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Abstract—As U.S. power grid transforms itself into Smart
Grid, it has become less reliable in the past years. Power grid
failures lead to huge financial cost and affect people’s life. Using
a statistical analysis and holistic approach, this paper analyzes
the New York City power grid failures: failure patterns and
climatic effects. Our findings include: higher peak electrical load
increases likelihood of power grid failure; increased subsequent
failures among electrical feeders sharing the same substation;
underground feeders fail less than overhead feeders; cables and
joints installed during certain years are more likely to fail; higher
weather temperature leads to more power grid failures. We fur-
ther suggest preventive maintenance, intertemporal consumption,
and electrical load optimization for failure prevention. We also
estimated that the predictability of the power grid component
failures correlates with the cycles of the North Atlantic Oscillation
(NAO) Index.

Index Terms—failure analysis, power system reliability, predic-
tion methods, reliability engineering, statistical analysis, machine
learning.

I. INTRODUCTION

ASustainable energy future depends on an efficient, reli-
able and intelligent electricity distribution and transmis-

sion system, i.e., power grid. As a critical infrastructure, power
grid is the electricity distribution and transmission system that
bridges the power generation and the electricity consumers.
Despite huge investments in the U.S. to improve the power
grid, it has become less reliable and more outage-prone in
the past years. According to two data sets, one from the
U.S. Department of Energy and the other one from the North
American Electric Reliability Corp., the number of power
outages greater than 100 Megawatts or affecting more than
50,000 customers in the U.S. almost doubled every five years
in the past fifteen years, resulting in about $49 billion outage
costs per year [1].

One of the main causes of power grid failure is electrical
component failure. These component failures may lead to
cascading failures. In 2004, the U.S.-Canada Power System
Outage Task Force released their final report on the 2003 U.S.
Northeast blackout, placing the main cause of the blackout on
some strained high-voltage power lines in Ohio that later went
out of service, which led to the cascading effect that ultimately
forced the shutdown of more than 100 power plants [2].
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We have collaborated with the Consolidated Edison of New
York, the main power utility provider of New York City, and
conducted a statistical analysis of the New York City power
grid failures, especially in the electrical feeder component. We
have identified several power grid failure patterns including:
higher peak electrical load increases likelihood of power grid
failure; increased subsequent failure among feeders sharing the
same substation; underground feeders fail less than overhead
feeders; cables and joints installed between 1970 and 1975
are more likely to fail. Because climate affects the power
grid reliability, we also analyzed the climatic effects on the
power grid failures including temperature, North Atlantic Os-
cillation (NAO), snowfall, hurricane and earthquake, and solar
storm. To effectively prevent power grid failure, preventive
maintenance, intertemporal consumption, and electrical load
optimization can be used.

The paper is organized as follows. In the following section,
we will present failure model and statistical methods. Then
we will describe our findings in power grid failure patterns,
followed by climatic effects on power grid failures. We will
further describe failure prevention before conclusion.

II. FAILURE MODEL AND STATISTICAL METHODS

As a complex distributed system, power grid usually does
not fail as a whole, except in some extreme occasions. The
failure analysis of power grid focuses on the failures of the
partial segments and the individual electrical components of
the grid.

The failure rate can be defined as the total number of
failures within an item population, divided by the total time
expended by that population, during a particular measurement
interval under stated conditions [4]. For the Weibull failure
distribution, the failure density function f(t) and cumulative
failure distribution function F (t) are
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where k > 0 is the shape parameter and λ > 0 is the
scale parameter of the distribution. The hazard function (or
instantaneous failure rate) when t ≥ 0 can be derived as
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A value of k < 1 indicates that the failure rate decreases
over time. A value of k = 1 indicates that the failure rate
is constant (i.e., k/λ) over time. In this case, the Weibull
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distribution becomes an exponential distribution. A value of
k > 1 indicates that the failure rate increases with time.

Mean time between failures (MTBF) is the predicted
elapsed time between inherent failures of a system during
operation. In practice, MTBF can be calculated as inverse of
failure rate.

III. POWER GRID FAILURE PATTERNS

In New York City, underground primary feeders are one
of the most failure-prone types of electrical components. In
the following section, we will analyze the feeder failure data
collected in New York City and describe our findings on the
power grid failure patterns.

A. Higher Peak Electrical Load Increases Likelihood of Power
Grid Failure

Seasonal electrical load and peak electrical load have a
major impact on power grid failures. As show on Fig. 1,
during summer heat waves, the city wide peak electrical load
is significantly higher than the other times. The stress on the
grid leads to more power grid component failures.

