
Teaching Microarchitecture Through Metaphors
Julianna Eum 

United States Military Academy 
West Point, NY 10996 

julianna.eum@usma.edu 

Simha Sethumadhavan 
Computer Architecture and Security Technology Lab  

Columbia University  
New York, NY 10027 

simha@cs.columbia.edu 
 

ABSTRACT 
Students traditionally learn microarchitecture by studying textual 
descriptions with diagrams but few analogies.  Several popular 
textbooks on this topic introduce concepts such as pipelining and 
caching in the context of simple paper-only architectures.  While 
this instructional style allows important concepts to be covered 
within a given class period, students have difficulty bridging the 
gap between what is covered in classes and real-world 
implementations.  Discussing concrete implementations and 
complications would, however, take too much time. 
 
In this paper, we propose a technique of representing 
microarchitecture building blocks with animated metaphors to 
accelerate the process of learning about complex 
microarchitectures.  We represent hardware implementations as 
road networks that include specific patterns of traffic flow found 
in microarchitectural behavior.  Our experiences indicate an 83% 
improvement to understanding memory system microarchitecture.   
We believe the mental models developed by these students will 
serve them in remembering microarchitectural behavior and 
extend to learning new microarchitectures more easily.  

Categories and Subject Descriptors 
K.3.2 [Computer and Information Science Education]: Curriculum 

General Terms 
Design, Human Factors 

Keywords 
Microarchitecture, Pedagogy 

1. INTRODUCTION 
Single-thread performance continues to be important even as 
processors become increasingly parallel [8].  To improve single 
thread performance, computer microarchitects use several 
techniques to mine parallelism from a stream of instructions.   
These techniques involve a combination of techniques such as 
pipelining, caching and speculation.  Students well versed in 
microarchitecture design are invaluable assets for both industry 
and research. 

Processor microarchitecture information is often buried in 
research papers not easily accessible to most students and 
instructors.  Classroom examples of processor microarchitecture 
generally remain at the level of simplified, theoretical block 
diagrams.  While these simplified abstractions focus on the core 

principles, it has been our experience that students struggle to 
synthesize these concepts.  Students struggle when applying these 
principles in more complex contexts that typically occur in real-
world microarchitectural designs.  Such design requires 
concurrent thinking as it primarily deals with multiple interacting 
events (speculation, pipelining and bookkeeping) that happen in 
parallel in both space and time.  As such, one can view 
microarchitectures as small scale distributed systems.  Most 
students, however, try to approach real-world microarchitecture 
problems with a sequential, centralized mindset.  We attribute this 
to a lack of training in concurrent thinking in today’s computer 
science and engineering curricula, and specifically in current 
computer hardware classes.  This results in an incomplete, fuzzy 
understanding of the problem and an inability to design adequate 
solutions.  We believe the “less is more” mantra leads to 
misrepresentation of the challenges that face microarchitecture 
and often disengages students with overly simplified examples. 

In this paper, we suggest presenting microarchitecture design 
through an animated visualization metaphor to enable students to 
quickly understand complex microarchitectural behavior.  The 
basic idea is to visualize microarchitecture as a road network. 
Tapping into student experience with roads and interactive 
displays of traffic patterns allows them to quickly form suitable 
mental models for even complex microarchitectural behavior.  We 
anticipate this will reduce frustration in learning while providing a 
metaphor that can serve for long term reference with properly 
identified similarities and dissimilarities.  Additionally, we 
animated our metaphors to actively engage students during 
presentations and help them retain the concepts of the overall 
behavioral model. 

In Figure 1, we show an example of a metaphor as applied to store 
forwarding, a common but complex microarchitecture 
optimization.  In the block diagram (a), we see pipeline steps, 
registers, and flow paths.  This represents the underlying hardware 
in a relatively direct manner.  If data is waiting to be stored in one 
of the “Cache Store Port” stages, it may be sent through the 
bypass hardware to the “Load Store Queue (LSQ) Load Ports.”   

