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Abstract. Cloud computing offers a scalable, low-cost, and resilient
platform for critical applications. Securing these applications against at-
tacks targeting unknown vulnerabilities is an unsolved challenge. Net-
work anomaly detection addresses such zero-day attacks by modeling
attributes of attack-free application traffic and raising alerts when new
traffic deviates from this model. Content anomaly detection (CAD) is a
variant of this approach that models the payloads of such traffic instead
of higher level attributes. Zero-day attacks then appear as outliers to
properly trained CAD sensors. In the past, CAD was unsuited to cloud
environments due to the relative overhead of content inspection and the
dynamic routing of content paths to geographically diverse sites. We
challenge this notion and introduce new methods for efficiently aggre-
gating content models to enable scalable CAD in dynamically-pathed
environments such as the cloud. These methods eliminate the need to
exchange raw content, drastically reduce network and CPU overhead,
and offer varying levels of content privacy. We perform a comparative
analysis of our methods using Random Forest, Logistic Regression, and
Bloom Filter-based classifiers for operation in the cloud or other dis-
tributed settings such as wireless sensor networks. We find that content
model aggregation offers statistically significant improvements over non-
aggregate models with minimal overhead, and that distributed and non-
distributed CAD have statistically indistinguishable performance. Thus,
these methods enable the practical deployment of accurate CAD sensors
in a distributed attack detection infrastructure.

1 Introduction

More applications each year are migrated to, or developed for, the cloud [1].
The economy of scale, on-demand computation, centralized analytics, and nu-
merous other advantages have resulted in mandates for government cloud de-
ployments [2] in addition to the momentum of the private sector. Growing with
this demand is the need for robust zero-day attack detection as data centers
become more lucrative targets. Current signature-based intrusion detection fails
to identify such novel attacks, while traditional anomaly detection may be too
slow to react due to its dependence on sufficient traffic statistics.

In recent years, content anomaly detection (CAD) has proven effective for
this task while being resistant to mimicry and poisoning attacks [3, 4]. While



CAD has been shown effective for sites with static request paths, load balanced
distributed environments can violate the traditional assumptions of anomaly
detection by spreading requests (and thus content) over multiple geographically
diverse sites due to a lack of session affinity or other factors. Even at a single
geographic location, load balancers may not be suitable hosts for heavyweight
CAD sensors due to impacts on performance, resilience, and security. For these
reasons we wish to spread the overhead of CAD sensors across nodes in the
system, but each distributed sensor has an incomplete view of an application’s
content in this environment. Since new content is much more likely due to a
routing change than an actual attack, false positive rates are prohibitively high.
We term this the dynamic pathing problem of distributed anomaly detection.

In this paper, we introduce methods for aggregating the local CAD models of
Random Forest (supervised), Logistic Regression (supervised), and Bloom Fil-
ter (unsupervised) classifiers trained on n-gram payloads of normal application
content. We then present an extensive comparative analysis of CAD using our
aggregation methods with a publicly available IDS dataset containing labeled
content-based HTTP attacks, as well as larger private labeled dataset collected
at Columbia University. Summarizing our primary findings:

– The area under the ROC curve for aggregated Bloom Filter, Logistic Re-
gression, and Random Forest content models have 95% confidence intervals
of 97.3-97.7% and 98.9-99.9% for ISCX and Columbia datasets respectively,
using n = 5 and a 25-node distributed web application simulated via cross-
validation. This is a statistically significant performance improvement over
non-aggregate models.

– Aggregate, unsupervised Bloom Filters have performance comparable to su-
pervised models, with the additional benefit of better generalization to zero-
day attacks since an explicit representation of the attack class is not neces-
sary.

– Aggregate content model performance is statistically indistinguishable from
non-distributed CAD where all traffic is observed by the application server.

– Our aggregation methods do not require the exchange of content between
nodes, dramatically reducing overhead and offering varying degrees of con-
tent privacy.

As a result, we find that unsupervised Bloom Filter models combined with our
aggregation methods enable practical deployment of distributed content-based
anomaly detectors in the cloud, wireless sensor networks, or other similar envi-
ronments.

2 Background

2.1 Load Balancing

Perhaps the simplest method of load balancing creates multiple IPs for a given
DNS record. To illustrate, consider a subset of IPs returned from querying
Google:



$ host -t a google.com

google.com has address 74.125.239.105

google.com has address 74.125.239.97

google.com has address 74.125.239.102

DNS clients receiving such a record will permute this address list in a client-
determined way such that different connection attempts are likely to use a dif-
ferent IP. This permutation is often round robin and thus termed Round Robin
DNS (RRDNS). If the servers at each IP provide identical services, this offers
a basic method of load balancing and scales horizontally. The simplicity of this
method is also its weakness, as clients will attempt to use servers that malfunc-
tion until the client’s DNS entries expire and an updated record (lacking the
offending server) is fetched.