Fig. 1: Number of feeder failures (OA) and city wide peak
electrical load from June 1, 2009 to May 31, 2011.

B. Increased Subsequent Failures Among Feeders Sharing the
Same Substation

Given the effect of failures on other feeders in the same
network we investigated the effect of failures on networks
that were connected by a shared bus at the substation. The
following graphs show the results of this study. The following
graph shows the Weibull component of the fit to the histograms
of the intervals between an failure and a subsequent failure
on feeders in the same network, a subsequent failure on a
feeder in the second network connected at the substation by
a shared bus, and a subsequent failure on a network chosen
at random. Each curve is normalized to 1000 initial failures.
We see that the number of failures above random in the
case of failures on the same network is significant on day
one and is also significant on days 2-10. There is also a
clean signal on day one in the Other Network case that we
speculate is due to transient electrical effects. The minor signal
on a Random network we speculate is due to occurrences
of multiple failures on days of weather extremes or other
artificially high coincidences such as those that occurred after
9/11, during the LIC event, and the steam explosion of 2007
in Manhattan [5].

Fig. 2: Subsequent feeder failures after initial failures [5].

C. Underground Feeders Fail Less Than Overhead Feeders

New York City has mixed use of underground and overhead
feeders in the five boroughs with Manhattan mostly use
underground feeders. As illustrated in Fig. 3, the normalized
data shows that the underground feeders fail less than other
feeders in most years.

Fig. 3: Underground and overhead feeder failures normalized
by number of feeders from 2002 to 2010.

D. Cables and Joints Installed Between 1970 and 1975 Are
More Likely to Fail

Our analysis of the cable and joint failures data from March
1975 to August 2011 shows that the cables and joints installed
between 1970 and 1975 are more likely to fail. Fig. 4 and Fig.
5 illustrate the number of failure incidents for the cables and
joints installed from 1901 to 2011.

Fig. 4: Cable failures versus installation year.

Fig. 5: Joint failures versus installation year.
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IV. CLIMATIC EFFECTS ON POWER GRID FAILURES

The physical installation and operation of the power grid
electrical components expose them to the influence of the
weather. The climate affects the reliability of the New York
City power grid. In the following section, we will describe
climatic effects on the power grid failures.

A. Weather Temperature

During summer heat waves, the power grid in New York
City is normally under higher load stress due to increased
electricity demand. We have analyzed three years of electrical
feeder failure data from June 1, 2009 to May 31, 2011 and
compare them with the corresponding temperature variables,
i.e., the three hour weighted average of the highest temperature
and wet bulb from the current forecast day and the actual
from the two previous days. As shown in Fig. 6 and Fig.
7, the number of feeder failures increases as the temperature
increases from 20 Fahrenheit degree to 75 Fahrenheit degree.
The tail drop in Fig. 7 at above 75 degree is due to the limited
data points in the extreme hot weather. While, Fig. 6 shows
that the number of failures are even higher for the hot weather
with temperature above 75 degree.

Fig. 6: Number of feeder failures versus temperature variable
scatter plot (June 1, 2009 to May 31, 2011).

Fig. 7: Number of feeder failures in a 5-degree bucket versus
temperature variable (June 1, 2009 to May 31, 2011).

B. North Atlantic Oscillation

The North Atlantic Oscillation (NAO) is a climatic phe-
nomenon of fluctuations in the difference of atmospheric pres-
sure at sea level between the Icelandic low and the subtropical
high. Through east-west oscillation motions of the Icelandic
low and the subtropical high, the NAO controls the strength
and direction of westerly winds and storm tracks across the
North Atlantic. It is the dominant mode of winter climate
variability in the North Atlantic region ranging from central
North America to Europe and much into Northern Asia. As
defined by the National Weather Service, the daily NAO index

is constructed by projecting the daily (00Z) 500mb height
anomalies over the Northern Hemisphere onto the loading
pattern of the NAO, which is defined as the first leading mode
of Rotated Empirical Orthogonal Function (REOF) analysis of
monthly mean 500mb height during 1950-2000 period [6].

Fig. 8: Feeder failures (OA), NAO Index, temperature variable
and peak electric load from June 1, 2009 to May 31, 2011.

