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Abstract

When belief propagation (BP) converges, it does
so to a stationary point of the Bethe free energy
F , and is often strikingly accurate. However, it
may converge only to a local optimum or may
not converge at all. An algorithm was recently
introduced for attractive binary pairwise MRFs
which is guaranteed to return anǫ-approximation
to the global minimum ofF in polynomial time
provided the maximum degree∆ = O(log n),
wheren is the number of variables. Here we
significantly improve this algorithm and derive
several results including a new approach based
on analyzing first derivatives ofF , which leads
to performance that is typically far superior and
yields a fully polynomial-time approximation
scheme (FPTAS) for attractive models without
any degree restriction. Further, the method ap-
plies to general (non-attractive) models, though
with no polynomial time guarantee in this case,
leading to the important result that approximat-
ing log of the Bethe partition function,logZB =
−minF , for a general model to additiveǫ-
accuracy may be reduced to a discrete MAP in-
ference problem. We explore an application to
predicting equipment failure on an urban power
network and demonstrate that the Bethe approx-
imation can perform well even when BP fails to
converge.

1 INTRODUCTION

Undirected graphical models, also termed Markov random
fields (MRFs), are flexible tools used in many areas includ-
ing speech recognition, systems biology and computer vi-
sion. A set of variables and a score function is specified
such that the probability of a configuration of variables is
proportional to the value of the score function, which typi-
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cally factorizes into sub-functions over subsets of variables
in a way that defines a topology on the variables.

Three central problems are:

1. To evaluate the partition functionZ, which is the sum
of the score function over all possible settings, and
hence is the normalization constant for the probability
distribution.

2. Marginal inference, which is computing the probabil-
ity distribution of a given subset of variables.

3. Maximum a posteriori (MAP) inference, which is the
task of identifying a setting of all the variables which
has maximum probability.

The first two problems are related (marginals are a ra-
tio of two partition functions). ComputingZ belongs to
the class of counting problems #P (Valiant, 1979). Fur-
ther, exact marginal inference is NP-hard (Cooper, 1990).
The MAP problem is typically easier, yet is still NP-hard
(Shimony, 1994), even to approximate (Abdelbar & Hedet-
niemi, 1998). Much work has focused on trying to find
good approximate solutions, or restricted domains where
exact solutions may be found efficiently. One popular
method is to use a message-passing algorithm called belief
propagation (Pearl, 1988), which returns an exact solution
in linear time inn, the number of variables, if the topology
of the model is a tree. If this method is applied to general
topologies, termed loopy belief propagation (LBP), results
are sometimes strikingly good (McEliece et al., 1998; Mur-
phy et al., 1999), though in general it may not converge at
all, and if it does, it may not be to a global optimum.

(Yedidia et al., 2001) showed a remarkable connection be-
tween LBP and an earlier approach from statistical physics
(Bethe, 1935; Peierls & Born, 1936), in that any fixed point
of LBP corresponds to a stationary point of a function of the
system, termed the Bethe free energyF . In fact, LBP can
be seen as an iteration of the fixed point equations of the
Bethe free energy. Variational approaches led to a better
understanding of this relationship, showing that the nega-
tive of the global minimum of the Bethe free energy is the
log of the Bethe partition functionZB. Thus,ZB should
yield a good approximation to the true partition function
Z, though this is not a formal result - there are cases where
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it performs poorly, typically when there are many short cy-
cles with strong edge interactions (Wainwright & Jordan,
2008,§ 4.1). Even then, however, it can still be remarkably
effective and in practice, LBP is widely used, often with
excellent results. One motivation for our algorithm is to al-
low exploration of the limits for whenZB performs well,
even when LBP or other local optimization approaches fail,
which has not previously been possible. We demonstrate
this application in Experiments§6.

Another interesting example is the demonstration (Chan-
drasekaran et al., 2011) that the Bethe approximation is
very useful to count independent sets of a graph. Further,
it was shown that if the shortest cycle cover conjecture of
Alon and Tarsi (Alon & Tarsi, 1985) is true, then the Bethe
approximation is very good indeed for a random 3-regular
graph.

Extensive analysis has focused on understanding condi-
tions under which LBP is guaranteed to converge to the
global optimum (Heskes, 2004; Mooij & Kappen, 2007;
Watanabe, 2011), but outside these restricted settings, un-
til recently, there were no polynomial time methods even
to approximateZB. One major area of study is the impor-
tant subclass of models which arebinary, i.e. each vari-
able takes one of just two possible values, andpairwise,
i.e. all score sub-functions are evaluated over at most two
variables. These play a key role in areas such as computer
vision, both directly and as critical subroutines in solving
more complex problems (Pletscher & Kohli, 2012). Fur-
ther, it is possible to convert a general MRF into an equiv-
alent binary pairwise model (Yedidia et al., 2001), though
potentially with a much enlarged state space.

An algorithm was introduced in (Shin, 2012) guaranteed to
return an approximately stationary point ofF in polyno-
mial time for such binary pairwise models, though with a
bound on the maximum degree,∆ = O(log n). (Weller &
Jebara, 2013a) then used a discretizing approach to derive a
polynomial-time approximation scheme (PTAS) forlogZB

for the significant subclass ofattractive1 binary pairwise
models, also with∆ = O(log n). Interestingly, (Ruozzi,
2012) recently proved thatZB ≤ Z for attractive models.
Similarly, for graphical models whose partition function is
the permanent of a non-negative matrix,ZB is recoverable
via convex optimization and, here too,ZB ≤ Z (Huang &
Jebara, 2009; Vontobel, 2010; Watanabe & Chertkov, 2010;
Gurvits, 2011). Otherwise, beyond trivial cases where the
graph is acyclic, efficiently computing or approximating
ZB remains an active research topic.

1An attractivemodel has all pairwise relationships of the type
that tend to pull adjacent variables toward the same value (see§2
for a more precise definition). Equivalent terms used areassocia-
tive, regular or ferromagnetic.

1.1 Contribution and Summary

We obtain important new results for binary pairwise MRFs
as described in the Abstract. We adopt ideas from (Weller
& Jebara, 2013a) but go significantly further to derive much
stronger results. The overall approach is to construct asuf-
ficient meshof discretized points in such a way that the
optimum mesh pointq∗ is guaranteed to haveF(q∗) within
ǫ of the true optimum. The new, first derivative approach,
generally results in a much coarser, yet still sufficient mesh,
and also admits adaptive methods to focus points in regions
whereF may vary rapidly. Separately, we also refine the
second derivative method of (Weller & Jebara, 2013a) to
derive a method that performs well for very smallǫ. We
then consider how best to solve the resulting discrete op-
timization problem, which may be framed as multi-label
MAP inference, and for which many techniques are avail-
able, some of which are efficient for sub-classes of prob-
lem.2

In §2, we establish notation and present various preliminary
results, then apply these in§3 to present our new approach
for mesh construction based on analyzing first derivatives
of F . This leads to much improved performance (often
by orders of magnitude), immediately admits general (non-
attractive) models, and in the attractive setting yields a FP-
TAS for models with no restriction on topology.

