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Abstract

When belief propagation (BP) converges, it does
S0 to a stationary point of the Bethe free energy
F, and is often strikingly accurate. However, it
may converge only to a local optimum or may
not converge at all. An algorithm was recently
introduced for attractive binary pairwise MRFs
which is guaranteed to return aapproximation

to the global minimum ofF in polynomial time
provided the maximum degred& = O(logn),
wheren is the number of variables. Here we
significantly improve this algorithm and derive
several results including a new approach based
on analyzing first derivatives of, which leads

to performance that is typically far superior and
yields a fully polynomial-time approximation
scheme (FPTAS) for attractive models without
any degree restriction. Further, the method ap-
plies to general (non-attractive) models, though
with no polynomial time guarantee in this case,
leading to the important result that approximat-
ing log of the Bethe patrtition functionpg Zg =
—min F, for a general model to additive-
accuracy may be reduced to a discrete MAP in-
ference problem. We explore an application to
predicting equipment failure on an urban power
network and demonstrate that the Bethe approx-
imation can perform well even when BP fails to
converge.
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cally factorizes into sub-functions over subsets of vdeiab
in a way that defines a topology on the variables.

Three central problems are:

1. To evaluate the partition function, which is the sum
of the score function over all possible settings, and
hence is the normalization constant for the probability
distribution.

2. Marginal inference, which is computing the probabil-
ity distribution of a given subset of variables.

3. Maximum a posteriori (MAP) inference, which is the
task of identifying a setting of all the variables which
has maximum probability.

The first two problems are related (marginals are a ra-
tio of two partition functions). Computing belongs to
the class of counting problems #P (Valiant, 1979). Fur-
ther, exact marginal inference is NP-hard (Cooper, 1990).
The MAP problem is typically easier, yet is still NP-hard
(Shimony, 1994), even to approximate (Abdelbar & Hedet-
niemi, 1998). Much work has focused on trying to find
good approximate solutions, or restricted domains where
exact solutions may be found efficiently. One popular
method is to use a message-passing algorithm called belief
propagation (Pearl, 1988), which returns an exact solution
in linear time inn, the number of variables, if the topology
of the model is a tree. If this method is applied to general
topologies, termed loopy belief propagation (LBP), result
are sometimes strikingly good (McEliece et al., 1998; Mur-
phy et al., 1999), though in general it may not converge at
all, and if it does, it may not be to a global optimum.

(Yedidia et al., 2001) showed a remarkable connection be-
tween LBP and an earlier approach from statistical physics
(Bethe, 1935; Peierls & Born, 1936), in that any fixed point

Undirected graphical models, also termed Markov randonyf | BP corresponds to a stationary point of a function of the
fields (MRFs), are flexible tools used in many areas includsysiem, termed the Bethe free enefyIn fact, LBP can

ing speech recognition, systems biology and computer Vine seen as an iteration of the fixed point equations of the
sion. A set of variables and a score function is specifiedzethe free energy. Variational approaches led to a better
such that the probability of a configuration of variables isunderstanding of this relationship, showing that the nega-
proportional to the value of the score function, which typi- tive of the global minimum of the Bethe free energy is the
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log of the Bethe partition functiog. Thus,Zz should
yield a good approximation to the true partition function
7, though this is not a formal result - there are cases where
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it performs poorly, typically when there are many shortcy-1.1 Contribution and Summary

cles with strong edge interactions (Wainwright & Jordan,

2008, 4.1). Even then, however, it can still be remarkably We obtain important new results for binary pairwise MRFs

effective and in practice, LBP is widely used, often with as described in the Abstract. We adopt ideas from (Weller

excellent results. One motivation for our algorithm is to al & Jebara, 2013a) but go significantly further to derive much

low exploration of the limits for wher¥ z performs well, ~ stronger results. The overall approach is to constrsctfa

even when LBP or other local optimization approaches fail ficient meshof discretized points in such a way that the

which has not previously been possible. We demonstrateptimum mesh poin* is guaranteed to havg(g*) within

this application in Experiments. e of the true optimum. The new, first derivative approach,
. . ) , generally results in a much coarser, yet still sufficientimes

Another interesting example is the demonstratpn (c,:har?énd also admits adaptive methods to focus points in regions

drasekaran et al., 2911) that the Bethe approximation i§ hare 7 may vary rapidly. Separately, we also refine the

very useful to count independent sets of a graph. Furthegecqng gerivative method of (Weller & Jebara, 2013a) to

it was shown that if the shortest cycle cover conjecture Ofderive a method that performs well for very small We
Alon and Tarsi (Alon & Tarsi, 1985) is true, then the Bethe y, o, ¢onsider how best to solve the resulting discrete op-

approximation is very good indeed for a random 3-regulakip.i; ation problem, which may be framed as multi-label
graph. MAP inference, and for which many techniques are avail-

Extensive analysis has focused on understanding cond@ble, some of which are efficient for sub-classes of prob-
tions under which LBP is guaranteed to converge to thdem?

global optimum (Heskes, 2004; Mooij & Kappen, 2007; |, ¢5 \ye establish notation and present various preliminary
Watanabe, 2011), but outside thesg re§tr|cted settings, UBasults, then apply these i to present our new approach

tl recently, there were no polynomlal time methods EVeMtor mesh construction based on analyzing first derivatives
to approximateZ. One major area of stgdy is the IMPOT™ of 7. This leads to much improved performance (often
tant subclass of models which abenary, i.e. each vari- by orders of magnitude), immediately admits general (non-

able takes one of just two possible values, @atwise  ayractive) models, and in the attractive setting yield®a F
i.e. all score sub-functions are evaluated over at most tWGrAS for models with no restriction on topology

variables. These play a key role in areas such as computer

vision, both directly and as critical subroutines in sotyin In §4 we revisit the second derivative approach of (Weller
more complex problems (Pletscher & Kohli, 2012). Fur-& Jebara, 2013a). We show how this method can be refined
ther, it is possible to convert a general MRF into an equiv-and extended to yield better performance and also to admit
alent binary pairwise model (Yedidia et al., 2001), thoughnon-attractive models, though for most cases of interest,
potentially with a much enlarged state space. unless is very small, the method &3 will be superior.

