
Societal Computing
Thesis proposal

Swapneel Sheth
Department of Computer Science

Columbia University
New York, NY 10027
swapneel@cs.columbia.edu

Advisor: Gail Kaiser

January 30, 2013

i

Abstract

As Social Computing has increasingly captivated the general public, it has become a pop-
ular research area for computer scientists. Social Computing research focuses on online social
behavior and using artifacts derived from it for providing recommendations and other useful
community knowledge. Unfortunately, some of that behavior and knowledge incur societal
costs, particularly with regards to Privacy, which is viewed quite differently by different pop-
ulations as well as regulated differently in different locales. But clever technical solutions
to those challenges may impose additional societal costs, e.g., by consuming substantial re-
sources at odds with Green Computing, another major area of societal concern. We propose
a new crosscutting research area, Societal Computing, that focuses on the technical tradeoffs
among computational models and application domains that raise significant societal issues. We
highlight some of the relevant research topics and open problems that we foresee in Societal
Computing. We feel that these topics, and Societal Computing in general, need to gain promi-
nence as they will provide useful avenues of research leading to increasing benefits for society
as a whole. This thesis will consist of the following four projects that aim to address the issues
of Societal Computing.

First, privacy in the context of ubiquitous social computing systems has become a major
concern for society at large. As the number of online social computing systems that collect user
data grows, concerns with privacy are further exacerbated. Examples of such online systems
include social networks, recommender systems, and so on. Approaches to addressing these
privacy concerns typically require substantial extra computational resources, which might be
beneficial where privacy is concerned, but may have significant negative impact with respect to
Green Computing and sustainability, another major societal concern. Spending more compu-
tation time results in spending more energy and other resources that make the software system
less sustainable. Ideally, what we would like are techniques for designing software systems
that address these privacy concerns but which are also sustainable — systems where privacy
could be achieved “for free,” i.e., without having to spend extra computational effort. We de-
scribe how privacy can indeed be achieved for free — an accidental and beneficial side effect
of doing some existing computation — in web applications and online systems that have ac-
cess to user data. We show the feasibility, sustainability, and utility of our approach and what
types of privacy threats it can mitigate.

Second, we aim to understand what the expectations and needs to end-users and software
developers are, with respect to privacy in social systems. Some questions that we want to
answer are: Do end-users care about privacy? What aspects of privacy are the most impor-
tant to end-users? Do we need different privacy mechanisms for technical vs. non-technical
users? Should we customize privacy settings and systems based on the geographic location
of the users? We have created a large scale user study using an online questionnaire to gather
privacy requirements from a variety of stakeholders. We also plan to conduct follow-up semi-
structured interviews. This user study will help us answer these questions.

Third, a related challenge to above, is to make privacy more understandable in complex
systems that may have a variety of user interface options, which may change often. Our ap-
proach is to use crowdsourcing to find out how other users deal with privacy and what settings
are commonly used to give users feedback on aspects like how public/private their settings are,
what common settings are typically used by others, where do a certain users’ settings differ
from a trusted group of friends, etc. We have a large dataset of privacy settings for over 500
users on Facebook and we plan to create a user study that will use the data to make privacy
settings more understandable.

ii

Finally, end-users of such systems find it increasingly hard to understand complex privacy
settings. As software evolves over time, this might introduce bugs that breach users’ privacy.
Further, there might be system-wide policy changes that could change users’ settings to be
more or less private than before. We present a novel technique that can be used by end-users
for detecting changes in privacy, i.e., regression testing for privacy. Using a social approach for
detecting privacy bugs, we present two prototype tools. Our evaluation shows the feasibility
and utility of our approach for detecting privacy bugs. We highlight two interesting case studies
on the bugs that were discovered using our tools. To the best of our knowledge, this is the
first technique that leverages regression testing for detecting privacy bugs from an end-user
perspective.

iii

Contents
1 Introduction to Societal Computing 1

1.1 Motivation . 2
1.2 Societal Computing Topics . 3

1.2.1 Privacy . 3
1.2.2 Cultural Differences . 3
1.2.3 Green Computing . 4

1.3 Societal Computing Tradeoffs . 5
1.3.1 Privacy vs. Green Computing . 5
1.3.2 Privacy vs. Cultural Differences . 6
1.3.3 Green Computing vs. Green Computing 6

1.4 How can we contribute? . 6

2 Money for Nothing, Privacy for Free 7
2.1 Differential Privacy for Free . 7
2.2 Background . 8

2.2.1 Differential Privacy . 8
2.2.2 Achieving Differential Privacy . 9
2.2.3 Concept Drift . 10
2.2.4 Addressing Concept Drift . 10

2.3 Privacy for Free . 11
2.4 Evaluation . 12

2.4.1 RQ1 — Feasibility . 12
2.4.2 Methodology . 13
2.4.3 RQ2 — Utility . 13
2.4.4 RQ3 — Sustainability . 14
2.4.5 Threats to Validity . 14

2.5 Related Work . 15
2.6 Discussion . 17

3 Privacy Requirements — Understanding the needs of the users and developers 17

4 Making Privacy Understandable — Crowdsourcing Privacy Settings 18

5 Detecting Privacy Bugs via End-User Regression Testing 19
5.1 Background and Motivation . 21
5.2 The Social Testing Approach . 21
5.3 Empirical Evaluation . 22

5.3.1 Privacy and Facebook . 22
5.4 Discussion . 27

5.4.1 Flexibility . 27
5.4.2 Generalizability . 28
5.4.3 Robustness . 28
5.4.4 Limitations and Threats to Validity . 28

iv

5.5 Related Work . 29

6 Research plan 30

Appendices 31

A Privacy Requirements User Study 31

B Crowdsourcing Privacy Settings User Study 40

C User Connections on Facebook 44

D Privacy Testing and Twitter 46
D.1 Prototype Tool . 46
D.2 Feasibility . 48

v

1 Introduction to Societal Computing
Today’s college students do not remember when social recommendations, such as those provided
by Amazon, Netflix, Last.fm, and StumbleUpon, were not commonplace. The rise of Web 2.0
and social networking has popularized social computing as a research area. Established research
communities such as Human Factors [108], Computer Supported Cooperative Work, and Software
Engineering have fostered emerging topics such as Recommender Systems [42,62,116] and Social
Software Engineering [11, 46, 70, 90, 91]. However, social computing is primarily concerned with
achieving individual benefits from community participation, and not so much with addressing the
societal downsides – in particular that those individual benefits may come at community expense
or even the longer-term expense of the individual.

We present a novel problem – or perhaps a novel way of looking at known problems – that
we believe has not yet been explored by the community. Thus we propose and define “Societal
Computing,” a new research area for computer scientists in general and software engineering and
programming language communities (SE/PL, hereafter) in particular, concerned with the impact
of computational tradeoffs on societal issues. Societal Computing research will focus on aspects
of computer science that address significant issues and concerns facing the society as a whole
such as Privacy, Climate Change, Green Computing, Sustainability, and Cultural Differences. In
particular, Societal Computing research will focus on the research challenges that arise due to the
tradeoffs among these areas. An example of such a tradeoff could be a complex software system
that needs to comply with varying laws in different regions or countries. While complying with
such laws is important for the society as it might safeguard the interests of individuals, doing
so might require investing considerable computer resources through the entire software lifecycle,
which might not be a good idea when Green Computing is concerned. As complying with laws
would be mandatory, the option should not be to ignore the law but perhaps to lobby to change the
law, by making regulators aware of the green computing implications, or perhaps choose not offer
this software (or maybe just turn off the affected features) in locales that retain the expensive laws.
Most of these are legal/business decisions and not an SE/PL concern, but the SE/PL community
can make it easier to orthogonalize features (and thus make simple to turn off without breaking
everything else) whose compliance with local laws might be expensive.

Such tradeoffs can affect the entire software lifecycle, from conceptualization and development
to deployment and operation. Many Societal Computing issues stem from recent trends in social
computing, and possibly may even be solved by drawing on social computing models, such as the
wisdom of crowds, collaborative filtering and so on; but many of the concerns are orthogonal and
could possibly be addressed by novel approaches grounded in the SE/PL communities. We feel
that the SE/PL community has a special role to play as it provides the substrate - the languages,
compilers, design techniques, architectures, testing approaches, etc. on which all software systems
are founded.

We describe our motivation in the next section and briefly outline some initial Societal Com-
puting topics in the following sections. We then highlight a few research challenges posed by
tensions between prospective technologies targeting these subareas.

1

1.1 Motivation
Anthony Kronman in his book “Education’s End: Why Our Colleges and Universities Have Given
Up on the Meaning of Life” opines that graduate programs at universities have become increas-
ingly specialized. He argues that initially universities were much more broader in their scope and
increasing emphasis on the research ideal has resulted in them becoming very specialized. He
says: “Graduate students learn to restrict their attention to a single segment of human knowledge
and to accept their incompetence to assess, or even understand, the work of specialists in other
areas. [. . .] They are taught to understand that only by accepting the limits of specialization can
they ever hope to make an “original contribution” to the ever-growing body of scholarship in which
the fruits on research are contained.” [59]

Figure 1: Number of Publication Venues in the
ACM Digital Library from 1951 to 2010

In the field of Computer Science as well,
this increasing specialization is evident by the
increasing number of publication venues that
exist now and by how this number has changed
over the years. A good indicator of the number
of publication venues is the number of proceed-
ings (for conferences and workshops) that are
available in the ACM Digital Library [1]. This
is shown in Figure 1. We see an exponential in-
crease in the number of the publication venues
in the last ten years. As the number of publi-
cation venues has increased, it has resulted in
specialization of Computer Science into subar-
eas and sub-subareas.

While this research specialization is important and has resulted in our increased understanding
of the field, it has also made our scopes very narrow. Our problem is an inverse to that of being
a “jack of all trades and a master of none.” Researchers have become experts in their specialized
subareas (and sub-subareas) on Computer Science while being relatively unaware of the other
subareas. Due to this narrowing of scope, researchers are not very aware of the advances made
in the other subareas and in particular, the tradeoffs that might exist between them. Advanced
research and progress made in one research subarea may have a negative effect on some other
research subarea. This notion of tradeoffs is analogous to the concept of Pareto Efficiency [79]
in Economics, which deals with the distribution of goods among a set of individuals in society.
Pareto Efficiency refers to the state of distribution where it’s not possible to make an individual
“better off” without making some other individual “worse off.” Not being in a Pareto Efficient
state would imply that it is possible to optimize both (or multiple) areas; being in a Pareto Efficient
state would imply that it is not possible to optimize one area without affecting the other one. In our
case of Societal Computing, identifying such a state will be an important research challenge and
this identification may not be possible without a detailed understanding of the different areas that
we’re trying to optimize.