  

(a) Block Diagram (b) Metaphorical Behavioral Model 

Figure 1.  Store Forwarding Mechanism.  The subcomponent hardware is 
represented by a block diagram in (a) and a traffic metaphor in (b).  The 
metaphor provides an intuitive visualization of the component behavior. 

Bypasses
LD X

ST X

Cache + LSQ Load Port

Cache Store Port

Store Hold

 Store Commit



 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
SIGCSE’14, Date, Location, USA. 
Copyright 2013 ACM X-XXXXX-XX-X/XX/X…$.. 
 



Table 1.  Traffic Flow Metaphor Building Blocks 
Parking Lot: Queues and buffers 

 

 

Stoplight: Event driven hold 
 

 

All-Way Stop Sign: Alternating flow 

 

Highway: Longer distance wires and 
networks 

 

Branch: Signal splitting 
 

 

Merge: Convergence of information from 
separate paths 

 

Join: All inputs may proceed 
 

 

Traffic Circle: Unknown access time 
 

 

    
This action is represented in the metaphor (b) as moving crates 
from the “Store Hold” yard to a car waiting in the LSQ traffic 
circle.  The yard is adjacent to an airfield where new crates 
(stores) may arrive.  These stores have not yet have been 
committed and are waiting to be cached in the warehouses.  This 
metaphor explains the activity of store forwarding as well as the 
reason it is done.  Visualizing store forwarding as a logistical 
activity clarifies the concept. 

This paper is organized as follows: Section 2 describes our 
method for making metaphors out of microarchitectural building 
blocks.  Section 3 applies this method to a processor’s primary 
memory component.  We provide initial evaluation of the 
metaphor method’s efficacy and our plan for evaluation in Section 
4.  Section 5 describes related work in visualization, metaphors, 
and instructional games.  We present final remarks in Section 6. 

2. METAPHORS 
In general, metaphors provide a way to represent new or unclear 
concepts with familiar objects and actions.  Choosing an 
appropriate metaphor makes or breaks the success of this process.  
As such, the metaphor of city traffic as computer traffic presents 
as a time-tested comparison.  Urban Planner Forrest Warthman 
presented detailed analogies covering comparisons between roads, 
buildings, doors, and even telephone wires to hardware 
components in computer architecture [14].  This metaphor has 
been featured in media, notably in the 1995 movie "Hackers," in 
which Artem Visual Effects created an urban landscape dataspace 
of information skyscrapers and computer circuitry [5].   
Building on these metaphors, we suggest that instructions and data 
moving through processors may be represented as vehicles 
through city streets.  Traffic control devices and signals direct the 
movement of the vehicles in a similar way to arbiters.  The 
temporary storage aspect of a vehicle in a parking lot naturally 
translates to memory holding mechanisms such as queues and 
buffers.  With many more analogies possible, we believe this 
particular metaphor has enough depth to support representing 
processor behaviors.  We have laid out the basic parts for such 
representations in the following section, and include both reasons 
for the analogies as well as limitations in comparisons.  Because 
the focus is data flow, it is important to remind students that not 
all elements within a component will have a direct analogy but 
rather provide a way to easily think through behavior.    

2.1 Traffic Flow Building Blocks 
Vehicle traffic within cities can take many different forms 
depending upon city planning, traffic laws, and safety 
calculations.  However, many aspects of traffic flow carry enough 

universality to be easily recognizable.  We propose the following 
general component analogies, shown in Table 1. 

2.1.1 Parking Lots 
Parking lots best represent queues and buffers, in which 
instructions must wait for data accesses to complete before they 
can execute.  Within this general analogy, the specifics of how 
each parking lot behaves can be tailored to match the represented 
component.  A FIFO may be represented by considering a meter-
style method of ticketing.  A queue that can be accessed at any 
point may be depicted by a cell-phone waiting lot (the vehicle will 
be notified when its components are ready). 

