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Abstract

With the widespread use of mobile systems, there is a growing
demand for apps that can enable users to collaboratively use
multiple mobile systems, including hardware device features
such as cameras, displays, speakers, microphones, sensors, and
input. We present M2, a system for multi-mobile computing by
enabling remote sharing and combining of devices across multiple
mobile systems. M2 leverages higher-level device abstractions
and encoding and decoding hardware in mobile systems to define
a cross-platform interface for remote device sharing to operate
seamlessly across heterogeneous mobile hardware and software.
M2 can be used to build new multi-mobile apps as well as make
existing unmodified apps multi-mobile aware through the use of
fused devices, which transparently combine multiple devices into
a more capable one. We have implemented an M2 prototype on
Android that operates across heterogeneous hardware and software,
including using Android and iOS remote devices, the latter
allowing iOS users to also run Android apps. Our results using
unmodified apps from Google Play show that M2 can enable even
display-intensive 2D and 3D games to use remote devices across
multiple mobile systems with modest overhead and qualitative
performance indistinguishable from using local device hardware.

1. Introduction

Users increasingly rely on tablets and smartphones for their every-
day computing needs. Individual users often own multiple mobile
systems of various shapes and sizes [26], and groups of users often
have many mobile systems at their disposal. The multitude of
mobile systems are useful in many ways. For example, users carry
around a smaller form factor smartphone for every day use, but
also bring a tablet on longer trips for a better document reading
or movie watching experience with its larger screen, or just to
have a system with another battery to be able to operate for a
longer period of time unplugged. Similarly, a family may carry
multiple mobile systems on a road trip so the parents can get
driving directions on the smartphone while the kids watch movies
or play games on a set of tablets.

As mobile systems become ever more ubiquitous, there is an
increasing demand to provide users with a seamless experience
across multiple mobile systems, not just use them as separate,
individual systems. For example, the Netflix app and its supporting

cloud infrastructure allows a user to start a movie on a smartphone,
then switch to a tablet to continue watching the same movie with
a bigger and better display instead of starting over from scratch
and manually skipping around the movie to find where he left off.
While this limited example only allows using one mobile system
at a time, it points to an emerging trend of even more powerful
ways of using mobile systems in which multiple mobile systems
can combine their functions into a more capable one, enabling
new applications. We call this multi-mobile computing.

For example, desktop computers often use multiple display
monitors combined together to provide a unified, larger screen real
estate on which to work. In a similar way, as shown in Figure 1,
multi-mobile computing would enable users to put their tablets
together side-by-side to provide a unified display and input surface
across all the tablets, for a better viewing experience for all the
users. As another example, group photos such as family photos are
a common occurrence, but remain a vexing problem along a num-
ber of dimensions. One approach is to leave someone out of the
photo to take the picture, another is to take a selfie with the usual
limitation of how far away the camera can be. Given the plethora
of smartphones, multi-mobile computing can enable users’ smart-
phones to be placed wherever needed to take the picture while one
smartphone is used by a user in the picture to remotely control the
others in the group, view their respective camera previews, and use
all the remotely controlled smartphones to take pictures, resulting
in multiple photos from different angles, the best of which can be
selected for use. These are just some of the many ways in which
powerful new mobile apps will be developed that can take advan-
tage of hardware devices across multiple mobile systems, including
multiple cameras, displays, sensors, speakers, microphones, and
input. Unlike simple one-to-one mirroring approaches such as
AirPlay [3] which can display content from a smartphone to an
AppleTV, multi-mobile computing goes a step further with the
ability to combine multiple devices from multiple systems together.

Although multi-mobile computing has the potential to provide a
wide range of powerful new apps with new functionality, key chal-
lenges must be met to turn this potential into reality. The fundamen-
tal technical challenge is how to enable apps to remotely share de-
vices across multiple mobile systems with good performance. The
lack of system support for combining multiple devices across mo-
bile systems together forces each app developer who would like to
provide such functionality to start from scratch, making such devel-
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Figure 1: Multi-Mobile Computing using fused displays/input

opment difficult and error prone at best and forcing each and every
developer to incur the same recurring development costs. Each app
developer who attempts to develop such multi-mobile apps may
come up with different approaches and user-facing user interfaces,
resulting in ad hoc and unexpected interactions between multiple
multi-mobile apps and an inferior user experience. Furthermore,
smartphones and tablets are tightly integrated hardware platforms
that come in many different sizes and incorporate a plethora of
different hardware devices using non-standard interfaces; roughly
20,000 different Android systems are available [22]. This level of
tremendous device heterogeneity only exacerbates the problem of
how to combine multiple devices together across mobile systems.

To address these problems, we introduce M2, a system for multi-
mobile computing by enabling remote sharing of heterogeneous
devices across multiple mobile systems. We observe that mobile
systems use devices in a manner quite different from traditional
desktop and server systems. Vertically integrated mobile systems
offer a tall interface from apps to hardware devices through several
layers of software stack. Mobile apps do not access hardware de-
vices through a thin layer between apps and the operating system,
but rather through user-level system services that manage the hard-
ware devices. There are some exceptions, mainly networking and
storage, for which widely-used cross-platform abstractions already
exist for sharing; our focus in this paper is on user-facing devices
common on mobile systems such as sensors, cameras, audio, and
display. Furthermore, system services manage hardware devices
using native frameworks that provide interfaces similar to public
application programming interfaces (APIs) used by apps. Based
on these observations, M2 takes a unique approach to partitioning
device functionality between a device server, a system that serves
its devices to other systems making them remotely accessible, and
a device client, a system that runs an app using the remote device.
On the server, M2 provides device access by simply running an
app that uses existing public APIs to access devices. On the client,
M2 modifies user-level system services to support remote devices
and expose them to apps, allowing apps to make use of multiple
local and remote devices at the same time. Apps see the same
device abstraction for remote devices as they do for existing local
devices, enabling app developers to use the same familiar, existing
public APIs for accessing remote devices. M2 leverages higher-
level user-level APIs and services to operate across heterogeneous
hardware and software stacks with local performance similar to
the existing user-level device software stack in mobile systems.

While M2 enables app developers to use multiple devices
directly, M2 introduces the notion of fused devices, which provide
a single device abstraction based on fusing information from
multiple devices. For example, a fused display device could be
defined based on the local display and three other remote displays
such that all four displays are to be treated as a 2x2 matrix unified
together as one larger display. Instead of requiring each app de-
veloper to incur the recurring cost of creating his own mechanism
or algorithm for deciding how to use multiple devices of the
same type, fused devices allow developers to leverage predefined
ways of combining multiple devices that may be created by other
developers, thereby simplifying multi-mobile app development.
Fused devices also provide a way for unmodified apps designed
to interact with only one device of a given type to transparently
take advantage of M2 to enable multi-mobile functionality.

M2 leverages higher-level device abstractions and widely de-
ployed mobile system hardware features to optimize the transfer
of device data across mobile systems. For low-bandwidth devices
such as input and sensors, M2 simply transfers raw data formats
used by device abstractions across mobile systems. For higher-
bandwidth devices such as cameras, display, and audio, M2 takes
advantage of encoding and decoding hardware widely deployed
on mobile systems to efficiently compress device data and transfer
it in well-known compressed video and audio formats. This simple
approach overcomes the performance problems of previous remote
display mechanisms and yields a high quality visual and audio
experience across a wide range of content, including 3D graphics.