An algorithm was introduced in (Shin, 2012) guaranteed tdn §5, we discuss the derived discrete optimization prob-

return an approximately stationary point #fin polyno- lem, which may be viewed as a multi-label MAP inference

mial time for such binary pairwise models, though with aproblem. In certain settings the problem is tractable, and

bound on the maximum degre&, = O(logn). (Weller&  in general we mention several features that can make it

Jebara, 2013a) then used a discretizing approach to derivee@sier to find a satisfactory solution, or at least to bound

polynomial-time approximation scheme (PTAS) fox Z 5 its value. Experiments are describeds® demonstrating

for the significant subclass @fttractive’ binary pairwise ~ practical application of the algorithm. Finally, we presen

models, also witlA = O(logn). Interestingly, (Ruozzi, conclusions ir7.

2012) recently proved thatp < Z for attractive models.

Similarly, for graphical models whose partition functieni 1.1.1  Structure of the overall algorithm

the permanent of a non-negative mattg is recoverable

via convex optimization and, here toBz < Z (Huang &  Input: Parameter§d;, W;; } for a general binary pairwise

Jebara, 2009; Vontobel, 2010; Watanabe & Chertkov, 2010MRF (convert format using the reparameterizatio§afL

Gurvits, 2011). Otherwise, beyond trivial cases where thdf required), and a desired accuracy

graph is acyclic, efficiently computing or approximating ]

7 remains an active research topic. 1. Preprocess by computing bounds;, B;} on the loca-
tions of minima (se§2.4).

2. Construct a sufficient mesh using one of the methods in
this paper. Indeed, all approaches are fast, so several

—Y o ) ) may be used, then the most efficient mesh selected.
An attractivemodel has all pairwise relationships of thetype -~

that tend to pull adjacent variables toward the same vakesgs 2ComputingZ;; is at least PPAD or PLS-hard in general since

for a more precise definition). Equivalent terms usedessocia- it not only requires a fixed point but also the global minimize

tive, regular or ferromagnetic (Shin, 2013; Daskalakis & Papadimitriou, 2011).
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3. Attemptto solve the resulting multi-label MAP inference entropy of the distribution. Using variational methods, a
problem, seé5. remarkable result is easily shown (Wainwright & Jordan,
4. If unsuccessful, but a strongly persistent partial $ofut  2008): minimizingF¢ over the set of all globally valid

was obtained, then improvgdi;, B;} may be gener- distributions (termed thearginal polytopgyields a value
ated (seé5.2.1), repeat from 2. of —log Z, exactly at the true marginal distribution, given

in (1).
At anytime, one may stop and compute boundsfrsee o ) ) )
§5.2. Minimizing F¢ is, however, computationally intractable,

hence the approach of minimizing the Bethe free energy
F makes two approximations: (i) the marginal polytope is
relaxed to thdocal polytope where we require onljo-

Methods such as CCCP (Yuille, 2002) or UPS (Teh &cgl cpnsjstency, t_hat.is we deal with ;zseudo—marginal
Welling, 2002) are guaranteed to converge to a local minidistribution ¢, which in our context may be considered
mum of the Bethe free energy, but this may be far from theldi = 4(Xi = 1) ¥i € YV, pij = ‘_J(Iiaxj? (i, j) € €}
global optimum. In earlier work, a fully polynomial-time Subject tog; = >, ui; Vi € V,j € N(2); and (ii) the
randomized approximation scheme (FPRAS) for the tru€NtroPY S is approximated by the Bethe entropy; =
partition function was derived (Jerrum & Sinclair, 1993), 2-(i.jee Jii + 2iep(1 — di)Si, whereS;; is the entropy
but only when singleton potentials are uniform (i.e. a uni-Of #j, i i the entropy of the singleton distribution and
form external field) and the resulting runtime is high at® = [N(¢)| is the degree of. We assume the model is con-
O(e~2m3n' logn). It was recently shown (Heinemann _nected sal; > 1 Vi (else each component may be analyzed
& Globerson, 2011) that models exist such that the trudndependently), and takelog = = 0 for z = 0. Hence, the
marginal probability cannot possibly be the location of a9/0Pal optimum of the Bethe free energy,

minimum of the Bethe free energy. Our work demon-

1.2 Related work

strates an interesting connection between MAP inference Fla) =Eq(E) = Sp(q) (2)
techniques (NP-hard) and estimating the partition fumctio = Z —(Wi&i; + Sij(4i,q5))
7 (#P-hard). Recently (Hazan & Jaakkola, 2012) showed a (i,4)€E

different connection by using MAP inference on randomly
perturbed models to approximate and bouhd

+ Z (—0iqi + (z: — 1)Si(a)),

eV
2 NOTATION & PRELIMINARIES is achieved by minimizingt over the local polytope, with
Zp defined s.t. the result obtained equalog Zp. See

Our notation is similar to (Weller & Jebara, 2013a) and(Wainwright&Jordan, 2008) for details.
(Welling & Teh, 2001). We focus on a binary pairwise Considering the local polytope, givep andq;, we must

model withn variablesX;,..., X,, € B = {0,1} and have
graph topology(V, £) with m = |&|; that isV contains iy = L+&—a—q 4 —&; 3)
nodes{1,...,n} wherei corresponds taX;, and€ C " 0 — &ij &ij

V' x V contains an edge for each pairwise score relationfOr somet.; € 0. min(a:. a.)]. wherew:: (a.b) = a(X; —
ship. LetN(i) be the neighbors of Letz = (z1,...,2,)  , x. 2125)1:7 Let[a’i@:l(e%’j]—)]’l. o :M(Zj]g’m)/i_ :q(o r;ay
be one particular configuration, and introduce the notion ofo’ ajssumed not tjo oceur else thejedggé) mayjbe deleted.
energyF(z) througt? a;; has the same sign &;;, if positive then the edgg, ;)

o—E(x) is attractive if negative then the edge igpulsive The
pa)=—— BE=- > iz~ Y Wimaz;, (1)  MRFis attractive if all edges are attractive. As in (Welling
eV (i,§)€E & Teh, 2001), one can solve fdg; explicitly in terms of

¢; andg; by minimizing F, leading to a quadratic equation
where the partition functio = >__ e~ is the nor-  with real roots,
malizing constant.

