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Abstract—We investigate video server selection algorithms in
a distributed video-on-demand system. We conduct a detailed
study of the YouTube Content Delivery Network (CDN) on
PCs and mobile devices over Wi-Fi and 3G networks under
varying network conditions. We proved that a location-aware
video server selection algorithm assigns a video content server
based on the network attachment point of a client. We found out
that such distance-based algorithms carry the risk of directing
a client to a less optimal content server, although there may
exist other better performing video delivery servers. In order
to solve this problem, we propose to use dynamic network
information such as packet loss rates and Round Trip Time (RTT)
between an edge node of an wireless network (e.g., an Internet
Service Provider (ISP) router in a Wi-Fi network and a Radio
Network Controller (RNC) node in a 3G network) and video
content servers, to find the optimal video content server when a
video is requested. Our empirical study shows that the proposed
architecture can provide higher TCP performance, leading to
better viewing quality compared to location-based video server
selection algorithms.

Keywords—Video Streaming, Mobile Wireless, HTTP Progres-
sive Video, Video Server Selection Algorithms, Over The Top
Applications

I. INTRODUCTION

Today’s popular video content delivery systems deploy
CDNs. Video content providers such as YouTube and Netflix
stream videos to clients through their own CDNs or the
networks provided by third parties such as Akamai [1] and
Limelight [2]. When a client requests a video, a video content
provider uses video server selection algorithms in order to
decide which video content server the client downloads the
video from. The video selection mechanisms and policies are
designed for providing high availability, server load-balancing
and minimizing the cost for delivering video contents to
clients [3], [4].

In this paper, we analyze the video server selection al-
gorithm of YouTube. We conducted our experiments while
playing YouTube videos on PCs and mobile devices over
two wireless networks (3G and Wi-Fi) under varying network
conditions. Through the measurements, we found that a client
downloads a YouTube video from the same video content
server regardless of the hardware specification, the operating
system (OS) and the video application running on a client’s
device. Instead, the network attachment point of a client is
considered as a key factor for the video server selection
algorithm of YouTube.
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Figure 1: A testbed for analyzing video server selection algorithms
while downloading videos over Wi-Fi and 3G networks

YouTube’s video server selection mechanism takes into
account various factors such as user proximity, server load and
popularity of video content [4]. During our measurements, we
discovered that there may exist other available video content
servers that contain the same video content and offer higher
TCP performance than the video content server assigned by
YouTube at the video requested time. After carefully analyzing
our measurements, we surmise that YouTube’s DNS-based
location awareness algorithms cause this problem. YouTube
delivery cloud typically assigns a video content server which is
geographically close to a client [3]–[5]. However, the network
conditions between a client and a video content server can be
unstable, although the video content server is located close to
the client.

To find the optimal video content server, a client-based
mechanism may be used to analyze the network conditions
between the client and video content servers when a video is
requested. As Balachandran et al. [6] studied in their paper,
however, the client may not be able to effectively trace the net-
work conditions due to the lack of direct knowledge of access
networks and up-link bandwidth constraints. Niven-Jenkins et
al. [7] have introduced the use cases for Application-Layer
Traffic Optimization (ALTO) with CDNs. They addressed that
using ALTO for video streaming services can be useful to find
the optimal video content servers based not only on distance,
but on other factors as well (e.g., current server load and
packet loss rates). In order to deploy ALTO systems, however,
network service providers need to install additional ALTO
servers, and video content providers operate their own ALTO
clients.

In order to solve this problem, we propose to discover the
optimal video content server based on the dynamic network



Video 1 Video 2 Video 3 Video 4
All devices 173.194.7.27 173.194.7.176 173.194.7.16 173.194.53.171

(a) On different client devices

Video 1 Video 2 Video 3 Video 4
All browsers 173.194.7.27 173.194.7.176 173.194.7.16 173.194.53.171

(b) Using different mobile browsers

Network status Video 1 Video 2 Video 3 Video 4
Stable and
Unstable 173.194.7.27 173.194.7.176 173.194.7.16 173.194.53.171

(c) Under varying network conditions

Networks Video 1 Video 2 Video 3 Video 4
Wi-Fi 173.194.7.27 173.194.7.176 173.194.7.16 173.194.53.171

