Unsupervised Anomaly-based Malware Detection using
Hardware Features

Adrian Tang

Simha Sethumadhavan

Salvatore Stolfo

Department of Computer Science
Columbia University
New York, NY, USA

{atang, simha, sall}@cs.columbia.edu

ABSTRACT

Recent works have shown promise in using microarchitec-
tural execution patterns to detect malware programs. These
detectors belong to a class of detectors known as signature-
based detectors as they catch malware by comparing a pro-
gram’s execution pattern (signature) to execution patterns
of known malware programs. In this work, we propose a
new class of detectors — anomaly-based hardware malware
detectors — that do not require signatures for malware de-
tection, and thus can catch a wider range of malware in-
cluding potentially novel ones. We use unsupervised ma-
chine learning to build profiles of normal program execution
based on data from performance counters, and use these
profiles to detect significant deviations in program behavior
that occur as a result of malware exploitation. We show
that real-world exploitation of popular programs such as IE
and Adobe PDF Reader on a Windows/x86 platform can be
detected with nearly perfect certainty. We also examine the
limits and challenges in implementing this approach in face
of a sophisticated adversary attempting to evade anomaly-
based detection. The proposed detector is complementary
to previously proposed signature-based detectors and can be
used together to improve security.

1. INTRODUCTION

Malware infections have plagued organizations and users
for years, and are growing stealthier and increasing in num-
ber by the day. In response to this trend, defenders have
created commercial anti-virus protections, and are actively
researching better ways to detect malware. An emerging
and promising approach to detect malware is to build mal-
ware detection systems in hardware [5]. The idea is to use
information easily available in hardware (typically through
performance counters) to detect malware. It has been ar-
gued that hardware malware schemes are desirable for two
reasons: first, unlike software malware solutions that aim
to protect vulnerable software with equally vulnerable soft-
ware ', hardware systems protect vulnerable software with
robust hardware implementations that have lower bug de-
fect density because of their simplicity. Second, while a mo-
tivated adversary can evade either defense, evasion is harder
in a system that utilizes hardware features. The intuition is
that the attacker does not have the same degree of control
over low-level hardware execution features as she has with

!Software antivirus (AV) systems roughly have the same bug
defect density as regular software.

software features. For instance, it is easier to change system
calls or file names than modify cache hit rates and branch
predictor rates in a really precise way across a range of time
scales while still exploiting the system.

In this paper we introduce a new class of malware detec-
tors known as hardware anomaly-based detectors. All ex-
isting malware detection techniques, software or hardware,
can be classified along two dimensions: detection approach
and the malware features they target, as presented in Fig-
ure 1. Detection approaches are traditionally categorized
into misuse-based and anomaly-based detection. Misuse de-
tection attempts to flag malware based on pre-identified ex-
ecution signatures or attack patterns. It can be highly ac-
curate against known attacks, but is extremely susceptible
to attacks with slight modifications deviating from the sig-
natures. On the other hand, anomaly-based detection char-
acterizes baseline models of a state of normalcy and iden-
tifies attacks based on deviations from the models. Other
than being able to target a wide range of attacks, it can po-
tentially identify novel ones. There are a range of features
that can be used for detection: until 2013, features used
for malware detection were software features such as system
call signatures and patterns, or network traffic. Since then,
features available in hardware including microarchitectural
features have been used for malware detection. As shown
in Figure 1, we examine for the first time, the feasibility
and limits of performing anomaly-based malware detection
using low-level architectural and microarchitectural features
available from hardware performance counters (HPCs).

A typical malware infection can be understood as a two-
stage process, exploitation and take-over. In the exploitation
stage, an adversary exercises a bug in the victim program to
hijack control of the victim program execution. Exploitation
is then followed by more elaborate procedures to download
and install a payload such as a keylogger. Prior work on
hardware-level malware detection such as [5] has focused
on flagging Android malicious apps by detecting payloads.
Detecting malware during exploitation not only gives more
lead time for mitigations but can also act as an early threat
predictor to improve the accuracy of subsequent signature-
based detection of payloads.

The key intuition for anomaly-based detection stems from
the observation that the malware, during the exploitation
stage, alters the original program flow to execute peculiar
non-native code in the context of the victim program. Such
unusual code execution will cause perturbations to dynamic
execution characteristics of the program, and if these per-

Detection Approach
Misuse-based Anomaly-based

Traditional AV software [27] System-calls,

. . since 1996 [7, 11, 25]
Runtime heuristics
(shellcode), since 2007 [21, 22] Content-based,

since 2004 [15, 29, 14, 16]
SCRAP (JOP), 2013 [12]
kBouncer (ROP), 2013 [19]
NumChecker (rootkit), 2013 [30]

Function-level, since 2007 [22]

Architectural events,
since 2011 [17]

Architectural/Software

Malware Features

Android malware Our work [new]

detection, 2013 [5]

,,,,,,,,,,,,,,,,,,,,,,,,,,

Microarchitectural

Figure 1: Taxonomy of malware detection approaches and
some example works.

turbations are observable they can form the basis for the
detection of malware exploits. Since exploits manipulate
execution flow within the victim program, the signature-
based detection paradigm is not appropriate for detecting
exploitation. For instance, a signature-based detector will
likely correctly report that IE is executing even when it is
infected with malware because the malware executes along-
side IE.

In this paper, we model the characteristics of common
vulnerable programs such as Internet Explorer 8 and Adobe
PDF Reader 9 — two of the most attacked programs, —
and investigate if and to what degree malware code execu-
tion causes observable perturbations to these characteristics.
In this anomaly-based detection approach, intuitively one
might expect the deviations caused by exploits to be fairly
small and unreliable, especially in vulnerable programs with
very varied use such as the ones we used. This intuition is
validated in our measurements. On a production Windows
machine running on Intel x86 chips, our experiments indi-
cate that distributions of execution measurements from the
hardware performance counters are positively skewed, with
many values being clustered near zero. This implies minute
deviations caused by the exploit code cannot be effectively
discerned directly.

However, we show that this problem of identifying devia-
tions from the heavily skewed distributions can be alleviated.
We show that by using the power transform to amplify small
differences, together with temporal aggregation of multiple
samples, we are able to set apart the execution of the exploit
within the context of the larger program execution. Further,
in a series of experiments, we systematically evaluate the
detection efficacy of the models over a range of operational
factors, events selected for modeling and sampling granu-
larity. For IE exploitation, we are able to identify 100%
of the exploitation epochs with 1.1% false positives. Since
exploitation typically occurs across nearly 20 epochs, even
with a slightly lower true positive rate with high probability
we catch exploitations. These results are achieved at a sam-
pling overhead of 1.5% slowdown using sampling granularity
of 512K instructions epochs.

Further, we examine resilience of our detection technique
to evasion strategies of a sophisticated adversary. Specifi-
cally we model attackers who conduct mimicry attacks by
crafting malware to exhibit event characteristics that re-
semble normal code execution to evade our anomaly detec-

Victim
i \ Existing

libraries
ROP
Adversary --—- p—
- ROP
Stage1 @ % @ @
Exploit Stage1

D R e @

AN @ Stage2

----| | Stage2 | [——-= >

Figure 2: Multi-stage exploit process.

Process
Memory

tion models. With generously optimistic assumptions about
attacker and system capabilities, we demonstrate that the
models are susceptible to the mimicry attack. In a worst
case scenario, the detection performance deteriorates by up
to 6.5%. Due to this limitation we observe that anomaly
detectors cannot be the only defensive solution but can be
valuable as part of an ensemble of predictors that can in-
clude signature-based predictors.

The rest of the paper is organized as follows. We pro-
vide a background on modern malware exploits in §2. We
detail our experimental setup in §3. We present our ap-
proach in building models for the study in §4, and describe
the experimental results in §5. §6 examines evasion strate-
gies of an adaptive adversary and the impact on detection
performance. In §7, we discuss architectural enhancements
that will facilitate better malware detection at the hardware
level. §8 discusses related work, and we conclude in §9.

