 1. DyCLINK has two major components, Graph Con-
struction and Subgraph Crawling. The graph constructor
first instruments input methods and inserts an instruction
recorder at the beginning of each one. In this paper, we have
selected Java [22] as our target language, so the instructions
recorded by DyCLINK are Java bytecodes. If the instruction
invokes another method, the recorder recursively collects the
graph of the invoked method. Immediately before returning
from the current method, the graph constructor merges all
recorded instructions, dependencies, and recursively-collected
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Figure 1: The high-level architecture of DyCLINK including instruction instrumentation, graph construction, graph compacting,
link analysis and final hot zone (subgraph) identification.

graphs to construct a full, representative graph of the current
method. Once all the representative graphs are generated for
a given codebase, the data is passed to the subgraph crawling
module.

The search for code segments with high similarity, then, can
be modeled as the search for isomorphic subgraphs of their
representative instruction graphs (identified by Garey et al.
as an NP-Complete problem [16]). In this paper, we present
a link analysis-based subgraph isomorphism solver, LinkSub,
which can solve this problem in O(Vta ∗ (log Vta + V 2

te +Ete))
time, where Vta represents the vertex number in a “target”
method (a haystack) and Vte and Ete represent the vertex and
edge numbers in a “testing” method (a collection of needles),
respectively. The details of this algorithm are discussed in
§ 3.5.

3.2 Java Instructions
Before describing the technical details of DyCLINK, we

must first discuss the Java instructions (bytecodes) [22],
which are fundamental in constructing the representative
graph of a program. The source code of a Java program
is first compiled into a sequence of Java instructions. The
JVM reads each instruction into its stack machine and then
performs computations based on the specifications of these
instructions. Take the instruction iadd in the mult() method
in Figure 2 as an example. The iadd in line 9 takes two
integer values, loaded by iload 3 and iload 1 onto the
JVM’s stack, adds them, and puts the sum back onto the
stack.
DyCLINK shadows the JVM’s stack machine to derive

the dependencies between instructions. In the iadd example,
the iadd instruction depends on iload 3 and iload 1. In
addition to dependencies based on the Java specification,
DyCLINK also considers read-write and control dependen-
cies between instructions. Reader instructions read variable
values written by writer instructions, and control instruc-
tions decide which instructions are executed after themselves.
Table 1 lists the pertinent instructions of these three types.

Reader iload, lload, fload, dload, aload, iinc
Writer istore, lstore, fstore, dstore, astore, iinc
Control if_icmpeq, if_icmpne, if_icmplt,

if_icmpge, if_icmpgt, if_icmple,
if_acmpeq, if_acmpne, ifeq, ifne, iflt,
ifge, ifgt, ifle, ifnull, ifnonnull, goto,
tableswitch, lookupswitch

Method invokevirtual, invokestatic, invokespe-

cial, invokeinterface

Table 1: Reader, writer, control and method instructions
(bytecodes) in the Java Virtual Machine.

DyCLINK observes the three types of instructions men-
tioned above to compute dependencies. However, when a

caller method invokes the callee method, DyCLINK merges
the callee’s graph into the caller’s, instead of just recording
the instruction dependencies. More technical details about
the graph merging between methods is discussed in § 3.4.2.
One other method invocation instruction, invokedynamic,
is rarely used by developers directly and will not be dis-
cussed further in this paper, though we mention it here for
completeness.

1 int mult(int a,int b) {
2 int ret = 0;
3 for(int i = 0;i < b;i++) {
4 ret += a;
5 }
6 return ret;
7 }

(a) The mult() method

1 mult(II)I
2 iconst_0
3 istore 3
4 iconst_0
5 istore 4
6 goto 12
7 iload 3
8 iload 1
9 iadd
10 istore 3
11 iinc 4 1
12 iload 4
13 iload 2
14 if_icmplt 7
15 iload 3
16 ireturn

(b) The mult() instruc-
tions. (c) The mult graph.

Figure 2: The exemplary method mult(), its corresponding
instructions (bytecodes), and its representative graph.

3.3 Graph definition
A labeled graph, G, is defined [33] as:

G = {V,E, lV , lE} (3)

where V represents a set of nodes (vertices) in a graph and
E ⊆ V × V . lV and lE are two mapping functions, which
project a vertex and an edge to a possible vertex label and
edge label, respectively. Based on this definition of labeled
graphs in general, we define a dynamic instruction graph
Gdig to be a directed, weighed, labeled graph of the following
form:

Gdig = {Vinst, Edep, lVinst , lEdep} (4)

Each vertex v ∈ Vinst is derived from an instruction in the
input program and can be mapped to that instruction’s byte-
code by the function lVinst . Each edge ei,j ∈ Edep = (vi, vj),



where vi, vj ∈ Vinst are derived from instructions which have
at least one type of dependency between them. The label for
such an edge is a tuple consisting of the dependency type(s)
and their weighted frequencies over the two nodes. More
precisely:

lEdep(vi, vj) = (depi→j , wFreq(depi→j , i, j)) (5)

where depi→j is the set of dependency types between vi and
vj , and wFreq() maps a set of dependency types to their
weighted frequencies over two instructions. In DyCLINK, we
define three types of dependencies {depinst, depwrite, depcontrol},
each of which has its own individual weight, which is config-
urable. The definition of the weighted frequency between vi
and vj is as follows:

wFreq(depi→j , i, j) =∑
dep∈depi→j

dep.weight ∗ freq(dep, Vinsti , Vinstj )

where freq(dep, Vinsti , Vinstj ) records how many times dep
occurs between the instructions corresponding to Vinsti and
Vinstj during the execution of their containing method.