& — 1+ i (g )&i; + (1 + oj)aiqg; = 0. (4
Given any joint probability distributiorp(X1,..., X,,) @iy — (1 iy (0 +45)1& + (14 @) aig; )
over all variables, the (Gibbs) free energy is defined asorq,;; > 0, &; (¢, ;) is the lower root, fory; < 0 it is
Fa(p) = Ep(E) — S(p), whereS(p) is the (Shannon)  the higher. Collecting the pairwise termsZ&ffrom (2) for

3The probability or score function can always be reparameterOne edge, define

ized in this way, with finited; and W;; terms provided(z) >

0 Vz, which is a requirement for our approach. There are rea- fii (@i 45) = =Wii&ii(ai, 45) — Sij(qiq5)- (5)
sonable distributions where this does not hold, i.e. distrons . L

where3z : p(x) = 0, but this can often be handled by assigning Thus we may consider the minimization 8f overgq =
such configurations a sufficiently small positive probapidi (q1,---,qn) €10,1]".



4

We are interested idiscretized pseudo-marginaishere 2.3 Flipping variables

for eachy;, we restrict its possible values to a discrete mesh

M, of points in[0, 1], which may be spaced unevenly. We As in (Weller & Jebara, 2013a) , we use the techniques
allow M; # M;. Write M for the entire mesh. Let below for flipping variables, i.e. we can consider a new
N; = |[M;| and defineV = 3., N; andIl = [],.,, N;, ~ model with variabled X;}, whereX; = 1 — X; for some
the sum and product respectively of the number of mestselection ofi. Flipping a variable flips the parity of all
points in each dimension. Létbe the location of a global its incident edges so attractive repulsive. Flipping both
optimum of 7. We say that a mesh constructigri(¢) is  ends of an edge leaves its parity unchanged.

sufficientf, givene > 0, it can be guaranteed thag mesh

pointq® € [[;cy, Mi s.t. F(q") — F(q) < e 2.3.1 Flipping all variables

We shall make use of the standard sigmoid function

Y, H . . ’ _ R
o(x) = 1/(1 + exp(—=z)) for various bounds. Consider a new model with variabl¢X! = 1 — X;,i =

1,...,n} and the same edges. InsteaddpbndW;; pa-
rameters, let those of the new model@jeandW/;. Iden-
tify values such that the energies of all states are maiathain

2.1 Input model specification up to a constafit

Throughout this paper, we assume the reparameterizatioE 9
. R : e = - i X — Wi Xi X,
in (1) for all analysis, but a different specification is more Z Z J J

natural for input models avoiding bias. We assume an in- v ()8
put model is given with singleton terngs as in (1), but = const — 292(1 - Xi) — Z Wi (1= X5)(1 - Xj).
with pairwise energy terms instead given by@xixj - a% (i.9)€€

”g”’ (1—a;)(1—x;). With this format, varyindgV;; simply

alters the degree of push/pull betweeand;, without also
changing the probability that each variable will be 0 or 1,

as is the case with the format of (1). We assume maximum Wi, = Wij, 0; = —0; — Z Wij. (6)
possible valuedV” and7" are known with|¢;| < T Vi € V, GEN(i)

and|W;;| < W V(i,j) € £. The required transformation

to convert from input model to the format of (1), S|mp|y If the Original model was attraCtive, so too is the new.
takest; + 0; — ZJEN(Z.) W;;/2, leavingWV;; unaffected.

Matching coefficients gives

2.3.2 Flipping some variables

2.2 Submodularity Sometimes it is helpful to flip only a subskt C V of the
variables. This can be useful, for example, to make the
model locally attractive around a variable, which can al-

of ordered labelsX;;, = {1 K} x {1 K} is ways be achieved by flipping just those neighbors to which
(% goee ey 7 ge ey j

. it has a repulsive edge. Léf! = 1 — X, if i € R, else
submodulariff Vz,y € X5, f(z Ay) + fxVy) < : _ i i ’
- N X! = X, fori € S, whereS =V \ R. Let&; = {edges
, where forz = (1, andy = (y1,v2), i i ¢
f(@) + fy) N (21,22) J (1, 2) with exactlyt ends inR} fort = 0,1, 2.

(z Ay) = (min(zy,y1), min(zs,y2)) and (z V y) =
(max(zy, y1), max(zz, y2)). For binary variables, sub- Asin 2.3.1, solving folV’/; and#; such that energies are

In our context, a pairwise multi-label function on a set

modular energy is equivalent to being attractive. unchanged up to a constant,
The key property for us is that if all pairwise cost functions
fi; overM; x M from (5) are submodular, then the global s Wi (i,4) € U &,
discretized optimum may be found efficiently using graph T =Wy (4,) €&
cuts (Schlesinger & Flach, 2006). ,
. - o 0 _ 0; + Z(i,j)efl Wij 1€ 8, 7
Theorem 1 (Submodularity for any discretization of an at- ' —0; — Z(i,j)eé‘g Wi i€R.

tractive model, (Weller & Jebara, 2013a) Theorem 8, (Korc

et al., 2012)) If a binary pairwise MRF is submodular | emma 2. Flipping variables changes affected pseudo-
on an edge(i, j), i.e. Wi; > 0, then the multi-label  marginal matrix entries’ locations but not valueg. is un-
discretized MRF for any mesh1 is submodular for that  changed up to a constant, hence the locations of stationary

edge. In particular, if the MRF is fully attractive, i.e. points are unaffected. (Proof in (Weller & Jebara, 2013a))
Wi; > 0V(i,7) € €, then the multi-label discretized MRF

is fully submodular for any discretization. Proof in (Welle “Any constant difference will be absorbed into the partition
& Jebara, 2013a) . function and leave probabilities unchanged.



2.4 Preliminary bounds P fy _ Pfiy

1
W the followi lts from (Weller & Jeb 0qi0q;  0¢;00; Ty
e use e Tollowing results 1trom eller ebara,
2013a). ’ whereT;; = giq; (1 — ¢i)(1 — g;) — (& — ¢ig;)*  (9)

> 0 with equality iffg; or ¢; € {0,1}.