In §4 we revisit the second derivative approach of (Weller
& Jebara, 2013a). We show how this method can be refined
and extended to yield better performance and also to admit
non-attractive models, though for most cases of interest,
unlessǫ is very small, the method of§3 will be superior.

In §5, we discuss the derived discrete optimization prob-
lem, which may be viewed as a multi-label MAP inference
problem. In certain settings the problem is tractable, and
in general we mention several features that can make it
easier to find a satisfactory solution, or at least to bound
its value. Experiments are described in§6 demonstrating
practical application of the algorithm. Finally, we present
conclusions in§7.

1.1.1 Structure of the overall algorithm

Input: Parameters{θi,Wij} for a general binary pairwise
MRF (convert format using the reparameterization of§2.1
if required), and a desired accuracyǫ.

1. Preprocess by computing bounds{Ai, Bi} on the loca-
tions of minima (see§2.4).

2. Construct a sufficient mesh using one of the methods in
this paper. Indeed, all approaches are fast, so several
may be used, then the most efficient mesh selected.

2ComputingZB is at least PPAD or PLS-hard in general since
it not only requires a fixed point but also the global minimizer
(Shin, 2013; Daskalakis & Papadimitriou, 2011).
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3. Attempt to solve the resulting multi-label MAP inference
problem, see§5.

4. If unsuccessful, but a strongly persistent partial solution
was obtained, then improved{Ai, Bi} may be gener-
ated (see§5.2.1), repeat from 2.

At anytime, one may stop and compute bounds onF , see
§5.2.

1.2 Related work

Methods such as CCCP (Yuille, 2002) or UPS (Teh &
Welling, 2002) are guaranteed to converge to a local mini-
mum of the Bethe free energy, but this may be far from the
global optimum. In earlier work, a fully polynomial-time
randomized approximation scheme (FPRAS) for the true
partition function was derived (Jerrum & Sinclair, 1993),
but only when singleton potentials are uniform (i.e. a uni-
form external field) and the resulting runtime is high at
O(ǫ−2m3n11 logn). It was recently shown (Heinemann
& Globerson, 2011) that models exist such that the true
marginal probability cannot possibly be the location of a
minimum of the Bethe free energy. Our work demon-
strates an interesting connection between MAP inference
techniques (NP-hard) and estimating the partition function
Z (#P-hard). Recently (Hazan & Jaakkola, 2012) showed a
different connection by using MAP inference on randomly
perturbed models to approximate and boundZ.

2 NOTATION & PRELIMINARIES

Our notation is similar to (Weller & Jebara, 2013a) and
(Welling & Teh, 2001). We focus on a binary pairwise
model withn variablesX1, . . . , Xn ∈ B = {0, 1} and
graph topology(V , E) with m = |E|; that isV contains
nodes{1, . . . , n} where i corresponds toXi, and E ⊆
V × V contains an edge for each pairwise score relation-
ship. LetN(i) be the neighbors ofi. Letx = (x1, . . . , xn)
be one particular configuration, and introduce the notion of
energyE(x) through3

p(x) =
e−E(x)

Z
, E = −

∑

i∈V
θixi −

∑

(i,j)∈E

Wijxixj , (1)

where the partition functionZ =
∑

x e
−E(x) is the nor-

malizing constant.

Given any joint probability distributionp(X1, . . . , Xn)
over all variables, the (Gibbs) free energy is defined as
FG(p) = Ep(E) − S(p), whereS(p) is the (Shannon)

3The probability or score function can always be reparameter-
ized in this way, with finiteθi andWij terms providedp(x) >
0 ∀x, which is a requirement for our approach. There are rea-
sonable distributions where this does not hold, i.e. distributions
where∃x : p(x) = 0, but this can often be handled by assigning
such configurations a sufficiently small positive probability ǫ.

entropy of the distribution. Using variational methods, a
remarkable result is easily shown (Wainwright & Jordan,
2008): minimizingFG over the set of all globally valid
distributions (termed themarginal polytope) yields a value
of − logZ, exactly at the true marginal distribution, given
in (1).

Minimizing FG is, however, computationally intractable,
hence the approach of minimizing the Bethe free energy
F makes two approximations: (i) the marginal polytope is
relaxed to thelocal polytope, where we require onlylo-
cal consistency, that is we deal with apseudo-marginal
distribution q, which in our context may be considered
{qi = q(Xi = 1) ∀i ∈ V , µij = q(xi, xj) ∀(i, j) ∈ E}
subject toqi =

∑

j µij ∀i ∈ V , j ∈ N(i); and (ii) the
entropyS is approximated by the Bethe entropySB =
∑

(i,j)∈E Sij +
∑

i∈V(1 − di)Si, whereSij is the entropy
of µij , Si is the entropy of the singleton distribution and
di = |N(i)| is the degree ofi. We assume the model is con-
nected sodi ≥ 1 ∀i (else each component may be analyzed
independently), and takex log x = 0 for x = 0. Hence, the
global optimum of the Bethe free energy,

F(q) = Eq(E)− SB(q) (2)

=
∑

(i,j)∈E

−
(

Wijξij + Sij(qi, qj)
)

+
∑

i∈V

(

− θiqi + (zi − 1)Si(qi)
)

,

is achieved by minimizingF over the local polytope, with
ZB defined s.t. the result obtained equals− logZB. See
(Wainwright & Jordan, 2008) for details.

Considering the local polytope, givenqi andqj , we must
have

µij =

(

1 + ξij − qi − qj qj − ξij
qi − ξij ξij

)

(3)

for someξij ∈ [0,min(qi, qj)], whereµij(a, b) = q(Xi =
a,Xj = b). Letαij = eWij − 1. αij = 0⇔Wij = 0 may
be assumed not to occur else the edge(i, j) may be deleted.
αij has the same sign asWij , if positive then the edge(i, j)
is attractive; if negative then the edge isrepulsive. The
MRF is attractive if all edges are attractive. As in (Welling
& Teh, 2001), one can solve forξij explicitly in terms of
qi andqj by minimizingF , leading to a quadratic equation
with real roots,

αijξ
2
ij − [1 + αij(qi + qj)]ξij + (1 + αij)qiqj = 0. (4)

Forαij > 0, ξij(qi, qj) is the lower root, forαij < 0 it is
the higher. Collecting the pairwise terms ofF from (2) for
one edge, define

fij(qi, qj) = −Wijξij(qi, qj)− Sij(qi, qj). (5)

Thus we may consider the minimization ofF over q =
(q1, . . . , qn) ∈ [0, 1]n.
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We are interested indiscretized pseudo-marginalswhere
for eachqi, we restrict its possible values to a discrete mesh
Mi of points in[0, 1], which may be spaced unevenly. We
allow Mi 6= Mj. Write M for the entire mesh. Let
Ni = |Mi| and defineN =

∑

i∈V Ni andΠ =
∏

i∈V Ni,
the sum and product respectively of the number of mesh
points in each dimension. Let̂q be the location of a global
optimum ofF . We say that a mesh constructionM(ǫ) is
sufficientif, givenǫ > 0, it can be guaranteed that∃ a mesh
pointq∗ ∈

∏

i∈VMi s.t.F(q∗)−F(q̂) ≤ ǫ.