Hardware load balancers (HLBs, also called network-based load balancers)
improve on the weaknesses of DNS-based load balancing by adding server aware-
ness and offering more advanced balancing strategies. An HLB might monitor
server health via echo requests and route only to responsive servers based on (for
example) average response time, fewest connections, or hard-coded weights rep-
resenting hardware capacity. However, HLBs are not as scalable and as a result
are often used in combination with RRDNS for extremely high volume sites.

2.2 Geo-Distribution

Servers may reside in geographically diverse locations in distributed environ-
ments, particularly in the cloud. To illustrate, Amazon provides servers in multi-
ple geographic areas called regions that are further divided into isolated locations
called availability zones (ex: us-east-1, us-west-1, and us-west-2). Applications
are commonly deployed using HLBs across multiple regions in combination with
DNS-based load balancing to improve not only fault tolerance but application la-
tency. Companies such as Amazon, Akamai, Dynect, and UltraDNS all have such
offerings utilizing IP-based geo-location for routing requests to servers “closest”
to the client, often at the global scale (termed Global Server Load Balancing).

2.3 The Dynamic Pathing Problem

Load balancing offers increased fault tolerance and lower latency but may impact
application usability. For example, a user authenticated to server A in region us-
west-1 might be routed to us-west-2 due to a hardware failure and thus have to
re-login since server B is unaware of the user’s session and its associated cookie
on server A. Session stickyness or affinity is an option provided by some HLBs
to ensure all requests during a user’s session are routed to the same application
server. It does this by creating independent load balancer cookies that are op-
tionally tied to the duration of the application session cookie. For the duration
of the load balancer cookie, the same user will be routed to the same server.

These optimizations paint a complex picture of the path application data
takes through the network. By design, each server in the network will see only
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Fig. 1. A load balancer routes a normal request and an SQL injection attack to ap-
plication servers on different coasts of the US. If the west coast CAD model detects
the injection but the attacker migrates to the east coast server, the injection may be
undetected there. The attack would be detected if the individual CAD models were
first aggregated and re-distributed.

a fraction of the overall application traffic. To secure these servers we may wish
to deploy different types of anomaly detection sensors that allow local detection
of attacks. Anomaly detection traditionally builds models over an attack-free
dataset and flags outliers as potential attacks. Without seeing the complete
picture of the network, however, a sensor deployed at a geographically diverse
application server is likely to have an extremely high false positive rate since
what it considers “normal” will vary, even from collaborating servers of the
same application.

In the following example, Amazon’s Route 53 DNS load balancer routes client
requests to an application server in Amazon zones us-west-1 and us-east-1 (see
Figure 1). An attacker sends an HTTP request containing an SQL injection to
the application, and this request is routed to us-west-1 (path in red) by the
load balancer based on their geo-located IP. Within a similar time frame, a
non-attacker sends a normal request that is routed instead to us-east-1 (path in
purple). For illustration, let only the model at us-west-1 be capable of detecting
this attack. Without some method of model aggregation, if the attacker is ever
routed to us-east-1 due to non-sticky sessions, hardware failures, or attacker mi-
gration, the attack will not be detected (resulting in a false negative). This is the
dynamic pathing problem for anomaly detection: Normal models of partial traffic
are rarely trained on enough data to reliably detect attacks or distinguish real
attacks from normal traffic. We aim to solve this problem through the introduc-
tion of low-overhead content model aggregation schemes suitable for distributed
environments.



3 Dataset and Methods

3.1 Public Dataset

Publicly available IDS datasets containing both packet payloads and ground
truth “normal” or “attack” labels are extremely rare, but are essential for fos-
tering reproducible research. Towards this end, we selected the Information Se-
curity Centre of Excellence (ISCX) dataset [5] to evaluate our methods in a
reproducible manner. We briefly summarize the dataset here and refer to the
Shiravi et al. paper [5] for details.

The dataset converts packets into network flows (see RFC 3917) such that
content sent with the same protocol, source IP, and source port within some
time period is grouped into a single field, along with its ground truth label
and other TCP/IP fields. The captures contain 84 gigabytes of traffic generated
over 7 days; 31,414 out of 1,827,231 flows contain attacks. Most of these attacks
represent denial-of-service, so the data is filtered down to 105 content-based
attacks with unique HTTP request payloads. These attacks are combined with an
equal number of randomly sampled non-attack HTTP request payloads to create
a balanced dataset. This is essential for unbiased evaluation of the supervised
models since normal traffic is orders of magnitude more prominent and would
cause the classifier to overfit to the majority (normal) class, though does not
affect unsupervised Bloom Filters.