(205 — &ij),

Lemma 3 ((Weller & Jebara, 2013a) Lemma.2);; >
0=&j > qiqj,aij < 0= &5 < qqy

Theorem 4 ((Weller & Jebara, 2013a) Theorem. 4for
general edge types (associative or repulsive),iét =

2 jeneywy >0 Wisn Vi = = 2 jenyw,, <o Wig- At any

Incorporating all singleton terms gives the following riésu

Theorem 7(All terms of the Hessian, see (Weller & Jebara,
2013a)4.3 and Lemma 9)Let H be the Hessian of for

stationary point of the Bethe free energyd; — V;) < ¢; < 2 binary pairwise model, i.eH;; = 62 5g, andd; be the
o(0; + W;). degree of variableX;, then

For the efficiency of our overall approach, it is very de- H,, = — Z g;(1 — 4;) 1

sirable to tighten the bounds on locations of minimarof a(l—a) JEN(D) Tij qi(1—q)’

since this both reduces the search space and allows a lower aig; &y (i,j) €€

density of discretizing points in our mesh. This may be Hy = Tij b

achieved efficiently by running either of the following two 0 (i,7) € E,i# j.

algorithms: Bethe bound propagation (BBP) from (Weller

& Jebara, 2013a), or using the approach from (Mooij &3 NEW APPROACH

Kappen, 2007) which we term MK. Either method can

achieve striking results quickly, though MK is our prefetre \we develop a new approach to constructing a sufficient

method - it considers cavity fields around each variable mesh A by analyzing bounds on the first derivatives of
and determines the range of possible beliefs after itegatin 7. This yields several attractive features:

LBP, starting from any initial values; since any minimum

of F corresponds to a fixed point of LBP (Yedidia et al., ¢ For attractive models, we obtain a FPTAS with worst
2001), this bounds all minima. case runtimeO(e 3n*m3W3) and no restriction on

Let the lower bounds obtained fgrand1 — ¢; respectively topology, as was required in (Weller & Jebara, 2013a).
be A; andB; so that4; < ¢; < 1 — B;, and let theBethe

boxbe the orthotope given b[;,[4;, 1 — Bi]. Define o oyr sufficient mesh is typically dramatically coarser

i = min(A;, B;), i.e. the closest thaf; can come to the than the earlier method of (Weller & Jebara, 2013a),
extreme values df or 1. leading to a much simpler subsequent MAP prob-
Lemma 5 (Upper bound for;; for an attractive edge, lem unlesse is very small. Here, the sum of the
(Weller & Jebara, 2013a) Lemma.6)f «;; > 0, then number of discretizing points in each dimension,
& — aiq; < %{:W wherem = min(g;, ¢;) and N = O (22, For comparison, the earlier method,

even after our improvements id, forms a mesh with
N =0 (e 1274 A4 exp [ (W(1+ A/2) + T)]).
As an example, for the model in the experiments
of §6, our new approach with the adaptive minsum

In (Welling & Teh, 2001), first partial derivatives of the method (se€3.1.2), yields a mesh withV that is 8

M = max(¢;, qj)-

2.5 Derivatives of F

Bethe free energy are derived as orders of magnitude smaller than the earlier method.
oOF e Our approach immediately handles a general model with
dq; = —0; +1log Qi (8) both attractive and repulsive edges. Hence approx-

(1= g% 11 (g — &) imating log Zp may be reduced to a discrete multi-
whereQ; = dqil JEN() il . label MAP inference problem. This is valuable due to
4" HjeN(i (1 +&; —ai —a)) the availability of many MAP techniques. We discuss

Theorem 6 (Second derivatives for each edge, (Weller & this in §5, where we consider when the MAP prob-

Jebara, 2013a) Theorem. 7or any edge(i, j), for any lem is tractable and examine approaches which may

aij, be tried in general.

0 fij _ iq»(l — ) 02 fij _ iq-(l —q) First assume we have a model which is fully attractive
o2 Ty o Ty ! around variablex;, i.e. W;; > 0 Vj € N(i). From (8)

_ _ and Lemma 3, we obtain
*Both BBP and MK are anytime methods that converge

quickly, and can be implemented such that each iteratios imun OF
O(m) time. MK takes a little longer but can yield tighter bounds. 6_%

= ~0;+103Q; < —6; +log 1 a4 (10)

— 4
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Flip all variables (se§2.3.1). Write’ for the parameters of Upper and Lower Bounds for 5
the new flipped model, which is also fully attractive, then ‘
using (6) and (10),

OF' q.
< -0 +1 L
oq, — +log 1—¢,
Qi 3.7: §
= —91' — Wl I s
+ log T < aql :

Combining this with (10) yields the sandwich result

Region of Bethe

oOF -10 Parameters used in this example: | ! B8 i
0, — Wi + log << 9, 4 l0g g o |
1 s an 1 _ qz L=18, U=29 : A 1-8,
- - ] 15, 0‘1 0‘.2 0.‘3 0|.4 0.‘5 ] o‘vs 0‘.7 0.‘3 0‘.9 i
Now generalize to consider the case thaas some neigh- Pecudormaranel

borsR to which it is adjacent by repulsive edges. In this

case, flip those node® (seg§2.3.2) to V“?'d a model, Figure 1. Upper and Lower Bounds f(%f Solid blue
which we denote by, which is fully attractive around, curves show worst case bounds (11) as functions; of
hence we may apply the above result. By (7) we have,j are different by a constabit + W; = 3. N Wi .

J T

/! i 1!

Z\iggn%rgl‘r{rllb?jg(lj usingV;’” = Wi + Vi, we obtainthatfor o o 4 red curves show the uppEn(¢;) and lowerf’ (¢;)

' bounds (12) after being lowered hyg L; and raised
OF < 04 Vitlo by log U; respectively, which incorporate the information

&1 from the bounds of neighboring variables. All bounding
(11) curves are strictly monotonic. The Bethe box regiondgor

must lie within the shaded region demarcated by vertical
red dashed lines, but we may have better bounds available,
e.g. from MK, as shown byl; and1 — B

<

—0; — 1
W—l—ogl__ 94

This bounds each first derlva'uvgf within a range of
width Vi + Wi = > vy Wi s WhICh will be sufficient
for the main theore‘ucal result to come in (15). We take
the opportunity, however, to narrow this range, thereby im-
proving the result in practice, by using just one step of the

belief propagation algorithm (BBP) of (Weller & Jebara, ® The bound curves are monotonically increasing with
2013a). ranging from—oo to +o0 asg; ranges frono to 1.