We shall make use of the standard sigmoid function,
σ(x) = 1/(1 + exp(−x)) for various bounds.

2.1 Input model specification

Throughout this paper, we assume the reparameterization
in (1) for all analysis, but a different specification is more
natural for input models avoiding bias. We assume an in-
put model is given with singleton termsθi as in (1), but
with pairwise energy terms instead given by−Wij

2 xixj −
Wij

2 (1−xi)(1−xj). With this format, varyingWij simply
alters the degree of push/pull betweeni andj, without also
changing the probability that each variable will be 0 or 1,
as is the case with the format of (1). We assume maximum
possible valuesW andT are known with|θi| ≤ T ∀i ∈ V ,
and|Wij | ≤ W ∀(i, j) ∈ E . The required transformation
to convert from input model to the format of (1), simply
takesθi ← θi −

∑

j∈N(i) Wij/2, leavingWij unaffected.

2.2 Submodularity

In our context, a pairwise multi-label function on a set
of ordered labelsXij = {1, . . . ,Ki} × {1, . . . ,Kj} is
submodulariff ∀x, y ∈ Xij , f(x ∧ y) + f(x ∨ y) ≤
f(x) + f(y), where forx = (x1, x2) andy = (y1, y2),
(x ∧ y) = (min(x1, y1),min(x2, y2)) and (x ∨ y) =
(max(x1, y1),max(x2, y2)). For binary variables, sub-
modular energy is equivalent to being attractive.

The key property for us is that if all pairwise cost functions
fij overMi×Mj from (5) are submodular, then the global
discretized optimum may be found efficiently using graph
cuts (Schlesinger & Flach, 2006).

Theorem 1(Submodularity for any discretization of an at-
tractive model, (Weller & Jebara, 2013a) Theorem 8, (Korc
et al., 2012)). If a binary pairwise MRF is submodular
on an edge(i, j), i.e. Wij > 0, then the multi-label
discretized MRF for any meshM is submodular for that
edge. In particular, if the MRF is fully attractive, i.e.
Wij > 0 ∀(i, j) ∈ E , then the multi-label discretized MRF
is fully submodular for any discretization. Proof in (Weller
& Jebara, 2013a) .

2.3 Flipping variables

As in (Weller & Jebara, 2013a) , we use the techniques
below for flipping variables, i.e. we can consider a new
model with variables{X ′

i}, whereX ′
i = 1 −Xi for some

selection ofi. Flipping a variable flips the parity of all
its incident edges so attractive↔ repulsive. Flipping both
ends of an edge leaves its parity unchanged.

2.3.1 Flipping all variables

Consider a new model with variables{X ′
i = 1 − Xi, i =

1, . . . , n} and the same edges. Instead ofθi andWij pa-
rameters, let those of the new model beθ′i andW ′

ij . Iden-
tify values such that the energies of all states are maintained
up to a constant4:

E = −
∑

i∈V
θiXi −

∑

(i,j)∈E

WijXiXj

= const−
∑

i∈V
θ′i(1−Xi)−

∑

(i,j)∈E

W ′
ij(1 −Xi)(1 −Xj).

Matching coefficients gives

W ′
ij = Wij , θ

′
i = −θi −

∑

j∈N(i)

Wij . (6)

If the original model was attractive, so too is the new.

2.3.2 Flipping some variables

Sometimes it is helpful to flip only a subsetR ⊆ V of the
variables. This can be useful, for example, to make the
model locally attractive around a variable, which can al-
ways be achieved by flipping just those neighbors to which
it has a repulsive edge. LetX ′

i = 1 − Xi if i ∈ R, else
X ′

i = Xi for i ∈ S, whereS = V \ R. Let Et = {edges
with exactlyt ends inR} for t = 0, 1, 2.

As in 2.3.1, solving forW ′
ij andθ′i such that energies are

unchanged up to a constant,

W ′
ij =

{

Wij (i, j) ∈ E0 ∪ E2,
−Wij (i, j) ∈ E1

θ′i =

{

θi +
∑

(i,j)∈E1
Wij i ∈ S,

−θi −
∑

(i,j)∈E2
Wij i ∈ R.

(7)

Lemma 2. Flipping variables changes affected pseudo-
marginal matrix entries’ locations but not values.F is un-
changed up to a constant, hence the locations of stationary
points are unaffected. (Proof in (Weller & Jebara, 2013a))

4Any constant difference will be absorbed into the partition
function and leave probabilities unchanged.
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2.4 Preliminary bounds

We use the following results from (Weller & Jebara,
2013a).

Lemma 3 ((Weller & Jebara, 2013a) Lemma 2). αij ≥
0⇒ ξij ≥ qiqj , αij ≤ 0⇒ ξij ≤ qiqj

Theorem 4 ((Weller & Jebara, 2013a) Theorem 4). For
general edge types (associative or repulsive), letWi =
∑

j∈N(i):Wij>0 Wij , Vi = −∑j∈N(i):Wij<0 Wij . At any
stationary point of the Bethe free energy,σ(θi−Vi) ≤ qi ≤
σ(θi +Wi).

For the efficiency of our overall approach, it is very de-
sirable to tighten the bounds on locations of minima ofF
since this both reduces the search space and allows a lower
density of discretizing points in our mesh. This may be
achieved efficiently by running either of the following two
algorithms: Bethe bound propagation (BBP) from (Weller
& Jebara, 2013a), or using the approach from (Mooij &
Kappen, 2007) which we term MK. Either method can
achieve striking results quickly, though MK is our preferred
method5 - it considers cavity fields around each variable
and determines the range of possible beliefs after iterating
LBP, starting from any initial values; since any minimum
of F corresponds to a fixed point of LBP (Yedidia et al.,
2001), this bounds all minima.