3.2 Private Dataset

We augment our reproducible evaluation with a larger, private dataset collected
at Columbia University since the ISCX dataset contains a smaller number of
content-based HTTP attacks. This dataset was collected from Computer Science
departmental webservers in 2014 and contains 34,207 HTTP payloads. These
payloads are normalized, clustered, and manually labeled as malicious or benign.

For this dataset, the n-gram feature matrix used by the supervised models
(discussed next) is more densely populated due to the larger number of samples.
We downsampled the dataset to ≈ 5,000 normal and 5,000 attack payloads
to overcome multiprocessing RAM limitations when n = 5. This downsampling
results in a conservative performance estimate for unsupervised Bloom Filters
that intrinsically handle, and benefit greatly from, a larger number of samples.

3.3 Feature Representation

n-Grams are a standard representation of strings as consecutive sequences of n
bytes. They are alternately called unigrams when individual bytes are used,
digrams for two bytes, and so on. This representation converts strings into a
feature vector suitable for machine learning algorithms. The vector can be binary,
representing the presence or absence of each n-gram, or alternately a multinomial
distribution over n-gram counts.



To illustrate using payloads from our dataset, consider the following exam-
ple. Below is the HTTP URI of a normal request, representing the relevant
application content of the packet:

/catalog/admin/file_manager.php/login.php?action=save

and its 5 most frequent digrams:

count

ngram

.p 2

hp 2

ph 2

in 2

og 2

Now consider the HTTP URI of a content-based attack:

/cgi-bin/;echo${IFS}-ne${IFS}"\\x6e\\x63\\x20\\x2d\\x6c\\x70\\x20\\x

and similarly the top 5 digrams:

count

ngram

\x 8

0\ 3

x6 3

x2 3

IF 2

Given sufficient amounts of data and a suitable n-gram length, these distribu-
tions can distinguish normal requests from attacks. Previous work found empir-
ically that n = 5 is suitable for CAD [3]; we demonstrate the performance of
additional values in Section 4.

3.4 Bloom Filters

Bloom Filters are extremely compact, probabilistic set representations with a
tunable false positive rate [6]. Items are inserted using multiple hash functions
to set bits in a vector and filters can be combined or intersected using fast and
efficient logical bitwise operations. They have previously been used as micromod-
els for CAD [7] where collaborating sites exchange models of abnormal instead
of normal content to efficiently share attack patterns. This is not suitable for
dynamically-pathed environments where most traffic may look like attacks to
non-aggregate models, and so our aggregation operates on models of normal
content.

To operate as a classifier, a filter is first trained by inserting all n-grams for
each application payload in the training set. The filter then contains a compact



representation of normal content n-grams. Predictions are made by calculating
the percent of unobserved n-grams for each application payload in the test set.
This produces a vector of probabilities for the test set, representing the model’s
confidence that each payload is an attack. Choosing a suitable value of n is
essential for this model as hash collisions are likely occur for unigrams and other
small values of n.

Due to the simplicity of the model, aggregation is simple: Take the logical
OR of each model sent to a designated aggregation node. This process may
optionally incorporate a threshold by counting the number of times a bit is set
at each position in the model and setting a bit in the final model only if this
count is above a certain threshold. Effectively, this allows each local model to cast
a vote for each bit position in the final filter. Note that the aggregating node
needs only the space-efficient bit vector of each Bloom Filter rather than the
original content to perform aggregation. The model also provides basic privacy
as the content stored in the filter cannot be extracted—one could test for the
presence of a particular n-gram, but the bits could have been set by some other
combination of n-grams since the model achieves its compactness by allowing
for false positives.

3.5 Logistic Regression

Logistic regression is the adaptation of linear regression to classification prob-
lems with a discrete instead of real-valued dependent variable. For binary clas-
sification, the model assumes the probability that the dependent variable Yi
belongs to the positive class is a weighted combination of m predictor variables
Xi = x1 . . . xm. The weights β = β0 . . . βm, or regression coefficients, can be
learned by various optimization procedures to maximize the likelihood of the
training data. The β0 term serves as the intercept. The probability of observa-
tion i is then computed as:

E[Yi|Xi] = logistic(β ·Xi) =
1

1 + e−β·Xi

where β ·Xi is the dot product between the regression coefficients and the pre-
dictor variables, and the logistic function converts the outcome to a probability
in the range 0..1.