3.4 Graph Construction
Graph construction in DyCLINK is similar to that in [39].

Again, we use the mult() method in Figure 2 as an example.
Each bytecode instruction from Figure 2b has a corresponding
vertex in Figure 2c. The details of each edge (dependency)
type are:

• depinst: An instructional dependency defined by the
JVM Specification [22].

• depwrite: A data dependency between the writer instruc-
tion and the corresponding reader instruction. This
type of dependency is computed by DyCLINK. All
reader and writer instructions are recorded in Table 1.
We do not include read/write instructions for array
elements, because they are modeled as depinst.

• depcontrol: A control dependency, as defined by Dy-
CLINK, is different from the traditional definition,
which records all instructions that fall under the label
pointed to by the control instruction. Instead, Dy-
CLINK computes the transitional probability from a
control instruction to each of its successors, so every
instruction executed after a control instruction is con-
sidered to be one of its dependents, up until the next
control instruction appears.

To record executed instructions in a method and gener-
ate the corresponding graph representation, we develop a
method recorder within DyCLINK. This method recorder
also computes each type of dependency between instructions.
DyCLINK injects this method recorder at the beginning of
each method, which requires Java bytecode instrumentation.
We implement our instrumenter upon the ASM framework
[3]. DyCLINK’s method recorder dumps a representative
graph (Gdig) of the current method right before the return
of a method.

3.4.1 Instruction-to-graph Construction
For demonstrating how DyCLINK constructs the Gdig for

a method, we keep using the mult() method in Figure 2 as

an example. We use {a = 8, b = 1} as the input arguments
to drive the mult() method. We will use the line number of
each instruction as the ID for it. Take iload 3 with ID 7 as
an example. This instruction will load the integer value of
the #3 local variable on the stack. When this instruction
is executed, the control instruction is if_icmplt 7 with
ID 14, so the dependency depcontrol(14, 7) is constructed.
Because iload 3 is a reader instruction that loads the #3
local variable, DyCLINK checks the latest writer instruction
of the #3 local variable, which is istore 3 with ID 3. The
dependency depwrite(3, 7) is constructed. iadd with ID 9 has
two depinst from iload 3 and iload 1, because it consumes
two values based on the JVM specification.

Based on this concept, the Gdig of the mult() method can
be constructed as Figure 2c depicts. Each instruction is a
vertex in the graph numbered by the instruction ID. Each
edge is a dependency between two instructions. The number
for each edge is its wFreq(depi→j , i, j). In this paper, we set
the weighted number to 1 for each dependency type.

3.4.2 Graph Merging: Instruction Set Integration be-
tween Caller and Callee Methods

When a method (caller) invokes another method (callee),
DyCLINK retrieves the information of the callee graph and
store it in the caller. The example in Figure 3 demonstrates
the concept of how DyCLINK tracks the information of
the callee method. The caller, methodA, invokes a callee,
methodB. Before the end of a method, the method recorder
serializes the representative graph (Gdig), and registers the
graph ID of the current method in a global register, which
tracks every method graph in the execution session. After
invoking methodB, methodA uses the recorder to retrieve the
graph ID of methodB from the global register and store this
information for merging purposes. The final Gdig of methodA
contains its own method and the Gdig from methodB.

The goal for merging is to construct the full graph of the
method that contains its own instructions and all instructions
from its callee methods. Because DyCLINK records the
execution frequency of each callee method for the caller,
connections between instructions across methods can be
stored for crawling inter-method code relatives.
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Figure 3: Graph merging of caller and callee methods.

3.4.3 Graph Compacting
Once graph merging is completed for a method, DyCLINK

compacts the Gdigs. For each caller method, DyCLINK
keeps information of each callee method. However, if a callee
method is invoked thousands of times, the graph size of the
caller graph will be tremendous, because each method exe-
cution generates a Gdig. Recording each callee Gdig hinders
the final analysis of graph similarity. Furthermore, what we
care about is the execution frequency of the same type of



Gdigs from a callee method. How to efficiently classify Gdigs
from the same method is a problem that we need to tackle.