Following the derivation of BBP in the Supplement of 4 A necessary condition to be within the Bethe box is
(Weller & Jebara, 2013a), where better bounds are derived  that the upper bound is 0 and the lower bound is

on theg; location of stationary points by taking account of < 0. Hence, anywhere within the Bethe box, we must
[4j,1 — Bj] bounds on neighborse N(i), we may refine have bounded derivativé3Z| < D,. BBP gener-
the result of (11) to yield ates{[A;, 1 — B;]} bounds by iteratively updating with
a]: L;,U; terms. In general, however, we may have better
U .
fHa) < 7 (a:), where bounds from any other method, such as MK, which

. lead to highe; andU; parameters and lowep;.
fi(qg)=—-0;, — W, —|—1ogU +log

_QZ
fZ-U(Qi) =—0;,+V; —log L; + log -

(12)  Fiscontinuous o0, 1]™ and differentiable everywhere in

i (0, 1)™ with partial derivatives satisfying (12):%(¢;) and
L;,U; are each> 1 with log L; + log U; < V; + W;. They  fY(g;) are continuous and integrable. Indeed, using the
are computed a$; = [[;cne) Lij» Ui = Iljeng) Uis» notation[¢(z)] zj; = ¢(b) — ¢(a),

ij Aj i g
with L;; = {1 + e pgaay Wi >0

1+ i3 B if W;; <0’ 4i=b
12(:"1"9(1.1_31)(1_%) ! / C+10g sz = [CQi+Qi 1OgQi+(1_Qi)10g(1_Qi)}
- {1 + T+a;,;(1—A;)(1-Bj) if Wij >0 (13) i=a
A aij Ay i . ! . .
L+ TFa;,; (1—A;)(1—-4;) if Wi; <0 for0 < a < b < 1, which relates to the binary entropy
See Figure 1 for an example. We make the following ob-function(p) = —plogp — (1 — p)log(1 — p), recall the
servations: definition of 7. We remark that aIthougg£ tends to—oo
or —|—oo asg; tends ta0 or 1, the integral converges (taking

e The upper bound is equal to the lower bound plus theO

constantD; = V; + W; —log L; — logU; > 0. =0)
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Hence if¢ = (1, - .., ¢n) is the location of a global mini- For a fully attractive model, the resulting MAP problem
mum, then for any = (ql, ..., @n) in the Bethe box, may be solved in tim&(N?) by graph cuts (Theorem 1,
(Schlesinger & Flach, 2006; Greig et al., 1989; Goldberg
1) < Z f (qi)dqi+ Z L(g:)dg;. & Tarjan, 1988)), so it is sensible to minimizé. In other

cases, however, it is less clear what to minimize. For ex-
(14) ample, a brute force search over all points would take time

o(1I).

To construct a sufficient mesh, a simple initial bound relies
on |af| < D;. If mesh pointsM; are chosen s.t. in di- Define the spread of possible values in dimensiasS; =
mension: there must be a point* within ; of a global 1— B; — A; and noteV; =1 + [S 1 is required to cover
minimum (which can be achieved using a mesh width inthe whole range. To minimiz&/’ w%le ensuring the mesh
each dimension dtv;), then by settingy; = ~5- -, we ob- is sufficient, consider the Lagrangiah = ZZGV T
tain 7(q¢*) — ]:( Q) <>, Digp; = e Itiseasily seenthat  \(e—>", |, v:D;), whereD; is set as in the simple method
N; <1+ ( 5o 1, hence the total number of mesh points, (§3.1). Optimizing gives

N =3,cy Ni, satisfies

; < \/
NSQn—i—%ZDiS?n—i-% 3wyl n Zjev\/S—D\/ With NV < 2n52 <Z SD)
i ()€€ (16)
. . which we term theminsum methad Note D; < dQZ-W
=0| - Z (Wil | = O( . ), (15)  whered; is the degree of(;, hence(>" ;. VSiD;)~ <
Gt W (X,ey Vi), By Cauchy-Schwartz and the handshake
sinceD; < V; + W, = ZjeN(i) |Wi;|. HereW = lemma, (>, \/_) < ”Zzevd = 2mn, with equal-
max; jee |[Wij| andm = |€| is the number of edges. ity iff the d; are constant, i.e. the graph is regular.

If the initial model is fully attractive, then by Theo- [f insteadIl is minimized, rather thawv, a similar argu-
rem 1 we obtain a submodular multi-label MAP problem ment shows that the simple methd@.(1) is optimal.
which is solvable using graph cuts with worst case runtime

O(N3) = O(e3n®m3W3) (Schlesinger & Flach, 2006; 3.1.2 Adaptive methods

Greig et al., 1989; Goldberg & Tarjan, 1988).

i:g;<gq; iiqi<gi V1

The previous methods rely on one boubgfor | f| over
Note from the first expression in (15) that if we have in- the whole rangéA;,1 — B;]. However, we may increase
formation_on individual edge Weights then we have a betteéfﬁciency by using local bounds to vary the mesh width
bound using _; ;)¢ |Wi;| rather than justn V. across the range. A bound on the maximum magnitude of

For comparison, the earlier second derivative approach df'€ denvatQ/e over any sub- range may be found by check-
(Weller & Jebara, 2013a) has runtir@(e—%nGE%Q%), ing just— f;~ at the lower end ang;” at the upper end.

where, even using the improved methodiihhere,Q2 = This may be improved by using the exactintegral as in (14).
O(AeWIFA/2FT) - Unlesse is very small, the new first  First, constant proportions > 0 should be chosen with

derivative approach is typically dramatically more effidie S ki = 1. Next, the first (lowest) mesh point € M;
and more useful in practice. Further, it naturally handles

U
both attractive and repulsive edge weights in the same wa){:otu'd be set S”tj J; t%)tdqlz f; kt; This wilﬁ;r;}sure
atv} covers all points to its left in the sense ;=

vi] — Flg: € [Ai,~4]] < kie where all other variables
qj,J # i, are held constant at any values within the Bethe
Since the resulting multi-label MAP inference problem is POX. 71 also covers all points to its right up to what we term
NP-hard in general (Shimony, 1994), it is helpful to min- itsreach i.e. the point-: s.t. f” —f£(qi)dg; = kie. Next,

imize its size. As noted above, setting = 5, which i is chosen as before, using as the left extreme rather
we term thesimple methogyields a sufficient mesh where than 4, and so on until the final mesh point is computed
|G| < Di = Vi+W;—log L;—log U;. However, since the  yith reach> 1 — B;. This yields an optimal mesh for the
boundmg curves are monotonic wifty > 0 andf~ <0,  choice of{k;}.