2. BACKGROUND

Figure 2 shows a typical multi-stage malware infection
process that results in a system compromise. The necessity
for its multi-stage nature will become clear as we explain
the exploit process in this section.

Triggering the vulnerability First the adversary crafts
and delivers the exploit to the victim to target a specific
vulnerability known to the adversary (Step (D). The vul-
nerability is typically a memory corruption bug; the exploit
is typically sent to a victim from a webpage or a document
attachment from an email. When the victim accesses the
exploit, two exploit subprograms, commonly known as the
ROP and Stagel “shellcodes” load into the memory of the
vulnerable program (Step @). The exploit then uses the
vulnerability to transfer control to the ROP shellcode (Step
®).

Code Reuse Shellcode (ROP) To prevent untrusted
data being executed as code, modern processors provide
Data Execution Prevention (DEP) to prevent code from be-
ing run from data pages. A problem is that DEP can be
toggled by the program itself. This feature is necessary to
support JIT compilation. So, to circumvent DEP, the ROP-
stage shellcode reuses instructions in the original program
binary — hence the name Code Reuse Shellcode — to craft
a call to the function that disables DEP for the data page
containing the next Stagel shellcode. The ROP ShellCode
then redirects execution to the next stage. (Step @) [4, 19].

Stagel Shellcode This shellcode is typically a rela-
tively small — from a few bytes to about 300 bytes ? — code

2 As observed at http://exploit-db.com

http://exploit-db.com

stub with exactly one purpose: to download a larger (evil)
payload which can be run more freely. To maintain stealth,
it downloads the payload in memory (Step ®).

Stage2 Payload The payload is the final piece of code
that the adversary wants to execute on the user machine to
perform a specific malicious task. The range of function-
ality of this payload, commonly a backdoor, keylogger, or
reconnaissance program, is in fact unlimited. After the pay-
load is downloaded, the Stagel shellcode runs that payload
as an executable using reflective DLL injection (Step ®),
a stealthy library injection technique that does not require
any physical files [6]. By this time, the victim system is fully
compromised (Step D).

The Stagel shellcode and Stage2 payload are different in
terms of size, design and function, primarily due to the oper-
ational constraints on the Stagel shellcode. When delivering
the initial shellcode in the exploit, exploit writers typically
try to use as little memory as possible to ensure that the pro-
gram does not unintentionally overwrite their exploit code
in memory. To have a good probability for success this code
needs to be small and fast, and thus is written in assembly
in very restrictive position-independent memory addressing
style. These constraints limit the attackers ability to write
very large shellcodes. In contrast, the Stage2 payload does
not have all these constraints and can be developed like any
regular program. This is similar to how OSes use small as-
sembly routines to bootstrap and then switch to compiled
code.

The strategy and structure described above is representa-
tive of a large number of malware especially those created
with fairly recent web exploit kits [28]. These malware ex-
ploits execute completely from memory and in the process
context of the host victim program. Further, they maintain
disk and process stealth by ensuring no files are written to
disk and no new processes are created, and thus easily evade
most file based malware detection techniques.

3. EXPERIMENTAL SETUP

Do the execution of different shellcode stages exhibit ob-
servable deviations from the baseline performance charac-
teristics of the user programs? Can we use these devia-
tions, if any, to detect a malware exploit as early as possible
in the infection process? To address these questions, we
conduct several feasibility experiments, by building base-
line per-program models using machine learning classifiers
and examining their detection efficacy over a range of op-
erational factors. Here, we describe various aspects of our
experimental setup and detail how we collect and label the
performance measurements that are attributed to different
stages of malware exploits.

3.1 Exploits

Unlike SPEC [9], there are no standard exploit bench-
marks. We created our own exploits for common vulnera-
ble programs from publicly available information. We use
exploits that target the security vulnerabilities CVE-2012-
4792, CVE-2012-1535 and CVE-2010-2883 on IE 8 and
the web plug-ins, i.e., Adobe Flash 11.3.300.257 and Adobe
Reader 9.3.4 respectively. We generated the exploits using
a widely-used penetration testing tool Metasploit *. We use
Metasploit because the exploitation techniques it employs

3http://www.metasploit.com/

in the exploits are representative of multi-stage nature of
real-world exploits.

With Metasploit, besides targeting different vulnerabili-
ties using different ROP shellcode, we also vary both the
Stagel shellcode and the Stage2 final payload used in the
exploits. The variability in the generated exploits is summa-
rized in Table 1. For the ROP shellcode stage, the relevant
library files, from where the shellcode is derived, are listed.

3.2 Measurement Infrastructure

Since most real-world exploits run on Windows and PDF
readers, and none of the architectural simulators can run
programs of this scale, we use measurements from produc-
tion machines. We develop a Windows driver to configure
the performance monitoring unit on Intel i7 2.7GHz Ivy-
Bridge Processor to interrupt once every N instructions and
collect the event counts from the HPCs. We also record the
Process ID (PID) of the currently executing program so that
we can filter the measurements based on processes.

We collected the measurements from a VMware Virtual
Machine (VM) environment, installed with Windows XP
SP3 and running a single-core with 512MB of memory. With
the virtualized HPCs in the VM, this processor enables the
counting of two fixed events (clock cycles, instruction re-
tired) and up to a limit of four events simultaneously. We
configured the HPCs to update the event counts only in the
user mode.

To ensure experiment fidelity for the initial study, the
measurements from the memory buffer are read and trans-
ferred via TCP network sockets to a recorder that is de-
ployed in another VM. This recorder saves the stream of
measurements in a local file that is used for our analysis.

3.3 Sampling Granularity

We experimented with various sampling interval of N in-
structions. We chose to begin the investigation with a sam-
pling rate of every 512,000 instructions since it provides a
reasonable amount of measurements without incurring too
much overhead (See §5.3.5 for an evaluation of the sampling
overhead). Each sample consists of the event counts from
one sampling time epoch, along with the identifying PID
and exploit stage label.

3.4 Collection of Clean and Infected

Measurements

To obtain clean exploit-free measurements for IE 8, we
randomly browsed websites that use different popular web
plugins available on IE wiz., Flash, Java, PDF, Silverlight,
and Windows Media Player extensions. We visited the top
20 websites from Alexa and included several other websites
that to widen the coverage of the use of the various plug-ins.
Within the browser, we introduced variability by randomiz-
ing the order in which the websites are loaded across runs;
likewise we accessed websites by clicking links randomly and
manually on the webpages. The dynamic content on the
websites also perturbs the browser caches. We used a max-
imum of two concurrent tabs. In addition, we simulated
plug-in download and installation functions.

For Adobe PDF measurements, we downloaded 800 ran-
dom PDFs from the web, reserving half of them randomly
for training and the other half for testing.

http://www.metasploit.com/

[Stage | Variation |

ROP msvcrt.dll, icucnv36.d11, flash32.ocx
Stagel | reverse_tcp, reverse_http, bind tcp
Stage2 | meterpreter, vncinject, command_shell

Table 1: Variability in exploit code.

To gather infected measurements, we browse pages with
our PDF exploits with the same IE browser that uses the
PDF plug-in. We use Metasploit to generate these PDF
exploits and ensure that both the clean and unclean PDFs
had the same distribution of file types, for instance, same
amount of Javascript.

We stop gathering infected measurements when we see
creation of a new process. Usually the target process be-
comes unstable due to the corrupted memory state, and the
malicious code typically “migrates” itself to another new or
existing process to ensure persistence after the execution of
the Stage2 payload. This is an indication that the infection
is complete.

We use the same input sets for different measurements,
and between each run of the exploit, we revert the VM envi-
ronment to ensure the samples collected from the next run
is not contaminated from the previous run.