We propose to group all Gdigs derived from the same callee
method by their vertex numbers and edge numbers. In a
group, all Gdigs have the same number of vertices and edges.
When DyCLINK tries to record the information of a callee
method in the caller, it first checks if the corresponding group
already exists in the caller by comparing the vertex and edge
numbers of the current callee. If it does not exist, a new
group is created and the current callee Gdig becomes the
representative of this group. If it exists, DyCLINK retrieves
the representative of this group and increases the execution
frequency of this representative. Our assumption is that
if the Gdigs from the same callee method have the same
numbers of vertex and edge, they share the same features
and should be in the same group.

3.5 LinkSub: Link-analysis-based Subgraph
Isomorphism Algorithm

After the graph construction is done, DyCLINK starts to
detect potential code relatives in the codebase. DyCLINK
enumerates every pair of methods in the codebase: given n
methods, there are at most n ∗ (n− 1) method pairs. Both
methods in a method pair play as the target method and the
the testing one exactly once. Since the target and testing
methods can both be represented as graphs, we can model our
code relative detection as a subgraph isomorphism problem:

Problem 1. Given two graphs, G1 = (V,E), G2 = (V ′, E′),
does G1 have a subgraph G1s

∼= G2 where G1s = (Vs, Es) :
Vs ⊆ V,Es = E ∩ Vs × Vs?

The subgraph isomorphism problem can also be called sub-
graph matching. There are two types of subgraph matching:
exact and inexact [36]. For exact subgraph matching, G1

needs to have a subgraph that is completely the same as
G2. Several algorithms, such as Ullman [38] and VF2 [35],
have been developed to solve the exact subgraph matching
problem. DyCLINK attempts to find similar subgraphs in
the target method, so these algorithms are not suitable.

Inexact subgraph matching is even more complex, because
G1 needs to have similar but not exactly the same subgraph
to G2. Calculating graph similarity efficiently and precisely
to support inexact graph matching is an active topic. Some
graph kernels [7, 40] attempt to represent graphs by some of
their features and then calculate the graph similarity. There
are two problems with using these graph kernels:

1. Memory: Most of these graph kernels require generating
the adjacency matrix of a graph. However, because the
vertex numbers for Gdigss can be large (10K+), the
memory requirement can be huge.

2. Time: The time complexity to solve the inexact graph
isomorphism problem for most graph kernels is at least
O(V 4). If we want to search for similar subgraphs in
G1, we need to enumerate every possible combination
of vertices in G1 for G2 to match, which leads to the
unacceptable time complexity O(

(
V1
V2

)
∗ V 4

2 ). V1 and V2

denote the vertex numbers in G1 and G2, respectively.

To solve our subgraph matching problem in Gdig efficiently,
we devise a Link-analysis-based Subgraph Isomorphism Algo-
rithm, LinkSub. The conceptual procedure of LinkSub is
depicted in Algorithm 1. Each subroutine of LinkSub will
be discussed in this section.

LinkSub models an instruction graph of a method as a
network, and utilizes the power of link analysis [9], such as
PageRank [28], to rank each vertex in the network. The
vertex with the highest rank can be identified as the most im-
portant one in a Gdig. This vertex is called the centroid of a
testing graph, Gte

dig, even though this vertex is not necessarily
in the center of a graph. All required information regarding
Gte

dig for subgraph matching, such as the instruction distribu-
tion and the centroid, is computed in the profileGraph step.
We list all instructions of the target graph, Gta

dig, in sequence
by the feature defined by the developer in the sequence step
to facilitate locating candidate subgraphs. In this paper,
we use the execution time stamp of each instruction as the
feature to list instructions in Gta

dig. The centroid of Gte
dig is

used to locate candidate subgraphs in Gta
dig, in the locate-

Candidates step. The centroid vertex (instruction) of the
method can also help identify the behavior of this method,
which will be discussed in §4.

Data: The target graph Gta
dig and the test graph Gte

dig

Result: A list of subgraphs in Gta
dig, HotZones, which

are similar to Gte
dig

profilete = profileGraph(Gte
dig);

seqta = sequence(Gta
dig);

assignedta = locateCandidates(seqta, profilete);
HotZones = ∅ ;
for sub in assignedta do

SD = staticDist(SV(sub), profilete.SV );
if SD > thresholdstat then

continue ;
end

DV sub
target = LinkAnalysis(sub);

dynSim = calSimilarity(DV sub
target, profilete.DV );

if dynSim > thresholddyn then
HotZones ∪ sub ;

end

end
return HotZones;
Algorithm 1: Procedure of the LinkSub algorithm

Executing PageRank on every candidate subgraph in Gta
dig

can affect the performance of DyCLINK, if the candidate
number is large. We designed a static filter (staticDist)
similar to [30], which computes the Euclidean distance be-
tween the distribution vectors of instructions from Gte

dig and

a candidate subgraph from the Gta
dig. This distribution vector

of instructions is represented as SV (Gdig). If the distance is
higher than the static threshold (thresholdstat) defined by
the user, then this pair of subgraph matching is rejected.