Let the lower bounds obtained forqi and1−qi respectively
beAi andBi so thatAi ≤ qi ≤ 1 − Bi, and let theBethe
box be the orthotope given by

∏

i∈V [Ai, 1 − Bi]. Define
ηi = min(Ai, Bi), i.e. the closest thatqi can come to the
extreme values of0 or 1.

Lemma 5 (Upper bound forξij for an attractive edge,
(Weller & Jebara, 2013a) Lemma 6). If αij > 0, then

ξij − qiqj ≤ αijm(1−M)
1+αij

, wherem = min(qi, qj) and

M = max(qi, qj).

2.5 Derivatives ofF

In (Welling & Teh, 2001), first partial derivatives of the
Bethe free energy are derived as

∂F
∂qi

= −θi + logQi, (8)

whereQi =
(1 − qi)

di−1

qdi−1
i

∏

j∈N(i)(qi − ξij)
∏

j∈N(i)(1 + ξij − qi − qj)
.

Theorem 6 (Second derivatives for each edge, (Weller &
Jebara, 2013a) Theorem 7). For any edge(i, j), for any
αij ,

∂2fij
∂q2i

=
1

Tij
qj(1− qj),

∂2fij
∂q2j

=
1

Tij
qi(1− qi)

5Both BBP and MK are anytime methods that converge
quickly, and can be implemented such that each iteration runs in
O(m) time. MK takes a little longer but can yield tighter bounds.

∂2fij
∂qi∂qj

=
∂2fij
∂qj∂qi

=
1

Tij
(qiqj − ξij),

whereTij = qiqj(1− qi)(1 − qj)− (ξij − qiqj)
2 (9)

≥ 0 with equality iffqi or qj ∈ {0, 1}.

Incorporating all singleton terms gives the following result.

Theorem 7(All terms of the Hessian, see (Weller & Jebara,
2013a)§4.3 and Lemma 9). LetH be the Hessian ofF for
a binary pairwise model, i.e.Hij = ∂2F

∂qi∂qj
, anddi be the

degree of variableXi, then

Hii = −
di − 1

qi(1 − qi)
+
∑

j∈N(i)

qj(1− qj)

Tij
≥ 1

qi(1− qi)
,

Hij =

{

qiqj−ξij
Tij

(i, j) ∈ E
0 (i, j) /∈ E , i 6= j.

3 NEW APPROACH

We develop a new approach to constructing a sufficient
meshM by analyzing bounds on the first derivatives of
F . This yields several attractive features:

• For attractive models, we obtain a FPTAS with worst
case runtimeO(ǫ−3n3m3W 3) and no restriction on
topology, as was required in (Weller & Jebara, 2013a).

• Our sufficient mesh is typically dramatically coarser
than the earlier method of (Weller & Jebara, 2013a),
leading to a much simpler subsequent MAP prob-
lem unlessǫ is very small. Here, the sum of the
number of discretizing points in each dimension,
N = O

(

nmW
ǫ

)

. For comparison, the earlier method,
even after our improvements in§4, forms a mesh with
N = O

(

ǫ−1/2n7/4∆3/4 exp
[

1
2 (W (1 + ∆/2) + T )

])

.
As an example, for the model in the experiments
of §6, our new approach with the adaptive minsum
method (see§3.1.2), yields a mesh withN that is 8
orders of magnitude smaller than the earlier method.

• Our approach immediately handles a general model with
both attractive and repulsive edges. Hence approx-
imating logZB may be reduced to a discrete multi-
label MAP inference problem. This is valuable due to
the availability of many MAP techniques. We discuss
this in §5, where we consider when the MAP prob-
lem is tractable and examine approaches which may
be tried in general.

First assume we have a model which is fully attractive
around variableXi, i.e. Wij > 0 ∀j ∈ N(i). From (8)
and Lemma 3, we obtain

∂F
∂qi

= −θi + logQi ≤ −θi + log
qi

1− qi
. (10)
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Flip all variables (see§2.3.1). Write′ for the parameters of
the new flipped model, which is also fully attractive, then
using (6) and (10),

∂F ′

∂q′i
≤ −θ′i + log

q′i
1− q′i

⇔ −θi −Wi + log
qi

1− qi
≤ ∂F

∂qi
.

Combining this with (10) yields the sandwich result

−θi −Wi + log
qi

1− qi
≤ ∂F

∂qi
≤ −θi + log

qi
1− qi

.

Now generalize to consider the case thati has some neigh-
borsR to which it is adjacent by repulsive edges. In this
case, flip those nodesR (see§2.3.2) to yield a model,
which we denote by′′, which is fully attractive aroundi,
hence we may apply the above result. By (7) we have
θ′′i = θi−Vi, and usingW ′′

i = Wi +Vi, we obtain that for
a general model,

−θi −Wi + log
qi

1− qi
≤ ∂F

∂qi
≤ −θi + Vi + log

qi
1− qi

.

(11)

This bounds each first derivative∂F∂qi within a range of
width Vi + Wi =

∑

j∈N(i) |Wij |, which will be sufficient
for the main theoretical result to come in (15). We take
the opportunity, however, to narrow this range, thereby im-
proving the result in practice, by using just one step of the
belief propagation algorithm (BBP) of (Weller & Jebara,
2013a).

Following the derivation of BBP in the Supplement of
(Weller & Jebara, 2013a), where better bounds are derived
on theqi location of stationary points by taking account of
[Aj , 1−Bj ] bounds on neighborsj ∈ N(i), we may refine
the result of (11) to yield

fL
i (qi) ≤

∂F
∂qi
≤ fU

i (qi), where

fL
i (qi) = −θi −Wi + logUi + log

qi
1− qi

fU
i (qi) = −θi + Vi − logLi + log

qi
1− qi

. (12)

Li, Ui are each> 1 with logLi + logUi ≤ Vi +Wi. They
are computed asLi =

∏

j∈N(i) Lij, Ui =
∏

j∈N(i) Uij ,

with Lij =

{

1 +
αijAj

1+αij(1−Bi)(1−Aj)
if Wij > 0

1 +
αijBj

1+αij(1−Bi)(1−Bj)
if Wij < 0

,

Uij =

{

1 +
αijBj

1+αij(1−Ai)(1−Bj)
if Wij > 0

1 +
αijAj

1+αij(1−Ai)(1−Aj)
if Wij < 0

.

See Figure 1 for an example. We make the following ob-
servations:

• The upper bound is equal to the lower bound plus the
constantDi = Vi +Wi − logLi − logUi ≥ 0.
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i
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Figure 1: Upper and Lower Bounds for∂F∂qi . Solid blue
curves show worst case bounds (11) as functions ofqi,
and are different by a constantVi +Wi =

∑

j∈N(i) |Wij |.
Dashed red curves show the upperfU

i (qi) and lowerfL
i (qi)

bounds (12) after being lowered bylogLi and raised
by logUi respectively, which incorporate the information
from the bounds of neighboring variables. All bounding
curves are strictly monotonic. The Bethe box region forqi
must lie within the shaded region demarcated by vertical
red dashed lines, but we may have better bounds available,
e.g. from MK, as shown byAi and1−Bi.