3.5 Bias Mitigation

While there are factors that may affect the results of our
measurements, we took care to mitigate some possible biases
in our data by ensuring the following during the measure-
ment collection.

Between-run contamination After executing each
exploit and collecting the measurements, we restore the VM
to the state before the exploit is exercised. This ensures the
measurements collected are independent across training and
testing sets, and across different clean and exploit runs.

Exploitation bias Loading the exploits in the program
in only one way may bias the sampled measurements. To re-
duce this bias, we collected the measurements while loading
the exploit in different ways: (1) We launch the program
and load the URL link of the generated exploit page. (2)
With an already running program instance, we load the ex-
ploit page. (3) We save the exploit URL in a shortcut file
and launch the link shortcut with the program.

Network conditions The VM environment is con-
nected to the Internet. To ensure that the different network
latencies do not confound the measurements, we configure
the VM environment to connect to an internally-configured
Squid * proxy and throttle the network bandwidth from 0.5
to S5Mbps using Squid delay pools. We vary the bandwidth
limits while collecting measurements for both the exploit
code execution and clean runs.

4. BUILDING MODELS

To use HPC measurements for anomaly-based detection
of malware exploits, we need to build classification models
to describe the baseline characteristics for each program we
protect. These program characteristics are relatively rich in
information and, given numerous programs, manually build-
ing the models is nearly impossible. Instead we rely on unsu-
pervised machine learning techniques to dynamically learn
possible hidden structure in these data. We then use this

“http://www.squid-cache.org/

[Name | Event Description
Architectural Events

LoAD Load instructions retired
STORE Store instructions retired
ARITH Arithmetic instructions retired
Br Branch instructions retired
CALL All near call instructions retired
CaALL_D Direct near call instructions retired
CALL_ID Indirect near call instructions retired
RET Near return instructions retired

Microarchitectural Events
Lic Last level cache references
Mis_LLc Last Ievel cache misses
Misp_Br Mispredicted branch instructions
Misp_RET Mispredicted near return instructions
Misp_CALL Mispredicted near call instructions
Misp_Br_C Mispredicted conditional branch
MIis_ICACHE I-Cache misses
Mis_ITLB I-TLB misses
Mis_DTLBL D-TLB Ioad misses
Mis_DTLBS D-TLB store misses
STLB_HIT Shared-TLB hits after 1-TLB misses
%MIs_LLc® % of last level cache misses
%Misp_Br® % of mispredicted branches
%MisP_RET® | % of mispredicted near RET instructions

Table 2: Shortlisted candidate events to be monitored.

hidden structure — aka model — to detect deviations during
exploitation.

We rely on a class of unsupervised one-class machine learn-
ing techniques for model building. The one-class approach is
very useful because the classifier can be trained solely with
measurements taken from a clean environment. This re-
moves the need to gather measurements affected by exploit
code, which is hard to implement and gather in practice.
Specifically, we model the characteristics with the one-class
Support Vector Machine (oc-SVM) classifier that uses the
non-linear Radial Basis Function (RBF) kernel [23]. In this
study, the collection of the labeled measurements is purely
for evaluating how effective models are in distinguishing
measurements taken in the presence of malware code exe-
cution.

4.1 Feature Selection

While the Intel processor we use for our measurements
permits hundreds of events to be monitored using HPCs,
not all of them are equally useful in characterizing the ex-
ecution of programs. We examine most of the events in-
vestigated in previous program characterization works [33,
34], and various other events informed by our understanding
on the malware behavior. Out of the hundreds of possible
events that can be monitored, we shortlisted 19 events for
this study in Table 2. We further differentiate between the
Architectural events that give an indication of the execu-
tion mix of instructions in any running program, and the
Microarchitectural ones that are dependent on the specific
hardware makeup of a system.

Events with higher discriminative powers The
processor is limited to monitoring only up to 4 events at

5These derived events are not directly measured, but are
computed using two events monitored and measured by
the HPCs. For example, %MIisP_BR is computed as
Misp_BR/BR.

http://www.squid-cache.org/

any given time. Even with the smaller list of shortlisted
events, we have to select only a subset of events, aka fea-
tures, that can most effectively differentiate clean execution
from infected execution. Since we have at our disposal la-
beled measurements, we use the Fisher Score (F-Score) to
provide a quantitative measure of the how effective a feature
can discriminate between measurements in clean executions
from those in infected executions. In general, the F-Score
is a widely-used feature selection metric that measures the
discriminative power of features [35]. A feature with better
discriminative power would have a larger separation between
the means and standard deviations for samples from differ-
ent classes. The F-Score gives a measure of this degree of
separation. The larger the F-Score, the more discriminative
power the feature is likely to have. However, a limitation to
using the F-Score is that it does not account for mutual in-
formation/dependence between features, but it helps guide
our selection of a subset of “more useful” features.

Since we are attempting to differentiate samples with ma-
licious code execution from those without, we compute the
corresponding F-Scores for each event. We compute the F-
Scores for the different stages of malware code execution for
each event and reduce the shortlisted events to the 7 top-
ranked events for each of the two categories, as well as for the
two categories combined, in Table 3. Each row consists of
the top-ranked events for an event category and the exploit
stage.

We further select the top 4 events from each row to form
9 candidate event sets that we will use to build the baseline
characteristics models of the IE browser. Each model con-
structed with one set of events can then be evaluated for its
effectiveness in the detection of various stages of malware
code execution. For brevity, we assign a label (such as A-0
and AM-2) to each set of 4 events in Table 3 and refer to
each model based on this set label. We note that the de-
rived events such as %MISP_BR are listed in the table solely
for comparison. Computing them requires monitoring two
events and reduces the number of features used in the mod-
els. Via experimentation, we find that using them in the
models does not increase the efficacy of the models. So, we
exclude them from the event sets.

Feature Extraction FEach sample consists of simul-
taneous measurements of all the four event counts in one
time epoch. We convert the measurements in each sample
to the vector subspace, so that each classification vector is
represented as as a four-feature vector. Each vector, using
this feature extraction method, represents the measurements
taken at the smallest time-slice for that sampling granular-
ity. These features will be used to build non-temporal mod-
els.

Since we observe that malware shellcode typically runs
over several time epochs, there may exist temporal relation-
ships in the measurements that can be exploited. To model
any potential temporal information, we extend the dimen-
sionality of each sample vector by grouping the N consecu-
tive samples and combining the measurements of each event
to form a vector with 4N features. We use N = 4 to create
sample vectors consisting of 16 features each, so each sam-
ple vector effectively represents measurements across 4 time
epochs. By grouping samples across several time epochs,
we use the synthesis of these event measurements to build
temporal models.

With the granularity at which we sample the measure-

MIS_ITLB MIS_RET STORE CALL_ID
1.0f 1 F 1 F 1 F B}
0.8} 1 1 r 1 1
0.6 1 1 1
0.4} 1 1 r 1 1
0.2 1t 1+ 1 R
00}= = = L] e = = .| ,$ - i éA ,é & £ 4]

SR Do SR > SR > SR >

XA 20O 27 & 20 &7 & NG

e (9@0: (94,0) o %@Q (O@Q ol %@Q (%@Q o &}@Q %@Q

Figure 3: Comparison of distributions of events from clean
runs versus different malware shellcode stages.

ments, the execution of the ROP shellcode occurs within
the span of just one sample. Since we are creating vectors
with a number of samples as a group, the ROP payload will
only contribute to one small portion of a vector sample. So
we leave out the ROP shellcode for testing using this form
of feature extraction.

S. RESULTS

5.1 Anomalies Not Directly Detectable

We first investigate if we can gain any insights into the
distribution of the event counts for a clean environment and
one attacked by an exploit. Without assuming any prior
knowledge of the distributions, we use the box-and-whisker
plots® of normalized measurements for the different events.
These plots provide a visual gauge of the range and vari-
ance in the measurements, and an initial indication on how
distinguishable the measurements taken with the execution
of different stages of malware code are from the clean mea-
surements from an exploit-free environment.