2.1.2 Stoplights 
Stoplights represent the ability to hold an instruction or data until 
an event occurs.  The event could be the arrival of other 
instructions or data in the form of vehicles piling up at the 
stoplight, thus representing a pressure-sensitive stoplight.  The 
event could also be dependent upon time factors, representing a 
timing programmed stoplight.  The stoplight may also be able to 
control multiple vehicles proceeding forward if the hardware 
arbiter behaves this way. 

2.1.3 All-Way Stop Signs 
These represent any flow control where instructions or data will 
take turns to move forward along what will generally be the same 
road.  All-way stop signs differ from stoplights in that the 
stoplight analogy is dependent upon a time or condition driven 
event and can allow varying behavior at the intersection while the 
signs always dictate the same alternating right-of-way behavior.  
The signs provide an ideal analogy for memory bank accesses, 
where data from different locations will need to return along the 
same path but cannot do so simultaneously.  They may be used in 
conjunction with joins. 

2.1.4 Highways 
A highway may be any major road but most often implies a high-
speed, multi-lane thoroughfare that spans long distances.  In 
contrast to standard roads that represent on-chip networks, 
highways best represent inter-component wires. 

2.1.5 Branches 
A road branch causes two roads to proceed from one road.  In the 
analogy, splitting a signal causes the original signal to proceed on 
both wires.  This dissimilarity to the road traffic metaphor can be 
sidestepped by considering a duplicate copy of the same 
command to either not be a problem, or considering the branch 
itself to provide an opportunity for the original signal to hire an 
agent to do the same job on a different path. 

 




2.1.6 Merges 
Merges occur when multiple input roads converge to a single 
road.  Unlike the join described in the next section, merges 
include selecting the data in transit. Two merging instructions or 
data become one element.  In our metaphor, a duplicate copy 
provides any data received to the original instruction at a merge.  
The original instruction then performs the management duty of an 
abstracted multiplexer.   

2.1.7 Joins 
When multiple roads combine to form a single road, their 
convergence requires flow control as noted in Section 2.1.3.  A 
join represents two or more roads that converge without data 
selection.  In a join, each instruction (represented by a car) will 
continue independently. 

2.1.8 Traffic Circles 
Traffic circles allow a vehicle to continue circling for as long as 
necessary.  This correlates with non-uniform access times for 
hardware (request-return time).  The total time for this type of 
access cannot be known nor avoided.  In real life, one would wish 
to exit the traffic circle after less than a full rotation.  For the 
processor metaphor, vehicles that continue to circle represent 
accesses that take longer than a cycle to complete.  These signals 
will circle at a high enough speed that subsequent vehicles do not 
feel safe to merge into traffic, thus allowing only one instruction 
to be in the circle at a time.  This causes backpressure if it takes 
longer than one cycle for the instruction to complete access. 

2.2 Developing Hardware Metaphors 
While the building blocks provide a good starting point, a simple 
one-for-one translation of hardware via the described analogies 
does not effectively communicate a design.  For example, in the 
case of a MIPS floating-point unit, all of the queues, registers, and 
buffers will become parking lots while all of the addressing, 
memory and functional units will become traffic circles [7].  This 
provides minimal benefit beyond the block diagram itself because 
this is a high enough level of abstraction that thinking through 
component behavior is a simple task that does not require an aid.  
For more complex hardware, effective metaphors can be 
developed using a three-step process:  

(1) Use the building blocks to form a basic roadmap. 
(2) Develop a storyline to describe the represented behaviors.  

Complete and connect the roadmap to fit this story. 
(3) Animate the actions on the roadmap. 

The story helps provide a reason for movement as well as clues to 
the way the instructions and data will move through the hardware.  
In addition to a storyline, the metaphorical model needs to include 
animation so that students may clearly see how the traffic is 
moving and what goes on at each step.  Static models provide an 
indication of how the movement would work, but are too abstract 
for students to grasp easily.  The animations will follow the 
actions being taught and, in so doing, train the students in how to 
see the visualization.  In this way, a metaphorical story model of 
the component behavior enables those unfamiliar with the 
component to draw simple conclusions as to behavior not 
explicitly defined.   