We feel that such tradeoffs exist in many different areas and that a broadening of research scope
is necessary to effectively address them. We need to take a much more holistic view of research.
We describe some subareas of Societal Computing and the tradeoffs among them in the following
sections.

2

1.2 Societal Computing Topics
In this section, we describe some research areas relevant to Societal Computing and we will high-
light the tradeoffs among these areas in Section 1.3.

1.2.1 Privacy

Privacy in the context of social computing systems has become a major concern for the society
at large. A search for the pair of terms “facebook” and “privacy” gives nearly two billion hits on
popular search engines. Recent feature enhancements and policy changes in social networking and
recommender applications – as well as their increasingly common use – have exacerbated this issue
[17,40,53,121]. With many online systems that range from providing purchasing recommendations
to suggesting plausible friends, as well as media attention (e.g., the AOL anonymity-breaking
incident reported by the New York Times [7]), both users and non-users of the systems (e.g.,
friends, family, co-workers, etc. mentioned or photographed by users) are growing more and more
concerned about their personal privacy [94].

Social computing systems, when treated in combination, have created a threat that we call
“Correlation Privacy.” Narayanan and Shmatikov [72] demonstrated a relatively straightforward
method to breach privacy and identify individuals by correlating anonymized Netflix movie rating
data with public IMDb data. A similar approach could potentially be applied to any combination of
such data-gathering systems, so how to safeguard again these “attacks” may be a fruitful research
direction. This is analogous to earlier work addressing queries on census data but, at that time,
there were relatively few prospective attackers [2, 10]. There has been some initial work towards
retaining privacy while still benefiting from recommendation systems (e.g., [12, 95]). There have
also been other approaches such as k-anonymity [99], differential privacy [29], and applications of
differential privacy to different domains [85, 89].

A related challenge is to make the existence of privacy threats more understandable to ordinary
users who do not have a technical background and/or in cases where it’s not very clear how users’
information might be employed by the system, particularly germane for systems that provide APIs
making it easier (than screen scraping) for third parties to utilize that information (e.g., [5,34,60]).
There has been some recent work (e.g., [54, 97]) towards this end. One interesting option might
be to make privacy more quantifiable, perhaps by introducing a notion of “Gullibility Factor” for
privacy settings, say ranging from 0 to 1 with 1 being the least private. For example, we could
say that the default settings for Facebook have a Gullibility Factor of 0.5, whereas for Twitter it’s
0.2 (we made up these numbers). A simple scoring scheme might steer away fearful users, while
encouraging the merely puzzled to consult one of the numerous “how to” guide articles on privacy
settings from sources such as the New York Times [87] and the BBC [86].

While research efforts in this area have been promising, there is a lot of scope for further
research. Researchers will need to be aware, in particular, of the tradeoff of Privacy with other
Societal Computing topics and we elaborate on this in Section 1.3.

1.2.2 Cultural Differences

Different regions and cultures around the world vary in their notions and perceptions on what is
acceptable and what shouldn’t be allowed. An increasingly important area of Societal Computing
will be building systems that can adapt automatically to different regions and cultures.

3

One important cultural difference we highlight here is Legal Challenges. Legal issues present
additional research challenges for a wide range of software systems beyond just social computing
applications. For example, privacy-related laws vary tremendously from country to country, e.g.,
consider Germany compared to the United States. Systems such as Facebook and Google Street
View, which have been accepted by the government and individuals in the US, are facing many
obstacles in Germany [94]. After the Second World War, Germany has legislated very strict privacy
laws to prevent the government from persecuting its citizens. It is illegal in Germany to publish
names or images of private individuals (including felons) without their permission [74]. Before
allowing Google’s Street View service, German data protection agencies asked Google to audit the
information collected by their street view mapping cars. During the audit, they discovered that the
cars were collecting personal information such as emails and phone numbers from unsecured wifi
networks [8].

One intriguing example open research problem would consider the implications of regulation
diversity on software. To deal with different cultures and customs, we would require novel mod-
ularization mechanisms beyond those employed for software localizations of keyboard, written
language, the customs of different geographical regions, etc. We call this “Regulatory Localiza-
tion.” We feel that multidisciplinary research with other areas of Computer Science such as natural
language processing would be highly beneficial.

Another example of a cultural difference is censorship. Different regions believe different
things should be censored. For certain topics there is almost universal agreement on censorship
(e.g., child pornography [106]); some others are more debatable (e.g., political or government
secrets [93], web search results [14, 107], marijuana [45]). What’s acceptable would depend a lot
on the region and cultural preconceptions in place. As we build software systems that have users all
over the world, we would need novel techniques for dealing with such issues. This also relates to
the current debate on Net Neutrality [114]. If, for example, we know that certain states/regions are
not being net neutral, would we design, develop, test, or operate our software systems differently?

A recent paper [41] also discusses how local laws can affect software engineering. Those
authors focus on intellectual property laws and licensing, warranty and liability, and transborder
data flows, and propose “lawful software engineering” research directions concerned with coping
with the wide variety of legal constraints during software development and deployment. While
that work falls within the scope of our proposal, we are primarily concerned with the potential
interactions with other aspects of Societal Computing.

1.2.3 Green Computing

Green Computing (or Green IT) is “the study and practice of designing, manufacturing, using, and
disposing of computers, servers, and associated subsystems [...] efficiently and effectively with
minimal or no impact on the environment” [71]. With our oil reserves projected to exhaust in
less than fifty years [110], and renewable energy sources still providing only a small fraction [32],
Green Computing here and now is becoming more and more important and, indeed, vital to our
children and grandchildren.

Investigating how to build greener software systems from an SE/PL perspective, in addition
to the complementary algorithmic efficiency and systems perspective such as resource allocation,
platform virtualization, and power management pursued by other computer science subdisciplines
[68] will be important. For instance, say we could quantify complex software systems’ behavior in

4

terms of energy expended. There has been some initial research in this area such as [113], which
tries to quantify the carbon footprint of a Google Search. Then we could investigate ways to make
this quantification more modular, devise software architectures and design patterns intended to
give developers and end-users more control over energy use, and invent testing methods that check
for energy violations. And, further, rethink testing in general, perhaps pushing more testing into
the field (“perpetual testing” [76]), to reduce pre-deployment energy consumption and, perhaps,
better spread the burden across energy sources. If we could make this quantification more modular
(perhaps to the level of individual functionality provided by large systems), we could then provide
easy means for operators and end-users to disable unneeded modules, which may play a critical role
in Green Computing, to reduce energy consumption on server farms, desktops, and the increasingly
abundant mobile platforms. As a simple example, a system like Netflix could inform each user that
it would save X amount of energy to disable automated recommendations and only enable them
when and if really needed (note that user altruism is a very different kind of model than charging
extra for certain functionality [75]). But quantifying which user-visible functionality saves how
much energy may not be easy, particularly when systems are built by integrating components.

Our Societal Computing initiative envisions investigating the tradeoffs of Green Computing
with the other areas and we highlight these tradeoffs in the following section.

1.3 Societal Computing Tradeoffs
While there is a lot of potential for novel research in these individual areas of Societal Computing,
in this thesis we focus on the tradeoffs between these different areas and the research challenges
that arise out of these tensions. A central discussion point is to consider the problem of how soft-
ware methodologies and technologies aimed at reducing societal costs in one area can sometimes
raise societal costs for another. For example, there may be clever ways to engineer social comput-
ing and other applications to protect privacy or enforce regulations that inherently consume vast
CPU cycles and other resources, which could be considered “anti-green.” We need a holistic view.

1.3.1 Privacy vs. Green Computing

Say we have developed an awesome new social computing system S whose privacy-preservation
properties may be suspect. One possible approach would be to try correlating S with other popular
social systems, such as Netflix, IMDb, Facebook, Amazon, etc., to determine whether privacy can
indeed be breached and to what degree (e.g., are potentially all users at risk, only those who use
a specific other social system, or only a small fraction of the latter with unique information). We
might do this prior to public use of S, e.g., using an internal test team and/or informed beta testers
(who might invent phony identities). Such an experiment could give us an estimate of the likely
privacy breaches, and possibly point towards steps that could be taken to safeguard against them.

However, straightforward mechanisms that poke or data-mine for potential breaches would
likely require substantial computational resources; while this kind of testing may be a good idea
where Correlation Privacy is concerned, it may not be so good for Green Computing. And it also
does not address correlation against future social computing systems or unexpected uses of our
system. So instead we could wait until S has been populated by the general public and then pe-
riodically correlate a sampling, which might require fewer resources and/or better distribute the
resource burden, as well as draw on other new social systems as they are launched. But by then

5

any privacy threats could be actual rather than hypothetical, and consequent protective measures
too late. What design and testing techniques can we devise to balance privacy with green com-
puting, particularly in a context where subsystems might be developed by different organizations?
Broadening of research scope will be important to be able to effectively address these concerns.

1.3.2 Privacy vs. Cultural Differences

As countries are increasingly trying to pass new privacy laws [9, 67] and companies are being
taken to court and getting fined for privacy violations [23, 69], legal issues dealing with privacy
will become even more complex. We believe that as countries mandate new requirements for
privacy, there will be an important tradeoff between these laws and privacy issues - in particular,
the Gullibility Factor. Say we have an awesome new system S that has users in different parts of
the world. As each country might have (slightly) different privacy laws, our system would need to
comply with all the different regulations. Imagine a user Fred who is a US citizen. We would need
to comply with US regulations in this case and Fred would have set his privacy settings as needed.
Now if Fred decides to travel to another country (say, Germany) for business or a conference,
we might also need to comply with the German regulations for privacy. In addition, we might
also need to comply with the EU regulations, which may or may not be the same as the German
regulations. Having to comply with all these different regulations will only end up making privacy
threats and settings harder to understand for users and might also result in less usable systems.
Note that such conflicts and confusions needn’t arise due to travel to different countries, but might
also exist due to the different city, state, and federal rules. What techniques can we use to make
privacy and privacy settings more understandable to ordinary users when we need to also comply
with complex legal regulations? An understanding of the different research areas involved will be
crucial to address the various research challenges that we face.