3G (AT&T) 74.125.0.74 74.125.0.80 74.125.0.70 173.194.31.43

(d) Over different network interfaces

TABLE I: An analysis of YouTube video server selection algorithms while playing sample videos on PCs and mobile devices

conditions between a corresponding edge node of a wireless
network and video content servers. The edge node can be an
ISP router in a Wi-Fi network, a RNC node in a 3G network
and a Packet Data Network Gateway (P-GW) in an Long Term
Evolution (LTE) network. We do not require any additional
implementation neither at the server nor at the client. In our
proposed architecture, an edge node is designed to conduct the
following two objectives:

• Caching addresses of video content servers: It caches
addresses of video content servers while videos are delivered
through the node.
• Finding the optimal video content server: It enables to
select a preferred video content server among the cached video
content servers that contain the same video content based on
measured packet loss rates and current RTTs.

To show the feasibility of our approach, we have developed
the Video Streaming Packet Collector (VSPC) that collects the
addresses of the video content servers, captures and analyzes
TCP/IP and HTTP packets while downloading YouTube videos
over Wi-Fi and 3G networks (Figure 1). Our evaluation proves
that a video content server chosen by our proposed dynamic
network condition-aware video server selection algorithm typ-
ically provides more reliable viewing experiences with higher
TCP performance than the distance-based algorithms.

The remainder of the paper is organized as follows. In
the second section, we elaborate on the analysis of YouTube
video server selection algorithms. In Section III, we focus on
finding problems that the video server selection algorithms
of YouTube may assign a video content server with unstable
network conditions to a client. Our proposed solutions are
described in Section IV. We evaluate our proposal in Section V
and look at related work in Section VI. Finally, we summarize
our conclusions in Section VII.

II. AN ANALYSIS OF YOUTUBE VIDEO SERVER
SELECTION ALGORITHMS

In our previous work [8], we investigated the mechanism of
how a YouTube video is delivered to a client. A video player
running on a client’s device sends an HTTP GET message
that contains a video identification and information of the
device. A front-end server of YouTube maps the video id to
the video server name, and returns it to the client. The server
name is resolved to an IP address by the client via a DNS
query to a DNS server. Finally, the client sends another HTTP
GET message to the video content server for downloading the
video content over HTTP. According to recent studies [3]–[5],
in addition to using a fixed hash-based scheme that maps a
video id to a unique hostname, YouTube uses two different
approaches to perform load-balancing based on the location
of a client and the current load.

• Using DNS resolution: A logical video server name is
mapped to a physical video server via DNS resolution.
YouTube typically allocates multiple IP addresses to one video
server name, and picks one of physical video servers that is
geographically close to a client. A client may be assigned to a
farther location in order to avoid high traffic load on a video
content server.
• Using dynamic HTTP redirection: YouTube utilizes
an HTTP redirection mechanism to dynamically redirect a
client’s access to a non-busy video content server. In this case,
a video content server sends an HTTP 302 message asking to
download the video from another server when a client requests
a video.

Testbed setups - We focus on analyzing YouTube server
selection algorithms, taking into account various conditions
such as requesting videos on different devices (PCs and
mobile devices), using various applications running on diverse
operating systems (Windows, Mac OS X, Linux, iOS and
Android) over Wi-Fi and 3G networks, under varying network
conditions. Figure 1 shows our testbed setups for the analysis
of YouTube video content server selection algorithms. During
the measurements, we played hundreds of randomly selected
videos from a diversity of genres (e.g., movie, music video,
live concert and sports), popularity, length (from ten minutes to
one hour) and video quality (high quality and high definition).

As a baseline analysis, we conducted the following exper-
iments:

A. Requesting videos on different devices using the same video
application over Wi-Fi networks

YouTube videos were requested on different devices at the
same time and from the same place over Wi-Fi networks under
the same network condition. During the measurements, we
played the videos using the stand-alone application provided
by YouTube on mobile devices and Chrome browsers on
PCs. As shown in Table Ia, we found that the addresses of
video content servers chosen by YouTube remain the same
regardless of the hardware specifications and the operating
systems running on clients’ devices.

B. Requesting videos on the same mobile device using various
applications over Wi-Fi networks

YouTube videos were requested on iPhone 4S using differ-
ent video applications from the same time and place over Wi-
Fi networks under the same network conditions. We requested
the sample videos using various stand-alone browsers running
on iOS devices such as Safari, Chrome, Mercury and Puffin.
Table Ib shows that the addresses of video content servers
selected by YouTube remain the same, regardless of the types



of video applications running on clients’ devices. We have
conducted the same experiments on PCs and Android devices,
and seen the same experimental results.