If each node uses the same feature space, aggregation is again simple: the
vector of regression coefficients for each node are averaged together and re-
distributed. This works surprisingly well and also provides a basic level of con-
tent privacy since regression coefficients reveal nothing about the underlying
feature space (see related work in Section 5). Coefficient vectors are relatively
space-efficient, particularly if sparsity is enforced via L1-norm or LASSO regu-
larization, though typically not as compact as Bloom Filters (see Section 4).

3.6 Random Forests

Decision trees map predictor variables to a target variable outcome by using a
tree-based representation that recursively splits on individual feature values at



each node (e.g. “Go to left child node if x2 > 3.3”), starting at the root until a
leaf containing a prediction is reached. They are extremely popular across many
disciplines for their visual interpretibility but are notorious for their tendency to
overfit training data. Learning decision trees from data is a major topic in data
mining and machine learning; we refer the reader to introductory texts such as
Mitchell [8] for further detail.

Random forests overcome the performance limitations of decision trees by
creating an ensemble (collection) of trees where each tree is trained on a random
subset of predictors and a bagged (resampled with replacement) version of the
training data [9]. The predictions over all trees are averaged together to create a
final prediction which is more accurate than any individual tree, and indeed ran-
dom forests offer state-of-the-art performance for a wide variety of classification
and regression problems.

A simple method for aggregating multiple ensembles of trees takes the union
of the trees contained in each ensemble. For example, aggregating 2 forests with
100 trees each results in a single forest of 200 trees. This is neither space nor
time efficient and is included here for comparative analysis to the space-efficient
models above in order to determine if extra predictive performance can be gained
by using a more complex, non-linear model. More elaborate methods might prune
the aggregate forest using some critera to maintain a fixed ensemble size and thus
reduce network and CPU overhead.

3.7 Cross-Validation

We estimate the generalization performance of Logistic Regression, Random For-
est, and Bloom Filter-based classifiers using a standard K-fold cross-validation
scheme where K = 20. This divides the dataset into 20 folds, where 95% of the
samples in each fold are used for training and the rest for testing the model’s
performance on data that has not been observed during training. The test set
of each fold is non-overlapping so that eventually all samples are used indepen-
dently for both testing and training. The performance over all folds is averaged
to produce a final estimate of generalized predictive performance that is less
biased than using a single training/test split.

We further divide the training set from each fold into L subsets to simulate
distributed environments with L nodes as outlined in Section 2. Each subset
is used to train a separate model, termed a micromodel [7], and represents the
dynamically-pathed network traffic observed by distributed nodes such as geo-
graphically diverse application servers in the cloud or motes in a wireless sensor
network.

3.8 Aggregation

To detect attacks observed at other nodes, micromodels must be aggregated and
re-distributed so that false positives and false negatives can be reduced to levels
that make CAD deployment practical. Each node may train a single micromodel
or multiple micromodels using content collected at different time intervals. Below



we present a two-phase aggregation scheme for time-diverse micromodels using
the simplified running example of US east and west coast regional application
servers behind a geo-locating load balancer:

Micromodel 1
0.80

Micromodel 2
0.65

Micromodel 3
0.72

+
0.87

US West Coast Server
Micromodel 1

0.75
Micromodel 2

0.52
Micromodel 3

0.82

+
0.88

US East Coast Server

|
0.95

Global Aggregation Node

Local Content Model Local Content Model

Fig. 2. Geographically diverse sites construct multiple micromodels across time with
limited attack detection accuracy. These micromodels are first locally aggregated, re-
sulting in improved detection. Local aggregate models are then sent to a central node,
aggregated into a single model with a global representation of normal content and high
detection accuracy, and finally re-distributed to application nodes. Given a suitable
model, these operations have low network and CPU overhead and can be de-centralized
using other algorithms such as peer-to-peer or gossip protocols [10].

Each server trains three Bloom Filter micromodels at different time intervals
using requests routed via the load balancer. The accuracy of each micromodel is
annotated in Figure 2. These three micromodels are aggregated locally into a sin-
gle micromodel using the voting method described earlier, resulting in improved
local accuracy:

US West Coast Server

Model Bits

Micromodel A 0 1 0
Micromodel B 1 1 0
Micromodel C 0 0 1

Apply Sum 1 2 1

Apply Threshold 0 1 0

US East Coast Server

Model Bits

Micromodel A 1 1 0
Micromodel B 1 0 0
Micromodel C 1 1 0

Apply Sum 3 2 0

Apply Threshold 1 1 0

Next, the bit vector of the locally aggregated east and west coast micromodels are
transmitted to a global aggregation node that performs a logical OR operation
and re-distributes the aggregate bit vector to each node:



Global Aggregation Node

Model Bits

Local Content Model A 0 1 0
Local Content Model B 1 1 0

Apply Logical OR 1 1 0

Both east and west coast servers now have models that perform substantially
better than their local versions, using extremely low network and CPU overhead.
Other methods for model dissemination are also possible, such as peer-to-peer
or gossip protocols [10], to reduce dependency on a single-point-of-failure aggre-
gator.