1.3.3 Green Computing vs. Green Computing

There is also an interesting (and recursive) tradeoff of Green Computing with itself. As part of
the development of greener software systems, we may need to invest substantial computer re-
sources. For example, social recommendation systems tend to rely on expensive data-mining, but
developing a greener recommendation system that is kinder to the environment could also be quite
expensive. In the worst case, the amount of resources spent on building such green systems may
far outweigh the energy benefits of replacing their less-green counterparts with these new systems,
a classic example of being “penny wise, pound foolish.” How can we efficiently analyze this in
advance of expending those resources?

1.4 How can we contribute?
A common theme in these tradeoffs is finding the right balance between the different areas of
Societal Computing. If we haven’t reached the Pareto Efficient state yet, it might be possible to
optimize different areas simultaneously. Once we reach the Pareto Efficient state, trying to improve
one of these areas might have an adverse effect of some other area. An important concern and a big
research challenge will be trying to identify such a state - would this be pair-wise for the different
subareas? would this be multi-variable across all possible areas? We believe that this will require

6

a detailed understanding of the various Societal Computing areas. What to do once we reach the
Pareto Efficient state gives us further food for thought. One approach to consider, even though it
might be considered an anathema to all technological advances, is to spend more human time to
reduce reliance on non-renewable resources. Most technology (since the dawn of time) has been
designed to make humans more productive and to reduce the burden of work for humans. However,
as resources start becoming scarce, humans may need to take on more of this burden. This might
imply a greater reliance on design or code review instead of execution testing. We would then need
to figure out how we could do reviews across different systems, e.g., to manually find Correlation
Privacy problems. We might also encourage human policing of privacy violations and/or time
spent in end-user training to reduce the Gullibility Factor rather than automated ways for detecting
these.

One argument towards Societal Computing might be that many different communities - such
as operating systems and networks - need to look at these problems as well. We agree that multi-
disciplinary research is crucial and we feel that the SE/PL community needs to expand its scope
towards more multidisciplinary research efforts. As the rest of the CS community usually ends up
writing software to implement their research ideas and put them into practice, we have the special
(and perhaps enviable?) role of cutting across the various domains as we provide the underlying
platform -i.e., languages, compilers, development techniques, etc.- for implementation for most
systems. Naturally it behooves us to come up with ways of dealing with Societal Computing
concerns. We could make available means such as design patterns, architectural metaphors, better
tools, APIs, smarter compilers, better testing techniques, and new programming languages to deal
with some of these concerns. We can help the other communities make an easier decision when it
comes to the tradeoffs. We can also address how to implement these balanced systems. We feel that
a broadening of research scope is very important and necessary to address the research challenges
and in particular, the tradeoffs among the different areas of Societal Computing. Finding the right
balance among the tradeoffs in these different research areas will be crucial.

To limit the scope of this thesis, we will focus primarily on privacy and its tradeoffs with other
areas of Societal Computing.

2 Money for Nothing, Privacy for Free
As mentioned earlier, an important aspect of societal computing is the need to balance the tradeoffs
amongst the different areas. The best case scenario is such a situation would be if it was possible
to improve one area without adversely affecting any other area. E.g., if we could get privacy for
free (i.e., without having to worry about, say, green computing) in certain systems, it would make
balancing the other tradeoffs easier. We now describe a research project where this is possible; we
call it “Money for Nothing, Privacy for Free.”

2.1 Differential Privacy for Free
In this project, we propose an approach, which we call “Privacy for Free,” targeted towards online
social systems. In particular, we focus on systems that already have access to user data such as pur-
chase history, movie ratings, music preferences, and friends and groups and that use complex data
mining techniques for providing additional social benefits such as recommendations, top-n statis-

7

tics, and so on to their users. The problem we deal with is users who have intentionally disclosed
data on a public system, entering their data via web browsers onto some website server that is
known to make publicly available certain data-mined community knowledge gleaned from aggre-
gating that data with other users — but the users don’t want their data to be personally identifiable
from the aggregate.

The main research question we try to answer here is — Is there an approach that can be used
with complex web applications and software systems, that will achieve privacy without spending
any extra resources on computational overhead? We believe it is — our key insight is that we can
achieve privacy as an accidental and beneficial side effect of doing already existing computation.

The already existing computation in our case is weighing user data in a certain way — weighing
recent user data exponentially more than older data to address the problem of “concept drift” [112]
— to increase the relevance of the recommendations or data mining. This weighing is very com-
mon and used in a lot of systems [25, 50, 57, 70]. Recent work in the databases/cs theory com-
munities on Differential Privacy [29, 66] led to our insight that our already existing computation
for weighing user data is very similar to one of the techniques for achieving differential privacy.
Intuitively, differential privacy ensures that a user’s participation (versus not participating) in a
database doesn’t affect his privacy significantly. We provide more detailed information on Differ-
ential Privacy in Section 2.2. This resulted in the formulation of our hypothesis — if we change
the concept drift computation so it matches the technique for achieving differential privacy (which
would be a very minor and straightforward code change as the two techniques are very similar),
would we get privacy as a beneficial side effect of addressing a completely different problem?

We show that it is indeed possible to get privacy as a beneficial side effect of addressing concept
drift — thus, privacy for free — and this is the main contribution of this project. Our approach can
be used in certain social computing systems and web applications to achieve “privacy for free,”
and we show the feasibility, sustainability, and utility of using this approach to building software
systems. We also contribute to the discussion in the privacy community about how to define privacy
and how to achieve it. Specifically, we suggest a new direction for designing (differentially, or
otherwise) private algorithms and systems motivated by using the beneficial side-effects of doing
some already existing computation.

2.2 Background
Here we provide some background information on Differential Privacy and Concept Drift.

2.2.1 Differential Privacy

In the 1970s, when research into statistical databases was popular, Dalenius [24] proposed a
desideratum for statistical database privacy — access to a statistical database should not enable
someone to learn something about an individual that cannot be learned without access to the
database. While such a desideratum would be great for privacy, Dwork et al. [27, 29] showed
that this notion of absolute privacy is impossible using a strong mathematical proof. The problem
with the desideratum is the presence of “Auxiliary Information”. Auxiliary Information is similar
to, and a generalization of, the notion of Correlation Privacy mentioned earlier.

Dwork gives a nice example to explain how Auxiliary Information can be a problem when
privacy is concerned — “Suppose one’s exact height were considered a highly sensitive piece of

8

information, and that revealing the exact height of an individual were a privacy breach. Assume that
the database yields the average heights of women of different nationalities. An adversary who has
access to the statistical database and the auxiliary information “Terry Gross is two inches shorter
than the average Lithuanian woman” learns Terry Gross’ height, while anyone learning only the
auxiliary information, without access to the average heights, learns relatively little.” An interesting
observation made by Dwork is that the above example for breach of privacy holds regardless of
whether Terry Gross’ information is part of the database or not.

To combat Auxiliary Information, Dwork proposes a new notion of privacy called Differential
Privacy. Dwork’s paper is a culmination of the work started earlier and described in papers such
as [15, 26, 28]. Intuitively, Differential Privacy guarantees privacy by saying that if an individual
participates in the database, there is no additional loss of privacy (within a small factor) versus if
he had not participated in the database. Formally, Differential Privacy is defined as follows: A
Randomized function K gives ε-differential privacy if for all data sets D1 and D2 differing on at
most one element, and all S ⊆ Range(K),

Pr[K(D1) ∈ S] ≤ exp(ε)× Pr[K(D2) ∈ S] (1)

The notion of all data sets D1 and D2 captures the concept of an individual’s information be-
ing present in the database or not. If the above equation holds, it implies that if an individual’s
information is present in the database, the breach of privacy will be almost the same if that indi-
vidual’s information was not present. Differential Privacy is now commonly used in the database,
cryptography, and cs theory communities [16, 27, 30, 88].

We like the definition of Differential Privacy due to its strong mathematical foundations, which
can allow us to prove/disprove things theoretically. From a software web application developer’s
point of view, they can tell their users — “Look, our system is differentially private. So if you
decide to use our system and give it access to your data, you are not losing any additional privacy
(within a small factor) versus if you did not use our system. In other words, the probability of bad
things happening to you (in terms of privacy) is roughly the same whether you use our system or
not.”

2.2.2 Achieving Differential Privacy

Dwork describes a way of achieving differential privacy by adding random noise. In the Terry
Gross height example above, instead of giving the true average, the system would output average±δ,
where δ would be randomly chosen from a mathematical distribution. Thus, the adversary wouldn’t
be able to find out the exact height of Terry Gross. Since then, there have been many papers that
have proposed different mechanisms for achieving differential privacy [16, 27, 30, 88].

A mechanism of note for achieving differential privacy was proposed by McSherry and Talwar
[66] called the “Exponential Mechanism” (EM). The EM algorithm is as follows: Given a set
of inputs, and some scoring function that we are trying to maximize, the algorithm chooses a
particular input to be included in the output with probability proportional to the exponential raised
to the score of the input using a scoring function. Thus, inputs that have a high score from the
scoring function have an exponentially higher probability of being included in the output than those
inputs that have a low score. McSherry and Talwar prove that this EM algorithm is differentially
private.

9

Consider the Terry Gross example from above and let’s assume that the database has historical
data going back 100 years. The average heights of people change over time so giving an average
height over the 100 years is not very useful. If the scoring function we use is to maximize the
recency of data, newer data elements will be chosen with exponentially higher probability that
older data elements to be included in the average. Since we are doing this probabilistically, the
exponential probability weighing ensures that the exact answer is not revealed and that differential
privacy is maintained. This EM algorithm is one of the corner stones of our “Privacy for Free”
approach and we describe how it’s used in the next section.

2.2.3 Concept Drift

People’s preferences change over time — things that I like doing today may not be things I liked
doing 10 years ago. If data is being mined or recommendations being generated, the age of the data
needs to be accounted for. To address this problem, the notion of Concept Drift was formed [112].
This problem needs to be addressed by any field that deals with data spanning some time frame
(from a few hours to months and years). An example class of systems that need to address the prob-
lem on Concept Drift is Recommender Systems. Many recommender systems use Collaborative
Filtering (CF), i.e., recommending things to an individual by looking at what other users similar to
the individual like [49, 70, 117]. CF algorithms typically look at the activities of individuals from
the past (movies watched, things bought, etc.) and use this to derive recommendations. However,
people’s preferences change over time. For example, when I am in college and taking a lot of
classes, I might buy a lot of textbooks from Amazon. When I graduate, I may not need textbook
recommendations. This is exactly the kind of problem that Concept Drift tries to address.

Other example classes of systems that need to address this problem are social software systems
[11], systems for collaboration and awareness [111], systems that mine online software repositories
[19], etc. For these kinds of systems, there is a lot of old and recent data available and weighing
certain data differently might be essential.

