
A Convergence Study of Multimaterial Mesh-based Surface Tracking

Fang Da∗

Columbia University
Christopher Batty†

University of Waterloo
Eitan Grinspun‡

Columbia University

Abstract

We report the results from experiments on the convergence of the
multimaterial mesh-based surface tracking method introduced by
the same authors. Under mesh refinement, approximately first or-
der convergence or higher in L1 and L2 is shown for vertex posi-
tions, face normals and non-manifold junction curves in a number
of scenarios involving the new operations proposed in the method.1
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1 Introduction

Multimaterial mesh-based surface tracking [Da et al. 2014] was
proposed as an algorithm for tracking interfaces between multiple
materials undergoing large and complex deformations and topo-
logical changes. This technical report summarizes the results of
numerical experiments conducted to evaluate convergence of this
tracking algorithm.

2 Method

We have performed convergence experiments to test the method’s
convergence properties under refinement of the mesh resolution.
For each experiment, we perform a series of simulations, each with
decreased upper and lower bounds on edge lengths compared to the
previous one. We then measure the error by comparing the com-
puted interface geometry against the analytical solution, or against
the simulation of the highest resolution if no analytical solution is
available. To compare two interfaces, we measure the deviation of
the position, surface normals, and non-manifold junction curves be-
tween the computed interface and the reference solution, as detailed
in the next section.

The initial configuration of every simulation in a given experiment
is the same high-resolution input mesh. For lower resolution simu-
lations, the algorithm rapidly adjusts this mesh to satisfy the target
edge length bounds through remeshing. However, since the edge
lengths in the simulation results are only confined to a range, dou-
bling the edge length bounds generally won’t exactly double the av-
erage edge length. Therefore, rather than use edge length bounds as
our independent variable in plots of error vs. resolution, we instead
use the mean edge length measured from the computed geometry.
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The upper and lower bounds for the edge length during remesh-
ing are set to 0.5 times and 1.5 times the target edge length for
a given resolution, resulting in edge length distributions that typi-
cally resemble Figure 1, whose data was drawn from the merging
experiment (see Section 4.1). In this case, the mean edge length is
0.00935 with a standard deviation of 0.00103.
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Figure 1: Histogram of edge lengths for the first simulation in the
merging experiment.

2.1 Error descriptors for comparison between two
meshes

Notation Each convergence experiment considers a reference so-
lution and a sequence of trial solutions. The reference solution is
represented by the reference mesh containing N̄ vertices, v̄i, and
M̄ triangular faces with corresponding surface normals n̄i. A par-
ticular trial solution is represented by a test (or trial) mesh contain-
ing N vertices vi and M faces with normals ni.

For every vertex v̄i on the reference mesh, its closest point xi on
the test mesh is found, and their Euclidean distance ‖xi − v̄i‖ is
computed. We define the position error 1-norm and 2-norm by

Ep
1 =

1

Ā

∑
Āi‖xi − v̄i‖ (1)

and

Ep
2 =

√
1

Ā

∑
Āi ‖xi − v̄i‖2 (2)

where the discretized area Āi on vertex v̄i is computed by summing
one third of each incident face’s area, and Ā is the total area of the
reference mesh.

For every face on the reference mesh, the closest face on the test
mesh in terms of centroid distance is found, and the two-norm of



the difference between the unit normal n̄i of the reference mesh
face and the unit normal ni of the test mesh face is computed. We
then compute the normal error 1-norm and 2-norm

En
1 =

1

Ā

∑
Āi‖ni − n̄i‖, (3)

En
2 =

√
1

Ā

∑
Āi ‖ni − n̄i‖2, (4)

respectively, where Āi refers to the area of the ith face.