3. APPLYING METAPHORS 
As we mentioned in the introduction, microarchitecture 
experience is valuable in industry and research, and also provides 
an opportunity to introduce students to principles of distributed 
processing in complex systems.  In this section, we provide an 

overview of a complicated and important microarchitectural block 
– the primary data memory subsystem – to illustrate some of the 
difficulties in teaching real-world microarchitecture in a class 
period and how this complex concept can be explained with 
metaphors.  
We aim to make this material accessible to undergraduate students 
in a junior or senior level computer architecture class.  Currently, 
most architecture classes we are aware of (at this level) teach 
high-level microarchitectural constructs at a simplified level, such 
as single pipelines with a limited number of interlocks and 
without any speculation support [7,10].  As the example in the 
next section illustrates, real-world cases have a number of 
interacting pipelines with complex flow control scenarios, 
bookkeeping structures and severe power and area constraints.   

3.1 Case Study: A Primary Memory System 
Our example processor is composed of “tiles” that provide 
specific processor functions connected through a scalable on-chip 
network. This model is representative of many current and 
proposed processors [4,9,12].  On such a substrate, the memory 
instructions can execute on any of the tiles, and can load from or 
store to cache memory available within a tile.  Because of the 
distributed nature of the execution, loads and stores may execute 
out of program order; to guarantee correct results, the primary 
memory system must enforce read-after-write and write-after-
write dependencies to the same memory address failing which a 
data hazard may occur.  The Load-Store-Queue (LSQ) provides 
these functions by buffering all executed loads and stores in a 
bookkeeping structure.  When read-after-write hazards are 
detected by the LSQ (by examining the addresses of the buffered 
loads and stores in the LSQ), any dependent read (load) that is 
returned prior to its matching store is re-executed.  This 
invalidates any work completed prior to hazard detection.  
Regular read-after-write dependencies are enforced by supplying 
the value of the load from the in-flight store buffered in the LSQ.  
This process is called store forwarding.  In certain circumstances, 
the load value may have to be obtained by the LSQ and the Level-
1 Data cache (L1D).  To prevent write-after-write hazards, the 
LSQ buffers all stores and commits them to cache memory in 
program order.  
A speculative structure called the Dependence Predictor (DPR) is 
used to predict if pending, unexecuted stores precede a matching 
load.  When the dependence predictor predicts a hit, the load 
request will wait at the LSQ until all prior stores have arrived.  
Once all stores have arrived, it will then be reinjected into 
processing pipelines to begin the process of accessing the L1D 
and LSQ again, as the newly stored data is now accessible through 
those components.  If a load request misses in the L1D, LSQ, and 
the DPR, the load request will go into a missed load pipeline and 
wait for the data to be sent from the Level 2 Cache off-tile.  Once 
it has replaced a line in the L1D, the load request will be notified 
to replay as if it were a new load.  This mechanism simplifies 
control logic significantly.   
Any stores that hit in the L1D will update and stay, while stores 
that miss will be forwarded to the Level 2 Cache.  Because of the 
tiled microarchitecture, memory accesses that go off-tile will have 
to hop through the on-processor and on-chip networks (OPN and 
OCN).  Each movement of a load or store request will take at least 
one clock cycle to complete, so shorter distances will equal faster 
replies.  All ingress and egress points can have backpressure and 
all these processing functions are carried out by shared hardware 
bookkeeping structures; correct sharing requires structural hazards 
to be handled correctly.  



Table 2. Metaphorical Equivalent of Primary Memory System Operation 

CONDITIONS ACTIONS EXPLANATION 
L1D Hit 

LSQ Miss 
DPR Miss  

Step 1. Cache & LSQ access 
Step 2. Load reply 

After steps explain this is anticipated as the common case and has a short, two cycle 
time for completion. 