We have implemented an M2 prototype on Android and demon-
strate its effectiveness at providing multi-mobile computing func-
tionality transparently with existing unmodified Android apps
using both Android and iOS remote devices. M2 allows any stock
Android or iOS system to become a device server by running an
app which can be made available in Google Play or the Apple
App Store, and only requires modest user-level framework modifi-
cations to allow an Android system to become a device client. We
show that M2 operates seamlessly across heterogeneous mobile
hardware and software systems, including iOS and the latest three
major Android versions, Lollipop, KitKat, and JellyBean, and
multiple tablet and smartphone hardware. We demonstrate that
M2 provides multi-mobile functionality with low latency and only
modest performance overhead across even high-bandwidth devices
such as cameras, display, and audio, even for 3D graphics-intensive
apps. Using both standard WiFi networks and WiFi Direct, our
experiences show that the display performance using multiple
remote devices with a wide range of popular apps from Google
Play is visually indistinguishable from using local devices.

2. Android Device Overview

We first provide a brief overview of the way devices are used
in mobile systems, using Android as an exemplary system. As
shown in Figure 2, Android can be thought of as having a tall
interface to devices through multiple layers of software. Apps are
written in Java and are composed of various activities implemented
using Java classes. Apps call Java frameworks, which function as
libraries that provide the core public APIs used by developers for
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Figure 2: Android architecture

device abstraction interface number of streams
sensor event type callback one sensor event stream
input source type callback one input event stream
location provider name callback one location data stream
mic audiosource type method per source
camera camera id method one camera at a time
audio implicit method mixes audio streams
display surface name method per surface

Table 1: Android device abstractions

Android functionality including accessing devices. Frameworks
use Java Native Interface (JNI) to package up calls and pass them
through Android’s Binder IPC mechanism to communicate with
Android system services, which are shared, long-running system
processes that run in the background and are used to manage de-
vices. Almost without exception, apps do not interact with devices
directly, but instead via system services that manage access to their
respective devices across multiple apps.

Each type of device has an associated system service. For exam-
ple, the SensorService manages sensor devices, the AudioService
manages audio devices, and the CameraManagerService manages
the camera device. System services implement vendor-independent
software-related device functionality using a plethora of native
frameworks provided by Android. Services interface with the
Hardware Abstraction Layer (HAL), a standardized Android inter-
face for accessing hardware, to call vendor-specific libraries, some
of which are proprietary, which implement vendor-specific device
functionality. These libraries interface with the Linux operating sys-
tem kernel to access the device hardware via device drivers. Other
mobile ecosystems such as iOS have similar software stacks for
accessing devices in which higher-level frameworks communicate
with underlying system services via an IPC mechanism, and those
system services then manage lower-level device functionality.

Mobile apps do not see the traditional file-based device abstrac-
tion provided by the kernel, but instead interact with whatever
abstraction is provided by system services. Instead of a uniform
device abstraction for all devices, each system service provides its
own specialized abstraction for its own type of device. Table 1 lists
the major types of user-facing I/O devices supported in Android
and the respective device abstractions used.

The device abstraction provided by frameworks to apps and sup-
ported by system services is generally an object with an associated
identifier or name. For sensor, input, microphone, and camera, the
device abstraction object is an event, source, audiosource, and cam-
era, respectively, each of which is identified by a number. For exam-
ple, an accelerometer sensor is a different numerical type than an
orientation sensor. For location and display, the device abstraction
object is a provider and surface, respectively, each of which is iden-
tified by name. For audio, the device abstraction is implicit, as the
system automatically determines the device used for audio output.
Device data is provided or in one of two ways. For asynchronous
events such as sensor, input, and location data, an app registers a
callback listener method that is called when the respective data is
available. Otherwise, an app directly calls a method for using the
device, as in the case of microphone, camera, audio, and display.

Devices have different models in terms of whether data is pro-
vided in a single stream or multiple streams, and whether multiple
devices of a given type are accessible at the same time. For sensors,
each app activity receives all data that it registers for as one sensor
event stream returning to the same callback function, so the app
is responsible for examining the event type of each object to deter-
mine the sensor providing the data. This model applies to input and
location devices as well. For microphones, each app may access
multiple microphones at the same time based on audiosource type.
For display, each app may draw to multiple display surfaces, which
are composed together by SurfaceFlinger. For camera, al-
though multiple cameras can be accessed, an app can typically only
access one camera at a time. Finally, the audio device is implicit
and not directly identified by apps, though apps may process multi-
ple streams of audio which AudioFlinger will mix together.

3. Usage Model

M2 is designed to be simple to use by both users who want to use
multiple mobile systems, and developers, who want to develop
apps and functionality using the M2 application programming
interface (API). We first discuss the usage model for end users,
then discuss the API for developers as well as various mechanisms
provided by M2 to transparently support unmodified apps.

A mobile system is a server if it has a device that is being
shared with other systems, and is a client if it is accessing a device
being shared by another server. Apps that access remote devices
are run on the client, whereas servers simply make their devices
accessible. A client may use multiple servers, a server may be in
use by multiple clients, and a mobile system can be both a server
and a client at the same time.

Users can turn their mobile systems into servers by simply
downloading the M2 app from the respective app store. For ex-
ample, an M2 Android app would be used for Android systems,
and an M2 iOS app would be used for iOS systems. No other
software is needed to allow a mobile system to share its devices
with other systems. By default, no devices are shared. Using the
app, the user can share one or more devices by creating a device
profile. A device profile consists of a profile name, a list of devices
being shared, a password, and optional access control options that
can restrict the systems that can access the device based on IP.
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For each device listed in the profile, the user can specify a limit
on how many clients can access a device at the same time; for
example, a limit of one means that only one client can access the
device at a time. Devices not listed in a profile are by default not
shared. Device profiles can also be disabled at any time so that
they cannot be used by other mobile systems.

Device data on the server is processed by the M2 app. Whenever
the app is running, device data can be captured and sent to the client.
User-related input and output is processed when the app is visible
to the user. For example, when the input device is shared, input data
is captured by running the M2 app by processing touchscreen and
button input just like any other app and forwarding it to the client.
Similarly, when the display device is shared, display output data
from the client is made visible by drawing the data to the server’s
screen when the M2 app is running in the foreground and visible
to the user. From M2’s perspective, the M2 app simply makes the
devices on the server system accessible remotely, and otherwise
treats the server like a dumb, stateless peripheral system. At the
same time, if using an Android system, the M2 app runs like any
other Android app and users can switch between the M2 app, treat-
ing the system like a stateless peripheral, and any other Android
app, treating the system as a full-fledged Android computer.

To run apps that access remote devices on other server mobile
systems, the M2 native frameworks must be installed on the client
mobile system. Once installed, a user can make remote servers
accessible by downloading and running the M2 app on the client.
Using the app, the user can specify a device profile on a server,
input the required password, and the respective remote devices will
then be accessible on the client. Apps running on the client can
then access those remote devices. A server device profile remains
active on the client until it times out from inactivity or is explicitly
disabled by either the server or client. The M2 app shows both
currently active device profiles as well as previously accessed
device profiles that are not currently active, the later to make them
easy to access again in the future. Accessing device profiles can
also be done by other apps in a programmatic fashion.