a better bound for the magnitude of the derivative is often

_ 1 i imi i i
available by settind); = max{ V(1 — B;), — f~(A)}. If k; = -, we achieve an optimizeddaptive simple

3.1 Refinements, adaptive methods

method. Ifk;, = —¥2:D. e achieve aradaptive
. i Zjev vV Sij . . i
3.1.1 The minsum method minsummethod. For many problems, this adaptive min-

We defineN; = the number of mesh points in dimension sum method will be the most efficient.

i, with sumN = Y., N; and producfll = []

ey Integrals are easily computed using (13). To our knowl-

ZGV
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edge, computing optimal points)i} is not possible ana- models. Interestingly, the theoretical bounds derived for
lytically, but each may be found with high accuracy in just 2 = max(a, b) take exactly the same form as for the purely
a few iterations using a search method, hence total time tattractive case, except that newV < W;; < W, whereas
compute the mesh i9(V), which is negligible compared previously it was required that < W;; < W. Since it is

to solving the subsequent MAP problem. a second derivative approach, the mesh size (measured by
N, the total number of points summed over the dimensions)
4 REVISITING THE SECOND grows asO(e~1/2) rather than a®(¢~') in the new first

derivative approach. In practice, however, particuladly f
harder cases whereandW are above small values, unless

. L ) e is very small, the method df3 is much more efficient.
We review the second derivative approach used in (We”ebetails and derivations are in the supplement

& Jebara, 2013a) (s&® there). As here, the possible loca-
tion of a global minimumj was first bounded in the Bethe
box given by[[;.,,[4i, 1 — B;]. Next an upper bound
was derived on the maximum possible eigenvalue of th
HessianH of F anywhere within the Bethe box, where
it was required that all edges be attractive. Then a mesffter computing a sufficient mesh, it remains to solve the
of constant width in every dimension was introduced s.tmulti-label MAP inference problem on a MRF with the
the nearest mesh poigt to ¢ was at mosty away in each  same topology as the initial model, where eactakes val-
dimension. Hence thé, distances satisfiess*> < nv*>  uesinM;. In general, this is NP-hard (Shimony, 1994).
and by Taylor's theoremi”(¢*) < F(q) + 3A0%. A was

computed by bounding the maximum magnitude of any el-

ement of . Considering Theorem 7, this involves sepa-5.1 Tractable cases

rate analysis of diagondf,; terms, which are positive and

were bounded above by the tefmand edgell;; terms,  |f it happens that all cost functions are submodular (as is
which are negative for attractive edges, whose magnitudgjways the case if the initial model is fully attractive by
was bounded above hy. Then( was set asnax(a,b),  Theorem 1), then as already noted, it may be solved effi-
andX; as the proportion of non-zero entrieshn Finally,  cjently using graph cut methods, which rely on solving a

DERIVATIVE APPROACH

» RESULTING MULTI-LABEL MAP

A < VU(HTH) < VEn2Q? = nQVE. max flow/min cut problem on a related graph, with worst
case runtimeD(N?3) (Schlesinger & Flach, 2006; Greig
4.1 Improved bound for an attractive model etal., 1989; Goldberg & Tarjan, 1988). Using the Boykov-

) ) ) Kolmogorov algorithm (Boykov & Kolmogorov, 2004),
We improve the upper bound fg} by improving thea  performance is typically much faster, sometimes approach-
bound for attractive edges to derivga better upper bound jng O( V). This submodular setting is the only known class

on—H,;. Essentially, a more careful analysis allows a po-f proplem which is solvable for any topology.
tentially small term in the numerator and denominator to be

canceled before bounding. Writimg= min;cy 7;(1 —7;),  Alternatively, the topological restriction of boundedere

i.e. the closest that any dimension can come to 0 or 1, th@idth allows tractable inference (Pearl, 1988). Further, u
result is that der mild assumptions, this was shown to be the only re-

striction which will allow efficient inference for any cost
( aij ) / <1 ( Qi) )2>(17) functions (Chandrasekaran et al., 2008). We note that if
g nl1-(—2—

—Hi; 1+ 1+ oy the problem has bounded tree-width, then so too does the

Wt /2) 4T original binary pairwise model, hence exact inference (to
= Ofe )- yield the true marginals or the true partition functighon

- , the original model is tractable, making our approximation
_ W(1+A/2)+T . . L
Thus, a O(e ) which compares favorably result less interesting for this class. In contrast, altffou

to the earlier bound in (Weller & Jebara, 2013a) , whereMAP inf is tractable f ttractive bi .
a = O(WIHATT)  Recallh = O(AeW (1HA/2HT) inference is tractable for any attractive binary pair-

wise model, marginal inference and computifigare not

and Q = max(a,b), so using the newi bound, now s
Q = O(AW(+A/24T) - Details and derivation are in (Jerrum & Sinclair, 1993).
the supplement. A recent approach reducing MAP inference to identifying

a maximum weight stable set in a derived weighted graph
4.2 Extending the second derivative approach to a ((Jebara, 2013), (Weller & Jebara, 2013b)) shows promise,
general (non-attractive) model allowing efficient inference if the derived graph is perfect
Further, testing if this graph is perfect can be performed
Using flipping arguments fror§2.3, we are able to extend in polynomial time ((Jebara, 2013), (Chudnovsky et al.,
the method of (Weller & Jebara, 2013a) to apply to generaR005)).
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5.2 All other cases A simulated sub-network of 55 connected transformers
with average degree 2 was generated using a random pref-
Many different methods are available, see (Kappes et algrential attachment model. Typical setting®¥pf= —2 and
2013) for a recent survey. Some, such as dual approaches; — 4 were specified (using the input model specification
may provide a helpful bound even if the optimum is notof §2.1). We attempted to run BP using the libDAI pack-
found. Indeed, a LP relaxation will run in polynomial time age (Mooij, 2010) but were unable to achieve convergence,
and return an upper bound dsg Z5 that may be useful. even with multiple initial values, using various sequentia
A lower bound may be found from any discrete point, andor parallel settings and with damping. However, running
this may be improved using local search methods. Notgur algorithm withe = 1 achieved reasonable results as

also that BBP boundg; < [A;,1 — B;] applyfor all the  shown in Table 1, where true values were obtained with the
Bethe box, but for a particular value @fsay, then the BBP  junction tree algorithm.

approach provides tighter bounds on each of its neighbors
J € N(i), which may be helpful for pruning the solution =7 pTAS forlog Zz
space.