L1D Hit 
LSQ Hit 

DPR Miss 

Step 1. Cache & LSQ access 
Step 2. L1D & LSQ Hit with Store 

Forwarding 
Step 3. Merge 
Step 4. Load Reply 

Prior to steps, ask how the employee at the airport could get the newer components if 
they are sitting in the Store Hold yard.  After answers, explain Store Forwarding and 
how multiple forklift trips may be needed if components were sent in different crates. 

L1D Miss 
LSQ Miss 
DPR Miss 

Step 1. Cache & LSQ access 
Step 2. Load Miss & Cache Fill Request 
Step 3. Data Return & Alert Miss Registers 
Step 4. Cache & LSQ access 
Step 5. Load Reply 

Explain that the Request and Fill Processing stations streamline processing (merging 
in these slots is possible; the merge process will be discussed in more detail in the 
next action).  Discuss how the RFID signaling system keeps loads and stores in the 
correct order. 

Store 

Step 1. Drop at LSQ; Notify other Facilities 
Step 2. Continue until Yard is Full 
Step 3. Commit oldest; Hits at Local Facility 
Step 4. Commit next oldest; Miss = Send to 

Warehouse 

Discuss memory hierarchy store policies.  Our example processor follows a Write-
Back policy for store hits and a Write-No Allocate policy for store misses.  Explain 
that crate/pallet tags are sent from the yard’s scanner to a network (Data Status 
Network or DSN) that includes package facilities in the same region (processor).  
Components (Bytes) that go into the same crate (cache line) do so at the merge 
processing yard.  Since the yard cannot hold multiple sets of crates to merge, a crate 
would be sent forward when a different crate needs to enter the merge yard. 

Dependent Load 
followed by Store 

Step 1. Cache & LSQ access 
Step 2. Load Reply  
Step 3. Store Arrival  
Step 4. Dependence Discovered  
Step 5. Recovery Initiated  

This scenario should be avoided if at all possible; anything that was done with the 
elements inside the crate will have to be redone after the car returns to pick up the 
correct elements. 

DPR Hit 

Step 1. Cache & LSQ access 
Step 2. Load Wait in LSQ for all prior Stores 
Step 3. All Stores complete 
Step 4. Cache & LSQ access 
Step 5. Load Reply 

The load is informed that the needed components are on an incoming flight.  To save 
the company from excess costs, the load requestors wait in the cell phone lot.  After 
all prior stores have arrived, some of which may be allocated to the L1D, requestors 
are notified to return.  Since they do not know where the most updated components 
are until they check face to face, they repeat their L1D and LSQ access. 

Load/Store in 
Secondary Memory 

System 

Step 1. Access Network for Address 
Translation 

Step 2. Hop to Destination Memory Tile 
Step 3. Pick up or Drop off Package 
Step 4. Return Hop 

Before steps, verify that students know what ‘hop’ means in terms of traffic flow and 
time to complete.  Here, the data is shown as returning via the same On-Chip Network 
(OCN) line to correlate with the primary memory system requests previously shown.  
Briefly explain that it could have returned on another OCN road if the dispatcher 
(control system) knew that a different package facility needed the retrieved 
components.  Ask the students why this would be better. 

 

Explaining this particular microarchitecture within a portion of 
one class period proves too much for even graduate students to 
fully grasp through text and diagrams alone.  By having students 
participate in a behavioral visualization animation, students will 
have a chance to focus on the important takeaways from the study 
instead of getting bogged down in design complexity.  Students 
should be able to walk away from the exercise with a model of 
how real-world microarchitecture behavior flows.    

3.2 Metaphor for Primary Memory System 
Following the steps in Section 2.2, we first constructed a roadmap 
that included representations for the main elements with enough 
sub-elements to support a basic set of memory system actions.  
We next formulated a story where an external organization needs 
to retrieve items from a logistical management company.  Finally, 
we animated the actions to fit the steps listed in Table 2.  We 
believe this story and the actions we have included adequately 
enable students to form a behavioral model. 
The metaphorical story begins with a mission to retrieve a 
package of multiple components as fast as possible.  The scenario 
is that the organization cannot wait any longer than necessary for 
the package to be delivered and has one company car and two 
people to put towards rapid retrieval.  As shown in Figure 2, the 
package might be at the package processing center (L1D), stored 
in the package center’s warehouses (L2 cache via the OCN), or it 
could still be at the airfield (LSQ). 