We define the junction vertex sets J̄ and J (for the reference and
trial mesh respectively) to be the set of vertices that are incident to
at least three different materials. For every junction vertex v̄i ∈ J̄
on the reference mesh, the closest junction vertex vi ∈ J on the
test mesh is found and their Euclidean distance is computed. The
curve error 1-norm and 2-norm are computed from these, as

Ec
1 =

1

L̄

∑
v̄i∈J̄

L̄i‖vi − v̄i‖, (5)

Ec
2 =

√√√√ 1

L̄

∑
v̄i∈J̄

L̄i ‖vi − v̄i‖2, (6)

respectively, where the discretized non-manifold curve length L̄i

on vertex v̄i is computed by summing one half of each incident
non-manifold edge’s length, and L̄ is the total non-manifold curve
length on the reference mesh.

2.2 Error descriptors for comparison between a mesh
and an analytical solution

For cases where the solution can be expressed in closed form, we
define an unsigned distance function dp(x) as the distance from x
to the closest point on the surface, and another unsigned distance
function dc(x) as the distance from x to the closest point on the
network of junction curves, which is the subset of the interface that
is incident to at least three different materials. Then we can com-
pute the same error descriptors, this time indexing the summation
over the test mesh:

Ep
1 =

1

A

∑
Aid

p(vi), (7)

Ep
2 =

√
1

A

∑
Aidp(vi)2, (8)

En
1 =

1

A

∑
Ai‖∇dp(fi)− ni‖, (9)

En
2 =

√
1

A

∑
Ai‖∇dp(fi)− ni‖2, (10)

Ec
1 =

1

L

∑
Lid

c(ci), (11)

Ec
2 =

√
1

L

∑
Lidc(ci)2. (12)

Here fi is the centroid of the ith face.

3 A static equilibrium problem

We first test the convergence of the method in a manner that is in-
dependent of the particular time integration scheme, by examining
the static equilibrium configuration of a simulation. Our first prob-
lem considers minimizers of surface tension energy subject to fixed
material volumes. We consider two cubes of different materials,

sharing a common face, immersed within a third ambient material.
For the governing PDE we consider gradient descent along a sur-
face tension potential with equal surface tension coefficient for all
three interfaces, and a volume deviation penalty for each contigu-
ous material region

ẋ = −γ∇A− η
Nregion∑
j=1

(Vj − V init
j )∇Vj . (13)

Here A is the surface area of the mesh and Vj is the volume of
region j. The volume penalty stiffness η is chosen sufficiently large
to dominate the surface tension stiffness γ (we used η = 103, γ =
10−9) resulting in a much smaller error due to volume deviation
than mesh discretization errors. We used a simple Forward Euler
time integration scheme to evolve the PDE until it reached steady
state.

Figure 2: The final geometry of the statics experiment. (A) flat
shaded opaque view; (B) semi-transparent view with each color
denoting a patch of interface.

The final interface (a standard “double bubble") is shown in Figure
2. It is then compared to the analytical solution given by Hass and
Schlafly [2000]. Figure 3 shows the various error descriptors plot-
ted against the mean edge length. All error descriptors show at least
first-order convergence.

4 Dynamic problems

Next we investigate the convergence of the method over dynamic
simulations. Specifically, we consider the following three remesh-
ing topology process that are proposed in the original paper [Da
et al. 2014]: snapping-based mesh merging, T1 process, and T2
process. For each operation, an experiment is specifically designed
to exercise that operation, and convergence is tested by examining
the geometry at a fixed point in time after the operation has oc-
curred.

4.1 Multimaterial mesh merging

The multimaterial merging operation is tested using a multimaterial
normal flow scenario involving two expanding spheres of different
materials, which is a straightforward extension of the two-phase
experiment conducted by Brochu and Bridson [2009]. We consider
two initially disjoint spheres enclosing different materials, both im-
mersed within a third ambient material. The two spheres expand
at unit speed in the outward normal direction using the face offset-
ting method [Jiao 2007]. In the analytical solution, the two spheres
come into contact at time t = 0.5, and merging begins. This yields
a new interface separating the two spheres, which is set to have
zero velocity. As the simulation proceeds, this interface expands as
a circular disc, resulting in a circular three-material junction curve.
The geometries at t = 0 and t = 1.8 are shown in Figure 4. We



Figure 3: Error vs. mean edge length for the statics experiment, for positions (left), normals (center) and triple-curves (right).

compare the geometry at t = 1.8 to the analytical solution, and plot
the error descriptors against mean edge length in Figure 5. All error
descriptors show at least first-order convergence.