If a candidate subgraph from the Gta
dig passes the examina-

tion of the static filter, DyCLINK applies its Link Analysis
to this candidate. DyCLINK flattens and sorts both the
Gte

dig and the current subgraph from the Gta
dig to a dynamic

vector based on the PageRank of each vertex. This dynamic
vector is represented as DV (Gdig) and its length is always
equal to the vertex number of Gdig. We use the Jaro-Winkler
Distance [10] to measure the similarity of two DV s, which
represents the similarity between two Gdigs, in the calSimi-

larity step. Jaro-Winkler has better tolerance of element
swapping in the array than Edit Distance and is configurable
to boost similarity if the first few elements in two strings or
arrays are the same. These two features are beneficial for
DyCLINK, because the length of DV (Gdig) is usually long,



which implies frequent instruction swapping, and what we
want to detect is the behavior of methods, which are driven
by the top ranked instructions in DV (Gdig). If the similarity
between the subgraph from the Gta

dig and the Gte
dig is higher

than the dynamic threshold (thresholddyn), DyCLINK iden-
tifies this subgraph as being isomorphic to the Gte

dig. We

refer to the subgraph similar to the Gte
dig as a Code Relative

(Hot Zone) in the Gta
dig.

4. EVALUATION
For evaluating the efficacy of DyCLINK, we design two

large-scale experiments: Code relative detection and K Near-
est Neighbor (KNN) based software classification. In the
first experiment, we compare code relatives detected by Dy-
CLINK with code clones identified by the state-of-the-art
system in 7 Java libraries for which execution benchmarks
were available. One of several promising cases detected by
DyCLINK, which will be discussed in §4.2, show that the
programs can have similar behavior, even their source code
looks different. To demonstrate the capability of DyCLINK
in searching for similar behavior among programs, we collect
171 projects from 4 different problem sets in the Google
Code Jam competition [17]. The real label for each program
is the problem set it aims to solve. After computing the
similarity between each program, we use the labels of the
K nearest neighbors of the program to predict its label. If
the predicted label is the same with the real label, we mark
it as a successful classification. The technical details and
the results of the KNN-based experiment will be revealed in
§4.3.

To the best of our knowledge, DyCLINK is the first system
to detect code relatives at instruction level. However, we
decide to use Deckard [18, 15] 1, the state-of-the-art system,
which detects code clones in the complex data structure,
AST, as our baseline system. After contacting the authors
of Deckard, we found that the version of Deckard with
PDG analysis [15] has not been released. So we chose the
latest version of [18], which has been released on GitHub
[11].

4.1 System Settings
Because DyCLINK is instruction-based and Deckard

is token-based, we convert both instruction number and
token number to the same basis, Lines Of Code (LOC). Our
estimation is that there are roughly 4.5 instructions per
LOC and 9 tokens per LOC. It’s hard to set an equivalent
similarity setting for two different systems that have different
definitions of similarity. Thus, we follow the default similarity
thresholds for both systems: 0.82 for DyCLINK and 0.95
for Deckard. We attempt to loose the similarity threshold
for Deckard to 0.85, but the false positive rate grows a
lot. Because we want to detect larger code relatives that can
help developers refactor their software in §4.2, we set the
minimum LOC of a code relative/clone as 30. In the KNN-
based experiment for classifying software behavior in §4.3,
we have two similarity threshold settings for both systems:
{0.82, 0.9} for DyCLINK and {0.9, 0.95} for Deckard.

1
Deckard uses the grammar of Java 1.4, which was outdated in

2008, for its AST generation. To provide a more current analysis, we
extended the Java grammar files of Deckard to be compliant with
Java 7 standards. This resulted in a 51.8% reduction in skipped code
for the matrix libraries and 100% reduction for the Code Jam projects.

Because DyCLINK is a dynamic approach that needs
input generators, we utilize Java Matrix Benchmark [20] to
generate inputs for programs in the matrix libraries. For the
encryption libraries, we used their testing suites as the drivers
to generate inputs. We set a three-minute threshold (which
is configurable by users) for each test case to execute. For
the KNN-based experiment, we use the input files provided
by Google to drive each project.

4.2 Code Relative Detection
We applied DyCLINK and Deckard to 7 Java libraries.

We then compared the code relatives detected by DyCLINK
with the code clones identified by Deckard. Among the 7
libraries we chose, Colt, Jama, Commons Math (CMath),
ojAlgo and EJML are for matrix manipulation, while Plexus
and Java codecs (Jcodecs) are for encryption. We permute
and analyze every library pair to detect code clones and
relatives between libraries. This leads to 21 library compar-
isons. The number of method graphs (Gdig) in these libraries
ranges from 23 to 954 (N.B. one method may have multiple
graphs depending on our randomly generated inputs). The
total number of graph comparisons conducted by DyCLINK
among these libraries is 2, 759, 332. For each comparison,
DyCLINK executes subgraph matching to detect code rel-
atives. The total number of prospective subgraph matches
conducted by DyCLINK is 163, 962, 307.