These distribution comparisons suggest that any event
anomalies manifested by malware code execution are not
trivially detectable, due to two key observations. (1) Most
of the measurement distributions are very positively skewed,
with many values clustered near zero. (2) Deviations, if any,
from the baseline event characteristics due to the exploit
code are not easily discerned. These observations are evi-
dent in Figure 3, where we present the distribution plots for
a few events.

5.1.1 Power Transform

To alleviate this challenge, we rely on a rank-preserving
power transform on the measurements to positively scale
the values. In the field of statistics, the power transform
is a family of functions that is commonly applied to data
to transform non-normally distributed data to one that has
approximately normal distribution. Used in our context, it
has the value of magnifying any slight deviations that the
malware code execution may have on the baseline charac-
teristics.

For each event type, we find the appropriate power pa-
rameter A such that the normalized median is roughly 0.5.
We maintain and use this parameter \; for each event ¢ to
scale all its corresponding measurements throughout the ex-
periment. Each normalized and scaled event measurement

5The box-and-whisker plot is constructed with the bottom
and top of the box representing the first and third quartiles
respectively. The red line in the box is the median. The
whiskers extend to 1.5 times the length of the box. Any
outliers beyond the whiskers are plotted as blue + ticks.

Exploit Set Events ranked by F-scores

Stage | Label 1 [2 [3 [4 [5 [6 [7 [8

Acrchitectural Events
ROP A-0 Ret Call D Store Arith CALL LoAD CaLL_ID Br
Stagel A-1 Store Load Call ID Ret CAaLL_D CALL ARITH Br
Stage2 A-2 Store Call ID Ret Call. D CALL ARITH Br LoAD
Microarchitectural Events
ROP M-0 Misp Br_ C | %Misp_BRr Misp_Br %MIsP_RET Mis_Itlb Mis_Llc Mis_DTLBS | Misp_CALL
Stagel M-1 Misp Ret | Misp Br C | %Misp_RET | %Misp_Br Mis_Dtlbs Stlb_Hit Misp_Br MIs_ICACHE
Stage2 M-2 Misp_Ret Stlb_Hit Mis_Icache Mis_Itlb %Misp_RET | Misp_CALL Mis_LLc Misp_Br_C
Both Architectural and Microarchitectural Events

ROP AM-0 [[Misp Br C | %Misp_Br Misp_Br Y%MisP_RET Mis_Itlb Ret Mis_LLc Mis_DTLBS
Stagel AM-1 Store Load Misp_Ret Call ID RET CAaLL_ D CALL Misp_Br_C
Stage2 AM-2 Store CallLID Misp_Ret Ret CALL_D CALL STLB_HIT | MIS_LICACHE

Table 3: Top 8 most discriminative events for different stages of exploit execution (Each event set consists of 4 event names in
BoLD. E.g, monitoring event set A-0 consists of simultaneously monitoring RET, CALL_D, STORE and ARITH event counts.)

for event i, normalized;, is transformed from the raw value
. ming A
raw; as follows: normalized; = (T™*i_"21)"" " where the

max;
man; and maz; are the minimum and maximum values for
this event.

Using this power transform, we plot the distributions of all
the events, in Figure 4. Now we observe varying deviations
from baseline characteristics due to different stages of mal-
ware code execution for various event types. Some events
(such as MisP_RET and STORE) show relatively larger de-
viations, especially for the Stagel exploit shellcode. These
events likely possess greater discriminative power in indicat-
ing the presence of malware code execution. Clearly, there
are also certain events that are visually correlated. The RET
and CALL exhibit similar distributions. We can also observe
strong correlation between those computed events (such as
%MIsP_BR) and their constituent events (such as MisP_BR).

5.2 Evaluation Metrics for Models

To visualize the classification performance of the models,
we construct the Receiver Operating Characteristic (ROC)
curves which plot the percentage of truely identified mali-
cious samples (True positive rate) against the percentage
of clean samples falsely classified as malicious (False posi-
tive rate). Each sample in the non-temporal model corre-
sponds to the set of performance counter measurements in
one epoch; each temporal sample spans over 4 epochs. Fur-
thermore, to contrast the relative performance between the
models in the detection of malicious samples, the area un-
der the ROC' curve for each model can be computed and
compared. This area, commonly termed as the Area Under
Curve (AUC) score, provides a quantitative measure of how
well a model can distinguish between the clean and mali-
cious samples for varying thresholds. The higher the AUC
score, the better the detection performance of the model.

5.3 Detection Performance of Models

We first build the oc-SVM models with the training data,
and then evaluate them with the testing data using the non-
temporal and temporal model approaches on the nine event
sets. To characterize and visualize the detection rates in
terms of true and false positives over varying thresholds,
we present the ROC curves of the two approaches in Fig-
ures 5 and 6. Due to space constraints, we only present the
ROC curves for models that use both instruction-level and

0 ROC for Set <AM-0> ROC for Set <AM-1> ROC for Set <AM-2>

=

Los8 1 1 1
206 1 | |
3
S04 © ROP || 1 [ROP ||
E 0.2 —— Stagel|| L —— Stagel|] oo —— Stagel|]
: - - - Stage2 : - - - Stage2 H - - - Stage2
0'00 0.2 04 06 08 1 0 02 04 06 08 1 0 0204 06 08 1

False positive rate False positive rate False positive rate

Figure 5: ROC plots for Non-Temporal 4-feature models
for IE.

ROC for Set <AM-0>

PE2

ROC for Set <AM-1> ROC for Set <AM-2>
—— - - -

‘ R

1.0

-

! -
0.8{ ,- 1 o 1 ’
4 . .
’ 1

0.64 1 '

0.4 1 o

0.2 —— Stagel||
- - - Stage2

0'00 0.2 0.4 06 08 1
False positive rate

True positive rate
N

—— Stagel|]
- - - Stage2

0 0.2 04 06 08 1
False positive rate

—— Stagel|]
- - - Stage2

0 020406 08 1
False positive rate

Figure 6: ROC plots for Temporal 16-feature models for
1E.

microarchitectural events. We also present the overall detec-
tion results in terms of AUC scores in Figure 7 and highlight
the key observations that affect the detection accuracy of the
models below.

5.3.1 Different Stages of Malware Exploits

We observe that the models, in general, perform best in
the detection of the Stage! shellcode. These results suggest
the Stagel shellcode exhibits the largest deviations from the
baseline architectural and microarchitectural characteristics
of benign code. We achieve a best-case detection accuracy
of 99.5% for Stagel shellcode with the AM-1 model.

On the other hand, the models show mediocre detection
capabilities for the ROP shellcode. The models does not
perform well in the detection of the ROP shellcode, likely
because the sampling granularity at 512k instructions is too
large to capture the deviations in the baseline models. While
the Stagel and Stage2 shellcode executes within several time
epochs, we measured that the ROP shellcode takes 2182 in-
structions on average to complete execution. It ranges from