• The bound curves are monotonically increasing withqi,
ranging from−∞ to+∞ asqi ranges from0 to 1.

• A necessary condition to be within the Bethe box is
that the upper bound is≥ 0 and the lower bound is
≤ 0. Hence, anywhere within the Bethe box, we must
have bounded derivative,| ∂F∂qi | ≤ Di. BBP gener-
ates{[Ai, 1−Bi]} bounds by iteratively updating with
Li, Ui terms. In general, however, we may have better
bounds from any other method, such as MK, which
lead to higherLi andUi parameters and lowerDi.

F is continuous on[0, 1]n and differentiable everywhere in
(0, 1)n with partial derivatives satisfying (12).fL

i (qi) and
fU
i (qi) are continuous and integrable. Indeed, using the

notation
[

φ(x)
]x=b

x=a
= φ(b)− φ(a),

∫ b

a

C+log
qi

1− qi
dqi =

[

Cqi+qi log qi+(1−qi) log(1−qi)
]qi=b

qi=a

(13)
for 0 ≤ a ≤ b ≤ 1, which relates to the binary entropy
functionH(p) = −p log p− (1 − p) log(1 − p), recall the
definition ofF . We remark that although∂F∂qi tends to−∞
or +∞ asqi tends to0 or 1, the integral converges (taking
0 log 0 = 0).
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Hence ifq̂ = (q̂1, . . . , q̂n) is the location of a global mini-
mum, then for anyq = (q1, . . . , qn) in the Bethe box,

F(q)−F(q̂) ≤
∑

i:q̂i≤qi

∫ qi

q̂i

fU
i (qi)dqi+

∑

i:qi<q̂i

∫ q̂i

qi

−fL
i (qi)dqi.

(14)

To construct a sufficient mesh, a simple initial bound relies
on | ∂F∂qi | ≤ Di. If mesh pointsMi are chosen s.t. in di-
mensioni there must be a pointq∗ within γi of a global
minimum (which can be achieved using a mesh width in
each dimension of2γi), then by settingγi = ǫ

nDi
, we ob-

tainF(q∗)−F(q̂) ≤∑i Di
ǫ

nDi
= ǫ. It is easily seen that

Ni ≤ 1 + ⌈ 1
2γi
⌉, hence the total number of mesh points,

N =
∑

i∈V Ni, satisfies

N ≤ 2n+
n

2ǫ

∑

i

Di ≤ 2n+
n

ǫ

∑

(i,j)∈E

|Wij |

= O





n

ǫ

∑

(i,j)∈E

|Wij |



 = O

(

nmW

ǫ

)

, (15)

sinceDi ≤ Vi + Wi =
∑

j∈N(i) |Wij |. Here W =

max(i,j)∈E |Wij | andm = |E| is the number of edges.

If the initial model is fully attractive, then by Theo-
rem 1 we obtain a submodular multi-label MAP problem
which is solvable using graph cuts with worst case runtime
O(N3) = O(ǫ−3n3m3W 3) (Schlesinger & Flach, 2006;
Greig et al., 1989; Goldberg & Tarjan, 1988).

Note from the first expression in (15) that if we have in-
formation on individual edge weights then we have a better
bound using

∑

(i,j)∈E |Wij | rather than justmW .

For comparison, the earlier second derivative approach of
(Weller & Jebara, 2013a) has runtimeO(ǫ−

3
2n6Σ

3
4Ω

3
2 ),

where, even using the improved method in§4 here,Ω =
O(∆eW (1+∆/2)+T ). Unlessǫ is very small, the new first
derivative approach is typically dramatically more efficient
and more useful in practice. Further, it naturally handles
both attractive and repulsive edge weights in the same way.

3.1 Refinements, adaptive methods

Since the resulting multi-label MAP inference problem is
NP-hard in general (Shimony, 1994), it is helpful to min-
imize its size. As noted above, settingγi = ǫ

nDi
, which

we term thesimple method, yields a sufficient mesh, where
| ∂F∂qi | ≤ Di = Vi+Wi−logLi−logUi. However, since the

bounding curves are monotonic withfU
i ≥ 0 andfL

i ≤ 0,
a better bound for the magnitude of the derivative is often
available by settingDi = max{fU

i (1−Bi),−fL
i (Ai)}.

3.1.1 The minsum method

We defineNi = the number of mesh points in dimension
i, with sumN =

∑

i∈V Ni and productΠ =
∏

i∈V Ni.

For a fully attractive model, the resulting MAP problem
may be solved in timeO(N3) by graph cuts (Theorem 1,
(Schlesinger & Flach, 2006; Greig et al., 1989; Goldberg
& Tarjan, 1988)), so it is sensible to minimizeN . In other
cases, however, it is less clear what to minimize. For ex-
ample, a brute force search over all points would take time
Θ(Π).

Define the spread of possible values in dimensioni asSi =
1−Bi − Ai and noteNi = 1 + ⌈ Si

2γi
⌉ is required to cover

the whole range. To minimizeN while ensuring the mesh
is sufficient, consider the LagrangianL =

∑

i∈V
Si

2γi
−

λ(ǫ−
∑

i∈V γiDi), whereDi is set as in the simple method
(§3.1). Optimizing gives

γi =
ǫ

∑

j∈V
√

SjDj

√

Si

Di
,with N≤ 2n+

1

2ǫ

(

∑

i∈V

√

SiDi

)2

(16)
which we term theminsum method. Note Di ≤ diW

wheredi is the degree ofXi, hence
(
∑

i∈V

√
SiDi

)2 ≤
W
(
∑

i∈V

√
di
)2

. By Cauchy-Schwartz and the handshake

lemma,
(
∑

i∈V

√
di
)2 ≤ n

∑

i∈V di = 2mn, with equal-
ity iff the di are constant, i.e. the graph is regular.

If insteadΠ is minimized, rather thanN , a similar argu-
ment shows that the simple method (§3.1) is optimal.

3.1.2 Adaptive methods

The previous methods rely on one boundDi for | ∂F∂qi | over
the whole range[Ai, 1 − Bi]. However, we may increase
efficiency by using local bounds to vary the mesh width
across the range. A bound on the maximum magnitude of
the derivative over any sub-range may be found by check-
ing just−fL

i at the lower end andfU
i at the upper end.