Error vs true value
Mean/; error of single marginals 0.003
Log-partition function 0.26

5.2.1 Persistent partial optimization approaches

) Table 1: Results on simulated power network
MQPBO (Kohli et al., 2008) and Kovtun's method (Kov-

relaxatons and run n palynomia tme. n our comext, GENeral folklore has suggested that the Bethe approxima:
the output consists of ranges (which in the best case coultchOn is poor when BP fails to CONverge, thus Fh's |n|'g|al re-
be one point) of settings for some subset of the vari-SU|t syggests further work, which is now feasible using our
ables. If any such ranges are returned, the strong peglgonthm.

sistence property ensures tleaty MAP solution satisfies

the ranges. Hence, these may be used to upd&teB;} 7 DISCUSSION & FUTURE WORK
bounds (padding the discretized range to the full continu-

ous range covered by the end points if needed), compute.ia0 our knowledge, we have derived the firgt

new, smaller, sufficient mesh and repeat until no improve-a roximation alaorithm fotoe Z» for a general binar
ment is obtained. PP 9 g Zp g y

pairwise model. The approach is useful in practice, and

much more efficient than the previous method of (Weller
6 EXPERIMENTS & Jebara, 2013a), though can take a long time to run for

large, densely connected problems or when coupling is
As a first step toward applying our algorithm to explore high. From experiments run, we note that tHgounds ap-
the usefulness of the global optimum of the Bethe approxpear to be close to tight since we have found models where
imation, here we consider one setting where LBP fails tothe optimum returned when run with= 1 is more than

converge, yet still we achieve reasonable results. 0.5 different to that fore = 0.1. When applied to attractive

) ) ) ) models, we guarantee a FPTAS with no degree restriction.
We aim to predict transformer failures in a power network

(Rudin et al., 2012). Since the real data is sensitive, ouFuture work includes further improving the efficiency of
experiments use synthetic data. 6t € {0,1} indicate the mesh, considering how it should be selected to simplify
if transformeri has failed or not. Each transformer has athe subsequent discrete optimization problem, and explor-
probability of failure on its own which is represented by ing applications. Interesting avenues include using it as a
a singleton potentia#;. However, when connected in a Subroutine in a dual decomposition approach to optimize
network, a transformer can propagate its failure to nearbyver a tighter relaxation of the marginal polytope, and it
nodes (as in viral contagion) since the edges in the networRrovides the opportunity to examine rigorously the perfor-
form associative dependencies. We assume that homog@ance of other Bethe approaches that typically run more
neous attractive pairwise potentials couple all transéosmn  quickly, such as LBP or CCCP (Yuille, 2002), against the
that are connected by an edge, i1&;; = W V(i,j) € £&.  true Bethe global optimum.

The network topology creates a Markov random field spec-

ifying the distributionp(Xy, ..., X,,). Our goalis to com-  Acknowledgments

pute the marginal probability of failure of each transforme

within the network (not simply in isolation as in (Rudin We are grateful to Kui Tang for help with coding, and
et al., 2012)). Since recoveringX;) is hard, we estimate to David Sontag, Kui Tang, Nicholas Ruozzi and Tomaz
Bethe pseudo-marginajs = ¢(X; = 1) through our algo-  Slivnik for helpful discussions. This material is based mpo
rithm, which emerge as therg min when optimizing the  work supported by the National Science Foundation under
Bethe free energy. Grant No. 1117631.
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APPENDIX: SUPPLEMENTARY MATERIAL FOR APPROXIMATING THE BE THE
PARTITION FUNCTION

Here we provide further details and proofs of several of &seilts in the main paper, using the original numbering.

4 REVISITING THE SECOND DERIVATIVE APPROACH

4.1 Improved bound for an attractive model

In this section, we improve the upper bound forby improving thea bound for attractive edges to deride an im-
proved upper bound or H;;. Essentially, a more careful analysis allows a potentisthall term in the numerator and
denominator to be canceled before bounding.

Using Theorem 7, equation (9) and Lemma 5,

1
—Hij = (&j — Qin)_T__
ij

m(l — M)Oéij 1

< 1+ iy m(1 — M) {(1 —m)M —m(1— M) (11211)2:|
o 1
) ) 2 (18)
(1+Oéij) (1—=m)M —m(1—-M) (1%])

wherem = min(g;, ¢;), M = max(g;, g;). Now we use the following result.
Lemma 8. Foranyk € (0,1), lety = ming,e(a, 1-B,],¢,€[4,,1-B5) (1 — m)M —m(1 — M)k, then

B;A; — (1-B;)(1—-A))k if (1—DB;) <A i range < j range
(1 —Fk)min{A;(1—-A;),B;(1-B;)} ifA <A; <1-B;<1-B; rangesoverlap,ilower
(1 — k) min{A, A;),B;(1-B,)} ifA;<A;<1-B;<1-B; jrangeCirange

) (

) (1-
(1—Fk)min{A;(1 - A4;),B;(1-B;)} ifA <A <1-B;<1-B; i range C j range

(1 —Fk)min{A;(1 - A;),B;(1—-B;)} ifA; <A <1-B;<1-B; rangesoverlap,|lower

BjA; — (1 —-Bj)(1—-A)k if (1—-B,)<A4,; jrange < irange.