With the LinkSub algorithm, DyCLINK completes all
library comparisons in an acceptable amount of time, even
though the order of most instruction graphs is high. The
total time to compare any two libraries ranged up to 18 hours.
However, all of the observed comparisons that required long
computation times (8−18 hours) were from the EJML library.
The other comparisons completed within two hours. The
experiments conducted by DyCLINK were on c4.8xlarge
instances of Amazon EC2 [2].

4.2.1 Analysis of Code Relatives
All of the code relatives and code clones detected by Dy-

CLINK and Deckard, respectively, in our experiment are
summarized into two categories “verified” and “dubious”.
There is no established methodology for automatically de-
termining the validity of detected clones. However, we per-
formed a manual inspection of the results. Among 87 code
relatives detected by DyCLINK, 73 were determined to be
valid. 12 out of the 14 dubious code relatives were detected
between two particular algorithms common to multiple li-
braries. Deckard detected 37 code clones, where 36 were
valid, but half of those were from one particular pair of
libraries (ojAlgo and Jama) from which, one of ojAlgo’s
packages is clearly a direct adaptation of Jama.

The total number of valid code relatives/clones detected by
both system was 96. Some methods that are both syntacti-
cally and behaviorally similar were detected by both systems.
There were 60 code relatives detected only by DyCLINK
and 23 code clones detected only by Deckard. However,
DyCLINK did not have the chance to evaluate 20 of the
Deckard-only clones, because the execution benchmark did
not generate input that would cause that code to execute.
This is not an algorithmic problem.

We now discuss one of several promising code relatives
detected by DyCLINK, which can be seen in Table 2. The
table records the information for both of the methods and
their important instructions. Because DyCLINK merges



the callee graph into the caller, the important instruction
may locate in the caller or any of its callees. The field Inst.
Method records the location of the important instruction
and the field Inst. type records the instruction type. Inst.
line no. records the line number of the instruction. Inst.
rank contains two values: the ranking of the instruction
in the method and the PageRank value of this instruction.
Line Trace records the line number of each method in the
execution trace.

Take Matrix.solve of Jama as an example. Matrix.solve
first initializes an instance of QRDecomposition and then calls
QRDecomposition.solve. These two methods contribute the
computation of Matrix.solve. The important instruction
of Matrix.solve is located within itself, but in QRDecompo-

sition.solve. The value on the left hand side of → records
where the caller method invokes the callee. In this case,
Matrix.solve invokes QRDecomposition.solve on line 816
(line 3 in Figure 4b), and the important instruction is lo-
cated on line 197 in QRDecomposition.solve. There are
more promising code relatives detected only by DyCLINK
such as Colt’s tred2 method in EigenvalueDecomposition

and Commons math’s transform method in TriDiagonal-

Transformer. Because of the space limitation, we do not
reveal every code relative.

DyCLINK captures some code relatives where true similar-
ity is dubious. Most dubious cases are between the Singular
Value Decomposition (svd) algorithm and the Eigenvalue
Decomposition algorithm (eig). These two algorithms are
different but related: svd can use eid as the sub-routine.
DyCLINK aims to detect code relatives with similar behav-
ior but not necessarily similar overall functionalities. Two
reasons cause this code relative to be detected: highly similar
distributions of instructions and similar important instruc-
tions, which boost the similarity between them.

4.2.2 Recall Comparison
Here we define the terms that will be used in this section.

Here, system x can either be DyCLINK or Deckard, and
type refers to code relatives or code clones, respectively.

• V (system x): Represents the number of the valid types
detected by system x.

• Total Case Number, (Total CN): Represents the sum
of the valid types detected by both systems:

TotalCN = |V (DyCLINK) ∪ V (Deckard)| (6)

• R(system x): Represents the recall of valid types de-
tected by system x:

R(system x) = V (system x)/TotalCN (7)

We only list the library comparisons for which at least
one system can detect a valid type in Table 3. Each column,
R(system x), contains two values: i%(u%). i% represents
system x’s recall with respect to the intersection of types
found by both systems. Because DyCLINK is a dynamic
approach, it needs input in order to execute any methods.
However, some methods in a library may not be covered,
if the input generator cannot produce corresponding input.
Because the Java Matrix Benchmark only generated symmet-
ric matrices for the eigenvalue decomposers in each library,
methods for non-symmetric matrices were not touched by Dy-
CLINK. This is not an algorithmic problem with DyCLINK,

but is symptomatic of a larger problem of generating inputs
with high coverage of methods in a library. u% represents
system x’s recall with respect to the union of types found by
both systems. This contain all valid types in all the libraries.

Table 3: The recall comparison of the clones detected by
DyCLINK and Deckard with the setting LOC ≥ 30.