2.2.4 Addressing Concept Drift

There have been many different solutions proposed to address the problem of Concept Drift [55,
58, 112]. A particular solution of note is the Exponential Time Decay Algorithm [22] (ETDA,
henceforth). ETDA weighs things done recently exponentially higher than things done in the past.
It gradually decays the weight of things done in the past so that things done in the distant past do
not affect the outcome as much as things done recently, thus addressing the problem on Concept
Drift.

g(x) = exp(−l × x), for some l > 0 (2)

The non-increasing decay function using by ETDA is shown in Equation (2). ETDA is very
popular and used by a lot of systems [25, 50, 57, 70]. For the rest of the thesis, we refer to this as
the CD (Concept Drift) algorithm.

Consider the Terry Gross example again and let’s assume that the database has historical data
going back 100 years. As average heights change over time, the CD algorithm will weigh newer
data exponentially higher than older data resulting in a weighted average height. This would reflect

10

p u b l i c double ge tWeigh t edVa lue () {
double v a l u e = 0 ;
f o r (i n t i =0 ; i<a r r a y . l e n g t h ; i ++) {

double we ig h t = Math . exp(− i) ;
v a l u e += we i gh t * a r r a y [i] ;

}
re turn v a l u e ;

}

Listing 1: Java code for the CD algorithm

p u b l i c double ge tWeigh t edVa lue () {
double v a l u e = 0 ;
f o r (i n t i = 0 ; i < a r r a y . l e n g t h ; i ++) {

double we ig h t = Math . exp(− i) * 0 . 5 ;
double p r o b a b i l i t y = Math . random () ;
i f (p r o b a b i l i t y < we ig h t) {

v a l u e = a r r a y [i] ;
re turn v a l u e ;

}
}
re turn v a l u e ;

}

Listing 2: Java code for the EM algorithm

the recent trends but also account for older data. The CD algorithm is the another corner stone of
our approach and we build on it more in the next section.

2.3 Privacy for Free
The EM algorithm can use a variety of scoring functions — McSherry and Talwar show different
scoring functions for privacy preserving auctions [66]. In such scenarios, the EM and CD algo-
rithms are not similar. Using the timestamp scoring function is what makes them similar to each
other. The CD algorithm uses exponential weighing over the data while the EM algorithm chooses
inputs with probability proportional to the exponential of the scoring function.

Only if we choose the scoring function for the EM algorithm to be the timestamp of the data,
the two algorithms becomes similar. The CD algorithm is deterministic and weighs new data
exponentially higher than older data; the EM algorithm is probabilistic and chooses new data with
an exponentially higher probability than older data.

The Java code for the CD algorithm and the EM algorithm using the timestamp scoring function
are shown in Listings 1 and 2 respectively. In terms of running time complexity, the CD algorithm
is O(n). For EM (using the timestamps scoring function), the worst case is also O(n). However,
as we use randomization, the expected running time is sublinear — o(n).

This is the crux of this project — if existing systems that already use the CD algorithm modify
the code to use the EM algorithm instead, they would, as an added benefit, get the main advantage
of the EM algorithm — differential privacy. Further, this privacy would not require any extra

11

computational overhead and thus, we would get privacy for free.
Since these two algorithms are very similar, it would require a very small and straightforward

change to the code to change from the CD algorithm to the EM algorithm. We would need to
replace the CD code with the EM code shown above. This would be a one-time change and could
be done by adding a new library method for EM or done statically via refactoring and could even
be automated.

The important requirement for the differential privacy guarantees to hold are that all the data
access must be done via the EM algorithm, which could be implemented as a separate class or be
part of a library or the data model, etc.

2.4 Evaluation
Our approach requires implementing (or substituting an existing implementation of the CD algo-
rithm with) the EM algorithm. To evaluate our approach, we implemented the EM and CD algo-
rithms and investigated the differences in these. Our goal was to answer the following research
questions:

RQ1: Feasibility—Does using our approach guarantee differential privacy?
RQ2: Utility—Does using our approach affect the utility of the system to give meaningful recom-

mendations or mine data?
RQ3: Sustainability—Can our approach be sustainable? Can using our approach result in no

additional computational resources for privacy?

With RQ1, we aim to prove the primary benefit of our approach — guaranteeing privacy. Our
goal is to show that it does indeed guarantee differential privacy making it suitable to be used in a
variety of social systems and web applications.

With RQ2, we explore the utility of using our approach. A “straw man” way to guarantee
privacy for any recommender/data mining system is to give a random answer every time. This
would not require any clever technical solutions, but this would be very bad for the overall utility
of the system — the goal of most such systems is to provide relevant information. There exists a
tradeoff between accuracy and privacy and we explore this here. We aim to show that, using our
technique, there is a small loss in accuracy and that this loss in accuracy scales very well (roughly
constant) as the size of the system increases. Thus, if a small loss in accuracy is acceptable, we
can get privacy for free without spending any additional computational resources.

With RQ3, we aim to show the sustainability benefits of using our approach. We show that
using our approach (and the EM algorithm) requires less CPU time than the equivalent CD al-
gorithm. Not only do we not need any additional computational resources, we should be able to
reduce computational needs by using our approach.

2.4.1 RQ1 — Feasibility

Our approach requires the use of the EM algorithm for all access to the data. The EM algorithm that
we require is exactly the same as the one proposed by McSherry and Talwar [66]. The algorithm
they propose can work with different scoring functions that weigh the data differently — in our
case, the scoring function we use is the timestamp of the data. Our use of the EM algorithm in

12

(a) RMS and NRMS Error vs. Size of data set (b) NRMS Error vs. Number of Trials

Figure 2: Experimental Results

our approach can thus be viewed as an instantiation of the general EM algorithm. McSherry and
Talwar show a theoretical proof for the EM algorithm to be differentially private. We do not repeat
the proof here and we encourage the interested reader to look at the paper (page 5 of [66]). As all
data access happens via the EM algorithm, our approach also guarantees differential privacy.

2.4.2 Methodology

For RQ2 and RQ3, we carried out experiments to validate our hypotheses. We use synthetic data
as there are no benefits of using real world data for our hypotheses. We create an array of size n
and randomly fill it with values from 0 to n− 1. Each element has a timestamp associated with it
to simulate user activity — for the purpose of this experiment, we assume that the timestamp is the
array index. A lower array index indicates that the item is newer. Thus, we want to prefer items
with a lower index in the output as these items indicate things that are done recently.

Using the differential privacy EM algorithm [66], we choose the scoring function to be maxi-
mized by returning a value with as low an array index as possible. Thus, we choose elements from
the array with probability based on their array index.

In the experiments, we randomly generate the array and compute the score using the CD and the
EM algorithms. We then plot the RMS and normalized RMS errors between these two algorithms.
The error is the difference in the score returned by the CD and the EM algorithm. The CD algorithm
will give us the “true” score; the EM algorithm (as it tries to preserve privacy) will give us a close
approximation. We discuss the results in the following subsections.

2.4.3 RQ2 — Utility

For the first set of experiments, we varied the size of the array and plotted the RMS and normalized
RMS errors between the CD and EM algorithms. The results are shown in Figure 2a. To smooth out
the noise in the experimental results (as CD is a deterministic algorithm while EM is a probabilistic
one), we ran the experiment 1000 times with each array size and took averages. The graph shows
us that as the size of the input array increases, the RMS error increases linearly — this is expected
as with larger array sizes, the entries in the array have correspondingly larger values (due to our
methodology), resulting in linearly increasing RMS error. Meanwhile, the normalized RMS error
is roughly constant.

13

This shows us the tradeoff between accuracy and privacy. We observe that in these experi-
ments, the loss of accuracy is relatively small — the normalized RMS error is less than 0.4. Thus,
irrespective of the data set size, switching to the EM Algorithm (as required by our approach) from
the CD Algorithm will not worsen the accuracy of the algorithm by more than the constant factor,
and we have the added benefit that the EM algorithm also guarantees differential privacy. Whether
the loss of accuracy is acceptable or not (or a worthy price to pay for the free privacy) is subjective
and we deliberately do not enter a philosophical debate here (is accuracy of the system more “im-
portant” than user privacy? who decides this? the user? the web application developers?). Many
papers in the database and theory communities have explored the tradeoffs between privacy and
accuracy (e.g., [15,26,65,66]) — our key point in this section is that yes, there is a loss of accuracy,
but no worse than accepted in [65]. A limitation of our approach is that if this loss of accuracy is
not acceptable for certain systems, our approach will not work.

For our second set of experiments, we varied the number of trials keeping the size of the array
fixed to 1000. As the value computed using the EM algorithm is probabilistic in nature, we carry
out multiple runs (called trials here) and take the average value over all the trials to smooth out the
value. The graph plotting the NRMS error vs. the number of trials is shown in Figure 2b. This
graph shows us that as the number of trials increases, the NRMS error reduces. Thus, initially,
even though there may be a bigger error between the CD and EM algorithms, in the long run, the
error will be small (but not zero, as a zero error would imply returning the accurate answer and
thus, not preserving privacy).

With these set of experiments, we explored the utility of our approach. For an existing system
(that may already use an algorithm similar to the CD one), a one-time change would be required
to add in the EM algorithm and retrofit the system to our approach. This change is relatively
straightforward and could even be automated. Making such a change, albeit results in a small
loss of accuracy, gives the huge benefit of getting privacy for free without spending any additional
computational resources.

2.4.4 RQ3 — Sustainability

For RQ3, we want to show the sustainability of our approach. With the EM algorithm in place,
what we ideally want is that our system does not take any additional computational resources. We
decided to use the CPU processing time to estimate the computational resources needed by the two
algorithms. We instrumented the CD and EM algorithms and measured how long they took in the
first set of experiments in Section 2.4.3 above. The resultant graph is shown in Figure 3. The graph
shows us that for all data sizes the EM algorithm took less CPU time than the CD algorithm.

Figure 3: CPU Time (in msec) vs Size of data set

Not only does the EM algorithm not require
any additional computational resources, it ac-
tually reduces the existing computation. Thus,
changing to our approach will make the soft-
ware system even more sustainable.

2.4.5 Threats to Validity

The notion of Differential Privacy may not re-
late to the user-centric view of Privacy as users

14

might think it “strange” that the system as-
sumes that bad things can happen anyway —
the guarantee it gives is just regarding whether the user data is part of the system or not. While
that is true, we feel that differential privacy has many compelling arguments in its favor — the
biggest, for us, is not having to decide what data is sensitive and what is not. The differential pri-
vacy algorithms treat all data as sensitive making it easier not to leak data by accident. One would,
therefore, not have to deal with the subjective nature of deciding what’s sensitive. We also feel that
the guarantee might actually make it even more compelling for the user. From their point of view
— “if bad things are going to happen anyway, it’s not going to hurt me much more if I participate..
so there’s no harm in participating.”