The two-phase aggregation scheme outlined above is useful when each model
votes during the first phase; if a simple OR is used without voting, the local ag-
gregate is the same as having a single local micromodel. Since this concept cannot
be implemented in the same way for Logistic Regression and Random Forests,
we restrict the comparative analysis in Section 4 to one-phase aggregation by a
single node and present our analysis of two-phase aggregation elsewhere.

3.9 Metrics: AUC

Presented with a test set, a model produces a vector of probabilities correspond-
ing to its confidence that each test sample belongs to the positive (attack) class.
To convert this probability into a label, a threshold would be set for the sen-
sor and samples with a probability above this threshold will be flagged as an
attack; otherwise it passes as normal. Setting this threshold involves a trade-off
between acceptable false positive and false negative rates, where normal content
is flagged as an attack or an attack passes as normal, respectively. To evaluate
performance in a threshold-independent manner using the known labels for each
test set, we use the standard area under the Receiver Operating Characteristic
curve (AUC/auROC) metric. This sums the area under the curve formed by all
possible thresholds for the true positive rate tpr and false positive rate fpr:

tpr =
tp

tp + fn

fpr =
fp

fp + tn

where tp, tn, fp, and fn are counts of true positives, true negatives, false pos-
itives, and false negatives. AUC is commonly approximated by the trapezoidal
rule for integrating the area under the curve formed by the set of (tpr, fpr) pairs
resulting from thresholding.

3.10 Metrics: Fmax

No single metric can emphasize all possible errors equally; due to its use of
the false positive rate, AUC emphasizes true negatives more heavily (see the



denominator of fpr in the above definition). Alternatives such as the F -measure
combine different metrics, precision and recall, into a single number:

precision =
tp

tp + fp

recall = tpr

Fβ = (1 + β2) · precision · recall

(β2 · precision) + recall

For a more comprehensive evaluation, we include the Fmax score (with β = 1)
as it places emphasis on false positives over false negatives. Similar to AUC, this
score computes the F -measure for every possible threshold, affecting the values
of precision and recall, and takes the maximum of the F -measures over these
thresholds. This metric was recently introduced as a more robust, interpretable
alternative to measures such as area under the Precision-Recall curve (auPR).

3.11 Significance Testing

Hypothesis testing is used to evaluate if the result of an experiment occurred
by random chance. A null model representing the distribution of statistics for
random experiments is rejected if the test statistic computed for the experiment
of interest falls within the extremes of the null distribution. The p-value is the
probability of observing a value at least as extreme as the test statistic, assuming
the null hypothesis is true. The null hypothesis is rejected if the p-value falls
below some significance level α. The significance level represents a calculated
risk of falsely rejecting the null hypothesis when it is in fact true, and so is often
set to values of 0.05 or lower to reduce the chance of false positives. In turn,
lower α values increase the risk of false negatives (accepting the null hypothesis
when it is false). Here we use the standard α = 0.05 significance level.

The Wilcoxon signed-rank test is a non-parametric statistical hypothesis test
for determining if there is a significant difference between the mean ranks of sam-
ples under two different conditions. In this paper, the conditions are the perfor-
mance of local and global content models. The term non-parametric indicates
there are no underlying assumptions made about the distribution of samples;
this distinguishes the Wilcoxon test from the better-known Student’s t-test that
performs the same task but for normally distributed values.

The Friedman test is a non-parametric alternative to analysis of variance
(ANOVA) for measuring differences in conditions using the same subjects. Here,
the conditions are the model types and the subjects are CAD systems of different
size. A single node system represents a non-distributed environment. In contrast
to the better-known ANOVA test, the Friedman test uses rank transformations
analyze non-normally distributed data and is considered the most appropriate
method for comparing performance of machine learning classifiers [11].
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Fig. 3. Performance of local and global content models as measured by 20-fold cross
validation with AUC and Fmax metrics for Logistic Regression (LR), Random Forest
(RF), and Bloom Filter (BF) classifiers. HTTP request payloads are represented as
5-grams and subdivided into 25 equally-sized training sets to simulate cloud application
servers behind a load balancer.