C. Requesting videos on the same mobile device over Wi-Fi
networks under varying network conditions

We played the sample YouTube videos on iPhone 4S over
a Wi-Fi network under different network conditions: stable
and unstable. In order to create unreliable network conditions,
we intentionally injected load in the network using a common
network testing tool, Iperf. We also placed the devices that
cause interference at 2.4 GHz, such as baby monitors and
cordless phones between the client and the Wi-Fi access point.
The RTT between the clients and the video content servers was
16.04 ms on average under stable network conditions, while it
was 566.2 ms under fluctuating network conditions. As shown
in Table Ic, network conditions between a client and a Wi-
Fi access point do not influence the video server selection
algorithms of YouTube.

D. Requesting videos on the same mobile devices via different
wireless network interfaces

The sample YouTube videos were requested on two
iPhone 4S devices at the same time and from the same
place over Wi-Fi and 3G networks. Table Id shows that the
client via a 3G network was established to a different video
content server, compared to the client via a Wi-Fi network.
However, it is difficult to confirm that YouTube considers
the radio interfaces for the video server selection process.
When we analyzed the user agent information in the HTTP
GET message, we did not find any differences over Wi-Fi
and 3G networks. Instead, YouTube takes account of DNS-
based location awareness [4]. When a video request occurs, for
example, the local DNS server operated by a network service
provider asks the YouTube DNS server for the address of a
video content server that the client downloads the video from.
Based on the IP address of the DNS resolver operated by a
network service provider, YouTube assigns a geographically
close video content server to the client. Hence, the addresses
of video content servers can be different, although clients
accessing via Wi-Fi and 3G networks request an identical video
from the same time and place. For example, we requested
the sample YouTube videos on PCs and mobile devices via
different network service providers (e.g., 3G networks - AT&T
and Wi-Fi networks - Columbia Univ., Time Warner Cable
and Verizon) around the Columbia campus. We collected in
total 8,194 IP addresses of video content servers, and found
that the clients accessed via different networks were assigned
to different sets of video content servers for the same video
contents.

E. Requesting a video on the same mobile device from the
same place over Wi-Fi and 3G networks during 24 hours

A YouTube video was requested on iPhone 4S from the
same place over Wi-Fi and 3G networks. We played the sample
video every ten minutes for 24 hours. For each video content
server, we calculated the frequency of how many times it
was selected by YouTube when the client requested the video.
Our experimental results indicate that there exist main video
content servers that are frequently called and others that are

seldom assigned to clients. In the experiments, for example,
most of the video traffic (99.89% via Wi-Fi networks and
85.44% via 3G networks) came from one or two different video
content servers.

Key observations - In addition to using PCs, our analysis was
conducted while playing the videos on mobile devices (iOS
and Android) using various mobile applications over Wi-Fi and
3G networks under varying network conditions. Table I shows
the part of experimental results. We have seen the same results
when we performed the identical experiments for hundreds of
YouTube videos under the same conditions. Our key findings
can be summarized as follows:

• The addresses of video content servers chosen by YouTube
remain the same regardless of the hardware specifications,
the operating systems, the video applications running on
clients’ devices and the network conditions between clients
and wireless access points; and
• The video server selection algorithms conducted by
YouTube are mostly affected by network attachment points
of clients when they request videos.

III. YOUTUBE OFTEN ASSIGNS VIDEO CONTENT
SERVER WITH UNRELIABLE NETWORK CONDITIONS

In this section, we point out that YouTube server selection
algorithms frequently assign video content servers with long
RTTs to clients although there exit other servers that delivery
the same video content with shorter RTTs. Based on extensive
measurements, we surmise that YouTube’s location aware
video server selection algorithms cause this unwanted behav-
ior. According to other studies [3]–[5], YouTube typically
assigns a video content server which is geographically near
to a client. However, our measurements show that the RTT
between a client and a video content server can be longer,
even though the server is close to the client.