Lib1 Lib2 R(DyCLINK) R(Deckard) TotalCN

Colt EJML 100%(100%) 0%(0%) 11(11)
Colt CMath 100%(40%) 0%(60%) 2(5)
Colt Jama 100%(71%) 60%(71%) 5(7)
Colt ojAlgo 100%(71%) 60%(71%) 5(7)
CMath Jama 100%(67%) 0%(33%) 4(6)
CMath ojAlgo 75%(50%) 25%(50%) 4(6)
CMath EJML 100%(100%) 0%(0%) 4(4)
Jama ojAlgo 86%(52%) 64%(78%) 14(23)
Jama EJML 100%(100%) 0%(0%) 13(13)
ojAlgo EJML 100%(100%) 0%(0%) 12(12)
Jcodecs Plexus 100%(100%) 0%(0%) 2(2)

Table 3 shows that DyCLINK outperforms Deckard in
recall on almost all library comparisons, even when we choose
u%, which is disadvantageous to DyCLINK. If we exclude
the problem of input generation, the recall of DyCLINK is
100% for the large majority of library comparisons. Based on
our experiment result, we have positive answer for RQ1 in
§2.2: DyCLINK is able to identify more syntactically and/or
behaviorally similar programs than the state-of-the-art code
clone detector.

4.3 KNN-based Software Classification
In this experiment, we prove that the use of code relatives

gives DyCLINK a strong advantage over Deckard in pro-
gram classification and search tasks. To collect programs
with ground-truth classification for our KNN-based experi-
ment, we chose the Google Code Jam competition as our code
repository [17]. Google Code Jam is an annual online coding
competition hosted by Google. Participants submit their
projects’ source code online, and Google determines whether
they correctly solve a given problem. Since each submission
for the same problem attempts to perform the same task,
we use the problem name as a ground-truth classification for
the submitted projects.

4.3.1 KNN Implementation
The high level procedure of our KNN-based software classi-

fication algorithm can be read in Algorithm 2. We first label
each program with the name of the problem that it attempts
to solve in the realLabel step. For example, if a project is
submitted for the “Perfect Game” problem set, the real label
of that program is “Perfect Game”. We then compute the
similarity between each program in the computeSim step by
DyCLINK and by Deckard, respectively.

Next, we apply the K-Nearest Neighbors (KNN) classifi-
cation algorithm to predict the label for each method. For
each program, we search for the K other programs that have
the greatest similarity to the current one in the searchKNN

step. Each nearest neighbor program can vote for the current
method by its real label in the vote step. The label voted
by the greatest number of neighbor programs becomes the
predicted label of the current program. In the even of a tie,
we side with the neighbors with the highest sum of similarity
scores.



Table 2: A summary of the code relative between Common maths’s SingularValueDecomposition.<init> and Jama’s
Matrix.solve. This code relative is only detected by DyCLINK.

Library Commons math Jama

Method
org.apache.commons.math3.linear.

SingularValueDecomposition.<init>
Jama.Matrix.solve

Inst. Method
org.apache.commons.math3.linear.

SingularValueDecomposition.<init>
Jama.QRDecomposition.solve

Inst. type dadd dadd

Inst. line no. 226 816→ 197
Inst. rank 1(0.017) 1(0.019)

Line trace
SingularValueDecomposition.<init>:

[178− 295]

Matrix.solve:[815]
QRDecomposition.<init>:[50− 85]
QRDecomposition.solve:[181− 216]

LOC 57 66

1 public SingularValueDecomposition(final RealMatrix
matrix) {

2 .
3 .
4 // Generate U.
5 for (int j = nct; j < n; j++) {
6 for (int i = 0; i < m; i++) {
7 U[i][j] = 0;
8 }
9 U[j][j] = 1;
10 }
11 for (int k = nct - 1; k >= 0; k--) {
12 if (singularValues[k] != 0) {
13 for (int j = k + 1; j < n; j++) {
14 double t = 0;
15 for (int i = k; i < m; i++) {
16 // Centroid: 226
17 t += U[i][k] * U[i][j];
18 }
19 t = -t / U[k][k];
20 for (int i = k; i < m; i++) {
21 U[i][j] += t * U[i][k];
22 }
23 }
24 .
25 .
26 }
27
28 // Generate V.
29 for (int k = n - 1; k >= 0; k--) {
30 if (k < nrt &&
31 e[k] != 0) {
32 for (int j = k + 1; j < n; j++) {
33 double t = 0;
34 for (int i = k + 1; i < n; i++) {
35 //3rd Inst: 255
36 t += V[i][k] * V[i][j];
37 }
38 t = -t / V[k + 1][k];
39 for (int i = k + 1; i < n; i++) {
40 V[i][j] += t * V[i][k];
41 }
42 }
43 }
44 .
45 .
46 }
47 }

(a) Commons maths’s SingularValueDecomposition.<init>

1 public Matrix solve (Matrix B) {
2 return (m == n ? (new LUDecomposition(this)).solve