Figure 4: The initial (A) and final (B) geometry off the two-sphere
face offsetting experiment.

4.2 T1 process

Our next experiment tests the vertex separation operation, which in
combination with edge collapses allows a T1 process to occur. The
initial geometry is a ×-shape extruded in the z direction, as shown
in Figure 6A. The velocity field is given by a time-invariant function
v(x, y, z) = [x,−y, 0]. Crucially, this velocity field possesses a
stagnation point with zero velocity along the entire z-axis, which
coincides with the non-manifold junction. This is a challenging
case because the analytical solution does not undergo a T1 process
(as in the numerical result in Figure 6 C).

The surface tracking method under consideration resolves T1 pro-
cesses by estimating a quantity termed the separation strength, a
function of the flow behavior at irregular vertices. This separation
strength can be computed either from the analytical velocity field,
if it is available, or computed using local finite differences. The
current test case illustrates a situation in which this choice can have
an impact on the resulting geometry. Using the analytical separa-
tion strength, our algorithm correctly recovers the expected result
shown Figure 6 C; since the velocity (and thus separation strength)
is zero at that point, no vertex separation occurs and the quadru-

ple junction remains as the mesh evolves. If instead we estimate
the separation strength using finite differences from offset points
along the potential separation directions (as may be more typical in
simulation scenarios), the numerical separation strength is slightly
non-zero. This leads to a vertex separation and the result in Figure 6
B. A small region near the irregular junction has separated, yielding
a narrow horizontal strip whose size is proportional to the typical
mesh edge length (essentially a numerical boundary layer). This is
an artifact of the error in the finite difference estimate propagating
to the surface tracking algorithm itself.

Nevertheless, this result is correct in a local integral sense, and the
results indeed converge under refinement because the area of this
region steadily shrinks. Figure 7 shows the results of this test case
estimating separation strength via finite differences. The results
were produced by comparing the mesh at a given time t = 0.9 (vi-
sualized in Figure 6 B) to the analytical solution, and plotting the
error descriptors against mean edge length in Figure 7. All error
descriptors show at least first-order convergence, with the excep-
tion of En

2 ; i.e., only the convergence of the surface normals in the
L2 norm are impacted by the finite difference errors, and exhibit a
slower convergence rate.

Figure 6: The initial (A) and final (B) geometry of the T1 process
experiment. (C) shows the final geometry when the user-supplied
analytical velocity gradient is used instead of finite differencing in
determining the separation tendency. Note that the non-manifold
junction is not separated, which agrees with the analytical solution.



Figure 5: Error vs. mean edge length for the two-sphere normal flow-induced merging experiment, for positions (left), normals (center) and
triple-curves (right).

4.3 T2 process

To test a T2 process, we consider mean curvature flow from an ini-
tial geometry consisting of a Reuleaux tetrahedron located at the
junction of four planar Plateau borders (see Figure 8). The outer
mesh boundary (at the intersection with the bounding cube) is fixed.
Because the flat interfaces already meet at the optimal (equilib-
rium) angles, mean curvature flow simply reduces the size of the
Reuleaux tetrahedron until it disappears. This completes the T2
process and produces a simple central vertex where four Plateau
borders meet. We compare the geometry after the T2 process to
the analytical solution, and plot the error descriptors against mean
edge length in Figure 9. All error descriptors show at least first-
order convergence.

5 Conclusions

The results from convergence experiments on the method are re-
ported. Experiments involving various operations proposed in the
multimaterial front tracking method [Da et al. 2014] demonstrate
convergence under mesh refinement.
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Figure 8: The initial geometry of the Reuleaux tetrahedron experi-
ment.



Figure 7: Error vs. mean edge length for the T1 process experiment, for positions (left), normals (center) and triple-curves (right).

Figure 9: Error vs. mean edge length for the Reuleaux tetrahedron experiment, for positions (left), normals (center) and triple-curves (right).