Users may be concerned about unauthorized access to devices
on their mobile system. Device profiles provide security to prevent
outsiders not running on the user’s system from accessing the
user’s devices. Our goal with M2 is to ensure that it does not
result in additional security risks with remote device access than
the security mechanisms currently provided by mobile systems.
In the case of standard Android apps, once a user has granted
the app permission to access various devices such as location
services, cameras, and the network, an app is free to capture that
data and send it elsewhere. As a result, M2 works to prevent
unauthorized access from outside the local system, but does not
guard against unauthorized access to local devices by apps already
given permission by the user to run on the local system.

Given that a number of devices may be available on a client, M2
allows users to define usage profiles to indicate which collection
of devices are to be used by an app. A usage profile specifies
which devices from which server profiles are to be used. Usage
profiles are ordered, so that M2 will select the first usage profile

for which all its devices are available. For example, if a usage
profile for using a particular server tablet’s display is ordered
before a usage profile for using the local system’s display, then
M2 will use the remote display whenever it is available and only
use the local system’s display if the server tablet is not available.
Note that availability is determined dynamically as servers may
disconnect at any time given the nature of mobile systems and
networks. Usage profiles can be defined to be system-wide, or can
be used on a per application basis so that different applications
may use different usage profiles at a given time.

A usage profile not only indicates which server devices are to be
used, but may also indicate further information about how they are
to be used. For example, how a set of devices is used may depend
on the relative positioning of the mobile systems. We expect that
in the future, M2 will provide mechanisms to automatically detect
the relative position of mobile devices as positioning changes
dynamically [35], but for simplicity, relative position is currently
determined based on user input, either statically as part of the
usage profile or dynamically when the usage profile is selected
for use. For example, given a set of mobile systems, the M2 app
currently assumes that the systems are positioned in an NxM
matrix and asks users to swipe across left to right each row of
systems to determine their relative positioning. This information
can then be used by other apps, for example in determining how
to display visual content across multiple screens, or how to output
different channels of audio content to different speakers.

From an app developer’s perspective, remote devices available
through M2 and normal local devices are all just devices. M2
simply provides a model of making multiple devices available to
apps running on the client. For example, if a system has a local
display and can access three remote server displays, an app then
can pick and choose among the four different displays, or use them
all together. Based on this approach, M2 is mostly compatible with
standard APIs provided by mobile ecosystems such as Android, so
that all standard APIs used for interacting with local devices can
also be used for interacting with remote devices provided by M2.
This includes APIs for queries devices and their capabilities. How
an app uses the combination of local and remote devices available
to it is app-dependent and up to the developer. Section 4 describes
the M2 API in further detail.

In addition to making individual remote devices available to
apps, M2 introduces fused devices, which provide a single device
abstraction based on fusing information from multiple devices. The
idea is similar to fused location providers in Android [15], which
combine GPS, WiFi, and cellular services to improve location
accuracy. For example, a fused display device could be defined
based on the local display and three other server displays such
that all four are to be treated as a 2x2 matrix unified together as
one larger display. Input can also be handled in the 2x2 matrix
by using a fused input device to control the fused display device.
Similarly, a fused camera device could be defined to combine the
previews of multiple cameras together by tiling them in a single
preview display. Instead of requiring each app developer to incur
the recurring cost of creating his own mechanism or algorithm
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for deciding how to use multiple devices of the same type, fused
devices allow developers to leverage predefined ways of com-
bining multiple devices that may be created by other developers,
thereby simplifying multi-mobile app development. Fused devices
also provide a way for legacy apps designed to interact with
only one device of a given type to transparently be able to take
advantage of M2’s multi-mobile functionality without requiring
them to be modified or rewritten. For example, instead of using
the local display, M2 can enable an app to use a fused display
device, appearing to the app to be the same as the local display but
instead allow the app to display content across multiple displays
transparently. Fused devices appear to apps and users as any other
device, and can therefore be selected by usage profiles and apps
in the same manner as other individual devices.

4. M2 API and Fused Devices

M2 provides an API to support new multi-mobile apps that desire
explicit control of multiple remote devices, in addition to enabling
existing unmodified applications to become multi-mobile aware
via fused devices. Using Android, we describe the M2 API, which
leverages Android’s existing public API to utilize M2’s multi-
mobile computing paradigm. We also discuss examples of fused
devices for different types of devices. While M2 also provides
APIs for device discovery to programmatically provide function-
ality described in Section 3, we omit this due to space constraints
and focus here on the API for app developers writing mobile apps.

Sensors M2 uses the same Android APIs for sensors based on
callbacks and event types indicating the type of sensor providing
the respective event. These types are defined in Android as
numerical identifiers, currently ranging from 0 to 21. To support the
same interface for sensor devices across multiple mobile systems,
we assign a system number to each mobile system. We then modify
the framework to cap the number of local sensor types to 255,
a number much greater than the current number of sensor types
available, and change the type of the sensor events from remote
devices to its type plus the remote system number times 256.
For example, accelerometer data received from remote system
1 would have type 256 instead of type 1 for the local system.
Unmodified apps are unaffected by M2 sensor data and new apps
developed using this API can select sensor data from multiple
mobile systems. Note that different systems may have different
sensors. For example, an app running on a Nexus 7 tablet can
access a barometric pressure sensor on a Nexus 4 smartphone that
is not available on the Nexus 7.

To support existing unmodified apps, M2 provides a fused
device in which the type identifiers are not remapped to different
ranges based on remote system number, but instead all retain the
original numerical range. Based on usage profiles discussed in
Section 3, different sensors from different remote systems can be
selected and used, with the restriction that only one type of each
sensor can be used at a time. This enables existing apps to take
advantage of remote sensors without any modifications.

Input M2 leverages existing Android APIs that support the
addition and use of multiple input devices such as game controllers.

Each such device is identified by a source type. M2 assigns unique
input source identifiers for remote input devices in the same manner.
Apps using multiple input devices can check for the source type of
the input event object to determine the remote device that sent the
input and process it accordingly.

To support existing unmodified apps, M2 provides a fused
device which simply combines input events from multiple remote
input devices. Existing unmodified apps can be controlled with
multiple remote input devices even if they were designed with only
one input device in mind because they simply do not check for
the source type when using the standard callbacks for processing
touchscreen input events, so no further assignment of source types
is required. This can be useful when multiple touchscreen input
devices are used in turn by users, not all at once.

Microphone M2 leverages existing Android APIs that already
facilitate the use of multiple microphone devices by simply
adding remote microphone devices as additional audio sources.
No API changes are needed. The same APIs used for local audio
sources are used for remote audio sources, such as Android’s
AudioRecord and MediaRecorder APIs.

To support existing unmodified apps, M2 provides a fused
device which simply combines multiple remote audio sources by
treating them as audio tracks to the same audio mixing mechanism
used by Android’s audio device. Alternatively, individual remote
microphones may also be selected using usage profiles.

Location M2 leverages existing Android APIs, test providers,
to support use of multiple location devices. Test providers are
added to location services to represent remote location services
and are simply named remoteN, where N is the remote system
number. Apps can request location data by simply specifying the
provider’s name through Android’s requestLocationUp-
dates method. No API changes are needed.