Proof. The minimum is achieved by minimizing the larger and maxingzhe smaller of;; andg;. The result follows for
cases where their ranges are disjoint. If ranges overlap,tthe minimum is achieved at some= ¢; in the overlap, with
valueg;(1 — ¢;)(1 — k), which is concave and minimized at an extreme of the ovedape. O

Lemma 8 is useful in practice, and should be used to compute max; j e Of the bound above. To analyze the
theoretical worst case, it is straightforward to see theltamy thaty > (1 — k)7, wheresj = min;cy n;(1 — 7;). This
bound can be met, for example, if all ranges coincide. Hefioe) (18), and with the reasoning f(%f from (Weller &

Jebara, 20134p.3, where it is shown tha{— O(eT+AW/2) "and usingv;; = " — 1, we obtain

2
(0771 _ Qg
—Hy; < (1+;_) /77 (1 N (1+:1> ) = O(eWUHARTT), (19)
1] 9

Thus,a = O(eW(1+A/2)+T) which compares favorably to the earlier bound in (Weller &ala, 2013a) , where
a = O(eW(”A)”T) Recallb = O(AeWI+A/2+T) and Q@ = max(a,b), So using the news bound, now
Q= O(AVOFA/DHT),
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4.2 Extending the second derivative approach to a general m-attractive) model

Here we extend the analysis of (Weller & Jebara, 2013a) bgidening repulsive edges to show that for a general binary
pairwise model, we can still calculate useful bounds (which out to be very similar to the earlier bounds for attraeti
models) for a sufficient mesh width.

Our main tool for dealing with a repulsive edge is to flip theiahle at one end (seg.3) to yield an attractive edge, then
we can apply earlier results. We denote the flipped modehpaters with &. For example, if just variabl&’; is flipped,
theng; = ¢(Xj = 1) = q(1 - X; = 1) = 1 —g;. Sincea;; = ¢"s — 1 and herdV/; = —W;;, the following relationship
holds if one end of an edge is flipped,

o e Wi —1

1,
- =1—-e

Wij — _ ..
o, e =y, 20)

Note that, for an attractive edg?% € (0,1), as is—ay; for a repulsive edge. Recall that when we flip some set of
variables, by constructia®’ = F + constant (se€§2.3).

The Hessian terms from Theorem 7 still apply. Our goal is torfabthe magnitude of each entt;; for a general binary
pairwise model, then the earlier analysis will provide thsuit. Whereas for a fully attractive model, we assumed a
maximum edge weighi” with 0 < T;; < W, now we assumgh’;;| < W.

4.2.1 Edgeterms

First considett;; for an edgg(7, j) € £. If the edge is attractive, then the earlier analysis haldsigkes no difference
if other edges are attractive or repulsive). If it is repedsithenH;; > 0. Consider a model where jusf; is flipped.

H;; = agfaij = —aangq'; = —H/;. Hence using (18) and (20), in practice an upper bound mayohuated from
Lemma 8 usingt = —a;; and A} = B;, B} = A;. The theoretical bound for an attractive edge from (19) bexo
H;; < ﬁ As we should expect from the attractive case, the followesylt holds.

k¥

Lemma 9. For a repulsive edgel_l—a?j = O(e=Wis),

Proof. Letu = —W;;, thena,; = e — L and — = (1faij)1(1+aij) = efu(;,efu) =0(e"). O

ij

Hence, noting that we may flip any neighbgrsof i which are adjacent via repulsive edges to obt%iﬂ{—m =
O(eT+AW/2) as before, where noW/ = max; j)ce [Wi;|, we see that for our new second derivative method, just as
in the fully attractive case; = O(e"V (1+2/2+T),

For comparison interest, we also show how the earlier, waosad for an attractive edge givenin (Weller & Jebara, 2013a
may similarly be combined with flipping to provide a worse appound forH,; when(i, j) is repulsive. See (Weller &

Jebara, 2013&5b.2: considering the proof of Lemma 10 and using (20) frora fgaper, we see that for a repulsive edge,
the K;; minimum bound forT;; becomesKi; = nin;(1 — n:)(1 — n;)(1 — aF;); then from (Weller & Jebara, 2013a)

Theorem 11, the equivalent boundis; < - which givesa = O(e"V(1+2)+2T) as it was for the fully attractive case.
ij

We provide a further interesting result, deriving a loweuba for¢;; for a repulsive edge.
Lemma 10(Lower bound for;; for a repulsive edge, analogue of Lemma Bpr any repulsive edgg, j),
qiqj — &ij < —aujpij wherep;; = min{q;q;, (1 — ¢;)(1 — ¢;)}.

Proof. Consider a model where just variahlg; is flipped, and let all new quantities be designated by theb®yrh
Consider the joint pseudo-marginal (3). In the new modelctiiemns are switched singg; (a,b) = ¢(X; = a, X} =
b) = q(Xi = a,Xj =1- b) = ,uij(a,l - b), hence

A > 2 J J 2] — J i ij i ‘AN 21
* < : i &ij qi — &ij (21)

!
q; — S5 ij

Applying Lemma 5 to the new mode;; — ¢;q;; < 1322]. m/(1 — M"). Substituting in¢j; = ¢; — &;; from (21) and using
(20), we haveg; —&j) —qi(1 —¢;) < —a;;m/(1—M’). Sincem’ = min{g;, 1 —¢;} andM’ = max{g¢,, 1 — g;}, noting

¢ <l—-¢giea+q¢ <1<qq <(1—-q)1—gq),theresultfollows. O
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Hence for a repulsive edde, j), using (9), we have

Tij = qiqj(1 — @) (1 — q;) — (&;j — %%‘)2 > pijPij — Oélsz?jv
whereP;; = max{q;q;, (1 — ¢;)(1 — ¢;)}-
4.2.2 Diagonal terms

Consider thdi;; terms from Theorem 7, which is true for a general model. Ihalghbors ofX; are adjacent via attractive

1 .
1= ( 135‘1’;‘ )

If any neighbors are connected 5 by a repulsive edge, then consider a new model where thogabais are flipped,
so now all edges incident t&; are attractive, and designate the new model parametersawithAs before, observe

F = F' + constant, henceH;; = %Zf = %zqu' = H/,. Using (20) we obtain that for a general model,

ni(1—n;)

edges, then, as in (Weller & Jebara, 2013a) Theorentfl1< ———— <1 —di + Y en)

1 1 1

Hy < ——— | 1-4d; - - . 29

— (1= m) +- Z i 2+. Z 1—a? (22)
FEN():W;;>0 1 — (1+QU) FEN(i):W;; <0 ij

Similarly to the analysis i§4.2.1, using Lemma 9 gives that for a general moldel,max;cy H;; = O(AeW (1+28/2+T)
just as for a fully attractive model, where ndW = max |W;;|.