(B) :
3 (new QRDecomposition(this)).solve(B));
4 }
5
6 public QRDecomposition (Matrix A) {
7 .
8 .
9 for (int k = 0; k < n; k++) {
10 .
11 .
12 if (nrm != 0.0) {
13 .
14 .
15 for (int j = k+1; j < n; j++) {
16 double s = 0.0;
17 for (int i = k; i < m; i++) {
18 //2nd Inst: 77
19 s += QR[i][k]*QR[i][j];
20 }
21 s = -s/QR[k][k];
22 for (int i = k; i < m; i++) {
23 QR[i][j] += s*QR[i][k];
24 }
25 }
26 }
27 Rdiag[k] = -nrm;
28 }
29 }
30
31 public Matrix solve (Matrix B) {
32 .
33 .
34 for (int k = 0; k < n; k++) {
35 for (int j = 0; j < nx; j++) {
36 double s = 0.0;
37 for (int i = k; i < m; i++) {
38 // Centroid: 197
39 s += QR[i][k]*X[i][j];
40 }
41 s = -s/QR[k][k];
42 for (int i = k; i < m; i++) {
43 X[i][j] += s*QR[i][k];
44 }
45 }
46 }
47 .
48 .
49 }

(b) Jama’s Matrix.solve

Figure 4: A partial comparison of the code for the case in Table 2. The code around the important instructions in
SingularValueDecomposition.<init> from Commons math and Matrix.solve from Jama library shows the similar behavior,
which aligns with the detection result of DyCLINK.



Data: The similarity computation algorithm SimAlg,
the set of subject programs to be classified
Programs and the number of the neighbors K

Result: The precision of SimAlg
realLabel(Programs);
matrixsim = computeSim(SimAlg, Programs);
succ = 0;
for p in Programs do

neighbors = searchKNN(p, matrixsim, K);
p.predictedLabel = vote(neighbors);
if p.predictedLabel = p.realLabel then

succ = succ + 1;
end

end
precision = succ/Programs.size;
return precision;

Algorithm 2: Procedure of the KNN-based software label
classification algorithm

Table 4: A summary of the code subjects from the Google
Code Jam competition for classifying software.

Year Problem Set Abbrev. Proj. # of Graphs

2011 Irregular Cake I 48(30) 762
2012 Perfect Game P 48(34) 295
2013 Cheaters C 29(21) 612
2014 Magical Tour M 46(33) 479

Finally, we compare the predicted label for a program
against its real behavioral label. If the predicted label is
the same with the real label, we mark the prediction of this
method as successful. We define the precision of a similar-
ity computation algorithm (SimAlg) as the percentage of
program it labels correctly, which can be read in Algorithm
2. We selected 4 problem sets, one per year between 2011
and 2014, which have totally 171 projects. The information
of these problems sets and the number of projects can be
read in Table 4. The participants of the Google Code Jam
can choose to implement their projects to either access the
input file provided by Google automatically or read the input
from the command line interactively. The Proj. column
in Table 4 records two values: the first one for the number
of total projects and the second one for the number of the
non-interactive projects. We only selected the latter, which
facilitate us to execute every project automatically. The
total number of the non-interactive projects is 118. We then
applied Algorithm 2 with both DyCLINK and Deckard to
these methods to calculate the classification precision. The
parameter settings for both systems can refer to §4.1. We
exclude some utility programs, such as reading a file that
are used across different years, which bias the experiment.
For these 118 projects, DyCLINK generated 2, 148 method
graphs at instruction level (Gdig). For computing the similar-
ity between each method, DyCLINK conducted 4, 509, 574
method comparisons with 130, 796, 923 subgraph matching.

4.3.2 Analysis of Software Behavior Classification
For observing the efficacy of both systems under single

and multiple neighbors, we set K = 1 and K = 5. Also,
we wanted to observe the precision of classifying relevant
programs under different program sizes, so we had 4 different

LOC thresholds, {10, 15, 20, 30}. Only programs that pass
the threshold setting including LOC and similarity were
considered as neighbors of the current program.
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Figure 5: The KNN-based program classification. The sim-
ilarity between programs is measured by DyCLINK and
Deckard.

The advantage of DyCLINK to detect programs with sim-
ilar behavior can be seen in Figure 5. For each parameter
setting with different thresholds of LOC and similarity, Dy-
CLINK achieves 96% precision in average, while Deckard’s
precision is 61% on average. When the threshold of LOC is
high, Deckard may detect clones out of method boundaries,
which can affect its classification capability. DyCLINK has
better performance with K = 1 than with K = 5. This re-
veals that DyCLINK is able to precisely search for and rank
programs with the most similar behavior. The first search
result is often the most relevant. Moreover, if the thresholds
of LOC and similarity are high (LOC= 30 and similarity
threshold = 0.9), DyCLINK can even achieve 100% precision.
In fact, we also tried K = 20 with LOC = 30, but under such
high LOC threshold, each system did not report too many
neighbors for programs. The result was about the same with
K = 5. Our software classification result provides a strong
support for RQ2: DyCLINK is more precise to search for
relevant programs than the code clone detector.