To support existing unmodified apps, M2 provides a fused
device by using existing Android fused location devices, which
are already used for combining data from multiple sources such as
GPS, WiFi, and Cellular. In this manner, multiple remote location
sources can be combined to provide more accurate location
information. For example, indoor localization may benefit from
fusing local and remote location data, where the latter comes from a
system that is outside or next to a window. Alternatively, individual
remote location devices may also be selected using usage profiles.

Camera M2 leverages existing Android APIs for using multiple
camera devices by simply adding remote cameras as additional
camera devices available on the local system with unique camera
identifiers. Apps can open remote cameras by using the respective
matching identifiers. No syntactic API changes are needed, but the
underlying semantics are changed slightly as existing APIs do not
support simultaneous use of multiple camera devices.

To support existing unmodified apps, M2 provides a fused
device that combines preview data from multiple camera sources
and unifies it into one display. Taking a picture results in multiple
photo snapshots being taken. Alternatively, individual remote
camera devices may also be selected using usage profiles.
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Audio Unfortunately, existing Android APIs provide no support
for enabling apps to explicitly specify either which audio device
to use, or being able to use multiple audio devices. However,
earlier Android APIs that are currently deprecated do provide
this capability, such as the setRouting method which sets
the audio device to use. In the context of supporting only local
audio devices such as headphones and speakers, the lack of an
API for choosing the audio device makes sense because the
choice really belongs to the user and, for example, whether the
headphones are plugged in or not. However, given that M2 provides
support for multiple remote devices, this pre-existing Android API
makes sense. M2 leverages this Android API to facilitate explicit
specification of audio devices, including the use of multiple remote
audio devices. Other audio APIs remain the same and can be used
with both local and remote audio devices.

To support existing unmodified apps, M2 provides a fused
device that sends audio data to multiple remote audio devices for
playback, along with separate control channel information to each
device. This control channel information can be used with a mask
to represent audio channel information, such as 0 for left channel,
1 for right channel, and 2 for both channels. Remote audio devices
can then mask out the channel data that is not needed and play the
respective audio channel to provide stereo output across multiple
remote audio devices. Current Android frameworks are limited
to supporting two channel audio, so 5.1 surround sound is not
possible with a fused device.

Display M2 leverages existing Android APIs that already facilitate
the use of multiple display surfaces, which are used by M2 to
represent remote displays in the same manner as the local display.
Apps may utilize display surfaces in conjunction with Android’s
public API to encode and decode display data to reduce bandwidth
costs during transmission over the network. No API changes are
required. Section 5 provides further detail on how encoding and
decoding are used by M2.

To support existing unmodified apps, M2 can provides various
fused display devices, depending on the desired functionality. For
example, to enable multiple remote displays to be used together
as one larger display, M2 sends the same display data to multi-
ple remote display devices along with separate control channel
information to each device. This control channel information
indicates the relative position of each display and what portion of
the content should be shown on the respective display. Remote
display devices can then scale and clip the display data based
on the control information to display the right portion of the
data to create a unified combined display effect across multiple
display devices. M2 is able to support recording the fullscreen
and displaying a portion of the screen on the same local device
by assigning different layer stack numbers to Surfaces at the
SurfaceFlinger system service level.

5. M2 Architecture

The M2 architecture addresses two key issues in enabling remote
device sharing to support multi-mobile apps. The first issue is how
should device functionality be partitioned between a server which
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Figure 3: Overview of M2 architecture; modified Android
components highlighted in grey

is making its device remotely accessible, and a client where the
mobile app will execute and make use of the devices. The second
issue is how should the system transmit device data over the net-
work in an effective low-latency manner for both low-bandwidth
and high-bandwidth devices.

5.1 Client-server device stack

Given the background regarding the Android device infrastructure
discussed in Section 2, there are a number of ways in which device
functionality can be partitioned between server and client. One ap-
proach would be to partition the device stack at the kernel interface
using traditional device files as the abstraction between server and
client. The server where the device resides has the real device file,
and the client has a virtual device file which essentially forwards
device interactions to the server, as done by Rio [1]. However, this
approach has a number of problems. First, since this is done below
the HAL at the level of vendor-specific devices, it only works for
systems which use the same vendor-specific hardware devices and
any attempt to operate across different hardware is problematic.
Second, operations at the device file level may involve pointer
references to memory in the address space of the calling process
and providing a shared memory abstraction across systems to
support these device-level operations would be complicated and
likely to suffer from performance degradations at best or even
worse, service failures, as a result of device disconnections due to
network drops. Third, common device-level operations on mobile
systems involve vendor-specific ioctls which may depend on
more than just the input arguments or may involve references to
memory which would be extremely difficult to identify and re-
produce correctly across systems for any moderately complicated
device. Finally, device vendors may choose to implement substan-
tial device functionality in proprietary vendor libraries with very
little functionality in the driver itself and these vendor libraries may
manipulate device state via shared memory in any opaque manner
such that recreating the same effect with virtual device files simply
forwarding calls to the real device files is problematic at best.

Another approach would be to partition the device stack at
the HAL layer given that it is a device abstraction layer, but this
approach also has various problems. First, at the server, system
services expect to manage underlying devices on behalf of An-
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droid apps running on the server, so avoiding device conflicts
with unmodified system services becomes problematic as they
are unaware of the devices being used by a remoting mechanism
at the HAL layer. Second, it may be desirable to process device
data in some fashion to optimize network performance. The HAL
layer provides no support for implementing such additional func-
tionality, as HAL support is often implemented in proprietary
vendor-specific libraries, making it more difficult to implement
any functionality required beyond basic forwarding between server
and client. Furthermore, since the HAL layer is low-level, higher-
level abstractions provided by Android are unavailable, making
it more difficult to leverage higher-level semantics for processing
data. Finally, because the HAL layer is low-level and Android
dependent, providing device servers at the HAL layer would
require modifications that preclude using this approach with stock
Android systems, and would make it difficult at best to use this
approach with non-Android systems even if they were modified
to support device remoting.

We make three observations regarding the device software
stack in mobile systems that suggest an approach for partition-
ing device functionality between server and client in M2. First,
for the hardware devices of interest such as input, camera, au-
dio, display, sensors, and GPS, mobile apps do not access such
hardware devices directly but go through system services. As a
result, there is no need to provide apps with device abstractions
corresponding to remote devices at lower layers of the software
stack below system services because apps will never see them;
anything below the level of system services is irrelevant as far as
apps are concerned. Second, the primary interface between apps
and devices is at user-level, not kernel-level. System services are
entirely implemented at user-level. This suggests that a user-level
approach to remote device access is likely to be sufficient given
that a user-level approach is used for local device access. In this
context, traditional arguments in favor of kernel-level approaches
for performance reasons are less likely to apply to mobile systems
given their device software stacks. Finally, the native frameworks
used to implement system services provide many of the same
interfaces and functions as the Java frameworks used by apps.
Although the former represents an internal API, its similarities
in the context of device access to the public API used by apps
suggests that, at least for those those similar APIs, they are likely
to remain relatively stable across different versions of Android.

