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Abstract

The “Schur complement trick” appears sporadically in numerical
optimization methods [Schur 1917; Cottle 1974]. The trick is es-
pecially useful for solving Lagrangian saddle point problems when
minimizing quadratic energies subject to linear equality constraints
[Gill et al. 1987]. Typically, to apply the trick, the energy’s Hessian
is assumed positive definite. I generalize this technique for positive
semi-definite Hessians.

1 Positive definite energies

Let us consider a quadratic energy optimization problem subject to
linear equality constraints:

minimize
x

1

2
xTAx− xTf + constant, (1)

subject to Bx = g, (2)

where x, f ∈ Rn, A ∈ Rn×n, B ∈ Rm×n and g ∈ Rm.

Solving with the Lagrange multiplier method results in a system of
linear equations:[

A BT

B 0

] [
x
λ

]
=

[
f
g

]
,

where λ ∈ Rm is a vector of Lagrange multipliers.

To retain generality, let us replace the zero block in our system ma-
trix with a variable C.[

A BT

B C

] [
x
λ

]
=

[
f
g

]
,

where λ ∈ Rm is a vector of Lagrange multipliers.

By assuming that A is positive definite, the Schur complement trick
proceeds by multiplying the first set of equations by BA−1:

BA−1Ax+BA−1BTλ = BA−1f , (3)

Bx+BA−1BTλ = BA−1f . (4)

Now, substitute the second set of equations Bx+Cλ = g for Bx
and solve the resulting equation for λ:

(g −Cλ) +BA−1BTλ = BA−1f , (5)

(BA−1BT −C)λ = BA−1f − g, (6)

λ = (BA−1BT −C)−1 (BA−1f − g
)
. (7)

Finally, find the primary solution by solving the first equation using
the newly found values for λ:

x = A−1(f −BTλ).

Assuming a factorization of A may be precomputed, this trick al-
lows quickly solving optimization problems involving the same en-
ergy Hessian A, but different linear coefficients f and different con-
straints Bx = g. So long as the number of constraints is signifi-
cantly smaller than the number of variables (m � n), the cost of
solving against the Schur complement (BA−1BT − C) will be
small compared to a full factorization (e.g. LDLT) of the system
matrix [ABT;BC]. This trick is beneficial in scenarios where the
energy is fixed but a small number of constraints are changing.
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Figure 1: If A is an n× n positive semi-definite matrix with rank
r, then simply move n−r rows and columns to the B and C blocks.

2 Positive semi-definite energies

With loss of generality, assume A is symmetric, but merely positive
semi-definite, with known rank r < n. We would like to apply the
Schur complement trick from the previous section, but A is singular
so we cannot factor it or solve against it.

However, we can simply shave off n− r linearly independent rows
and columns of A and push them into the B,BT,C blocks of the
system system (see Figure 1). The remaining square portion of A,
Ã ∈ Rr×r , is a full rank and non-singular. Assuming the orig-
inal system matrix M = [ABT;BC] = [ÃB̃T; B̃C̃] was non-
singular, then new Schur complement (B̃Ã−1B̃T − C̃) will also
be non-singular. This follows immediately from Schur’s original
observation that:

detM = det Ã det(B̃Ã−1B̃T − C̃).

We can now simply apply the trick from the previous section.

This generalized trick is beneficial when the fixed energy has a non-
trivial, but small null space.

Such situations arise in geometry processing when A is the
Laplace or Laplace-Beltrami operator and the problem is minimiz-
ing Dirichlet energy subject to some yet to be determined boundary
conditions or constraints. For a mesh with n vertices, the discrete
Laplace operator is rank n − 1, so only one row and column need
to be moved.

One alternative to the presented approach would be to regularize A
(e.g. A+εI), but then one must choose between retaining the exact
solution or ensuring numerical stability.

I am grateful to Jernej Barbić, Keenan Crane, and Ladislav Kavan for illu-
minating discussions.
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