Finding locations of YouTube video content servers - In
order to prove this, we analyzed the geographical locations of
YouTube video content servers. We first used the IP-to-location
database [9]. The experimental results indicate that most of the
collected YouTube video content servers (more than 97%) were
located in Mountain View, CA. However, as Torres et al. [4]
discussed in their paper, it is inaccurate to find video server
locations in the large corporate networks such as YouTube and
Netflix using the IP-to-location database. That is because they
may hide the real locations of internal IPs for security reasons.
To prove this, they measured the RTTs to the video content
servers of YouTube from several ISPs, and showed that there
was a lot of variation, even though the database reported that
the servers were located in the same place - Mountain View,
CA. Adhikari et al. [10] addressed that YouTube video content
servers are distributed over more than 45 cities in 25 different
countries around the world.

To avoid this problem, we used traceroute to estimate
the locations of the last hop routers between the clients and
the YouTube network. We found that in most of cases there
was not much difference (less than 2 ms) between the RTTs
to the last hop router and to the video content server from the
client. Therefore, it is reasonable to assume that the locations
of the actual YouTube’s video content servers are geograph-
ically close to the last hop routers. During the experiments,



TABLE II: A hundred of YouTube sample videos were requested
over Wi-Fi and 3G networks from different places during busy hours
(13:00-15:00 and 19:00-20:00)

Ratio (%) of being assigned to
a non-preferred video server by YouTube

Networks Loc. 1 Loc. 2 Loc. 3 Loc. 4
Wi-Fi 97.87 % 97.75 % 96.62 % 70.37 %

3G 44.73 % 33.69 % 73.75 % 47.6 %

we collected the addresses of video content servers while
requesting a thousand of videos from the four selected places in
Manhattan, New York: Columbia campus (Loc. 1), residential
area (Loc. 2), Times Square (Loc. 3) and Penn. Station (Loc. 4).
In the experiments, we found that most of the last hop routers
of video content servers assigned by YouTube were located
in New York (68.51%) and California (17.02%), and some
routers were placed in Michigan (5.17%), Georgia (4.19%),
Massachusetts (3.01%) and Florida (2.1%).

Measuring RTTs between video content servers and clients
- In order to examine the network conditions between clients
and video content servers assigned by YouTube, we mea-
sured RTTs to video content servers from clients when they
requested YouTube videos. We selected a hundred sample
videos, and conducted the following experiments.

• Collecting addresses of video content servers: For each
video, we first obtained IP addresses of video content servers
that contain the same video content. The IP addresses were
collected while we requested the video every five minutes for
three days on PCs from the selected places. We observed four
or five unique IP addresses of video content servers for each
video. They are mostly located in NY and CA.
• Comparing RTTs: We measured the RTT between the client
and the video content server assigned by YouTube. From the
same time and place, we compared it with the RTTs between
the client and other collected servers that contain the same
video content at the video requested time.

We define two terms to identify video content servers: pre-
ferred and non-preferred. The preferred video content server
is a server that shows the shortest RTT among others that can
deliver the same video content at the video requested time.
The non-preferred video content servers are others, not defined
as a preferred. We calculated the ratio of how many times
YouTube provided a non-preferred video content server out of
the total number of requests. Table II shows the experimental
results. The ratio proves that YouTube frequently assigns a
non-preferred video content server to a client. During the
measurements, the average and standard deviation of the RTT
were 13 ms and 9.42 ms for Wi-Fi networks while they were
63.55 ms and 21.5 ms for 3G networks.

Video content servers with long RTTs to clients degrade
video QoE - After carefully analyzing the measurements,
we conjecture that YouTube’s distance-aware server selection
algorithms result in this high ratio of being assigned to non-
preferred video content servers. One may assume that this be-
havior is caused by YouTube’s server load balancing policies.
If this assumption is true, we would have observed different
video content servers changing over time in our measurements.
However, we found out that the IP addresses of video content
servers collected during busy hours were the almost same with

the IP addresses that were assigned during non-busy hours. The
last hop routers of non-preferred video content servers were
located near NY. This proves that YouTube’s server selection
algorithms more take into account user proximity rather than
server load.

We note that this unwanted behavior may degrade video
QoE. For example, Eq. 1 represents the TCP average through-
put in terms of packet loss and RTT [11]. TCP flows with
shorter RTTs gain a congestion window (CWND) advantage
in the slow start phase. When a loss occurs, for example, the
slow start begins from its initial CWND. With a short RTT, the
CWND reaches the slow start threshold faster than a TCP flow
with a longer RTT. Therefore, a client may often experience
buffer underflow if the RTT is long and the network conditions
are fluctuating; playing a video has to be paused until a certain
amount of video content is stored in the video playout buffer.