Based on these observations, M2 takes a unique approach to
partitioning device functionality between server and client that
leverages the characteristics of mobile systems. On the server,
M2 provides device access by implementing it using public APIs
provided by Java frameworks to apps; this access via Java frame-
works is forwarded on to the client. On the client, M2 modifies
system services to support remote devices and expose them to apps.
Instead of only calling native frameworks to access local devices,
system services interface with native frameworks modified to also
redirect to remote devices. Figure 3 shows an overview of the M2
architecture in Android.

This split architecture provides multiple benefits. On the server,
because device access at the server is provided at user-level entirely
using public APIs, server device access can be provided entirely
by running an app without any changes to the software stack on
the server. This provides maximum flexibility and ease of develop-
ment as providing device access is no more difficult to developing
other mobile apps. By building on public APIs that are supported
for all Android apps across all Android versions, it is easy and
straightforward to support any Android hardware and software
platforms, enabling device remoting across heterogeneous devices.
Since the server is just an app, its interactions with devices are
managed by system services along with any other app, allowing
remoting of devices and use of those devices by apps running
on the system to co-exist seamlessly using existing mechanisms.
Furthermore, given that servers are built on public APIs typical
of most mobile ecosystems, we expect that building servers for
non-Android systems such as iOS and enabling iOS devices to
be remotely shared would be relatively straightforward. Although
server device access is provided at user-level, device access in gen-
eral for standard Android apps using local devices is also provided
at user-level, so we expect that a user-level implementation will
not adversely affect performance.

On the client, because device access is implemented within sys-
tem services, remote devices are available to apps running on the
client with the same interface as other local devices also provided
by system services, making it easy for apps to use remote devices
in the same manner as they use local devices. By implementing
remote devices at the highest layer compatible with how other
local devices are accessed by apps, M2 can leverage higher-level
semantics available at that layer to simplify its implementation and
avoid low-level implementation complexities and device-specific
dependencies. By avoiding device-specific dependencies, M2
easily supports heterogeneous Android hardware devices. Since
system services are implemented using native frameworks, M2
can leverage those same frameworks to reduce implementation
complexity rather than having to reimplement low-level interfaces
such as the HAL, which while providing a device independent
interface, is implemented in practice by vendor-specific libraries
that are often proprietary especially for more complex devices, and
those cannot be reused to aid the development of supporting com-
parable remote devices in M2. The fact that the native frameworks
often provide similar functionality to the Java frameworks that
provide the public API for apps often makes it easy to make from
one to the other in providing straightforward implementation sup-
port within system services for various remote devices. Although
native frameworks are considered internal APIs that may change,
M2’s use of a subset of native frameworks that are mostly similar
to those used to support public APIs reduces the likelihood of
changes to the specific internal APIs used by M2, making it easier
to port and support across different Android versions. As evidence
for this, our M2 prototype implementation has been tested to work,
reusing the exact same code, across the latest three major Android
versions, JellyBean, KitKat, and Lollipop.
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device data fidelity reliability
sensor raw lossless retry
input raw lossless retry
location raw lossless retry
mic raw/encode lossless/lossy retry/discard
camera raw/encode lossless/lossy retry/discard
audio raw/encode lossless/lossy discard
display encode lossy discard

Table 2: M2 network communication mechanisms

By relying on the decoupling of apps from devices provided
by system services, M2 treats remote devices as dumb peripherals
that are stateless from the point of view of apps. This provides
useful properties in the presence of intermittent network discon-
nections between server and client due to system mobility or other
environment conditions affecting wireless networks. App state is
entirely on the client and network disconnections do not cause
app failures. For example, app-related graphics and display state
is entirely on the client encapsulated in state in the app as well as
display surfaces managed by SurfaceFlinger, the Android
display-related system service. If a disconnection happens, the
app continues to function properly and can continue to draw to
its respective display surface, oblivious as to whether the system
service is still able to send the data to the remote display device.

5.2 Data and Network Communication

M2 clients and servers communicate over standard network sockets
and are designed to interact over WiFi and WiFi Direct networks.
To optimize network performance in the presence of both low-
bandwidth and high-bandwidth devices, there are three key issues
that need to be addressed: the choice of primitives to use in com-
municating device data between clients and servers, whether the
data is communicated using lossless or lossy mechanisms, and
how data loss is handled. Table 2 provides a summary of how M2
addresses these issues for different devices.

A primary issue in remoting devices is the choice of wire
protocol primitives used for transmitting data. For low-bandwidth
devices, the choice is not as crucial and device data can simply
be transmitted in raw form in a manner that makes it simple to
process at the client and server without concern for network per-
formance. For high-bandwidth devices such as display, the choice
of primitives for transmitting data can be crucial for ensuring
adequate remote device performance. For example, simply sending
raw display frames at native resolution for a tablet at internal 60
frames per second (fps) update rates would require gigabit network
speeds just for mirroring display content to only one device. This
is clearly not feasible on current WiFi networks.

M2 leverages common hardware features on smartphones and
tablets to address this problem. These systems now include video
and audio encoding and decoding hardware, the former of which
would be much too expensive to do in software on modern CPUs
in the absence of hardware support. Since high-bandwidth devices
send visual and audio data, M2 simply uses hardware video en-
coding to compress display data and hardware audio encoding
to compress audio data before transmitting it across the network.
At the server, the data is decoded and outputed. A benefit of this

approach is that the bandwidth required to display high fidelity
content is limited by the display resolution and frame rate, so even
complex 3D graphics scenery does not require more bandwidth
than 2D imagery.

M2 uses H.264 video encoding and AAC audio encoding for dis-
play and audio devices, respectively, which are commonly available
on smartphones and tablets, though other encoding formats can also
be used. These encoders can be configured to use different resolu-
tions, bit rates, and frame rates, which M2 can adjust based on what
devices are being used and available bandwidth; M2 by default uses
30 fps frame rates since they are visually indistinguishable from
higher frame rates for end users [28]. Both camera and microphone
also send video and audio data, which can also be encoded. In the
case of camera, M2 encodes the camera preview data, which can be
bandwidth intensive if sending raw frames, but does not encode the
actual pictures taken, which are transmitted much less frequently.

An interesting issue in the context of this encoder/decoder limit
is how display data is transmitted from a client using multiple
remote devices to those remote devices for display. In the case of
multiple displays being combined into one larger display so that
each device only displays a portion of the data, it may be desirable
to send each device only its respective portion of the display data
to reduce network bandwidth requirements. However, this requires
that display data for each remote device be separately encoded at
the client. Given the limited number of encoder/decoder streams
supported, M2 instead encodes the complete display data and
transmits the same encoded data to all remote devices and provides
control information to indicate to each device what portion of the
display data should be shown. Although this uses some additional
bandwidth, it saves on the number of encoders used at the client.
The display data can also be scaled and resized appropriately for
viewing at the remote display based on the hardware characteristics
of the respective screen.