We used synthetic data in our evaluations rather than real-world data. For the research ques-
tions that we had — feasibility, utility, sustainability — synthetic data was sufficient. For Fea-
sibility (RQ1), we use the theoretical proof from [66] so don’t need data. For Utility (RQ2) and
Sustainability (RQ3), we care only about the comparisons between the CD and the EM (and not the
actual numbers in the experiments), so synthetic data — which was easier to work with — suffices.
We would, however, need real data if we were doing, e.g., surveys and our research question was
if people thought the new system gave similar usability.

Finally, this work doesn’t help in scenarios of non-temporal data access. We used the IMD-
B/Netflix examples earlier to make the general problem familiar to the reader; we address a special
case of the problem where timestamps are available. In the differential privacy area, it’s proven
that for any method that has any utility, there exists side information that will break privacy on
individual records. With differential privacy approaches such as the EM algorithm, the guarantees
that exist for each individual are that participating in the database will not add to the risks that are
already there.

2.5 Related Work
Privacy has become an increasingly important topic for the community at large. A lot of different
research communities are looking at the impact of privacy and techniques for improving privacy
for users. Some examples of these communities are sociologists, computer scientists, HCI, etc. We
discuss some of the relevant related work next.

Fang and LeFevre [39] proposed an automated technique for configuring a user’s privacy set-
tings in online social networking sites. Paul et al. [80] present using a color coding scheme for
making privacy settings more usable. Squicciarini, Shehab, and Paci [98] propose a game-theoretic
approach for collaborative sharing and control of images in a social network. Toubiana et al. [101]
present a system that automatically applies users’ privacy settings for photo tagging. All these
papers propose new techniques that are targeted to making privacy settings “better” (i.e., more us-
able, more visible) from a user’s perspective. Our approach, on the other hand, targets the internal
algorithms such as recommendations used by these systems.

There have been some recent papers on data privacy and software testing. Clause and Orso
[21] propose techniques for the automated anonymization of field data for software testing. They
extend the work done by Castro et al. [20] using novel concepts of path condition relaxation and
breakable input conditions resulting in improving the effectiveness of input anonymization. Our
work is orthogonal to the papers on input anonymization. The problem they address is — how
can users anonymize sensitive information before sending it to the teams or companies that build

15

the software? The problem we address is — how can systems that already have access to user
data (such as purchase history, movie preferences, and so on) be engineered so that they don’t leak
sensitive information while doing data mining on the data? Further, the aim of our approach is to
provide privacy “for free,” i.e., without spending extra computational resources on privacy. The
input anonymization approaches require spending extra computation (between 2.5 minutes to 9
minutes) as they address a different problem. We believe that the our approach can be combined
with the input anonymization approach if needed. If users are worried about developers at the
company finding out sensitive information, input anonymization is essential. If, however, they
are worried about accidental data leakage through the data mining of their information, using the
“Privacy for Free” approach may be more suitable. This would also make the software system
more sustainable as we don’t spend any computation doing the anonymization of the inputs.

Taneja et al. [100] and Grechanik et al. [44] propose using k-anonymity [99] for privacy by
selectively anonymizing certain attributes of a database for software testing. Their papers propose
novel approaches using static analysis for selecting which attributes to anonymize so that test cov-
erage remains high. Similar to above, our approach is orthogonal as we focus on an approach
that will prevent accidental leakage of sensitive information via data mining or similar techniques.
Further, these approaches using k-anonymity also require significant additional computational re-
sources and thus, may not be sustainable when energy resources are scarce.

The testing problem above is concerned with internal data that users keep on their own comput-
ers and do not want to disclose outside their own computer (or put into a server and the testing is
on that server software, but the data was understood to be specific to that user and never aggregated
with other users). The problem we deal with instead is users who have intentionally disclosed data
on a public system, entering their data via web browsers onto some website server that is known to
make publicly available certain data-mined community knowledge gleaned from aggregating that
data with other users — but the users don’t want their data to be personally identifiable from the
aggregate.

Finally, work on input anonymization and k-anonymization both focus on software testing
whereas our approach focuses on an approach for building privacy preserving systems or re-
engineering existing software systems with minimal code changes (since only the parts affected
need to be changed) with a specific goal — to make privacy sustainable and not require additional
resources.

There has also been a lot of work related to data anonymization and building accurate data
models for statistical use (e.g., [3, 33,61, 83,109]). These techniques aim to preserve certain prop-
erties of the data (e.g., statistical properties like average) so they can be useful in data mining
while trying to preserve privacy of individual records. Similar to these, there are has also been
work on anonymizing social networks [13] and anonymizing user profiles for personalized web
search [120] The broad approaches include aggregating data to a higher level of granularity or
adding noise and random perturbations. As we are interested in sustainable ways of achieving
privacy, these approaches are not applicable as they typically require (a lot of) extra computational
effort.

While there has been a lot of interest (and research) in data anonymization, we would like
to reiterate that only data anonymization might not be enough. Narayanan and Shmatikov [72]
demonstrate a relatively straightforward way of breaking the anonymity of data. They show how
it is possible to correlate public IMDb data with private anonymized Netflix movie rating data
resulting in the potential identification of the anonymized individuals. Backstrom et al. [6] also

16

describe a series of attacks for de-anonymizing social networks that have been anonymized to be
made available to the public. They describe two categories of attacks — active attacks where
an evil adversary targets an arbitrary set of users and passive attacks where existing users try to
discover their location in the network and thereby cause de-anonymization. Their results show
that, with high probability and modest computational requirements, de-anonymization is possible
for a real world social network (in their case, LiveJournal [18]). Finally, Zheleva and Getoor [119]
show it’s possible to infer private profiles of users on social networks based on their groups and
friends.

2.6 Discussion
The crux of this project, and the novel idea, is that it is possible to combine two existing approaches
to increase the degree of privacy in social computing systems, under certain conditions. This poses
an interesting open problem — Are there other algorithms that we currently use for solving some
problem that also accidentally provide privacy or some other added benefit?

A lot of research in the Theory and Cryptography community on Differential Privacy has fo-
cused on Mechanism Design [16, 27, 30, 88]. Mechanism Design is the process of coming up
with new mechanisms that are differentially private and solve certain problems in domains such
as machine learning and statistics. The previous sections hint at an interesting avenue of future
research — Mechanism Discovery. We discovered how the CD algorithm as a side effect may
provide differential privacy for free. It might be fruitful to look at currently used algorithms in
varying domains and see if they too, as a side effect, provide differential privacy. This might lead
to the discovery of generalized mechanisms for differential privacy that can be used in other do-
mains, which have not yet been proposed or discovered by Theory and Cryptography researchers.
Mechanism Discovery might act as a great complement to the Mechanism Design research.

In order for Mechanism Discovery to be successful, a greater emphasis must be placed on
Multidisciplinary research. Even though there is some research in recommender system privacy
[12, 95], most of the papers do not use a formal and precise definition of privacy. Our community
could benefit a lot from the precise and formal use of differential privacy. Similarly, most of
the Theory and Cryptography community may not be aware of the privacy research done by our,
or other, communities. There might be a lot of interesting discoveries of mechanisms suitable
for differential privacy. The only way any of this can be achieved is by a greater emphasis on
Multidisciplinary research using areas such as systems, theory, cryptography, web, and databases.

3 Privacy Requirements — Understanding the needs of the users
and developers

Societal Computing aims to address the tradeoffs among the different areas such as Privacy, Green
Computing, Cultural Differences, and so on. The “Privacy for Free” approach outlined in the previ-
ous section is the best-case scenario — an example of a situation where we can improve something
in one area (in this case, privacy) without making something else worse (in this case, green com-
puting). In general, this might be hard to do and we would need to gain a better understanding of
the individual areas to understand what the tradeoffs are. The first step in this direction is a (cur-

17

rently on-going) research paper that aims to understand what end-users and software developers
expect from social software systems as far as privacy is concerned.

A few open questions and hypotheses, which we aim to explore and answer, are:

• Q: For an end-user, does privacy matter? What aspects of privacy are more important?
• H: End users may not care as much about privacy if they know exactly how their data is

being used. If this is true, then we can focus on making privacy understandable rather than
coming up with clever technical solutions

• Q: As a software developer/program manager, what do I need to build a system that ensures
the privacy of the users?

• H: End users and software developers have very different concerns as far as privacy is con-
cerned. If this is true, we need to ensure that systems that are built take into account both of
these points of view (and possibly others from other stakeholders).

• Q: Does geography have any impact of privacy expectations?
• H: Since the US has much weaker privacy laws than the EU, US users and developers care

less about privacy. If this is true, should we customize systems based on where the users are?
• Q: Do we need different privacy mechanisms for technical vs. non-technical users?
• H: Non-technical users prefer more coarse-grained options whereas technical users prefer

more control and fine-grained options. If this is true, should we customize privacy-relevant
user interfaces based on the technical background of the users?

To answer these questions and validate/invalidate the hypotheses, we created a large-scale user
study using an online questionnaire followed by semi-structured interviews. Our questionnaire is
shown in Appendix A. We already have IRB approval for the study (valid till 07/16/2014) and we
have started the study. So far, we have 157 respondents who have filled out the online questionnaire
and 15 participants for the follow-up interviews. The respondents have been primarily from Asia
and North America and we plan to get more respondents, in particular, from Europe.

4 Making Privacy Understandable — Crowdsourcing Privacy
Settings

A similar, and related, challenge to the above is to make privacy more understandable to end-users.
Imagine systems like Facebook which have complex user interfaces and that change the privacy
settings often. Numerous studies have shown that the privacy settings of users are not what they
intended them to be [52, 63, 64].

Our approach towards solving this problem is to use Crowdsourcing. For example, if most
of my friends have their home address as private, maybe that would indicate to me that I should
change my settings to make my address private as well. Thus, for any user, we can analyze what
their settings are using the API and compare this to canonical settings. This canonical list can be
generated in multiple ways as preferred by the users — it could be a list of “trusted” friends, it
could be all friends of that user, it could be all of my friends, etc. This comparison will be shown
to the user in multiple forms (entire list of differences, a “score” between 0 and 1 that tells the
users how private/public they are compared to the canonical list, etc.). Users can now choose to

18

keep their settings the same as they were before, modify them manually, or just mimic the settings
from the canonical list.