BR CALL MISP_BR LLC MIS_LLC MISP_CALL MISP_BR_C MIS_ICACHE
1.0F y 1 F 1 F 1 F 1 F 1 F 1 F y
0.8F] 1 F 1 1 1 1t 1]
0.6] 1 HmEe 2 e 1ty = 1 1 " T]
e dl g 1 oo el oot el BT el
0.2 1 1 F 1t 1t {1 F 1 F . 1
0.0 é é, - - [1 [1 - N - - 1
MIS_ITLB MIS_DTLBL MIS_DTLBS STLB_HIT LOAD STORE ARITH CALL_D
1.0F 1 F 1 F 1 F 1 F 1 F 1 F]
0.8 : 1 F . : 1 F 1 F .
0.6 = . 1 = 1 . 1 1t 1
0.4f % T4 é k2 ﬁ] 0 é =+ & E [P = EJ #] ﬁ é &]
0.2 : 1 F . : 1 F 5 1 F : 1
0.0t i 1 ¢ 1 . 1 ¢ 1 < 5
CALL_ID RET MISP_RET %MIS_LLC %MISP_BR %MISP_RET
1.0F 1 1 F] 1.0f 1 F 1 F 1
0.8} | . é z . 0.8 1 [l esl & |
0.6 1 1 F . 0.6 1 F 1t 1
0.4% Q 1 0 1 F : oalH 7 : % . $ 1
0.2F . 1 F 1 021 1t 1 :
0.0F 1 = = 1 0.0t 1t 1 1
S o 2 S & 2 SR o7 ¥ S & 2 S & 2 S & e
o Pe® RS Pe® g O o Pe® RS P ks P
Figure 4: Distribution comparison of all the events (after power transform), with more discernible deviations.
BN ROP EHEW Stagel [Stage2 Scenario Non-Temporal Temporal
1.0 non-temporal temporal Label ROP | Stagel | Stage2 || Stagel | Stage2
©0.8 L-1core 0.505 0.895 0.814 0.918 0.900
So6 L-2core 0.496 0.890 0.807 0.907 0.813
S 04 R-1core 0.678 0.916 0.781 0.995 0.823
<
0.2 Table 4: AUC scores for constrained scenarios using set
0.0 AM-1.

INIATA IO ST S N S SR A2

IR R A A A A

N v’vv’@’\“’\‘*v\t\@@
Event set

Figure 7: Detection AUC scores for different event sets
using non-temporal and temporal models for IE.

as few as 134 instructions (for the Flash ROP exploit) to
6016 instructions (for the PDF ROP exploit). Since we are
keeping the sampling granularity constant, the sample that
contains measurements during the ROP shellcode execution
will also largely consists of samples from the normal code
execution.

5.3.2 Non-Temporal vs Temporal Modeling

We observe that the detection accuracy of the models for
all event sets improves with the use of temporal information.
By including more temporal information in each sample vec-
tor, we reap the benefit of magnifying any deviations that
are already observable in the non-temporal approach. For
one event set M-2, this temporal approach of building the
models improves the AUC score from the non-temporal one
by up to 59%.

5.3.3 Architectural vs Microarchitectural Events

Models built using only architectural events generally per-
form better than those built solely with microarchitectural
events. By selecting and modeling both the most discrimi-
native architectural and microarchitectural events together,
we can achieve higher detection rates of up to an AUC score
of 99.5% for event set AM-1.

5.3.4 Constrained Environments

As described in § 3.2, we collect the measurements in our
study from one VM and transfer the measurements to the
recorder in another VM to be saved and processed. For
brevity, we term this cross-remote-VM scenario where the
sampling and the online classification are performed on dif-
ferent VMs as R-1core.

To assess the effect on detection accuracy in the scenario
where we deploy both the online classification and the mea-
surement gathering in the same VM, we run the experiment
using the model set AM-1 using two additional local-VM
scenarios using 1 and 2 cores. We term these two scenarios
as L-1core and L-2core respectively. We present the detec-
tion AUC scores for the three different scenarios in Table
4. We observe that the detection performance suffers when
the online classification detector is deployed locally together
with the sampling driver. This can be attributed to the pos-
sible noise that is introduced to the event counts while the
online detector is continuously running and taking in the
stream of samples.

5.3.5 Different Sampling Granularities

While we use the sampling rate of 512k instructions for
the above experiments, we also investigate the effect on de-
tection efficacy over a range of sampling granularities.

Furthermore, while the hardware-based HPCs incur a near-
zero overhead in the monitoring of the event counts, a software-
only implementation of the detector still requires running
programs to be interrupted periodically to sample the event
counts. This inadvertently leads to a slowdown of the over-
all running time of programs due to this sampling overhead.
To inform the deployment of a software-only implementa-
tion of such a detection paradigm, we evaluate the sampling

—a— ROP —e— Stagel (Non-Temp) —— Stage2 (Non-Temp)

- @ — Stagel (Temporal) - 4 - Stage2 (Temporal)
100} &----- P *----- e==zczg----- o {10
9 8 AN
B >~ N
S 80f| >3 0.9
-§ *
[
3 -
& 60r 10.8
g O
= 2
~ 40 10.7<
kel
3 20.6
g 20t 10.6
1} 7.8
H .
0 — = lg5

16k 32k 64k 128k 256k 512k
Sampling Rate (# of instruction retired)

Figure 8: Trade-off between sampling overhead for different
sampling rates versus detection accuracy using set AM-1.

Set Non-Temporal Temporal
Label || ROP | Stagel | Stage2 || Stagel | Stage2
AM-0 || 0.931 0.861 0.504 0.967 0.766
AM-1 || 0.857 0.932 0.786 0.999 0.863
AM-2 || 0.907 0.939 0.756 0.998 0.912

Table 5: AUC scores for stand-alone Adobe PDF Reader.

performance overhead for different sampling rates.

To measure this overhead, we vary the sampling granu-
larity and measure the slowdown in the programs from the
SPEC 2006 benchmark suite [9]. We also repeated the ex-
periments using the event set AM-1 to study the effect of
sampling granularity has on the detection accuracy of the
model. We plot the execution time slowdown over different
sampling rates with the corresponding detection AUC scores
for various malware exploit stages in Figure 8.

We observe that the detection performance generally de-
teriorates with coarser-grained sampling. This is a result of
the imprecise sampling technique used. For example, during
the span of instructions retired in one sample, while we may
label these measurements as belonging to a specific process
PID, the measurements in this sample may also contain mea-
surements belonging to other processes context-switched in
and out during the span of this sample. This "noise” effect
becomes more pronounced with a coarser-grained sampling
rate and deteriorates the detection performance. Nonethe-
less, we note that the reduction in sampling overhead at
coarser-grained rates far outstrips the decrease in detection
performance.

5.4 Results for Adobe PDF Reader

Due to space constraints, we do not present the full re-
sults from our experiments on the stand-alone Adobe PDF
Reader. For brevity, we present the AUC detection perfor-
mance of the models built with the event sets AM-0,1,2 in
Table 5. Compared to the models for IE; the detection of
ROP and Stage! shellcode generally improves for the Adobe
PDF Reader. We even achieve an AUC score of 0.999 with
the temporal modeling of the AM-1 event set. The im-
proved performance of this detection technique for the PDF
Reader suggests that its baseline characteristics are more
stable given the less varied range of inputs it handles com-
pared to IE.

6. ANALYSIS OF EVASION STRATEGIES

In general, anomaly-based intrusion detection approaches,
such as ours, are susceptible to mimicry attacks. For such an
attack to evade detection, with sufficient information about
the anomaly detection models, a sophisticated adversary can
modify her malware into an equivalent form that exhibits
similar baseline architectural and microarchitectural char-
acteristics as the normal programs. In this section, we ex-
amine the degree of freedom an adversary has in crafting a
mimicry attack and how it impacts the detection efficacy of
our models.

Adversary Assumptions We presume the adversary
has an exploit that she wants to execute without being de-
tected by our models. We assume the adversary (1) knows
all about the target program such as the version and OS to
be run on, and (2) is able to gather similar HPC measure-
ments for the targeted program to approximate its baseline
characteristics. (3) She also knows the way the events are
modeled, but not the exact events used. We highlight three
ways the adversary can change her attack while retaining
the original attack semantics.

Assumption (3) is a realistic one since the modern pro-
cessors allow hundreds of possible events to be monitored.
While she may uncover the manner the events are modeled,
it is difficult to pinpoint the exact subset of four events used
given the numerous possible combinations of subsets. Fur-
thermore, even if the entire list of events that can be moni-
tored is available, there may still exist some events (such as
events monitored by the power management units) that are
not publicly available. Nonetheless, to describe the first two
attacks, we optimistically assume that the adversary has full
knowledge of all the events that are used in the models.