A second issue in remoting devices is the fidelity of the device
data and whether or not the data must be precise and lossless, or
can be approximate and lossy. For most devices, lossless data is
expected, and there is really not much cost to providing this precise
fidelity for low-bandwidth devices. However, for high-bandwidth
devices such as display, M2 uses H.264 video encoding which
provides substantial bandwidth reductions by encoding the data in
a lossy format. However, the primary concern with data fidelity in
this case is its visual appearance to end users when displayed, and
advances in encoding algorithms and implementations have made
it that despite the use of a lossy format, the visual difference versus
the lossless data, assuming suitable video encoding configuration
parameters, can be indistinguishable to the user. While display
data is always sent encoded and therefore lossy, audio data can be
sent raw and lossless or encoded and lossy, trading off bandwidth
and hardware encoder availability. For camera, the camera preview
is encoded and lossy, but to preserve the fidelity of the pictures
taken, the picture data is not further encoded beyond what is done
at the device and is therefore transmitted in a lossless manner.

A third issue in remoting devices is the reliability of the data
transmission and how packet drops should be handled. In terms of
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network protocols, TCP is used for all control messages, and a mix
of TCP and UDP are used for transmitting data, depending on the
type of data being sent. For devices which expect precise, lossless
data, M2 uses TCP which retransmits data if needed to ensure
reliable data delivery. For devices such as display, audio, and the
camera preview, UDP and RTP is used instead because it is more
important for data to be delivered on time than to ensure that all
data is transmitted reliably. Data that is late as indicated by times-
tamps or not delivered due to packet loss is simply discarded. The
microphone is an interesting case as whether lost data is acceptable
depends on how it is used, and in fact, systems such as Android sep-
arately identify whether the microphone is used to record audio to a
file or simply for audio input as for teleconferencing. In the former
case, it may be desirable to ensure reliable transmission with some
delay in the case of retransmissions as opposed to real-time delivery
with some loss. M2 makes this a configurable option with the de-
fault case using UDP and RTP as teleconferencing is a much more
common use case for mobile systems. Note that although it may ap-
pear that UDP Multicast may be a better protocol for devices such
as display which may transmit the same data to multiple remote
devices, UDP Multicast implementations have poor performance
and frequently are not even supported with current WiFi routers.
As multicast implementations improve in the future, this may
become a viable option to using point-to-point network protocols.

Finally, M2 uses a push model for all devices such that the
sending side, the client in the case of output devices and the server
in the case of input devices, pushes data to the other side, as
opposed to waiting for it to be pulled on request. Even in the case
of input devices processed with callback functions, the callback is
executed on the device server and the device data is immediately
pushed to the client. This reduces latency, which is important for
device interactions occurring over the network.

6. Evaluation

Using the Android Open Source Project (AOSP), we implemented
an M2 prototype and measured its performance across a range
of Android hardware and software, including both tablets and
smartphones. We also implemented an M2 iOS device server,
demonstrating the ability to access remote devices across hetero-
geneous hardware and software, including iOS on an iPad mini.
We present results using Nexus 4 (768x1280 display, Qualcomm
Snapdragon S4 Pro 1.5GHz quad-core CPU) smartphones with
Android 4.3 JellyBean, Nexus 7 (1200x1920 display, Qualcomm
Snapdragon S4 Pro 1.5GHz quad-core CPU) tablets with Android
4.4 KitKat, Nexus 9 (1536x2048 display, Nvidia Tegra K1 2.3GHz
dual-core CPU) tablets with Android 5.0 Lollipop, and a 1st genera-
tion iPad mini (768x1024 display, Apple A5 1GHz dual-core CPU)
tablet with iOS 8.2. We conducted experiments with both WiFi
Direct and regular WiFi, the latter by connecting systems to an
ASUS RT-AC66U WiFi router; the router was used by default un-
less otherwise indicated. Only the Nexus 9 supports and uses IEEE
802.11ac, while the other systems use IEEE 802.11n. We run both
benchmarks and unmodified Android apps from Google Play [14]
to demonstrate the effectiveness of M2 in delivering multi-mobile

computing transparently to existing real-world apps with good per-
formance across heterogeneous Android hardware and software.

We first focus on measuring display performance since it is
crucial for mobile systems and a key challenge for remoting perfor-
mance. This is done by configuring one or more systems as display
and input device servers for a client running an Android app. To
measure real app performance, we used the widely-used Android
PassMark benchmark [23]. PassMark conducts a wide range
of resource intensive tests to evaluate CPU, memory, I/O, and
graphics performance. In cases when display clients drop frames,
the reported benchmark results may not reflect the performance
perceived at the clients since the app does not account for this in
reporting benchmark performance. To account for this difference,
we use metrics introduced by slow-motion benchmarking [21] by
scaling the performance results based on the percentage of frames
displayed at the server. For example, if only half of the frames are
displayed by the server, then the benchmark measurement reported
by the app, assuming higher is better, is reduced by half.

We ran M2 with PassMark in seven system configurations using
a Nexus 9 to run the app: (1) stock Android Lollipop, (2) M2
installed but idle, (3) M2 displaying locally on the same system, (4)
using two Nexus 9 systems, splitting the display across the Nexus
9 client and another Nexus 9 display server, (5) using four Nexus 9
systems in a 2x2 configuration combined as one display, splitting
the display across the Nexus 9 client and three other Nexus 9
display servers, (6) using a mix of four heterogeneous systems, one-
to-many mirroring the Nexus 9 display to a Nexus 9, a Nexus 7, and
a Nexus 4, and (7) using a mix of four heterogeneous systems, one-
to-many mirroring the Nexus 9 display to a Nexus 7, a Nexus 4, and
an iPad mini. We used the full 1536x2048 native display resolution
for all Nexus 9 experiments; display encoding was done at 30 fps
and a 10 Mbps bit rate. The high resolution and bit rate were used to
stress the system. For the mixed cases we used a 720x1280 display
resolution for all experiments since there is a resolution limit
imposed by the Nexus 7 H.264 hardware decoder; display encoding
was done at 30 fps and a 4 Mbps bit rate. To demonstrate the ability
to run M2 without additional network infrastructure, all tests were
done using WiFi Direct, except for the last one, which used the
WiFi router since the iPad mini does not support WiFi Direct.

Figure 4 shows the PassMark benchmark measurements nor-
malized to stock Android Lollipop performance; lower is better.
M2 idle is omitted since it performed essentially the same as stock
Android. Due to space constraints, the individual tests are grouped
under CPU, disk, and memory using PassMark’s overall score for
those categories, while the 2D and 3D individual tests are shown
separately. For the two and four system experiments, we present
results for the worst remote device; in all cases except using iOS,
the remote devices performed similarly. Figure 4 shows that M2
incurs some additional overhead as the number of remote display
devices increases, but it is modest and in some tests uncorrelated
with the number of devices used. This suggests that for modest
numbers of displays, M2 performance does not degrade as ad-
ditional displays are added. In all cases, the network was not a
performance bottleneck and dropping frames or packets was not an
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Figure 4: PassMark performance; lower is better
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Figure 5: PassMark per device bandwidth

issue. In comparing the mixed display and homogeneous display
measurements, both using four Android systems, the performance
is better for the mixed display system because of the lower resolu-
tion and bit rate used, imposing less work on the client running the
app. When using multiple displays, the display quality across the
devices appeared qualitatively the same, except for using the iPad
mini, which performed well for all tests except the 3D tests, which
were noticeably worse than other systems. The iOS test ran on an
older 2012 iPad mini and only uses software decoding because we
did not have time to implement hardware decoding, so for the 3D
tests, it struggled to decoding display data fast enough and had to
skip frames, up to 35% of them for the 3D complex test. If accepted
for publication, we will include iOS results for hardware decoding.