Even if the privacy settings are what they intended, maybe the users can benefit from seeing
what others do on the social networking website. Note, an important issue here is trust: I, typically,
would not trust any random friend or user of the website; my real life trust of a set of friends will
impact who I want to mimic.

We have already collected user data for 516 users on Facebook (as part of the project described
in the next section). We have a draft of the user study (shown in Appendix B) and we plan to
submit this for IRB approval in the next few weeks. An added benefit to this project is that the
collected data will give us an ethnographic view of what people’s settings on Facebook (and other
such systems) are.

5 Detecting Privacy Bugs via End-User Regression Testing
End-user Software Engineering (EUSE) is becoming an increasingly important as “computer pro-
gramming, almost as much as computer use, is becoming a widespread, pervasive practice.” [56].
EUSE ranges from requirements and design to testing and debugging. End-user testing, in partic-
ular, is important for privacy because the end-users have little or no say in the functional specifi-
cations of or changes to social computing software, and because its online software they cannot
avoid upgrading after each change or continue to use an “old version.” Plus well-known social
computing systems have an established history of making changes that breach privacy with no a
priori ability for end-users to opt out [40]. But the end-users are not, in general, trained software
engineers so any methodology and technology must be simple and easy to use without training.

Consider the following scenario for Pete – a user of a social system like Facebook. Pete is
comfortable using websites and computers, but doesn’t have a very strong technical background
in Computer Science or Software Engineering. He is worried about his privacy when he uses
Facebook though. There has been a lot of media coverage about privacy concerns, how they keep
changing their privacy policy periodically, how hard it is to figure out all the privacy settings, and
so on and this has caused Pete some concern. Pete likes using the system to keep in touch with his
friends and professional colleagues, but he doesn’t want strangers to have access to his personal
information, photos, likes, dislikes, etc. He has used some of the “how to” guides to configure his
settings to what he wants to them (or so he thinks).

A scenario like this raises a number of interesting software engineering research challenges:

1. R1: Users’ Mental Model of Privacy — How can we make complex privacy settings easier
to understand and verify for Pete? (e.g., If I think my photos are shared with only my friends,
is that really the case?) — Requirements Engineering for Privacy.

2. R2: Code/API Bugs — How can we detect if privacy settings that are in place remain the
same as the software evolves and changes over time? (e.g., If my photos are currently only
shared with my friends, how do I know that they won’t “automatically” get shared with
everyone due to a software bug?) — Regression Testing for Privacy.

3. R3: Policy Changes — How can we detect system wide policy changes that might cause
privacy settings to change? (e.g., If my photos are private right now, how do we detect if
there a policy change that makes all photos publicly accessible?) — Regression Testing for
Privacy.

19

Ideally, for users like Pete who do not have access to the source code of systems like Facebook,
we want to do this from an end-user perspective. In this project, we present a novel technique that
leverages a social, crowdsourced approach for detecting bugs from the end-user perspective. To
the best of our knowledge, this is the first technique that leverages regression testing for detecting
privacy bugs.

Continuing the scenario above – consider Roger, a friend of Pete on the social system. Roger
can manually monitor what part of Pete’s information is visible to him. This monitoring can be
done periodically as often as Pete/Roger deem necessary – say, every day, every hour, once a
month, and so on.

Using this monitoring, Roger can inform Pete when the information he sees changes. For
example, he might suddenly see a whole lot of new information that is now visible. This might
be due to: (1) Pete added more information manually; (2) Pete changed his privacy settings either
deliberately or accidentally; (3) Pete didn’t do anything – there is a bug in the code or API, possibly
due to code changes; and (4) Pete didn’t do anything – the social system made a wide policy
change where this information for many or all of its users is now visible. Pete, now, using this
feedback from Roger, can decide whether it’s ok for the new information to be visible and take the
appropriate actions such as changing the settings back to what he wants them to do, reviewing the
privacy settings or doing nothing.

This, however, can be very tedious for Roger to have to do all this manually, particularly, if
frequently done, and he could easily forget to check certain things. Thus, automated monitoring is
essential and can be done if the system provides an API. A lot of social systems like Facebook [34],
Twitter [102], Last.fm [60], and Google+ [43] do provide an API whose main purpose is to build
an ecosystem of app developers for the system. We can leverage such APIs where possible and if
an API doesn’t exist, the same goal can be achieved via screen scraping.

This is our broad approach — using one’s friends for detecting potential privacy violations.
We call this Social Testing. There are more specific details that need to be dealt with based on
the platform and API and we discuss this in Sections 5.2 and 5.3. This latter section also contains
details about the feasibility of this approach and the kinds of privacy bugs it has helped us uncover.
The main advantages of this approach are:

1. We don’t need access to source code for detecting privacy bugs. Hence, this makes it very
suitable to be employed by end-users (rather than software programmers building the sys-
tem).

2. It leverages the social nature of these systems for detecting these bugs.
3. It can detect privacy bugs due to changes in the code, i.e., regression testing for privacy.

The contributions of this project are:

• A novel software testing technique, called social testing, for the social circles of end-users
to detect privacy bugs using regression testing. Social testing could potentially also be used
for applications other than privacy preservation in social systems, such as in the multi-player
gaming community;

• Two prototype tools that implement our technique for Facebook and Twitter; and
• A large empirical evaluation of our technique that demonstrates: (1) the feasibility and utility

of our technique; and (2) the different kinds of bugs it can help detect.

20

5.1 Background and Motivation
Many recent studies on online social networks show that there is a (typically, large) discrepancy
between users’ intentions for what their privacy settings should be versus what they actually
are [52, 63, 64]. For example, Madejski et al. report that, in their study on Facebook, 94% of
their participants (n = 65) were sharing something they intended to hide and 85% were hiding
something that they intended to share. Liu et al. [63] found that Facebook’s users’ privacy settings
match their expectations only 37% of the time. This is R1 mentioned in the previous section.

In addition to the problem of understanding existing privacy settings, there are two orthogonal
problems. First, there might be software bugs in the implementation of the privacy settings, which
results in over-sharing or under-sharing of information, and as software evolves over time, this
might introduce new bugs. This is R2 mentioned earlier.

Second, systems like Facebook change their policies on privacy often and these changes in
policy usually end up confusing users even more. Dan Fletcher [40] writes: “In the past, when
Facebook changed its privacy controls, it tended to automatically set users’ preferences to maxi-
mum exposure and then put the onus on us to go in and dial them back. In December, the company
set the defaults for a lot of user information so that everyone — even non-Facebook members —
could see such details as status updates and lists of friends and interests. Many of us scrambled
for cover, restricting who gets to see what on our profile pages.” This is R3 mentioned earlier and
these are the main research problems that we are trying to solve with our approach.

5.2 The Social Testing Approach
The broad technique for our social testing approach is to use one’s friends to help with software
engineering problems. Our approach leverages the inherently social aspect of these systems, which
are used for interacting and communicating with other users. This approach will apply only to
systems where users are members of possibly overlapping groups and input information intended
to be shared with some of these groups they are members of but not with other groups they are
members of. This includes the cases of the singleton group – just me – and the universal group –
everyone who uses the system, or anyone who uses the internet since many social systems often
allow certain access with no login at all.

This technique could apply towards many different functional and non-functional requirements
for end-users such as privacy, performance, and so on. In this project, we focus on privacy testing
and in particular, on R2 (detecting privacy bugs in code/API implementations) and R3 (detecting
system wide policy changes for privacy). There are two possible kinds of privacy violations:

• Over-sharing — From a user’s point of view, this piece of information should have been
private, but it can be viewed by others.

• Under-sharing — From a user’s point of view, this piece of information should have been
public, but it cannot be viewed by others.

We deal with both of these types of privacy violations. As our technique is intended for end-
users, we assume that there is no access to source code. The main crux of our technique is — a
user can choose his/her friends to periodically monitor what’s visible to them via the social system.
When they see a change in what’s visible, this might be a privacy violation and they can inform the

21

user. Thus, the aforementioned privacy violations, from the point of view of the tester, become:
(1) Over-sharing — seeing more than you should; and (2) Under-sharing — seeing less than you
should.

Thus, we use a social approach for detecting privacy bugs. The algorithm for our technique
(from the tester’s point of view) is outlined next: a) Implement/Download/Build a wrapper that
can “talk” to the system under test (via an API, screenscraping, etc.). b) Generate a list of users to
monitor. c) Decide on the policies (how often to monitor, which things to monitor). d) Based on
the policies, use the wrapper to monitor the user(s). e) Generate diffs (i.e., differences) between
the information just received and from the previous run. f) If there is a diff, inform the user on
what changed. g) Repeat steps 4-6, as needed and update steps 2-3, when necessary.

We discuss the platform and API specific implementation issues, examples of privacy bugs that
we found, and how this technique can help address R2 and R3 in the next section.

5.3 Empirical Evaluation
For our empirical evaluation, we built two prototype tools: one for Facebook; one for Twitter.
Using these tools, we evaluated how our technique could help addressing R2 and R3. In particular,
we had two specific research questions for our empirical evaluations:

RQ1: Feasibility — Does using our technique help in detecting privacy bugs?
RQ2: Utility — What kinds of bugs does it detect? Does it help with, both, R2 (Code/API Bugs)

and R3 (Policy Changes)?

5.3.1 Privacy and Facebook

Facebook is a great example for doing an empirical evaluation on privacy as it follows a fine-
grained privacy model. It has many different privacy parameters and options; broadly, users can
choose who gets to see what type of data with a lot of granularity. It provides an API, called
the Graph API, that represents the Facebook social graph using objects and connections between
objects [35]. Examples of the objects include User, Events, Groups, and Applications. The User
object contains fields such as name, gender, and birthday and “connections” such as albums, fam-
ily, groups, likes, movies, and videos. Table 2 in Appendix C shows a complete list of User
Connections in Facebook and is available on the Facebook User API page [36].

In general, there is a lot of flexibility for the user to choose the privacy settings for all of these.
Users can share the data with no one, with selected friends, with all friends, with friends of friends,
with certain networks (such as “Columbia University”), and with everyone. Users can also allow
certain apps to access this information.

Prototype Tool Our tool is a prototype implementation of the social technique for detecting
privacy bugs in Facebook. It is easily configurable and can fetch any data provided by the Facebook
API. For the purposes of this study, we focused on getting only the User Connections from [36].
The prototype tool consists of two separate components: the Data Monitor and the Diff Visualizer.