Attack #1: Padding The first approach is to pad the
original shellcode code sequences with "no-op” (no effect) in-
structions with a sufficient number so that the events mani-
fested by the shellcode match that of the baseline execution
of the program. These no-op instructions should modify the
measurements for all the events monitored, in tandem, to a
range acceptable to the models.

The adversary needs to know the events used by the model
a priori, in order to exert an influence over the relevant
events. We first explored feasibility of such a mimicry ap-
proach by analyzing the Stagel shellcode under the detec-
tion model of event set AM-1. After studying the true pos-
itive samples, we observe that the event characteristics ex-
hibited by the shellcode are due to the unusually low counts
of the four events modeled. As we re-craft the shellcode at
the assembly code level to achieve the mimicry effect, we
note four difficulties.

1. To maintain the original semantics of the shellcode
code sequences, certain registers need to be saved and
subsequently restored. Be it on the stack, heap or
other segments, any such operations constitute STORE
/LOAD operations, inadvertently affecting both STORE
and LOAD events.

2. Some microarchitectural events require more than one
instruction to effect a change. For example, to raise
the MISP_RET event counts, code sequences of RET
instructions need to be crafted in a specific order. In-
sertion of no-ops must be added in segments.

3. We are rarely able to craft no-op instruction segments

STORE LOAD

Fanggifonne

)
o
1<)
S
)

:

[

°

o

L

5]

<

(2]

—~

[oL [

(o))

i 0 5 10 20 50 100 0 5 10 20 50 100

3 MISP_RET CALL_ID

5 6000f =1 F]

(2]

2 ool 5 & =)=

£

§ 2000 1 1

C

< ol 1L |
0 2 4 6 8 10 0 2 4 6 8 10

of no-op instruction segments inserted

Figure 9: Impact of inserting no-op instruction segments
on the anomaly scores of Stagel shellcode.

—e— STORE —e— LOAD -4- MISP RET -4- CALLID

1.00
0.99r
0.98F

2

S 0.97f

O

v 0,96

2 0.95f
0.941
0.93F
0.92

100/10

0 5/2 10/4 20/6 50/8
of no-op instruction segments inserted

Figure 10: Impact of inserting no-op instruction segments
on the detection performance of Stagel shellcode.

to modify each event independently. For instance,
among the four events modeled in AM-1, the no-op
instruction segment can only be crafted to affect the
STORE counts independently. Some events are modi-
fied simultaneously at different degrees with the padding
of crafted no-op instruction segments.

4. Insertion position of the no-op instruction segments
can be critical to achieve the desired mimicry effect.
We notice the use of several loops within the shellcode.
If even one no-op segment is inserted into the loops,
that results in a huge artificial increase in certain event
types, consequently making that code execution look
more malicious than usual.

Next, we examine the impact of such mimicry efforts on
the detection performance. We pad the Stagel shellcode at
random positions (avoiding the loops) with increasing num-
ber of each crafted no-op instruction segment and repeated
the detection experiments. In Figure 9, we plot the box-
and-whisker plots of the anomaly scores observed from the
samples with varying numbers of injected no-op code. In
general, the anomaly scores become less anomalous with the
padding, until after a tipping point where inserting too many
no-ops reverses mimicry effect. In the same vein, we observe
in Figure 10 that the detection AUC scores decrease as the
samples appear more normal. For the worst case, the detec-
tion performance suffers by up to 6.5% just by inserting only
the CALL_ID no-ops. We did not study combining the no-
ops for different events, but we believe it should deteriorate
the detection performance further.

Attack #2: Substitution Instead of padding no-ops

into original attack code sequences, the adversary can re-
place her code sequences with equivalent variants using code
obfuscation techniques, common in metamorphic malware
[1]. Like the former attack, this also requires that the she
knows the events used by the models a priori.

To conduct this attack, she must first craft or generate
equivalent code variants of code sequences in her exploits,
and profile the event characteristics of each variant. Then
she can adopt a greedy strategy by iteratively substituting
parts of his attack code with the equivalent variants, mea-
suring the HPC events of the shellcode and ditching those
variants that exhibit characteristics not acceptable to the
models.

However, while this greedy approach will eventually ter-
minate, it warrants further examination as to whether the
resulting shellcode modifications suffice to evade the models.
We argue that this kind of shellcode re-design is hard and
will substantially raise the bar for exploit writers.

Attack #3: Grafting This attack requires either (1)
inserting benign code from the target program directly into
the exploit code, or (2) co-scheduling the exploit shellcode
by calling benign functions (but with no-op effects) within
the exploit code. In a sense, this attack grafts its malicious
code execution with the benign ones within the target pro-
gram, thus relieving the need for the knowledge of the events
that are modeled. If done correctly, it can exhibit very sim-
ilar characteristics as the benign code it grafts itself to. As
such this represents the most powerful attack against our
detection approach.

While we acknowledge that we did not craft this form of
attack in our study, we believe that it is extremely challeng-
ing to craft such a grafting attack due to the operational
constraints on the exploit and shellcode, described in §2.
First, inserting sufficient benign code into the shellcode may
exceed the vulnerability-specific size limits and cause the ex-
ploit to fail. Second, to use benign functions for the graft-
ing attacks, these functions have to be carefully identified
and inserted so that they execute sufficiently to mimic the
normal program behavior and yet not interfere with the ex-
ecution of the original shellcode. Third, the execution of
grafted benign code must not unduly increase the execution
time of the entire exploit.

6.1 Defenses

Unlike past anomaly-based detection systems that detect
deviations based on the syntactic/semantic structure and
code behavior of the malware shellcode, our approach fo-
cuses on the architectural and microarchitectural side-effects
manifested through the code execution of the malware shell-
code. While the adversary has complete freedom in crafting
her attack instruction sequences to evade the former sys-
tems, she cannot directly modify the events exhibited by
her attack code to evade our detection approach. To con-
duct a mimicry attack here, she has to carefully "massage”
his attack code to manifest a combination of event behaviors
that are accepted as benign/normal under our models. This
second-order degree of control over the event characteristics
of the shellcode adds difficulty to the adversary’s evasion ef-
forts. On top of this, we discuss further potential defense
strategies to mitigate the impact of the mimicry attacks.

Randomization Introducing secret randomizations into
the models has been used to strengthen robustness against
mimicry attacks in anomaly-based detection systems [2, 29].

In our context, we can randomize the events used in the
models by training multiple models using different subsets
of the shortlisted events. We can also randomize the choice
of model to utilize over time. Another degree of random-
ization is to change the number of consecutive samples to
use for each sample for the temporal models. In this man-
ner, the attacker does not know which model is used during
the execution of his attack shellcode. For her exploit to be
portable and functional a wide range of targets, she has to
modify her shellcode using the no-op padding and instruc-
tion substitution mimicry attacks for a wider range of events
(and not just the current four events).

To obtain a sense of the diversity introduced with this
approach, we assume we have 10 different events as the pool
of events we could select for the models, and that we can
vary the number of consecutive samples from a range of 3 to
6. With these two degrees of freedom, the number of possible
different models that can be constructed is (140) -4 = 840.
The number of possibilities increases substantially if we have
more events in our pool. Increasing the pool of events from
10 to 20 will then result in (240) -4 = 19380, a 23-fold increase.

Multiplexing At the cost of higher sampling overhead,
we can choose to sample at a finer sampling granularity and
measure more events (instead of the current four) by mul-
tiplexing the monitoring as follows. For example, we can
approximate the simultaneous monitoring of 8 events across
two time epochs by monitoring 4 events in one and another
4 in the other. This affords more dimensionality to the input
vectors we use in the models, increasing the efforts needed
by the adversary to make all the increased number of mon-
itored event measurements look non-anomalous.