TCPavg. thr =
1.22√
Ploss

∗ MSS

RTT
(1)

Consequently, a video content server located distant from a
client may provide higher speed of delivery if a video content
server geographically close to a client experiences network
congestion. We will elaborate on the experimental results in
Section V.

IV. DYNAMIC NETWORK CONDITION-AWARE VIDEO
SERVER SELECTION ALGORITHMS

We propose to use a corresponding edge node of a wireless
network in order to assist a client connecting to the optimal
video content server when a video is requested. The edge node
can be an ISP router in a Wi-Fi network, a RNC node in a
3G network and a P-GW in an LTE network. The key idea is
to take account of dynamic network information between an
edge node and video content servers for video server selection
algorithms. The overall procedures are organized into two
parts: a) Caching addresses of video content servers when
clients download videos through the edge node; b) Discovering
the optimal video content server based on measured packet loss
rates and RTTs between the edge node and the analyzed video
content servers. The RTTs include the propagation delay, the
queuing delay, the transmission delay and any time spent at
the video content server.

A. Caching addresses of video content servers

An edge node records addresses of video content servers
when clients watch videos through the edge node. It locally
caches a hash-based database that maps the video id to
the addresses of assigned video content servers. The list of
video content servers can be categorized based on the video
requested time, the locations of assigned video content servers
and network conditions such as average TCP throughput,
packet loss rates and RTTs between an edge node and video
content servers measured while videos are delivered to clients.

B. Discovering the optimal video content server

Dynamic network information such as packet loss rates
and RTTs between an edge node and collected video content
servers are considered as key factors to find the optimal
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video content server. For example, Figure 2 is a simplified
mobile video streaming for our proposed video server selection
process.

1) When a video is requested, a front-end server returns the
address of a selected video content server using its own server
selection algorithms (step 1 and 2).

2) Before handing the address over to the client, the edge node
examines if other video content servers cached on the list
are able to provide faster video streaming (step 3). It first
searches a group of video content servers on the list that
contain the requested video content. Secondly, it chooses a
set of video content servers in the group that were recently
used and showed a low packet loss rate in the previous video
sessions. Then, the edge node measures the current RTTs to
the chosen video content servers, including the servers on the
list and the server provided by the video content provider.

3) Finally, it returns an address of a preferred video content
server that shows the shortest RTT from the edge node.

Our proposed method causes a slightly longer start-up la-
tency for a client to start downloading a video (2.1 seconds on
average in our experiments), but the experimental results show
that it enables to provide higher average TCP performance
while playing a video.

V. EVALUATION

To show the feasibility of our proposal, we have imple-
mented our VSPC acting as an HTTP proxy server (Figure 1).
The tool manipulates HTTP headers to redirect a client’s access
to a preferred video content server chosen by our dynamic
network condition-aware video server selection algorithms. It
can also analyze TCP traffic performance while downloading
videos over 3G and Wi-Fi networks. The specific experimental
setups are:

• We played a hundred of sample YouTube videos (360p -
video bitrate 0.5 Mb/s) on PCs and mobile devices from two
different places (Columbia campus and Penn. Station) over
Wi-Fi and 3G networks;
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Figure 3: Experimenting with user-perceived quality while playing
a sample YouTube video on two PCs over a Wi-Fi network in the
HTTP proxy server-based testbed
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Figure 4: CDFs of RTTs measured while downloading a video over
a 3G network in the HTTP proxy server-based testbed

• For each experiment, two clients simultaneously requested
the video via the same network. Client A downloaded the
video from the video content server selected by YouTube,
and Client B accessed the video content server chosen by our
dynamic network condition-aware algorithm; and
• Using netem, a networking emulation tool [12], we emu-
lated the network congestion between the clients and VSPC:
additional 2 ms packet delay was injected and packet loss,
duplication and re-ordering rates were set up to 5%.

Video QoE tests - Considering network delivery issues, we
take into account video stalling period (also known as buffer
freezing) to analyze the user-perceived quality. In order to
achieve this, we calculated the accumulated video data as
time elapsed and compared it with the required downloading
data rate. Figure 3 shows one of our video QoE experimental
results over Wi-Fi networks. Client B took only 222 seconds to
complete downloading the entire video content while Client A
took 290 seconds, which indicates that Client A often ex-
perienced buffer freezing while playing the video. During
the experiments, Client B with our dynamic server selection
algorithms experienced the average of 15 seconds less buffer
underflows compared to Client A.