4 Results

We focus the presentation of our results on the public ISCX dataset due to its
reproducibility, as well as space limitations. However, the figures and discussion
below also apply to the Columbia dataset, with the primary difference being
tighter error bounds due to a larger number of samples and a smaller difference
between aggregate and local supervised content models. This is illustrated later
in Figure 6 and detailed in the accompanying text.

To begin, Figure 3 presents the performance of CAD for a 25 node system
using 5-grams. The AUC and Fmax of Logistic Regression (LR), Bloom Filter
(BF), and Random Forest classifiers are shown for both the local and global
(aggregate) models. Observe that for both metrics the median performance of
local models is markedly lower, resulting in impractical false positive rates, while
the median performance of the global models is substantially higher.

Next, Figure 4 is a facet diagram presenting the same data as Figure 3 where
n-gram length varies across columns and the number of nodes varies across rows.
To simplify this complex figure, Fmax numbers are omitted but the trends seen
in Figure 3 still hold. A broader picture of performance emerges from the facets,
such as the poor performance of BFs in combination with unigrams (left column)
where global performance actually decreases due to collisions, while LR and RF
are more robust. As one would expect, local and global performance are identical
in a non-distributed setting (top row). Also observe that as the number of nodes
increase, the performance gap between local and global models increases since
each local model is trained on less data. The curse of dimensionality’s effect can
also be seen where the jump from trigrams to 5-grams reduces local performance
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Fig. 4. Classifier performance as a function of n-gram length, node count, and model
type. See Section 4 for detailed discussion.

for BFs with 10 and 25 nodes, suggesting BFs benefit from more densely pop-
ulated bit vectors. Overall, median global performance remains similar for all
three classifiers for trigrams and 5-grams using 10 or 25 nodes, but with slightly
more variance than the non-distributed setting.

Figure 5 shows the size of local and global models under varying numbers of
nodes and n-gram lengths. The y-axis is the square root of the actual model size
(in KB) to prevent the large size of the RF from concealing other patterns. First
observe BFs are approximately the same size over all n-gram lengths, though
this size would need to increase to support even larger n-gram lengths while
maintaining an acceptable false positive rate. LR coefficient vectors grow only
slightly with n-gram length and taper off at n = 5 due to the smaller size of
our dataset, while remaining independent of the number of nodes. The standout
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Fig. 5. Content model size (in KB) as a function of classifier, node count, and model
type. The y-axis is on a square root scale. See Section 4 for detailed discussion.

pattern is RF, dominating both BFs and LR for local and global models. This is
unfair to RF as our simple aggregation method could be further refined to prune
redundant or non-predictive trees to retain a fixed ensemble size independent
of node count. However, given its large overhead for local models and without
a significant performance gain over simpler classifiers, we feel this result (as
well as its supervised nature) rules out RF as a candidate for practical CAD
implementations. LR has comparable size and slightly improved performance
over BFs, but this minor advantage is outweighted by its supervised nature as
well.

While performance is similar across classifier types, we wish to evaluate if
global aggregation offers statistically significant gains over local models for each
combination of n-gram length and node count, excluding the non-distributed



Classifier N-gram Length Node Count P-value

Bloom Filter 1 10 0.019
Bloom Filter 1 25 0.041
Bloom Filter 3 10 0.037
Bloom Filter 3 25 0.001
Bloom Filter 5 10 0.008
Bloom Filter 5 25 0.000
Logistic Regression 1 10 0.009
Logistic Regression 1 25 0.000
Logistic Regression 3 10 0.019
Logistic Regression 3 25 0.001
Logistic Regression 5 10 0.002
Logistic Regression 5 25 0.001
Random Forest 1 10 0.003
Random Forest 1 25 0.000
Random Forest 3 10 0.017
Random Forest 3 25 0.001
Random Forest 5 10 0.002
Random Forest 5 25 0.002

Table 1. P-values for a Wilcoxon signed-rank test of performance differences between
global and local models over each combination of classifier, n-gram length, and node
count. The results show statistically significant performance improvements for global
models over all parameter combinations at the α = 0.05 level.

setting where performance is equivalent. This is performed with the Wilcoxon
signed-rank test, a non-parametric hypothesis test for comparing the mean of
non-normally distributed samples between two groups (see Section 3). The p-
value of the test for each model, n-gram length, and node count combination is
given in Table 1, rounded to three digits. There is indeed a statistically significant
difference between local and global model performance at the α = 0.05 level for
every set of parameters.