4. Evaluation 
Our experiences in presenting the data memory metaphor without 
animation showed limited value.  We used a previous version of 
Figure 2b in class and saw some student interest.  The version we 
presented lacked the unifying storyline for actions and animation.  
Students were given a short amount of time to consider the 
correlation between the hardware and the metaphor, but did not 
further participate.  Because of these limitations, the takeaway 
value for students was unclear and therefore short-lived.   
We presented the material described in this paper to two classes.  
The senior and graduate level computer architecture class covered 
typical graduate level content and used the Hennessy and 
Patterson Computer Architecture book as its text.  We presented 
our material during the memory systems lesson block, so it had 
maximum correlation to course content.  The junior level 
computer systems fundamentals class was mandatory for all 
computer science and electrical engineering undergraduates and 
covered basic digital logic design and computer organization.  The 
junior level course included four lessons on pipelining and 
caching; our goal was to show how these two concepts fit together 
in a real world context.   
For both classes, we explained memory management behavior in 
terms of the logistics scenario, and related the behaviors to the 
traditional block diagram hardware design at the end of the 
presentation.  83% of students said the metaphor helped improve 



 

 
(a) Block Diagram (b) Metaphorical Behavioral Model 

Figure 2. Primary Memory System Representations.  The abstracted block diagram (a) shows the pipeline stages for a primary memory tile within a 
heavily partitioned parallel processor.  The metaphorical visualization of the system (b) enables students to think naturally through each cycle for a given set 
of actions. 

their understanding of memory system microarchitecture.  Figure 
3 shows a breakdown of the responses to this question from both 
classes.  For the senior and graduate level class, we also surveyed 
the students on their understanding of memory systems prior to 
the lecture.  Using the answer scale as weights to assign a number 
to their responses, the computer architecture class self reported at 
275.3 understanding prior to and 385.8 understanding after the 
lecture (on a scale where 500 shows self-reported perfect 
understanding).   
In summary, 74% of the juniors and 93% of the seniors and 
graduate level students to whom we presented the material found 
it fairly to extremely helpful.  The ability of the material to tie 
together multiple concepts through an intuitive look at specific 
real world hardware may help students frame not only memory 
system behavior but also how microarchitecture fits into their 
disciplines.  While more evaluation needs to be done, we believe 
these results indicate our proposed animated scenario-driven 
metaphor corrected for the initial issues and has high potential to 
clearly communicate a lasting model.    

 
Figure 3. Class Survey Responses.  The graph shows the answers two 
classes gave for the question of how helpful the metaphorical visualization 
was to understanding memory system behavior.   

5. RELATED WORK 
While much work has been done on visualization of scientific data 
and software, we are not aware of any similar work in 
metaphorical visualization for computer architecture instruction.  
The three fields of visualization research, computer metaphors as 
models, and instructional games contribute to the ideas we have 
presented.  We will briefly outline related work in these areas. 