Based on programs with similar behavior (code relatives)
detected by DyCLINK, we can cluster projects. Figure 6
shows the clustering matrix based on one of our KNN-based
classification result with K = 5, LOC = 10 and similarity
threshold = 0.9. Each element on both axes of the matrix
represents a project indexed by the abbreviation of the prob-
lem set it belongs to and the project ID. The abbreviation
of each problem set can be read in Table 4. We sort projects
by their project indices. Only projects that have at least one
code relative with another project are recorded in the matrix.
The color of each cell represents the relevance between the ith
project and the jth project (the darker, the higher), where
i and j represent the row and column in the matrix. The
project relevance is the number of code relatives that two
projects share. Each block on the matrix forms a Software
Community, which fits in the problem sets that these projects
aim to solve. The result of our KNN-based experiment shows



that DyCLINK is capable to detect programs having similar
behavior and then cluster them for further usage such as
code search.
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Figure 6: The software community based on code relatives de-
tected by DyCLINK. The darker color in the cell represents
higher number of code relatives shared by two projects.

In addition to Deckard, we attempt to follow the func-
tional equivalence approach [19], which clusters C programs
based on functional I/O, in Java. However, after conducting
preliminary experiments, we find two non-trivial problems
due to the nature of object-oriented language that hinder
us from executing such functional cluster analysis: 1. If the
input parameter of a program is an interface that is not
instantiate-able, how to generate valid input instance for
it? 2. If output values of programs are instances instanti-
ated from different classes, how to effectively compare them?
Solving these two problems can be a direction for us to work
on in the future.

5. RELATED WORK
We survey relevant publications to code relative as follows.
Code Clone Detection Most code clone detection sys-

tems parse a program into an intermediate representation
(IR) for computing similarity with other programs. The
time complexity of similarity computation will increase if the
structure of IR is complex such as a tree and a graph [6, 18,
25, 24, 26, 30], but more structural and semantic information
about a code segment can be encoded. Program Depen-
dence Graph (PDG) is a widely used graph for programs.
Komondoor and Horwitz [24] generate PDGs for C programs,
and then apply program slicing techniques to detect isomor-
phic subgraphs. The approach designed by Krinke [26] starts
to detect isomorphic subgraphs with maximum size k after
generating PDGs of programs. The granularity of Krinke’s
PDG is finer than the traditional one: each vertex roughly
maps to a node in an AST. The approach proposed by Gabel
et al. [15] is a combination of AST and graph. It generates
PDG of a method, maps that PDG back to an AST and then
uses Deckard to detect clones. GPLAG invented by Liu
et al. [30] determines when it is worthwhile to invoke the
subgraph matching algorithm between two PDGs using two
statistic filters. The time limit in their subgraph matching
algorithm may miss some larger clones.

Compared with these graph-based approaches that identify
static code clones, DyCLINK detects the similar dynamic
behavior of programs (code relatives). Furthermore, because
DyCLINK is instruction-based, which has finer granularity
than these approaches, DyCLINK can explore more behavior
patterns in the codebase. With the LinkSub algorithm,
DyCLINK can even process PDGs with large size that most
graph-based approaches cannot handle in timely fashion.

Software Behavior Detection In addition to identify
code clones, several approaches detect behavior of software
statically or dynamically. Demme and Sethumadhavan [12]
identifies programs that react similarly to the code opti-
mization. Jiang and Su [19] drive programs by randomly
generated input and then observe their output values. The
programs having similar outputs are identified as functional
equivalence. Egele et al. [14] propose to execute functions
under different environment settings. The runtime features
of these functions, such as system calls, are collected for
computing the similarity between functions. McMillan et
al. [32] computes the similarity between applications based
on their API usage. Their approach helps developers search
relevant programs to prototype their current projects rapidly.
Nguyen and Nguyen develop GraLang [34], which express
the API usage in the programs as graphs to suggest APIs
to developers. Yang et al. [41] abstracts the behavior of the
Android app by the usage of security-sensitive APIs. This
type of security behavior can be used to detect malicious
apps under different context such as time. Avdiienko et al.
[4] characterize the behavior of the Android app as the usage
of the sensitive data. They then apply the data analysis
technique to track and detect apps with abnormal behavior.
DyCLINK also aims to detect similar behavior between

programs. Most work in this category abstracts the behavior
of a program at different levels. Since DyCLINK works at
instruction level, it may expose program behavior in more
details. Integrating DyCLINK with these systems to support
software engineering tasks, such as code search and malware
detection, can be our future work.

6. CONCLUSION
In this paper, we presented a novel system, DyCLINK,

which can dynamically detect code relatives among meth-
ods at the instruction level. A code relative represents a
pair of code skeletons having similar runtime behavior with
or without the same implementation. DyCLINK converts
the execution trace of a method into an instruction depen-
dency graph at runtime. We devised a Link Analysis based
subgraph isomorphism algorithm, LinkSub, which can detect
subgraph matches among thousands of instructions efficiently.
In our KNN-based code classification experiment, DyCLINK
detected and searched for more neighbor programs having
similar behavior precisely than a state-of-the-art code clone
detector.
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