Table 2 determines if aggregated CAD models offer similar performance to
content models in a non-distributed setting by using the Friedman test for re-
peated measures (see Section 3). Observe that under both metrics the p-value
is much larger than the standard α = 0.05 cutoff for statistical significance.
Therefore, though one might expect some degradation due to aggregation, the
performance of a 10 or 25 node CAD system and a single non-distributed CAD
node is effectively equivalent. Observe also that the lower (but still insignificant)
p-value under Fmax picks up on performance differences better than AUC, as we
would expect from the larger error bars of Fmax in Figure 3.

The above analysis focuses on the public ISCX dataset. Similar performance
is seen with the Columbia dataset where aggregate models achieve 98.9-99.9%
AUC and 97.9-99.4% Fmax. Figure 6 is representative of the primary differences
between the two datasets. First, error bars are in much tighter as there is sig-



Metric χ2-Statistic P-value

AUC 0.66 0.71
Fmax 4.66 0.09

Table 2. Results of a Friedman test comparing the AUC and Fmax performance of
aggregated CAD models across 1, 10, and 25 nodes. Single node performance represents
CAD in a non-distributed setting. Neither p-value is lower than the standard α = 0.05
cutoff for statistical significance, indicating that distributed and non-distributed CAD
performance is equivalent using our aggregation methods.

nificantly more data for the models to train on, and performance estimates vary
less between folds as a result. Second, both local and global Bloom Filter per-
formance are lower in the Columbia dataset. This is due to the subsampling
necessary for comparison to the supervised methods; there is roughly 7 times
more data that the Bloom Filters could easily be trained on, but the resulting
n-gram feature matrix for the supervised methods is prohibitively large. Due
to the increased diversity of n-grams in this dataset, subsampling puts BFs at
an unfortunate disadvantage. Finally, the gap between local and global perfor-
mance for supervised content models is much smaller. Given this much data,
supervised models construct a highly accurate representation of attacks in the
training data. However, it is unlikely their representation will generalize to zero-
day attacks. Bloom Filters have a distinct advantage in this regard (see related
work), and the performance gap between the two approaches is small: 97.8%
AUC versus 99.9% between BFs and LR/RF. Thus, aggregation greatly closes
the gap between supervised and unsupervised content models in this dataset as
well.

5 Related Work

Privacy-preserving modeling of federated datasets is an active area of research
in the biomedical community where patient data stored at different institutions
cannot be exchanged due to federal regulations. Wu et al. [12] propose an al-
ternate version of the Logistic Regression aggregation scheme given here with
the purpose of learning separate models at each institution and combining coef-
ficients into a single model to improve pattern discovery across patients without
needing direct access to the underlying data. Their work further reinforces the
effectiveness of our aggregation method for linear models.

In the field of anomaly detection, “PAYLoad anomaly detection” (PAYL)
is one of the earliest unsupervised learning algorithms applied to application
content [13]. It first estimates 1-gram payload byte distributions conditioned on
flow direction, port number, and payload length from training data. New data is
labeled anomalous if the distance of its byte distributions to those of the training
data is beyond some threshold. The “Payload Content based Network Anomaly
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Fig. 6. Performance of local and global content models as measured by 20-fold cross
validation with AUC and Fmax metrics for Logistic Regression (LR), Random Forest
(RF), and Bloom Filter (BF) classifiers. HTTP request payloads are represented as
3-grams and subdivided into 25 equally-sized training sets to simulate cloud application
servers behind a load balancer.

Detection” algorithm (PCNAD) is a modification of PAYL to accommodate high
speed links by training with subsets of the payload [14]. Both algorithms are fast
and effective for detecting some abnormal content such as machine code in the
payload of email traffic, but cannot consider broader context such as byte order-
ings and correlations between bytes. As a result, they are susceptible to simple
mimicry attacks [4] and have high false positive rates—problems addressed by
the higher order n-grams employed by the Bloom Filter-based Anagram [3].

Cretu et al. introduced a new approach to training and sanitizing ano-
maly detection models called “Sanitizing Training Data for Anomaly Sensors”
(STAND) [7]. Their method applies the notion of ensemble learning to train
multiple normal models and combine their predictions, an extension of earlier
work by Stolfo et al. [15] in financial fraud detection. Instead of constructing a
single model from the complete training set, the data is split into disjoint sets
and used to train individual micromodels. Each packet is tested against these
micromodels and is labeled normal or abnormal based on a weighted voting
scheme. If some threshold of the micromodels has seen the packet then it is used
to train a sanitized model free of attacks and outliers. Otherwise, the packet
is added to a separate anomalous model. These anomalous models can be ex-
changed between collaborating sites to reduce poisoning attacks via a process
called cross-sanitization. Also employing ensemble learning techniques, Multiple-
Classifier Payload-based Anomaly Detector (McPAD) [16] combines multiple
one-class Support Vector Machines with diverse feature spaces to detect poly-
morphic shellcode contained within packet payloads.