This may be improved by using the exact integral as in (14).
First, constant proportionski > 0 should be chosen with
∑

i ki = 1. Next, the first (lowest) mesh pointγi
1 ∈ Mi

should be set s.t.
∫ γi

1

Ai
fU
i (qi)dqi = kiǫ. This will ensure

thatγi
1 covers all points to its left in the sense thatF [qi =

γi
1] − F [qi ∈ [Ai, γ

i
1]] ≤ kiǫ where all other variables

qj , j 6= i, are held constant at any values within the Bethe
box.γi

1 also covers all points to its right up to what we term

its reach, i.e. the pointri1 s.t.
∫ ri1
γi
1

−fL
i (qi)dqi = kiǫ. Next,

γi
2 is chosen as before, usingri1 as the left extreme rather

thanAi, and so on, until the final mesh point is computed
with reach≥ 1 − Bi. This yields an optimal mesh for the
choice of{ki}.
If ki = 1

n , we achieve an optimizedadaptive simple

method. Ifki =
√
SiDi

∑

j∈V

√
SjDj

, we achieve anadaptive

minsummethod. For many problems, this adaptive min-
sum method will be the most efficient.

Integrals are easily computed using (13). To our knowl-
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edge, computing optimal points{γi
s} is not possible ana-

lytically, but each may be found with high accuracy in just
a few iterations using a search method, hence total time to
compute the mesh isO(N), which is negligible compared
to solving the subsequent MAP problem.

4 REVISITING THE SECOND
DERIVATIVE APPROACH

We review the second derivative approach used in (Weller
& Jebara, 2013a) (see§5 there). As here, the possible loca-
tion of a global minimum̂q was first bounded in the Bethe
box given by

∏

i∈V [Ai, 1 − Bi]. Next an upper boundΛ
was derived on the maximum possible eigenvalue of the
HessianH of F anywhere within the Bethe box, where
it was required that all edges be attractive. Then a mesh
of constant width in every dimension was introduced s.t.
the nearest mesh pointq∗ to q̂ was at mostγ away in each
dimension. Hence theℓ2 distanceδ satisfiesδ2 ≤ nγ2

and by Taylor’s theorem,F (q∗) ≤ F (q̂) + 1
2Λδ

2. Λ was
computed by bounding the maximum magnitude of any el-
ement ofH . Considering Theorem 7, this involves sepa-
rate analysis of diagonalHii terms, which are positive and
were bounded above by the termb; and edgeHij terms,
which are negative for attractive edges, whose magnitude
was bounded above bya. ThenΩ was set asmax(a, b),
andΣ as the proportion of non-zero entries inH . Finally,
Λ ≤

√

tr(HTH) ≤
√
Σn2Ω2 = nΩ

√
Σ.

4.1 Improved bound for an attractive model

We improve the upper bound forΛ by improving thea
bound for attractive edges to deriveã, a better upper bound
on−Hij . Essentially, a more careful analysis allows a po-
tentially small term in the numerator and denominator to be
canceled before bounding. Writinḡη = mini∈V ηi(1−ηi),
i.e. the closest that any dimension can come to 0 or 1, the
result is that

−Hij ≤
(

αij

1 + αij

)

/

η̄

(

1−
(

αij

1 + αij

)2
)

(17)

= O(eW (1+∆/2)+T ).

Thus, ã = O(eW (1+∆/2)+T ) which compares favorably
to the earlier bound in (Weller & Jebara, 2013a) , where
a = O(eW (1+∆)+2T ). Recall b = O(∆eW (1+∆/2)+T )
and Ω = max(a, b), so using the new̃a bound, now
Ω = O(∆eW (1+∆/2)+T ). Details and derivation are in
the supplement.

4.2 Extending the second derivative approach to a
general (non-attractive) model

Using flipping arguments from§2.3, we are able to extend
the method of (Weller & Jebara, 2013a) to apply to general

models. Interestingly, the theoretical bounds derived for
Ω = max(a, b) take exactly the same form as for the purely
attractive case, except that now−W ≤Wij ≤W , whereas
previously it was required that0 ≤ Wij ≤ W . Since it is
a second derivative approach, the mesh size (measured by
N , the total number of points summed over the dimensions)
grows asO(ǫ−1/2) rather than asO(ǫ−1) in the new first
derivative approach. In practice, however, particularly for
harder cases wheren andW are above small values, unless
ǫ is very small, the method of§3 is much more efficient.
Details and derivations are in the supplement.

5 RESULTING MULTI-LABEL MAP

After computing a sufficient mesh, it remains to solve the
multi-label MAP inference problem on a MRF with the
same topology as the initial model, where eachqi takes val-
ues inMi. In general, this is NP-hard (Shimony, 1994).

5.1 Tractable cases

If it happens that all cost functions are submodular (as is
always the case if the initial model is fully attractive by
Theorem 1), then as already noted, it may be solved effi-
ciently using graph cut methods, which rely on solving a
max flow/min cut problem on a related graph, with worst
case runtimeO(N3) (Schlesinger & Flach, 2006; Greig
et al., 1989; Goldberg & Tarjan, 1988). Using the Boykov-
Kolmogorov algorithm (Boykov & Kolmogorov, 2004),
performance is typically much faster, sometimes approach-
ingO(N). This submodular setting is the only known class
of problem which is solvable for any topology.

Alternatively, the topological restriction of bounded tree-
width allows tractable inference (Pearl, 1988). Further, un-
der mild assumptions, this was shown to be the only re-
striction which will allow efficient inference for any cost
functions (Chandrasekaran et al., 2008). We note that if
the problem has bounded tree-width, then so too does the
original binary pairwise model, hence exact inference (to
yield the true marginals or the true partition functionZ) on
the original model is tractable, making our approximation
result less interesting for this class. In contrast, although
MAP inference is tractable for any attractive binary pair-
wise model, marginal inference and computingZ are not
(Jerrum & Sinclair, 1993).

A recent approach reducing MAP inference to identifying
a maximum weight stable set in a derived weighted graph
((Jebara, 2013), (Weller & Jebara, 2013b)) shows promise,
allowing efficient inference if the derived graph is perfect.
Further, testing if this graph is perfect can be performed
in polynomial time ((Jebara, 2013), (Chudnovsky et al.,
2005)).
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5.2 All other cases

Many different methods are available, see (Kappes et al.,
2013) for a recent survey. Some, such as dual approaches,
may provide a helpful bound even if the optimum is not
found. Indeed, a LP relaxation will run in polynomial time
and return an upper bound onlogZB that may be useful.
A lower bound may be found from any discrete point, and
this may be improved using local search methods. Note
also that BBP boundsqi ∈ [Ai, 1 − Bi] apply for all the
Bethe box, but for a particular value ofqi say, then the BBP
approach provides tighter bounds on each of its neighbors
j ∈ N(i), which may be helpful for pruning the solution
space.