Performance overhead for the Android remote devices was
qualitatively good visually, but quantitatively shows a range of
performance overhead from less than 1% for the 3D simple test
to more than 70% for the 2D solid vectors test. Some of this per-
formance degradation is due to the extra work that M2 does in this
case with the substantially higher resolution display of 1536x2048,
but most of the performance degradation is due to an unoptimized
implementation of how M2 displays content on the local display
device, thereby slowing the execution of the benchmark for some
tests. In the current implementation, M2 displays the content on
the local device by treating it the same way as a remote device,
incurring all the same costs of encoding and decoding as well as
copying the data multiple times as though it were being passed
to a remote display server. An obvious local device optimization
is to remove all of this additional overhead and simply display
the visual content directly rather than going through encoding,
decoding, sending data, and the other steps used for displaying
on clients. To provide a rough measure of the overhead that would
be expected using M2 with this optimization, we ran the same
experiments but without drawing the content on the Nexus 9 local
device, therefore skipping the decoding and copying steps on the
server. For example, the results for the one device case showed
the same performance as stock Android, eliminating over 40% of
the overhead for the 2D solid vectors tests; carrying over to the
multi-device experiments brings the performance overhead overall
below 30% in the worst case. We note that PassMark is designed
to stress test the system, and we do not expect users of real apps
to experience any qualitative performance degradation.

Figure 5 shows the per device average network bandwidth
required while running the PassMark tests, aggregated into the
minimally graphical CPU, disk, and memory tests, 2D tests, 3D
simple test, and 3D complex test. Note that the network bandwidth
required on the client running the benchmark is the bandwidth
shown times the number of remote devices as it sends the display
data to each of the remote devices. For the CPU, disk, and memory
tests, the bandwidth required was less than .1 Mbps as the only
display updates are for a progress bar for each test and the display
of the test results. For the 2D and 3D simple tests, the bandwidth
required was up to 14 Mbps for the 1536x2048 remote display tests
and up to 4 Mbps for the 720x1280 remote display tests. Note that
the 2D test bandwidth exhibits more differences than the 3D test
as there was more variation in the performance results and there-
fore what display data was actually encoded. For the 3D complex
test, the bandwidth required ranged from 13 to 20 Mbps for the
1536x2048 remote display tests and was roughly 6 Mbps for the
720x1280 remote display tests. The lower per device bandwidth
consumption for the four system 3D complex test was due to some-
what worse benchmark performance and the resulting differences
in the display data encoded, not packet loss. Our results show that
WiFi networks can meet the bandwidth requirements for even 3D
graphics-intensive display data, providing good M2 performance.

We next focus on measuring camera latency performance. Un-
fortunately, there is a lack of standardized Android camera per-
formance app benchmarks, so we simply ran the default Android
camera app for each system and instrumented it to measure the
time to take a picture including committing it to persistent storage,
and in the case of using a remote camera, the bandwidth require-
ments for both the camera preview and transferring the picture
taken from the remote camera to the default local storage for the
app. We measured the performance using stock Android on all
three Android systems, the Nexus 9, Nexus 7, and Nexus 4, and
compared to four different remote camera scenarios, the Nexus 7
using a remote Nexus 4 camera, the Nexus 7 using a remote Nexus
9 camera, the Nexus 4 using a remote Nexus 9 camera, and the
Nexus 4 using a remote Nexus 7 camera. The first two remoting
scenarios illustrate using a higher quality remote camera to take
pictures as both the Nexus 4 and Nexus 9 cameras are higher
quality than the Nexus 7. The second two remoting scenarios
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Figure 6: Camera latency for taking/storing pictures
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illustrate using a small form factor system, the Nexus 4, to control
cameras on larger form factor tablets, the Nexus 9 and Nexus 7.

Figure 6 shows the camera performance measurements. For the
time to take a picture, we show capture time, the time from the
button press until the picture is saved to storage, and total time,
the time until the picture is synced to persistent storage, including
transferring it over the network in the case of remote devices. Note
that the capture time is not the same as the time it takes for the user
interface to indicate that it is ready to take another picture, which is
faster but not a true measure of actual camera performance. For the
stock systems using the local camera, the capture and total time are
roughly the same, taking less than 1.5 seconds in all cases with the
Nexus 4 (N4) camera being the fastest; syncing time is negligible
compared to capture time. For the remote camera scenarios, capture
time is comparable to the respective local camera capture time,
with the remote Nexus 4 camera being the fastest as well. The
capture times show that M2 incurs negligible additional latency
versus local camera use. Total time for the remote camera scenarios
is much higher because of the time it takes to transfer the picture
over the network to the default local storage of the app on the client.
In the worst case of the Nexus 7 using the Nexus 4 remote camera,
the total time is almost a second more than the capture time due to
transfer time. In contrast, the difference between the capture and
total time for the remote Nexus 9 camera scenarios was only half
a second because it uses the faster 802.11ac networking standard.
Figure 6 also shows the bandwidth requirements for the camera
preview and picture transfer. The camera preview runs at a lower
resolution than the native display resolution, so its bandwidth
requirements are less than 3 Mbps. The picture transfer bandwidth
is higher simply because M2 sends the picture as fast as it can
from the remote camera server to the client, so it uses as much
bandwidth as possible, almost 35 Mbps for the faster Nexus 9.

We next focus on measuring audio and microphone latency
performance. We used the Zoiper [27] audio benchmarking app,
which measures the time from playing a beep through the speaker,
recording it through the microphone, and retrieving the audio buffer.
Zoiper tests different sample rates for recording the audio, from
8 to 48 KHz, and different audio buffer sizes for storing the audio,
from recording 20 to 80 ms of audio through the microphone. The
results depend on the native sample rate of the respective system
along with echo cancellers and filters in the audio path. We tested
seven combinations of local and remote speakers and microphones:

(1) local speaker and microphone with stock Android on Nexus
7, (2) local speaker and microphone with M2 idle on Nexus 7, (3)
local microphone with Nexus 7 and remote speaker with another
Nexus 7, (4) local microphone with Nexus 7 and remote speaker
with Nexus 9, (5) local speaker with Nexus 7 and remote micro-
phone with another Nexus 7, (6) local speaker with Nexus 7 and
remote microphone with Nexus 4, and (7) Nexus 7 using remote
speaker and microphone on another Nexus 7.

Figure 7 shows the audio latency measurements. For most of
the tests, M2 adds negligible latency compared to stock Android,
even for using remote microphones and speakers, indicate that
M2’s push model and device partitioning architecture provide
good low latency performance. The one case in which M2 incurs
higher performance overhead is when running the benchmark with
both remote speaker and microphone at the 44.1 KHz sample rate
and 81.3 ms buffer size settings for Zoiper, resulting in roughly
100 ms of additional latency and almost 20% overhead.