Visualization research:  Research in this field shows that 
graphical representations clearly and efficiently convey complex 
ideas [13].  Users may benefit from visualization through 
exploratory discovery, analytical decision-making, or descriptive 
explanations [2].  Because of this potential, we believe that 
visualization beyond standard block diagrams will prove to be 
useful in helping students reach the decision making stage about 
the value of the underlying concepts.  By capitalizing on pre-
existing mental models of road networks and traffic flow, the 
instructional visualization proposed in this paper can move 
students efficiently from unknown scanning to an analytical 
appreciation of the microarchitecture represented. 
Computer Metaphors as Models:  Students begin applying 
metaphors to computer architecture early in their education.  
Many basic computer systems classes use the classic laundry 
example of pipelining the tasks of washing, drying, folding, and 
storing [10].  While this provides a quick visualization, it supports 
only a weak mental model of the process. A good metaphor, in 
contrast, provides a strong mental model. In this context, we can 
define a model as explicit, comprehensive, valid and differentiated 
from the open-ended, incomplete and inconsistently valid qualities 
of a metaphor [3]. While a metaphor itself is not a model, it can 
provide an accessible starting point for discovering and building 
an underlying model [1].  A well-defined metaphor that highlights 
similarities as well as dissimilarities can succeed in enabling a 
student to form a mental model of the subject material [16].  One 
of the closest examples of this paper’s proposed method lies in a 
1996 paper proposing the InHouse system, visualizing a hotel 
with rooms containing several suitcases each containing pieces 
correlated to a system with multiple processors running processes 
each composed of statements [6].  The Austrian team designed 
this metaphor for a parallel system monitoring and visualization 
user interface, and not for teaching concepts.  By introducing a 

Coherence checks 
e.g. Load and 
store misses to 
same cache line

CC

Cache
Store Port

arb

Missed load pipeline Spill Mgmt

Line fill pipeline

Store commit pipeline

Replay load pipeline

Cache + LSQ
Load Port

S
T 

X

LD X

BYPASSESUnfinished store bypassing 
to load in previous stage. 
Bypassing=> fewer stalls 

=> higher throughput

Miss handling

L2
 R

eq
.

C
h

an
n

el

arb

arb

Load input Load output

Store miss pipe

Store hit

Costly resources are shared 
e.g. cache and LSQ ports, 
L2 bandwidth

On Processor Network (OPN)

 Replay Loads



Store Hold

Taxi Stand 



0% 
10% 
20% 
30% 
40% 
50% 

Senior and 
Graduate Level 
(28 Students) 

Junior Level 
(27 Students) 



robust microarchitecture metaphor suitable for enabling students 
to develop behavioral models, we believe our contribution 
uniquely advances computer architecture education. 
Instructional Games:  While most games in computer education 
focus on creation and coding, disciplines that use games purely to 
educate have seen great success.  A few examples for computer 
education do exist, and one recently implemented game at New 
York University focused on system administration.  Their game 
introduced a “firefighting” scenario where students as system 
administrators attempt to keep advertisement serving traffic, and 
thus revenue, high [15].  Students found the game enjoyable and 
learned how to work through a distributed system to learn about 
scalability and distributed algorithms.  However, this approaches 
the concept of visualization from a software-based-only 
perspective, visible in the game allowing students to simply 
purchase new computers if they required more processing power.  
We believe that combining the enjoyment factor of a quiz game 
with a solid hardware metaphor will maximize participation and 
long-term benefits for students. 

6. CONCLUSION AND FUTURE WORK 
At the end of the nineteenth century, German chemist August 
Kekulé spoke and wrote of how he discovered the ring structure 
of the benzene molecule [11].  His discovery was historically 
attributed to imagining a snake eating its own tail while he was 
dreaming, but further study into the circumstances of relating the 
account and improved translation show conscious mental imagery.  
He first began to train his mental eye in visualizing atom 
groupings while developing the structure theory, and was later 
able to use this mental model to “see” benzene’s structure. 

In this paper, we have illustrated such a visualization in allowing 
students to “see” microarchitectural behavior.  Students who are 
able to think through the examples should gain a deeper 
understanding than they would otherwise glean from only a high 
abstraction level block diagram.  We believe the traffic metaphor 
will provide students with a working mental model for heightened 
and expedited understanding throughout their studies.  

While we have described the process of creating these in enough 
detail to be reproduced, we do understand that teachers have 
limited time to develop new lesson material.  It took us 
approximately seven hours to complete the primary memory 
system roadmap and story, and over thirty hours to identify and 
animate key steps for seven actions.  To facilitate other teachers in 
using this material, we offer to release the templates.  In doing so, 
we appreciate and welcome evaluation input to ensure this tool 
may benefit as many students as possible. 