Defense-in-depth Consider a defense-in-depth approach,
where this malware anomaly detector using HPC manifes-
tations is deployed with existing anomaly-based detectors
monitoring for other features of the malware, such as its
syntactic and semantic structure [15, 29, 14, 16] and its ex-
ecution behavior at system-call level [11, 25, 7, 18, 24] and
function level [20]. In such a setting, in order for a success-
ful attack, an adversary is then forced to shape her attack
code to conform to normalcy for each anomaly detection
model. An open area of research remains in quantifying this
multiplicative level of security afforded by the combined use
of these HPC models with existing defenses — i.e. examin-
ing the difficulty in shaping the malware shellcode to evade
statistical and behavioral anomaly detection systems, while
at the same time not exhibiting any anomalous HPC event
characteristics during execution.

7. ARCHITECTURAL ENHANCEMENTS
FOR DETECTION

Performance counters are typically used for low-level per-
formance analysis and tuning, and for program characteriza-
tion. In this section we suggest some simple modifications to
extend their benefits for detecting malware based on anoma-
lies.

More performance counters Our experiments show
that adding events can help better distinguish between be-
nign and malicious code execution. Expanding the set of
performance counters that can be monitored concurrently
can potentially increase detection fidelity. Cheap hardware
mechanisms to observe instruction and data working set
changes, and basic-block level execution frequencies can im-

10

prove malware detection accuracies further.

Interrupt-less periodic access Currently reading per-
formance counters requires the host process to be inter-
rupted. This leads in expensive interrupt-handling cost and
undue sampling overhead to the programs. If the perfor-
mance monitoring units are re-designed with the capability
to store performance counter measurements periodically to
a designated memory region without generating interrupts,
accessing the samples from this region directly will elimi-
nate the sampling overhead. Most importantly, this allows
for monitoring at finer granularities to reduce the "noise” ef-
fect described in §5.3.5, and leaves greater scope for better
detection.

Custom Accelerators In our work we sample at a
very coarse granularity of 512K instructions. Results show
that finer granularity sampling can improve detection accu-
racies. Currently the detector is implemented in software,
but at much finer granularities, to keep up with increased
data volumes, hardware implementations will likely be nec-
essary and certainly be more energy-efficient compared to
software implementations.

Secret Events In this work we have used publicly avail-
able performance counters for detecting malware. The mal-
ware detector can be built just as well with non-public mi-
croarchitectural events. Keeping the events secret increases
the difficulty of the attacker to conduct evasion attacks. This
model is very similar to how on-chip power controllers oper-
ate in modern processors. In the latest Intel and AMD pro-
cessors, an on-chip microcontroller receives activity factors
from various blocks on the chip and uses this information
to make power management decisions. Neither the units
providing activity factors or the logic/algorithm for mak-
ing power management decisions are public information, and
has been hard to reverse engineer. Further the power man-
agement algorithm is not directly accessible to software but
during emergencies an exception is delivered to the software.
A similar model can be used to build malware detectors.

8. RELATED WORK

The use of low-level hardware features for malware de-
tection instead of software features is a recent development.
Demme et al. demonstrates the feasibility of misuse-based
detection of Android malware programs using microarchi-
tectural features [5]. While they model microarchitectural
signatures of malware programs, we build baseline microar-
chitectural models of programs we are protecting and detect
deviations caused by a potentially wider range of malware
(even ones that are previously unobserved). Another key
distinction is that we are detecting malware shellcode exe-
cution of an exploit within the context of the victim program
during the act of exploitation; they target Android malware
as whole programs. After infiltrating the system via an ex-
ploit, the malware can be made stealthier by installing into
peripherals, or by infecting other benign programs. Stewin
et al. propose detecting the former by identifying additional
memory bus accesses made by the malware [26]. Malone
et al. examine detecting the latter form of malicious static
and dynamic program modification by modeling the archi-
tectural characteristics of benign programs (and excluding
the use of microarchitectural events) using linear regression
models [17]. Another line of research demonstrates that
malware can be detected using side-channel power perturba-
tions they induce in medical embedded devices [3], software-

defined radios [8] and even ubiquitous mobile phones [13].
However, Hoffman et al. have shown that the use of such
power consumption models can be very susceptible to noise,
especially in a device with such widely varied use as the
modern smartphone [10].

Besides the HPCs, several works have leveraged other
hardware facilities on modern processors to monitor branch
addresses efficiently to thwart classes of exploitation tech-
niques. kBouncer uses the Last Branch Recording (LBR)
facility to monitor for runtime behavior of indirect branch
instructions during the invocation of Windows API for the
prevention of ROP exploits [19]. To enforce control flow in-
tegrity, CFIMon [31] and Eunomia [32] leverage the Branch
Trace Store (BTS) to obtain branch source and target ad-

dresses to check for unseen pairs from a pre-identified database

of legitimate branch pairs. Unlike our approach to detecting
malware, these works are designed to prevent exploitation in
the first place, and are orthorgonal to our anomaly detection
approach.

9. CONCLUSIONS

In this work, we introduce a new class of anomaly-based
detectors that use lower-level hardware features to detect
malware exploits. Unlike previously proposed signature-
based detectors, they can detect novel, unseen malware.
Thus they can be used in concert with previously proposed
signature-based predictors to better security.

A whole host of advances have enabled the creation of
hardware-level anomaly-based malware detectors. First, un-
til very recently (2012), performance counters were not vir-
tualized and it was very difficult to obtain performance data
on infected production hardware systems. Second, ironi-
cally, the availability of toolkits to create malware also en-
ables us to catch malware better. Like attackers we are able
to use toolkits to reproduce real-world exploitations and test
detection strategies. Finally, due to advances in computa-
tional capacity it has become possible to run sophisticated
machine learning algorithms to perform detections in real-
time.

While our experiments reveal that malware exploitation
can be detected with high accuracy, we also identify opportu-
nities for further advancement. We posit that the detection
accuracies can be improved with more microarchitectural
observability in form of additional counters. While we used
fairly sophisticated ML algorithms, more accurate and faster
algorithms are also desirable. Especially, non-linear classi-
fiers such as neural networks may be able learn more about
the structure of hidden data to improve detection accura-
cies. Finally, while our detector is fairly robust to evasion
attacks, the resilience can be improved with a little addi-
tional hardware support.

This work represents a promising advance in the field of
hardware malware detection and more broadly how com-
puter architecture research is conducted. Traditionally com-
puter architects have aimed to manually learn program char-
acteristics to exploit common behaviors for performance.
The effort is made difficult due to program diversity and
growth. In this work we show program features can be
learned in an automated way. The adoption of these tech-
niques may enable more performant and secure machines in
the future.

10. REFERENCES

11

[1] J.-M. Borello and L. Mé. Code obfuscation techniques
for metamorphic viruses. Journal in Computer
Virology, 4(3):211-220, 2008.

[2] D. Bruschi, L. Cavallaro, and A. Lanzi. An efficient
technique for preventing mimicry and impossible
paths execution attacks. In Performance, Computing,
and Communications Conference, 2007. IPCCC 2007.
IEEE Internationa, pages 418-425. IEEE, 2007.

[3] S.S. Clark, B. Ransford, A. Rahmati, S. Guineau,

J. Sorber, K. Fu, and W. Xu. WattsUpDoc: Power
Side Channels to Nonintrusively Discover Untargeted
Malware on Embedded Medical Devices. In USENIX
Workshop on Health Information Technologies, Aug
2013.

[4] Corelan Team. Corelan ROPdb. https://www.
corelan.be/index.php/security/corelan-ropdb/,
Jul 2011.

[5] J. Demme, M. Maycock, J. Schmitz, A. Tang,

A. Waksman, S. Sethumadhavan, and S. Stolfo. On
the feasibility of online malware detection with
performance counters. In Proceedings of the 40th
Annual International Symposium on Computer
Architecture, ISCA 13, pages 559-570, New York, NY,
USA, 2013. ACM.