To measure audio performance in terms of audio streaming
along with using other remote devices, we used seven Android
systems together in a multi-mobile setup with a Nexus 9 client
running the apps, a Nexus 4 providing remote sensor and touch-
screen input, three other Nexus 9s and the Nexus 9 client in a 2x2
configuration for a combined larger display, and two Nexus 7s pro-
viding remote speakers with separate left and right audio channels,
respectively, for stereo output across two devices. Remote display
used full 1536x2048 native display resolution with video encoding
at 30 fps and a 10 Mbps bit rate, and remote audio was unencoded
PCM. To stress the system, we ran ten Android apps from Google
Play, nine of the most popular gaming apps along with the VLC
movie player app for comparison purposes. The gaming apps and
their respective Google Play top game chart ranking were Angry
Birds (#38), Candy Crush Saga (#10), Candy Crush Soda (#3),
Clash of Clans (#6), Crossy Road (#1), Jelly Jump (#5), Racing
Fever (#20), Subway Surfers (#7), and Surgery Simulator (#12).
Each game was played intensively for a minute, and the VLC
movie player was used to play and skip around for a minute of
Big Buck Bunny, the widely used open movie project.

M2’s qualitative performance for all of the apps was indistin-
guishable from running on a Nexus 9 with stock Android Lollipop.
Audio was clear with no drops, and display was smooth with
no noticeable skipped frames or display degradation. Figure 8
shows the per device average bandwidth consumption for running
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Figure 8: 3D games on seven Nexus 4/7/9 using M2

the various apps. Input and sensor remoting requires only a few
Kbps of bandwidth even for intensive gaming. Audio remoting
required 1 Mbps of bandwidth for PCM raw data, though AAC
encoding would reduce this further. Display remoting for gaming
required the most average bandwidth per device, ranging from 6.3
Mbps for Candy Crush Soda to 17.6 Mbps for Subway Surfers.
By comparison, VLC only required 4.4 Mbps.

7. Related Work

Perhaps the most closely related approach to M2 is Rio, a system
for sharing I/O devices between mobile systems and lays out a
broad vision of its potential benefits. Rio is restricted to device
mirroring, so that for example, the camera from one system
can be remotely accessed from another, but there is no support
for multiplexing or using multiple devices simultaneously, such
as splitting the display of content across multiple displays. Rio
partitions the device stack at the kernel interface using traditional
device files as the abstraction between client and server. The
client where the device resides has the real device file, and the
server has a virtual device file which essentially forwards device
interactions to the client. This approach suffers from a number
of crucial limitations as discussed in Section 5. For example,
since this is done below the HAL at the level of vendor-specific
devices, it only works for systems which use the same vendor-
specific hardware devices, and in practice, only works when
the device implementations are sufficiently open, often not the
case with vertically integrated mobile systems. Operating across
different hardware is problematic, and making Rio work for each
different system even assuming homogeneous devices is a complex
and enormous porting effort. As a result, Rio has only been
demonstrated to work on a single system, the Galaxy Nexus, and
even in that case, has no display device support and poor remote
audio and camera performance. M2 takes a completely different
approach that allows it to support device heterogeneity and a richer
model of using and multiplexing multiple devices simultaneously.

Although Rio does not support display sharing, also referred
to as screencasting, a number of other approaches have explored
this in the context of desktop computing, including VNC [25], Mi-
crosoft’s Remote Desktop Protocol (RDP) [20], GoToMyPC [6],
THINC [5], X [30, 34], and the general emergence of Virtual
Desktop Infrastructure (VDI) [19]. A number of these systems sup-
port remoting audio content as well. These approaches use various
forms of display commands to transport display content over the

network, but do best with non-graphics intensive workloads and
are inadequate in providing good display performance for 2D and
3D graphics intensive content, if such content is viewable at all.
Other approaches have considered remoting graphics by sending
OpenGL commands over the wire [16], but require substantial
network bandwidth and do not support the myriad of OpenGL
extensions used in mobile systems. None of these approaches
work effectively if at all for display sharing across tablets and
smartphones. In contrast to these display command and graphics
primitive approaches, more recently, newer versions of Apple’s
AirPlay [3] enable display mirroring from iOS mobile systems
to AppleTV by taking advantage of H.264 encoding hardware
available on those systems to simply encode and decode raw
display frames, but AirPlay is proprietary, only works on Apple
hardware, and does not provide display mirroring between tablets
and smartphones. M2 takes a similar approach of using video
encoding and decoding hardware to make it possible to efficiently
enable display sharing across WiFi networks between mobile sys-
tems with excellent display quality even for 3D graphics-intensive
workloads. Unlike previous approaches, M2 goes beyond display
mirroring to enable using multiple display devices simultaneously
and provides support for the broad range of heterogeneous devices
other than display available on mobile systems.

Universal Plug and Play (UPnP) [31] is a standard of network
protocols to allow systems to discover each other on the network
and access services, increasingly used to stream media content
from a server to a UPnP capable system such as an XBox 360.
However, we are not aware of any UPnP solutions that operate
between tablets and smartphones. UPnP focuses on network
discovery and access of services and is complementary to M2.
MediaTek’s recently announced CrossMount [18], to become
available in late 2015, builds on UPnP to connect systems wire-
lessly so that for example, you can be streaming video on a TV
then switch to watching it on a tablet. No actual demonstrations or
public technical details are available, so this appears at this point to
be a proposed technical specification to be implemented. Based on
available mock-ups and advertising, CrossMount at best provides
some form of device mirroring.

Various approaches explore extended protocols typically associ-
ated with traditional cabling to connect systems to output devices.
For example, Miracast [33] defines a protocol to connect a TV
monitor to a device over WiFi. These approaches are typically
limited to a particular class of device and do not support general
device sharing across multiple mobile systems.

Other approaches have more recently been explored for using
multiple mobile systems, such as Flux [32]. It migrates apps across
Android systems to enable a user using an app on a smartphone
to continue using it on another tablet. Unlike M2, Flux does not
support combining multiple mobile systems together for use.

Storage and networking on Android are not comparable to other
devices M2 implements since they do not have relative system ser-
vices. Existing applications on Android allow for sharing storage at
the application layer using protocols such as Server Message Block
or Common Internet File System [8]. Ori [17], PodBase [24],
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and Eyo [29] are storage systems that take advantage of multiple
devices to share files across different devices. Cloud based services
such as Dropbox [7] and iCloud [4] provide location transparency
of files and allow backing up of files. These systems are mostly
concerned with sharing files rather than sharing storage devices as
CIFS or NFS. Sharing networking can be achieved through WiFi
Direct, in the case of Android, or Personal Hotspots in iOS.

8. Conclusions

We have designed, implemented, and evaluated M2, a system for
multi-mobile computing by enabling remote sharing of hetero-
geneous devices across multiple mobile systems. By observing
differences in the tall device stack of mobile systems, we split de-
vice functionality between client and server at user-level across app
frameworks and system services to provide device remoting across
heterogeneous mobile hardware and software. We show how fused
devices can transparently enable existing apps to become multi-
mobile, and extend the Android app API to allow developers to cre-
ate new multi-mobile apps. Our experimental results across multi-
ple versions of Android running on heterogeneous hardware as well
as using iOS remote devices show that M2 can deliver good remot-
ing performance even for device-intensive apps such as 3D games.
We show that M2 runs unmodified Android apps across multiple
systems combined together into one more capable one, and can
enable users to run Android apps on iOS systems. If accepted for
publication, we will do a live demo of the system at the conference.
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