 

 

 

 

7. REFERENCES 
[1] Max Black. More about metaphor. Dialectica, 31(3-4):431–457, 
1977. 
[2] D.M. Butler et al. Visualization reference models. In G.M. Nielson 
and D. Bergeron, editors, Proceedings, IEEE Conference on Visualization, 
pages 337–342, October 1993. 
[3] John M. Carroll and Robert L. Mack. Metaphor, computing 
systems, and active learning. International Journal of Man-Machine 
Studies, 22(1):39 – 57, 1985. 
[4] Peter Clarke. Tilera launches many-core 64-bit processor. 
Webpage, June 24 2011. Available at http://www.eetimes.com/electronics-
news/4217220/Tilera-launches-many-core-processor. 

[5] Martin Dodge. Artistic representations of cyberspace. Webpage, 
February 2007. Available at 
http://personalpages.manchester.ac.uk/staff/m.dodge/cybergeography/atlas
/artistic.html. 
[6] G. Haring, G. Kotsis, and S. Musil. Inhouse-a user-oriented 
monitoring approach. In Parallel and Distributed Processing, 1996. PDP 
’96. Proceedings of the Fourth Euromicro Workshop on, pages 478 –485, 
Jan 1996. 
[7] John L. Hennessy and David A. Patterson. Computer Architecture, 
Fourth Edition: A Quantitative Approach. Morgan Kaufmann Publishers 
Inc., San Francisco, CA, USA, 2006. 
[8] Mark D. Hill and Michael R. Marty. Amdahl’s law in the multicore 
era. Computer, 41:33–38, 2008. 
[9] Min Li et al. Functional partitioning to optimize end-to-end 
performance on many-core architectures. In Proceedings of the 2010 
ACM/IEEE International Conference for High Performance Computing, 
Networking, Storage and Analysis, SC ’10, pages 1–12, Washington, DC, 
USA, 2010. 
[10] David A. Patterson and John L. Hennessy. Computer Organization 
and Design, Fourth Edition. Morgan Kaufmann Publishers Inc., San 
Francisco, CA, USA, 2008. 
[11] Albert Rothenberg. Creative cognitive processes in kekulé’s 
discovery of the structure of the benzene molecule. The American Journal 
of Psychology, 108(3):pp. 419–438, Autumn 1995. 
[12] Karthikeyan Sankaralingam et al. Distributed microarchitectural 
protocols in the trips prototype processor. In Proceedings of the 39th 
Annual IEEE/ACM International Symposium on Microarchitecture, 
MICRO 39, pages 480–491, Washington, DC, USA, 2006. 
[13] Edward R. Tufte. Visual Explanations: Images and Quantities, 
Evidence and Narrative. Graphics Press, 1997. 
[14] Forrest Warthman. Cities and computers: Their architecture. 
YouTube, Feb 9 2011. Available at 
http://www.youtube.com/watch?v=NHI63efXoko. 
[15] Joel Wein et al. Virtualized games for teaching about distributed 
systems. In Proceedings of the 40th ACM technical symposium on 
Computer science education, SIGCSE ’09, pages 246–250, New York, 
NY, USA, 2009. 
[16] Lucy Anne Wozny. The application of metaphor, analogy, and 
conceptual models in computer systems. Interacting with Computers, 
1(3):273 – 283, 1989 

 
 

 


	1. INTRODUCTION
	2. METAPHORS
	2.1 Traffic Flow Building Blocks
	2.1.1 Parking Lots
	2.1.2 Stoplights
	2.1.3 All-Way Stop Signs
	2.1.4 Highways
	2.1.5 Branches
	2.1.6 Merges
	2.1.7 Joins
	2.1.8 Traffic Circles

	2.2 Developing Hardware Metaphors

	3. APPLYING METAPHORS
	3.1 Case Study: A Primary Memory System
	3.2 Metaphor for Primary Memory System

	4. Evaluation
	5. RELATED WORK
	6. CONCLUSION AND FUTURE WORK
	7. REFERENCES