The positive phase of the NAO reflects below-normal
heights and pressure across the high latitudes of the North
Atlantic and above-normal heights and pressure over the
central North Atlantic, the eastern United States and Western
Europe. The increased pressure difference results in more
and stronger winter storms crossing the Atlantic Ocean on
a more northerly track. The eastern US experiences mild
and wet winter conditions. The negative phase reflects an
opposite pattern of height and pressure anomalies over these
regions. The reduced pressure gradient results in fewer and
weaker winter storms crossing on a more west-east pathway.
The US east coast experiences more cold air outbreaks and
hence snowy weather conditions. Both phases of the NAO
are associated with basin-wide changes in the intensity and
location of the North Atlantic jet stream and storm track,
and in large-scale modulations of the normal patterns of zonal
and meridional heat and moisture transport [7], which in turn
results in changes in temperature and precipitation patterns
often extending from eastern North America to western and
central Europe [8], [9], [10].

C. Snowfall

We have studied past snow storms and their effects on the
power grid. We noticed the absence of any corresponding peak
in secondary events during the snowfall. Instead of a sharp rise
after a snow storm, we see a gradual rise in the number of
secondary events. At the same time, the maximum temperature
during and after the initial snow storm is well below freezing.
The number of secondary events only peaks after a rise in
temperature above freezing. These observations are consistent
with the hypothesis that runoff water from melting snow is
largely responsible for the rise in events. Fig. 9 shows the
spatial distribution of the Manhattan secondary events on the
snow and non-snow days [11].

D. Hurricane and Earthquake

New York City does not locate in a zone that hurricane and
earthquake frequently visits. But in August 2011, Hurricane
Irene and 5.8 earthquake affected New York City. On August
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Fig. 9: Manhattan events on snow and ordinary days [11].

27, 2011, Hurricane Irene made landfall on Coney Island NY
as a Category 1 hurricane. The weakened tropical storm surge
reaches underneath the boardwalks in beach areas. There were
2 EF0 tornadoes that were confirmed by the National Weather
Service. The low-lying areas in lower Manhattan and other
boroughs were flooded. The hurricane Irene caused power
outages in lower Manhattan, especially in the coastal Battery
Park area, for several days. It was also reported that the
Long Island Power Authority (LIPA) had over 400,000 power
outages.

On August 23, 2011, a 5.8 earthquake centered in Virginia
spread its shock wave to much of the East Coast, giving New
York City its biggest shaking in decades. Two nuclear plants in
Virginia shut down automatically as a precaution. Other than
personnel evacuation from office buildings, New York City
did not experience massive power interruption because of this
earthquake.

E. Solar Storm

We are moving to an age with increasingly active and
volatile space weather including solar storm. A recent research
[12] analyzed the solar storm’s potential catastrophic effect
on the power grid. An eruptive event on the Sun, known as
a coronal mass ejection, sends a powerful flux of charged
particles, protons and electrons, into the surrounding space. If
the Earth is on a line with the eruption, the charged particles
interact with the Earth’s radiation belts and geomagnetic field
to produce currents in the ionosphere. The power lines which
make up the electrical transmission grid act as antennae, to
couple these ionospheric currents to the installed transformers
which step up the voltage for long-distance transmission. The
ionospheric or auroral currents produced by a powerful solar
storm induce strong fluctuating direct currents in the power
lines. Known as geomagnetically induced currents (GIC),
when they reach the transformers, they piggyback on to
the strong alternating current already flowing and cause the
iron cores of the transformers to saturate and overheat from

hysteresis and reactive resonance effects in the transmission
line. This can cause network-wide voltage regulation problems
leading to blackouts, or complete transformer burnout. The
greatest danger is to the more than 300 extra high-voltage
(EHV) transformers located at power substations along the
routes of major transmission lines. Because of the limited
manufacturing capability for these large EHV transformers,
it could take months or years to restore power in some areas
[12], [13], [14].

V. FAILURE PREVENTION

Preventive maintenance, intertemporal consumption, and
electrical load optimization can be used to effectively prevent
power grid failures under non-catastrophic climate situation.

A. Preventive Maintenance Using Susceptibility Ranking

To improve the power grid reliability and reduce potential
failures, we have developed several machine learning and data
mining systems to rank some types of electrical components by
their susceptibility to impending failure. The rankings can then
be used for planning of fieldwork aimed at preventive mainte-
nance, where the components should be proactively inspected
and/or repaired in order of their estimated susceptibility to
failure [3].