[6] S. Fewer. Reflective DLL injection. Oct 2008.

[7] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A.
Longstaff. A sense of self for unix processes. In
Security and Privacy, 1996. Proceedings., 1996 IEEE
Symposium on, pages 120-128. IEEE, 1996.

[8] C. R. A. Gonzalez and J. H. Reed. Detecting
unauthorized software execution in sdr using power
fingerprinting. In MILITARY COMMUNICATIONS
CONFERENCE, 2010-MILCOM 2010, pages
2211-2216. IEEE, 2010.

[9] J. L. Henning. Spec cpu2006 benchmark descriptions.

SIGARCH Comput. Archit. News, 34(4):1-17, Sept.

2006.

J. Hoffmann, S. Neumann, and T. Holz. Mobile

malware detection based on energy ﬁngerprintséATa

dead end? In Research in Attacks, Intrusions, and

Defenses, pages 348-368. Springer, 2013.

S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion

detection using sequences of system calls. Journal of

computer security, 6(3):151-180, 1998.

M. Kayaalp, T. Schmitt, J. Nomani, D. Ponomarev,

and N. B. Abu-Ghazaleh. Scrap: Architecture for

signature-based protection from code reuse attacks. In

HPCA, pages 258-269, 2013.

H. Kim, J. Smith, and K. G. Shin. Detecting

energy-greedy anomalies and mobile malware variants.

In Proceedings of the 6th international conference on

Mobile systems, applications, and services, pages

239-252. ACM, 2008.

D. Kong, D. Tian, P. Liu, and D. Wu. Sa3: Automatic

semantic aware attribution analysis of remote exploits.

In Security and Privacy in Communication Networks,

pages 190-208. Springer, 2012.

C. Kriigel, T. Toth, and E. Kirda. Service specific

anomaly detection for network intrusion detection. In

Proceedings of the 2002 ACM symposium on Applied

computing, pages 201-208. ACM, 2002.

(10]

(11]

(12]

(13]

(14]

(15]

https://www.corelan.be/index.php/security/corelan-ropdb/
https://www.corelan.be/index.php/security/corelan-ropdb/

[16]

[17]

[22]

[23]

[24]

M. V. Mahoney. Network traffic anomaly detection
based on packet bytes. In Proceedings of the 2003
ACM symposium on Applied computing, pages
346-350. ACM, 2003.

C. Malone, M. Zahran, and R. Karri. Are hardware
performance counters a cost effective way for integrity
checking of programs. In Proceedings of the sizth ACM
workshop on Scalable trusted computing, STC 11,
pages 71-76, New York, NY, USA, 2011. ACM.

C. Marceau. Characterizing the behavior of a program
using multiple-length n-grams. In Proceedings of the
2000 workshop on New security paradigms, pages
101-110. ACM, 2001.

V. Pappas, M. Polychronakis, and A. D. Keromytis.
Transparent rop exploit mitigation using indirect
branch tracing. In Proceedings of the 22nd USENIX
conference on Security, SEC’13, pages 447462,
Berkeley, CA, USA, 2013. USENIX Association.

S. Peisert, M. Bishop, S. Karin, and K. Marzullo.
Analysis of computer intrusions using sequences of
function calls. Dependable and Secure Computing,
IEEE Transactions on, 4(2):137-150, 2007.

M. Polychronakis, K. G. Anagnostakis, and E. P.
Markatos. Emulation-based detection of
non-self-contained polymorphic shellcode. In Recent
Advances in Intrusion Detection, pages 87—-106.
Springer, 2007.

M. Polychronakis, K. G. Anagnostakis, and E. P.
Markatos. Comprehensive shellcode detection using
runtime heuristics. In Proceedings of the 26th Annual
Computer Security Applications Conference, pages
287-296. ACM, 2010.

B. Scholkopf, J. C. Platt, J. C. Shawe-Taylor, A. J.
Smola, and R. C. Williamson. Estimating the support
of a high-dimensional distribution. Neural Comput.,
13(7):1443-1471, July 2001.

R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A
fast automaton-based method for detecting anomalous
program behaviors. In Security and Privacy, 2001.
SEP 2001. Proceedings. 2001 IEEE Symposium on,
pages 144-155. IEEE, 2001.

A. Somayaji and S. Forrest. Automated response
using system-call delays. In Proceedings of the 9th
USENIX Security Symposium, volume 70, 2000.

P. Stewin. A primitive for revealing stealthy
peripheral-based attacks on the computing
platformaAZs main memory. In Research in Attacks,
Intrusions, and Defenses, pages 1-20. Springer, 2013.
P. Szor. The art of computer virus research and
defense. Pearson Education, 2005.

TrendMicro. The crimeware evolution.
http://www.trendmicro.com/cloud-content/us/
pdfs/security-intelligence/white-papers/
wp-the-crimeware-evolution.pdf, 2012.

K. Wang, J. J. Parekh, and S. J. Stolfo. Anagram: A
content anomaly detector resistant to mimicry attack.
In Recent Advances in Intrusion Detection, pages
226-248. Springer, 2006.

X. Wang and R. Karri. Numchecker: detecting kernel
control-flow modifying rootkits by using hardware
performance counters. In Proceedings of the 50th
Annual Design Automation Conference, DAC 13,

12

(31]

(32]

33]

(34]

(35]

pages 79:1-79:7, New York, NY, USA, 2013. ACM.
Y. Xia, Y. Liu, H. Chen, and B. Zang. CFIMon:
Detecting violation of control flow integrity using
performance counters. In Proceedings of the 2012 42nd
Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), DSN ’12,
pages 1-12, Washington, DC, USA, 2012. IEEE
Computer Society.

L. Yuan, W. Xing, H. Chen, and B. Zang. Security
breaches as pmu deviation: detecting and identifying
security attacks using performance counters. In
APSys, page 6, 2011.

Shen, K., Zhong, M., Dwarkadas, S., Li, C., Stewart,
C., Zhang, X.: Hardware counter driven on-the-fly
request signatures. In: Proceedings of the 13th
international conference on Architectural support for
programming languages and operating systems. pp.
189-200. ASPLOS XIII, ACM, New York, NY, USA
(2008),
http://doi.acm.org/10.1145/1346281.1346306
Hoste, K., Eeckhout, L.: Comparing Benchmarks
Using Key Microarchitecture-Independent
Characteristics. In: Workload Characterization, 2006
IEEE International Symposium on. pp. 83-92. IEEE
(Oct 2006),
http://dx.doi.org/10.1109/iiswc.2006.302732
Duda, R.O., Hart, P.E.; Stork, D.G.: Pattern
Classification, New York: John Wiley & Sons, 2001,
pp. xx + 654, isbn: 0-471-05669-3. J. Classif. 24(2),
305-307 (Sep 2007),
http://dx.doi.org/10.1007/s00357-007-0015-9

http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-the-crimeware-evolution.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-the-crimeware-evolution.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-the-crimeware-evolution.pdf
http://doi.acm.org/10.1145/1346281.1346306
http://dx.doi.org/10.1109/iiswc.2006.302732
http://dx.doi.org/10.1007/s00357-007-0015-9

	Introduction
	Background
	Experimental Setup
	Exploits
	Measurement Infrastructure
	Sampling Granularity
	Collection of Clean and Infected Measurements
	Bias Mitigation

	Building Models
	Feature Selection

	Results
	Anomalies Not Directly Detectable
	Power Transform

	Evaluation Metrics for Models
	Detection Performance of Models
	Different Stages of Malware Exploits
	Non-Temporal vs Temporal Modeling
	Architectural vs Microarchitectural Events
	Constrained Environments
	Different Sampling Granularities

	Results for Adobe PDF Reader

	Analysis of Evasion Strategies
	Defenses

	Architectural Enhancements for Detection
	Related Work
	Conclusions
	References