5.2.1 Persistent partial optimization approaches

MQPBO (Kohli et al., 2008) and Kovtun’s method (Kov-
tun, 2003) are examples of this class. Both consider LP-
relaxations and run in polynomial time. In our context,
the output consists of ranges (which in the best case could
be one point) of settings for some subset of the vari-
ables. If any such ranges are returned, the strong per-
sistence property ensures thatany MAP solution satisfies
the ranges. Hence, these may be used to update{Ai, Bi}
bounds (padding the discretized range to the full continu-
ous range covered by the end points if needed), compute a
new, smaller, sufficient mesh and repeat until no improve-
ment is obtained.

6 EXPERIMENTS

As a first step toward applying our algorithm to explore
the usefulness of the global optimum of the Bethe approx-
imation, here we consider one setting where LBP fails to
converge, yet still we achieve reasonable results.

We aim to predict transformer failures in a power network
(Rudin et al., 2012). Since the real data is sensitive, our
experiments use synthetic data. LetXi ∈ {0, 1} indicate
if transformeri has failed or not. Each transformer has a
probability of failure on its own which is represented by
a singleton potentialθi. However, when connected in a
network, a transformer can propagate its failure to nearby
nodes (as in viral contagion) since the edges in the network
form associative dependencies. We assume that homoge-
neous attractive pairwise potentials couple all transformers
that are connected by an edge, i.e.Wij = W ∀(i, j) ∈ E .
The network topology creates a Markov random field spec-
ifying the distributionp(X1, . . . , Xn). Our goal is to com-
pute the marginal probability of failure of each transformer
within the network (not simply in isolation as in (Rudin
et al., 2012)). Since recoveringp(Xi) is hard, we estimate
Bethe pseudo-marginalsqi = q(Xi = 1) through our algo-
rithm, which emerge as theargmin when optimizing the
Bethe free energy.

A simulated sub-network of 55 connected transformers
with average degree 2 was generated using a random pref-
erential attachment model. Typical settings ofθi = −2 and
W = 4 were specified (using the input model specification
of §2.1). We attempted to run BP using the libDAI pack-
age (Mooij, 2010) but were unable to achieve convergence,
even with multiple initial values, using various sequential
or parallel settings and with damping. However, running
our algorithm withǫ = 1 achieved reasonable results as
shown in Table 1, where true values were obtained with the
junction tree algorithm.

ǫ = 1 PTAS forlogZB Error vs true value
Meanℓ1 error of single marginals 0.003
Log-partition function 0.26

Table 1: Results on simulated power network

General folklore has suggested that the Bethe approxima-
tion is poor when BP fails to converge, thus this initial re-
sult suggests further work, which is now feasible using our
algorithm.

7 DISCUSSION & FUTURE WORK

To our knowledge, we have derived the firstǫ-
approximation algorithm forlogZB for a general binary
pairwise model. The approach is useful in practice, and
much more efficient than the previous method of (Weller
& Jebara, 2013a), though can take a long time to run for
large, densely connected problems or when coupling is
high. From experiments run, we note that theǫ bounds ap-
pear to be close to tight since we have found models where
the optimum returned when run withǫ = 1 is more than
0.5 different to that forǫ = 0.1. When applied to attractive
models, we guarantee a FPTAS with no degree restriction.

Future work includes further improving the efficiency of
the mesh, considering how it should be selected to simplify
the subsequent discrete optimization problem, and explor-
ing applications. Interesting avenues include using it as a
subroutine in a dual decomposition approach to optimize
over a tighter relaxation of the marginal polytope, and it
provides the opportunity to examine rigorously the perfor-
mance of other Bethe approaches that typically run more
quickly, such as LBP or CCCP (Yuille, 2002), against the
true Bethe global optimum.
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APPENDIX: SUPPLEMENTARY MATERIAL FOR APPROXIMATING THE BE THE
PARTITION FUNCTION

Here we provide further details and proofs of several of the results in the main paper, using the original numbering.

4 REVISITING THE SECOND DERIVATIVE APPROACH

4.1 Improved bound for an attractive model

In this section, we improve the upper bound forΛ by improving thea bound for attractive edges to deriveã, an im-
proved upper bound on−Hij . Essentially, a more careful analysis allows a potentiallysmall term in the numerator and
denominator to be canceled before bounding.

Using Theorem 7, equation (9) and Lemma 5,

−Hij = (ξij − qiqj)
1

Tij

≤ m(1−M)αij

1 + αij

1

m(1−M)

[

(1−m)M −m(1−M)
(

αij

1+αij

)2
]

=

(

αij

1 + αij

)

1

(1 −m)M −m(1−M)
(

αij

1+αij

)2 (18)

wherem = min(qi, qj),M = max(qi, qj). Now we use the following result.

Lemma 8. For anyk ∈ (0, 1), let y = minqi∈[Ai,1−Bi],qj∈[Aj ,1−Bj](1−m)M −m(1−M)k, then

y =







































BiAj − (1 −Bi)(1 −Aj)k if (1−Bi) ≤ Aj i range≤ j range

(1− k)min{Aj(1 −Aj), Bi(1−Bi)} if Ai ≤ Aj ≤ 1−Bi ≤ 1−Bj ranges overlap, i lower

(1− k)min{Aj(1 −Aj), Bj(1−Bj)} if Ai ≤ Aj ≤ 1−Bj ≤ 1−Bi j range⊆ i range

(1− k)min{Ai(1−Ai), Bi(1−Bi)} if Aj ≤ Ai ≤ 1−Bi ≤ 1−Bj i range⊆ j range

(1− k)min{Ai(1−Ai), Bj(1 −Bj)} if Aj ≤ Ai ≤ 1−Bj ≤ 1−Bi ranges overlap, j lower

BjAi − (1 −Bj)(1−Ai)k if (1−Bj) ≤ Ai j range ≤ i range.

Proof. The minimum is achieved by minimizing the larger and maximizing the smaller ofqi andqj . The result follows for
cases where their ranges are disjoint. If ranges overlap, then the minimum is achieved at someqi = qj in the overlap, with
valueqi(1− qi)(1 − k), which is concave and minimized at an extreme of the overlap range.