Spectrogram employs a mixture of Markov Chains for content anomaly de-
tection of web requests [17], directly modeling the distribution of overlapping
request n-grams. This approach is typically exponential (256n) in the n-gram
size. However, this is reduced to linear complexity (M ∗ (2562 ∗ (n− 1) +M for
M chains) using an approximate factorization. In addition to directly modeling
n-gram distributions, Spectrogram differs from Anagram in that it focuses on
web request strings instead of the entire payload packet – an approach later
combined with Anagram by Autosense [18] (reviewed below). In the distributed
setting, aggregate Spectrogram models are not well-defined. In addition, Spec-
togram does not permit incremental training and has high computational over-
head.

Each of these content-based sensors were originally designed for single sites.
However, several systems aggregate or correlate alerts from distributed sites.
DShield is a centralized repository of shared alert information. Another sys-
tem called Worminator creates distributed watch lists using Bloom that are ex-
changed at a centralized location or by an overlay network called Whirlpool [19,
20]. This enables sites to detect anomalous packets if a novel attack is widespread,
but in isolation these sites cannot be sure if the resulting anomalies are false pos-
itives.

Though normal traffic is often site-specific, abnormal packets common across
sites are reliable indicators of widespread attacks. Autosense [18] uses STAND
with Anagram to detect such widespread zero-day attacks across collaborating
sites with extremely low false positive rates.

Finally, Hadiosmanovi et al. [21] analyze the effectiveness of n-gram mod-
els including PAYL, Anagram, and McPAD with binary protocols such as SMB
and Modbus. They find that while n-gram models can achieve high detection
rates with binary protocols, this often comes at the cost of prohibitively high
false positive rates. They attribute this weakness to the high variability of bi-
nary protocol payloads and suggest protocol-specific n-gram analysis to target
relevant payload regions. We take such an approach by examining normalized
rather than complete HTTP requests, and anticipate we would encounter similar
difficulties with arbitrary binary protocols.

6 Conclusion

Content anomaly detection has recently proven effective for zero-day attack
detection, especially for remotely collaboration sites, while being resistant to
mimicry and poisoning attacks [3]. However, CAD in its current state is less
than ideal for clouds or other distributed systems where each node observes only
a fraction of global traffic due to load balancing, or environmental constraints
such as found in wireless sensor networks. Content models from each node must
be combined into a single global model and re-distributed in order to accurately
detect application-level attacks present in packet payloads.

In this paper we demonstrate how various content models can accurately
detect such content-based attacks against distributed application servers by em-



ploying new model aggregation techniques. Our methods also eliminate the need
for content exchange during aggregation, increasing network and CPU efficiency
while providing varying levels of content privacy To foster reproducibility, our
analysis uses a publicly available IDS dataset containing both application con-
tent and ground truth labels [5], as well as a larger private dataset collected from
Columbia University departmental webservers.

Using these datasets we evaluate the performance of both supervised and
unsupervised content models including Logistic Regression, Random Forests,
and Bloom Filters. We show that unsupervised CAD models achieve 97.8% AUC,
approaching the 99.9% AUC of supervised methods while generalizing to zero-
day attacks without needing labeled data. Using the ISCX dataset we find global
aggregation offers statistically significant performance improvements over local
models, while aggregation primarily benefits unsupervised Bloom Filters using
the larger Columbia dataset. In addition, due to the small size and comparable
performance of Bloom Filters, we find the potential performance improvements
offered by Random Forest models are further outweighed by their network and
CPU overhead. Bloom Filters trail behind Logistic Regression slightly in terms
of accuracy but offer modest savings in network overhead, though this gap may
be further closed by sparse representations of coefficient vectors in combination
with L1-norm or LASSO regularization.

Most importantly, using our aggregation methods there is no statistically sig-
nificant performance difference (AUC/Fmax) between non-distributed and dis-
tributed CAD environments, nor a significant difference between supervised and
unsupervised aggregate models. Thus, aggregated unsupervised CAD models are
as effective as either supervised or unsupervised models in both distributed and
non-distributed settings, while maintaining the advantages of unsupervised mod-
els for deployment in real-world networks.

Motivated by, but not limited to, the increasing risk posed by high-value
assets in the cloud, these results demonstrate that CAD sensors offer efficient
and accurate attack detection in distributed environments and may complement
other lightweight sensors to form a distributed attack detection infrastructure
resilient against a broad class of zero-day application attacks.
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