The Data Monitor is implemented as a set of Ruby scripts. It uses the Koala library [4], which
is a Facebook library for Ruby and supports the Graph API. The Data Monitor works as follows:
First, given a list of users, for each user, it uses Koala to get data for that user. It gets all the data

22

======May 25 2012 and May 27 2012======
f r i e n d s − Old : 2 , 783 , New : 2 , 784
e v e n t s − Old : 2 , 1 , New : 1 , 0
f eed − Old : 2 , 15 , New : 2 , 16
l i k e s − Old : 2 , 202 , New : 2 , 200
p o s t s − Old : 2 , 6 , New : 2 , 7
tagged − Old : 2 , 9 , New : 2 , 10
======May 27 2012 and May 28 2012======
f r i e n d s − Old : 2 , 784 , New : 2 , 783
p o s t s − Old : 2 , 7 , New : 2 , 8
tagged − Old : 2 , 10 , New : 2 , 9

Listing 3: Sample Diff Output for a user. events is an example of a Major Difference; the others
are all Minor Differences.

listed in [36] (except the “picture” connection, which didn’t exist when we started collecting data).
The Facebook API supports a “Batch mode” for making data requests and we use this mode to
reduce the load of the servers and to get data more efficiently. Once the Data Monitor has the data,
it writes it out to a log file. We create a separate log file per user. To limit the data that needs to be
stored and also for privacy reasons, we do not store the entire data; we keep only the count of data
items and codify the data received according to the schema defined below:

• 0, nil — This is used when the API returns an error. This is typically a permissions error,
but can also include other server side errors.

• 1, 0 — This is used when the API returns an empty data set. This means that either there
is no data in that category or that the data exists but has been hidden by the user. Note that
with the latter case, it will return a 1, 0 and not a 0, nil.

• 2, x — This is used when the API returns some data. x is the count of the number of items
received. For example, if there were 10 locations that the user had been tagged at, we would
log 2, 10.

The log file, thus, contains multiple lines of data. Each line contains two things: (1) The current
timestamp when the data was received; and (2) An array containing the username and the 41 arrays
for the connections encoded into the schema shown above.

The Diff Visualizer, which is also a set of Ruby scripts, parses each log file and creates a
human readable output if there is a diff (i.e., difference) between any consecutive runs for a user. If
there is a difference, it will print out the pairwise timestamps and what the old and the new values
are. We divide a difference into two categories: a Major Difference and a Minor Difference. A
Major Difference occurs when, for a certain connection, the data received changes the codifying
categories. For example, if music was 2, 8 and became 1, 0, this would be a Major Difference.
A Minor Difference, on the other hand, occurs when the data changes, but does not change the
codifying category. For example, if music was 2, 10 and became 2, 12, this would be a Minor
Difference. We, thus, have two variants of the Diff Visualizer, which will print out either Major
or Minor Differences as needed. A sample output containing both Major and Minor Differences is
shown in Listing 3.

23

=====Apr 24 2012 and Apr 25 2012=====
f eed − Old : 2 , 19 , New : 1 , 0
photos − Old : 2 , 25 , New : 1 , 0
p o s t s − Old : 2 , 19 , New : 1 , 0
tagged − Old : 2 , 5 , New : 1 , 0
v i d e o s − Old : 2 , 1 , New : 1 , 0
l o c a t i o n s − Old : 2 , 1 , New : 1 , 0

(a) Turning On the Privacy Settings

=====Apr 25 2012 and Apr 27 2012=====
f eed − Old : 1 , 0 , New : 2 , 19
photos − Old : 1 , 0 , New : 2 , 25
p o s t s − Old : 1 , 0 , New : 2 , 20
tagged − Old : 1 , 0 , New : 2 , 4
v i d e o s − Old : 1 , 0 , New : 2 , 1
l o c a t i o n s − Old : 1 , 0 , New : 2 , 1

(b) Turning Off the Privacy Settings

Figure 4: Changing Privacy Settings — Output as seen from our tool

Feasibility The first step in our empirical evaluation was to show the feasibility of our approach
and tool. For this step, we used the tool to access the Facebook data of a research colleague of
the first author. Facebook uses OAuth 2.0 [47], which is an open standard for authentication. We
provided our tool with the first author’s OAuth 2.0 access token so that the tool can access the
same data that the first author can. This is the equivalent of the research colleague, using our
social approach, asking the first author to monitor his information on Facebook. For this step of
the evaluation, we did the following:

1. We accessed the Facebook data of the research colleague (name anonymized, for privacy
reasons).

2. After the data was accessed, we asked the colleague to turn on privacy controls and make the
data less visible. This would enable us to check if our tool could detect changes in privacy,
where data is made less visible. The colleague did this by adding the first author to one of
his pre-defined friend lists that had very limited access to his profile. We accessed the data
using our tool again.

3. Finally, we asked the colleague to turn off the privacy controls and make the data more
visible. This would enable us to check if our tool could detect changes in privacy, where
data is made more visible. We accessed the data again using our tool.

The output from the Diff Visualizer is shown in Figure 4. As the figure shows, turning on the
privacy settings reduces visibility — things like photos, locations, and feed were visible earlier
and the Facebook API responses contained data; with the privacy settings on, the Facebook API
returns an empty set. Turning off the privacy settings makes the data visible again, as seen in the
right hand side of the figure.

Our Facebook prototype tool can thus detect changes in privacy settings. These changes can
either be data being made more private or data being made less private. Thus, if someone suddenly
starts sharing more or less data than before, our tool would detect this and this could indicate a
privacy bug. Next, we show some examples of bugs our tool can help detect.

Facebook Bugs — Family and Friendlists We ran our Facebook prototype tool using the first
author’s access token and collected data for all his Facebook friends (n = 516). The data was
collected roughly every day for each user for approximately eleven weeks (from May 1, 2012 to
July 20, 2012). For each user, the number of data points (i.e., the number of days on which we

24

======May 04 2012 and May 07 2012======
f eed − Old : 2 , 21 , New : 2 , 20
p o s t s − Old : 2 , 15 , New : 2 , 14
======May 11 2012 and May 14 2012======
f eed − Old : 2 , 20 , New : 2 , 19
tagged − Old : 2 , 11 , New : 2 , 10
======May 18 2012 and May 21 2012======
p o s t s − Old : 2 , 14 , New : 2 , 15
tagged − Old : 2 , 10 , New : 2 , 8
======May 22 2012 and May 23 2012======
albums − Old : 2 , 3 , New : 1 , 0
f eed − Old : 2 , 19 , New : 1 , 0
l i k e s − Old : 2 , 2 , New : 1 , 0
photos − Old : 2 , 25 , New : 1 , 0
p o s t s − Old : 2 , 15 , New : 1 , 0
tagged − Old : 2 , 8 , New : 1 , 0
family – Old: 2, 1, New: 1, 0
groups − Old : 2 , 2 , New : 1 , 0
l o c a t i o n s − Old : 2 , 4 , New : 1 , 0

Listing 4: Facebook Family Bug — Output as seen from our tool

successfully got data from the Facebook servers) was, on average, 36.24 (σ = 3.26, median = 36,
max = 44, min = 25). (Please see Section 5.4 for a discussion on the number of data points and on
the robustness of our approach.)

Upon running the Diff Visualizer, we found that 63.18% (326 out of 519) of the users had
Major and Minor Differences during the data monitoring period. Out of these, there were a total of
5065 Minor Differences (on average, 15.54 per user) and 780 Major Differences (on average, 2.39
per user). Not all of these differences necessarily imply privacy bugs; some of these differences
would arise from the “normal” use of these systems, i.e., users adding new photos from a recent
trip and so on. But even in these cases, the users may not be aware with whom they are now sharing
this new information.

We now highlight, in this and the next subsection, a couple of interesting case studies on the
bugs that were discovered using our tool. For a certain user, there was one family member being
shown for the first three weeks of the data monitoring period. On May 23, 2012, our tool found a
lot of Major Differences (there had been other, unrelated, Minor Differences previously) for that
user. The output from our tool for the entire monitoring period is shown in Listing 4. The last
diff shows a lot less data being visible. Was this a case of a user turning on privacy settings? Or
perhaps did something change in the Facebook Code or API resulting in a bug? We tried to find
out the cause. We were, of course, limited in our efforts as we don’t have access to the source
code. We decided to focus on the family connection, which lists a user’s family members. This is
highlighted in red in Listing 4.

The first step of our investigation was to see the actual page on Facebook. On the page, the
family member was still visible. This is shown in Figure 5a, highlighted in red (user details have
been blurred out to protect privacy). To ensure that there were no bugs in our tool implementation,
we used the Facebook Graph API Explorer and verified that this returned an empty data set. This
is shown in Figure 5b.

25

(a) The Facebook Website — The highlighted red
rectangle shows the family member.

(b) API — Using the API, the list of family members
is empty.

Figure 5: Facebook Family Bug — On the website, you can see the family member; Using the
API, you cannot see the family member.

Finally, we started looking at Facebook bug reports to see if anyone else had reported a similar
issue. We found two relevant bug reports. The most relevant bug report was titled “Can no longer
access FriendList members on test users” [37]. In this bug report, a user had created two test
users and added each user to the other’s family list. When the user tried accessing the members of
one of the test user’s family, the Graph API returned an empty data set. This is exactly the same
behavior as what we observed here. Facebook have confirmed that the bug exists and assigned
it to a developer with medium priority. The second bug report, titled “Some of the friendlists do
not show members from Graph API, why??” [38], reported a similar problem to the previous bug
report. In this bug report, the user had many friend lists, which is a generalization of the family
connection. Upon accessing the data from the Graph API, some of the friend lists return all the
members; some return only a subset of the members. Facebook has responded to this bug report
by triaging it with low priority.

These bug reports and our tool output, taken together, lead us to believe that there is a bug in
the Facebook API, that was recently introduced due to code changes and should not have passed
the regression testing phase. This is an example of under-sharing — less information is public than
it should be. Our tool was able to detect this privacy bug using end-user regression testing.

Facebook Bugs — Links made public At the start of July, our tool discovered another example
of a privacy bug — this time, it was an example of over-sharing. The output from our tool for one
user is shown in Listing 5. There was a lot of data made public about links posted by a user, which
is highlighted in red. The interesting part was that this was not data that was recently added by the
user; some of these links were added back in 2009. This was data that had been on Facebook for a
while and not visible to friends of the users; now, it was visible.