Lemma 8 is useful in practice, and should be used to computeã = max(i,j)∈E of the bound above. To analyze the
theoretical worst case, it is straightforward to see the corollary thaty ≥ (1 − k)η̄, whereη̄ = mini∈V ηi(1 − ηi). This
bound can be met, for example, if all ranges coincide. Hence,from (18), and with the reasoning for1η̄ from (Weller &

Jebara, 2013a)§5.3, where it is shown that 1
ηi(1−ηi)

= O(eT+∆W/2), and usingαij = eWij − 1, we obtain

−Hij ≤
(

αij

1 + αij

)

/

η̄

(

1−
(

αij

1 + αij

)2
)

= O(eW (1+∆/2)+T ). (19)

Thus, ã = O(eW (1+∆/2)+T ) which compares favorably to the earlier bound in (Weller & Jebara, 2013a) , where
a = O(eW (1+∆)+2T ). Recall b = O(∆eW (1+∆/2)+T ) and Ω = max(a, b), so using the new̃a bound, now
Ω = O(∆eW (1+∆/2)+T ).
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4.2 Extending the second derivative approach to a general (non-attractive) model

Here we extend the analysis of (Weller & Jebara, 2013a) by considering repulsive edges to show that for a general binary
pairwise model, we can still calculate useful bounds (whichturn out to be very similar to the earlier bounds for attractive
models) for a sufficient mesh width.

Our main tool for dealing with a repulsive edge is to flip the variable at one end (see§2.3) to yield an attractive edge, then
we can apply earlier results. We denote the flipped model parameters with a′. For example, if just variableXj is flipped,
thenq′j = q(X ′

j = 1) = q(1−Xj = 1) = 1− qj. Sinceαij = eWij − 1 and hereW ′
ij = −Wij , the following relationship

holds if one end of an edge is flipped,

α′
ij

1 + α′
ij

=
e−Wij − 1

e−Wij
= 1− eWij = −αij . (20)

Note that, for an attractive edge,
α′

ij

1+α′
ij

∈ (0, 1), as is−αij for a repulsive edge. Recall that when we flip some set of

variables, by constructionF ′ = F + constant (see§2.3).

The Hessian terms from Theorem 7 still apply. Our goal is to bound the magnitude of each entryHij for a general binary
pairwise model, then the earlier analysis will provide the result. Whereas for a fully attractive model, we assumed a
maximum edge weightW with 0 ≤Wij ≤W , now we assume|Wij | ≤W .

4.2.1 Edge terms

First considerHij for an edge(i, j) ∈ E . If the edge is attractive, then the earlier analysis holds (it makes no difference
if other edges are attractive or repulsive). If it is repulsive, thenHij > 0. Consider a model where justXj is flipped.

Hij = ∂2F
∂qi∂qj

= − ∂2F ′

∂q′
i
∂q′

j

= −H ′
ij . Hence using (18) and (20), in practice an upper bound may be computed from

Lemma 8 usingk = −αij andA′
j = Bj , B

′
j = Aj . The theoretical bound for an attractive edge from (19) becomes

Hij ≤ −αij

η̄(1−α2
ij
)
. As we should expect from the attractive case, the followingresult holds.

Lemma 9. For a repulsive edge, 1
1−α2

ij

= O(e−Wij ).

Proof. Let u = −Wij , thenαij = e−u − 1 and 1
1−α2

ij

= 1
(1−αij)(1+αij)

= 1
e−u(2−e−u) = O(eu).

Hence, noting that we may flip any neighborsj of i which are adjacent via repulsive edges to obtain1
ηi(1−ηi)

=

O(eT+∆W/2) as before, where nowW = max(i,j)∈E |Wij |, we see that for our new second derivative method, just as
in the fully attractive case,̃a = O(eW (1+∆/2)+T ).

For comparison interest, we also show how the earlier, worsebound for an attractive edge given in (Weller & Jebara, 2013a)
may similarly be combined with flipping to provide a worse upper bound forHij when(i, j) is repulsive. See (Weller &
Jebara, 2013a)§5.2: considering the proof of Lemma 10 and using (20) from this paper, we see that for a repulsive edge,
theKij minimum bound forTij becomesKij = ηiηj(1 − ηi)(1 − ηj)(1 − α2

ij); then from (Weller & Jebara, 2013a)

Theorem 11, the equivalent bound isHij ≤ −αij

4Kij
which givesa = O(eW (1+∆)+2T ) as it was for the fully attractive case.

We provide a further interesting result, deriving a lower bound forξij for a repulsive edge.

Lemma 10(Lower bound forξij for a repulsive edge, analogue of Lemma 5). For any repulsive edge(i, j),
qiqj − ξij ≤ −αijpij wherepij = min{qiqj , (1− qi)(1− qj)}.

Proof. Consider a model where just variableXj is flipped, and let all new quantities be designated by the symbol ′.
Consider the joint pseudo-marginal (3). In the new model thecolumns are switched sinceµ′

ij(a, b) = q(X ′
i = a,X ′

j =
b) = q(Xi = a,Xj = 1− b) = µij(a, 1− b), hence

µ′
ij =

(

1 + ξ′ij − q′i − q′j q′j − ξ′ij
q′i − ξ′ij ξ′ij

)

=

(

qj − ξij 1 + ξij − qi − qj
ξij qi − ξij

)

. (21)

Applying Lemma 5 to the new model,ξ′ij − q′iq
′
j ≤

α′

ij

1+α′
ij

m′(1−M ′). Substituting inξ′ij = qi − ξij from (21) and using

(20), we have(qi− ξij)− qi(1− qj) ≤ −αijm
′(1−M ′). Sincem′ = min{qi, 1− qj} andM ′ = max{qi, 1− qj}, noting

qi ≤ 1− qj ⇔ qi + qj ≤ 1⇔ qiqj ≤ (1− qi)(1− qj), the result follows.
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Hence for a repulsive edge(i, j), using (9), we have

Tij = qiqj(1− qi)(1− qj)− (ξij − qiqj)
2 ≥ pijPij − α2

ijp
2
ij ,

wherePij = max{qiqj , (1− qi)(1− qj)}.

4.2.2 Diagonal terms

Consider theHii terms from Theorem 7, which is true for a general model. If allneighbors ofXi are adjacent via attractive

edges, then, as in (Weller & Jebara, 2013a) Theorem 11,Hii ≤ 1
ηi(1−ηi)

(

1− di +
∑

j∈N(i)
1

1−
(

αij

1+αij

)2

)

.

If any neighbors are connected toXi by a repulsive edge, then consider a new model where those neighbors are flipped,
so now all edges incident toXi are attractive, and designate the new model parameters witha ′. As before, observe
F = F ′ + constant, henceHii =

∂2F
∂q2

i

= ∂2F ′

∂q′2
i

= H ′
ii. Using (20) we obtain that for a general model,

Hii ≤
1

ηi(1− ηi)






1− di +

∑

j∈N(i):Wij>0

1

1−
(

αij

1+αij

)2 +
∑

j∈N(i):Wij<0

1

1− α2
ij






. (22)

Similarly to the analysis in§4.2.1, using Lemma 9 gives that for a general model,b = maxi∈V Hii = O(∆eW (1+∆/2)+T ),
just as for a fully attractive model, where nowW = max |Wij |.