Comparing RTTs while downloading a video - We measured
RTTs until the same video content was completely downloaded
from the two video content servers over 3G networks during
busy hours (13:00-15:00). Figure 4 compares the CDFs of
the measured RTTs. The solid line represents the CDF of
RTTs between Client A and the video content server selected
by YouTube, and the dotted line indicates the CDF of RTTs
between Client B and the video content server that showed the
shortest RTT at the requested time of the video. The exper-
imental results indicate that our dynamic network condition-



TABLE III: TCP traffic analysis while downloading YouTube videos on PCs and mobile devices over 3G and Wi-Fi networks

Locations Networks Video server
selected based on

TCP throughput
Avg. (KB/s)

Retry
Avg.

Duplicate ACK
Avg.

Out of order
Avg.

RTT
Avg. (ms)

RTT
Stdev. (ms)

Loc. 1
(Columbia Univ.)

Wi-Fi YouTube 568.35 8.5 85.5 45 0.25 5.2
Dynamic network status 593.82 3.1 102.6 20.3 0.15 4.05

3G YouTube 219.51 52.3 2105.5 750.5 3.7 21.55
Dynamic network status 369.35 17.2 1677.2 657.5 1.15 10.8

Loc. 4
(Penn. Station)

Wi-Fi YouTube 353.17 2.5 745.25 63.75 0.3 5.32
Dynamic network status 430.16 1.2 272.1 18.75 0.25 5.12

3G YouTube 204.02 26.4 204.6 16.8 0.94 13.51
Dynamic network status 237.33 8.66 123.16 3.16 0.55 9.31

aware video server selection algorithm provided shorter RTTs
while downloading the videos, compared to YouTube’s video
server selection algorithms.

Comparing TCP performance - We further analyzed TCP
performance from the two different places (Columbia cam-
pus and Penn. Station). From each place, we requested one
hundred videos both on PCs and mobile devices over Wi-
Fi and 3G networks during afternoon hours (12:00-17:00).
We captured TCP/IP and HTTP packets using VSPC, and
analyzed the dump files using a TCP trace tool [13]. The
details of TCP performance analysis are shown in Table III.
During the experiments, our proposed algorithm showed better
TCP performance 146 times out of 200 experiments (73%)
over Wi-Fi networks and 162 times out of 200 experiments
(81%) over 3G networks. The analytical statistics indicate that
our dynamic network condition-aware video server selection
algorithm typically provided higher TCP performance while
the video was delivered to the client.

VI. RELATED WORK

Several researchers have investigated video server selec-
tion algorithms, considering geographical locations of video
servers. Torres et al. [4] found that a variety of factors such
as RTTs between clients and video content servers, load-
balancing, variations across DNS servers within a network and
video popularity may affect the video content server selection
process in YouTube. Adhikari et al. [5], [10], [14], [15]
conducted YouTube infrastructure studies by collecting video
traces at ISP backbone networks. They analyzed YouTube
video distribution architecture, and found that YouTube de-
ploys a large number of video caching server, that vary in
size and geographical locations, in order to reduce cost and
improve the end-user performance. Saxena et al. [16] analyzed
how three video content providers (YouTube, Dailymotion and
Metacafe) distribute their video streaming services in terms of
clients’ geographical locations and video characteristics such
as age and popularity. Our approach differs from the prior
work in two aspects: a) Noticeably, in some cases, we found
that YouTube assigns a non-optimal video content server to
a client; b) Unlike ALTO [7], our proposed solutions do not
require any additional implementation neither at the server nor
at the client.

VII. CONCLUSIONS

We have analyzed the video server selection algorithm
of YouTube. During the measurements, we proved that the
network attachment point of a client is considered important
when YouTube assigns a video content server to a client, while
other factors such as the hardware specification, the operating
system and the video application running on a client’s de-
vice do not affect the video server selection algorithm. Our

proposed dynamic network conditions-aware approach which
takes into account dynamic packet loss rates and RTTs to
find the optimal video content server achieves better TCP
performance than a distance-based server selection algorithms,
and enables enhancing the end-user experience while playing
a video.
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