MartaRank [15], [16] and ODDS [17] are two online
machine learning and data mining-based feeder-ranking sys-
tems for preventive maintenance. MartaRank employs Support
Vector Machines (SVM), RankBoost, Martingale Boosting,
and an ensemble-based wrapper. The ODDS ranking system
uses ranked lists obtained from a linear SVM. In evaluating
a ranked list of components, we use accompanying rank
statistics such as the Area Under the Curve (AUC). The
AUC is equal to the probability that a classifier will rank
a randomly chosen positive instance higher than a randomly
chosen negative one. It is in the range of [0, 1], where an AUC
of 0.5 represents a random ordering, and an AUC of close to
1.0 represents better ranking with the positive examples at the
top and the negative ones at the bottom. One phenomenon we
identified is the AUC cyclicity that appears in both feeder-
ranking systems (Fig. 10) [18]. Although the two AUC time
series vary differently, they both possess an inherent cyclical
pattern.

Fig. 10: MartaRank AUC and ODDS AUC from June 1, 2009
to May 31, 2011

To find out the cause of this cyclical pattern, we studied
many possible factors and analyzed their corresponding data
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including peak power load, temperature, load pocket weight
(i.e., a measurement of intensive power use constraints on
the transmission system in a big city like New York) and
their derivatives such as delta values. Our finding shows that
climate affects the reliability of the New York City power grid
and the predictability of the power grid component failures is
following the cycles of the North Atlantic Oscillation (NAO)
Index (Fig. 8). Our analysis further shows a prominent 21 days
peak and trough correlation between the NAO index, machine
learning AUC and temperature variable (Fig. 11). As shown
in the Fig. 11, the NAO index, temperature variable and two
AUC time series fluctuate in tandem with each other in an
approximately 21 days cycles from May 2010 to October 2010.

Fig. 11: Peak and trough correlation (approximately every 21
days)

We estimated that the climate affects the reliability of the
New York City power grid and the predictability of the power
grid component failures is following the cycles of the North
Atlantic Oscillation (NAO) Index. However, the weather tem-
perature and peak power load do not follow the predictability
trend of the power grid component failures as close and as
sensitive as the NAO Index. The close correlation between
NAO Index and the predictability of the New York City power
grid component failures derive from various climatic factors
and the power grid components cyber-physical responses to
them.

B. Intertemporal Consumption and Load Optimization

As we stated earlier, the higher peak electrical load in-
evitably leads to the stress of the power grid and higher
likelihood of power grid failures. With the fixed electricity
distribution and load capacity, electrical components often
work in a stressful or overloaded mode, which is a major cause
of electrical component failures. Intertemporal consumption
and electrical load optimization are two ways to lower the
peak electrical load and smooth the demand curve of the power
distribution.

As an economic term, intertemporal consumption describes
how an individual’s current decisions affect what options
become available in the future. An individual who saves today
consumes less, causing his or her current utility to decline.
Over time, the savings grow, increasing the amount of goods
the individual can consume and, therefore, the person’s future
utility. Electricity consumers, including commercial, industrial,
and residential customers, have the option to reschedule their

use of the power grid. For example, to move the heavy indus-
trial use of the grid to the weekend may significantly reduce
the overall area wide peak load demand. The intertemporal
consumption may be incentivized through pricing rebate from
the utilities. One example is the Electric Vehicle charging,
which is likely to increases overall electrical load on the grid.
The high peak power requirement of ten-minute charging can
also stress the local power grid and might increase the risk
of power outages or even black-outs during peak demand
if enough vehicles choose to charge at these times. Using
economic incentives to encourage EV users to charge during
off-peak hours can help to reduce the demand during peak
load time.

Electrical load optimization includes load curtailment and
optimal load allocation. Load curtailment entails voluntary and
involuntary cut down of electricity use by large consumers.
It is an effective way to reduce consumption during peak
electric demand period and would help to mitigate the stress
on the grid and effectively reduce potential failures. Optimal
load allocation requires improvement on how the utilities
allocate and route the electrical load among the available
supply network in some intelligent and proactive way, thus
creating a better match between supply, demand and response.
Use of energy storage system helps electrical load optimization
and bridges the gap between the electricity demand and limited
capacity of the power grid. The energy storage system suffers
some efficiency drop and thus trades lower overall system
efficiency in favor of higher peak demand capacity.

VI. CONCLUSION

In this paper, we did a statistical and holistic analysis of
the New York City power grid failures. We identified several
failure patterns and analyzed climatic effects on the power
grid failures. We further suggested preventive maintenance,
intertemporal consumption, and load optimization as some
effective ways of preventing power grid failures.
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