Analyzing the data further, we found that 73 out of 516 users were now sharing a lot more links
than before and that this new data was first visible towards the start of July. Of the 73 users, 57

26

====== J u l 02 2012 and J u l 06 2012======
f eed − Old : 2 , 14 , New : 2 , 15
links - Old: 1, 0, New: 2, 23
p o s t s − Old : 2 , 3 , New : 2 , 5
tagged − Old : 2 , 14 , New : 2 , 15

Listing 5: Facebook Links Bug — Output as seen from our tool

(i.e., 11.05%) were sharing more than one link, thus indicating that this was not new information
added by the user recently.

To understand the cause behind this over-sharing, we conducted an informal open-ended inter-
view with one of the users, Keith (name changed for privacy reasons). Excerpts from the interview
are shown next (reproduced with permission from Keith). On being told that he is now sharing
23 links, which weren’t visible earlier, Keith responded: “whoa [. . .] ok...... that is weird.” After
looking at the links that were visible, Keith said: “ok, all of these links are valid, but, am surprised
you can see them [. . .] I, as a developer, opened my account for developer access. it’s the only way
possible and I just thought I was authorizing that one app. they must have their permissions f***ed
up [. . .] it’s either that, or facebook changed my settings automatically. ” Keith said that he would
change his settings back so that the links would not visible anymore and ended the interview with:
“good thing your app [sic] was able to catch it.”

Keith is currently a student at Columbia University pursuing a Ph.D. in Computer Science.
Given that someone with a technical background didn’t know about his data being public and
wasn’t completely sure what changed, a non-technical end-user would generally have a much
harder time figuring out changes in privacy settings. This is the main strength of our tool — giving
end-users an easy way for detecting potential privacy breaches. Since this particular bug had not
affected all the users, it seems to indicate that this a Policy Change that is being rolled out gradually
by Facebook. Alternatively, this could be another example of a bug (affecting only some users) in
the Facebook Code or API. Either way, our tool was able to detect this.

We also extended our prototype tool to detect privacy bugs in Twitter. Due to space reasons,
this section is shown in Appendix D.

5.4 Discussion
5.4.1 Flexibility

One advantage of this approach for detecting privacy bugs is the flexibility. A user could choose
different sets of friends to monitor different things, if the social system has a fine-grained privacy
model. For example, he could have a friend check the privacy settings of his photos and check-in
locations. He could have someone from his network (such as “New York”) check his music and
movies. He could have a friend of a friend check his feed. He could also create overlapping groups
— his friends should be able to see albums and locations; his network can only see the albums.
Thus, he could use different sets of friends to verify that the privacy settings indeed are what he
expects them to be and to alert him when they can see more or less than what they saw before.

A user can also choose how often the data is fetched based on how active he is on the social
system, the API rate limits, and personal preferences such as the tradeoff between the load on the

27

social system’s servers and his privacy needs.
Finally, in terms of implementation, our prototype tools were stand-alone tools that ran off

the command line. Social systems like Facebook and Twitter provide rich ecosystems for apps.
Our approach can be implemented as apps that run on Facebook, for example. Other alternatives
include a browser plugin that automatically runs the regression testing when the user logs into one
of these systems or on a periodic basis (every hour, every day, and so on), a “normal” desktop
application with a GUI, and so on. We used Ruby for our implementations; this was of out choice
and is not a constraint. Any programming language that can access the web can be used. Having a
wrapper library for that programing language does help as it obviates the need to deal with lower
level protocol details. For example, Twitter has a list of libraries for 14 programming languages
ranging from Java, .NET, and Python to Erlang, Scala, and Clojure [104]. There are no inherent
implementation or UI limitations as far as our approach is concerned.

5.4.2 Generalizability

Another advantage of this approach for detecting privacy bugs is the generalizability of the tech-
nique. In general, it can work with any social system regardless of what kinds of privacy controls
and features it has. The previous Section showed how it could work with systems at two extreme
ends of the privacy spectrum: Facebook, with its fine grained settings for choosing who sees what
and Twitter with its coarse grained settings, which is essentially an on/off switch.

Having an API to use makes it much easier to implement a tool for a particular social system.
This, however, is not a limiting factor — if there is no API, the same approach can be combined
with alternatives such as screen or web scraping.

5.4.3 Robustness

Our approach is also very robust — it does not need that the Data Monitor is run every day or that
the Data Monitor successfully fetches data for each user every day (or on every run). In spite of
the Facebook API having slow response times [81] and timing out occasionally, which resulted in
our Data Monitor fetching data successfully on average 36 times (out of possibly about 75 times)
for each user in an eleven week time period, our tool still works fine and detects bugs as shown
in the previous Section. The tradeoff with fetching data less often is that we will not be able to
catch transient bugs. For example, if something is made public only for a few minutes and then it
is private again, if our Data Monitor is not active then, we will not be able to detect it.

In contrast to the Facebook API, the Twitter API, in our experience, was much more stable.
Regardless of the stability and reliability of the social system under test, as mentioned above, our
approach can still detect bugs due to its highly flexible nature.

5.4.4 Limitations and Threats to Validity

A limitation of our prototype tools is that we keep track of the number of items in data fetched,
rather than the actual data. For example, in the Facebook tool, for a user, we log that the user had
ten photos rather than what the photos are. We do this for two reasons: (1) to reduce the data that
needs to be stored; and (2) for privacy reasons. Due to this, our tools might miss out on changes
in privacy if a user, for example, deletes one photo and adds one photo, our tool would see this as

28

no change having occurred. This, however, is a limitation of our prototype tools, and not of our
approach. If an end-user wishes to keep track of the exact data, rather than the number of data
items, our tools can be modified to do that. An added challenge, in this case, would be to find
the semantic similarities between data items, which would be easier in some cases (e.g., checkin
locations, groups) than others (e.g., albums, interests, likes).

An inherent limitation of our approach is the possibility of false negatives, i.e., privacy bugs
that exist in the system that our tool/approach is not able to catch. There might be bugs that have
existed since the first version of the software; if there is no change in the code, our regression
testing approach will not work. There might be privacy bugs that affect only some of the users; if
the users that are currently using our tool are not affected by this bug, we won’t be able to detect it.
The main reason for this is that our approach is intended for end-users and we don’t have access
to the source code of the system under test. From an end-user perspective, it’s hard to detect bugs
using our approach that may not have an external manifestation or change in behavior for our users.

Finally, coming back to our software engineering research questions, even though R1 is beyond
the scope of this project, we make a couple of observations based on our empirical results. If there
are never any changes in the social software, then R2 and R3 won’t happen, but in a limited indirect
way just trying to use our tool (which will keep saying “no change”) might make users more aware
of privacy settings issues and thus in a very small way help with R1. Now if there are changes,
so R2 and/or R3 come into play, then the awareness with respect to R1 would be stronger because
users would then be prompted to go look more closely at the particular settings that were affected
and thus would understand them better and adjust their mental model accordingly.

Statistical Conclusion — Do we have sufficient data to make our claims? For our Facebook
tool, we fetched data for 516 users resulting in almost 18,700 data points. For our Twitter tool, we
fetched data for 10 users resulting in almost 350 data points. The goal of the empirical evaluations
was to find examples of privacy bugs to show the feasibility and utility of our approach, which we
did find as described in Section 5.3.

External Validity — Do our results generalize to other systems? Our prototype tools were
implemented for two different systems: Facebook and Twitter. Our approach is broad and can
apply to any social system as discussed in Sections 5.4.1 and 5.4.2 above.

5.5 Related Work
There have been some recent papers on data privacy and software testing. Clause and Orso [21]
propose techniques for the automated anonymization of field data for software testing. They ex-
tend the work done by Castro et al. [20] using novel concepts of path condition relaxation and
breakable input conditions resulting in improving the effectiveness of input anonymization. Taneja
et al. [100] and Grechanik et al. [44] propose using k-anonymity [99] for privacy by selectively
anonymizing certain attributes of a database for software testing. These papers propose novel ap-
proaches using static analysis for selecting which attributes to anonymize so that test coverage
remains high. Peters and Menzies [82] propose an anonymization technique for sensitive data so
that it can be used for cross-company defect prediction. They show that it is possible to make data
less sensitive and still maintain high utility for data mining applications.

Our work is orthogonal to these papers on data anonymization. The problem they address is —
how can one anonymize sensitive information before sharing it with others (e.g., sending it to the
teams or companies that build the software, sharing information for testing purposes, and sharing

29

data across multiple companies, respectively)? The problem we address is - how can end-users
verify if the software systems they are using are handling privacy correctly? Further, all these
papers are trying to protect the privacy of the data. We, on the other hand, are trying to detect
privacy violations and test if the systems have any privacy bugs.

There has been a lot of work in the field of regression testing mainly towards test case selection
and test case prioritization [48, 51, 84, 118], including a very detailed, and excellent, recent survey
by Yoo and Harman [115] and the references therein. Our work builds on, and differs from, all
of the above in two aspects – our regression testing approach is targeted towards end-users and is
targeted towards finding privacy bugs.

There has also been some recent work in using taint analysis for detecting security and pri-
vacy violations [31, 92]. These approaches require access to source code for taint analysis. Our
approach, on the other hand, is targeted towards end-users who do not have source code access
to the social systems that they are using. Our social testing approach is similar in some ways to
“do you see what I see,” a technique proposed in the networking community to support distributed
fault detection and diagnosis from the client-side [96], although there the actual end-users are not
directly involved, and is also related to the network security community’s collaborative intrusion
detection, e.g., [78], where the goal is to share data about penetration attempts against different
organizations’ enterprise networks but without inadvertently sharing any private information.

6 Research plan
Table 1 shows my plan for completion of the research.

Work Description Date Progress

Project Task

Privacy for Free (§2) Finish initial prototype Sep. 2011 complete
Conduct/Update experiments Sep. 2012 complete
Submit Paper to WWW Dec. 2012 complete

Privacy Requirements (§3) Create User Study Jun. 2012 complete
Submit Study for IRB Approval Jul. 2012 complete
Conduct User Study Sep. 2012 ongoing
Submit Paper to ICSE 2014 Jul. 2013

Crowdsourced Privacy (§4) Gather Data for users Apr. 2011 complete
Create User Study Dec. 2011 complete
Submit Study for IRB Approval Feb. 2013
Conduct User Study Apr. 2013
Submit Paper to CHI/CSCW 2014 Jul. 2013

Privacy Regression Testing (§5) Finish initial prototype for Facebook Mar. 2012 complete
Extend prototypes of other systems Apr. 2012 complete
Collect data, find privacy bugs Feb. 2013 ongoing
Submit paper UIST 2013 Feb. 2013

Table 1: Plan for completion of research

30

Appendices
A Privacy Requirements User Study
The online questionnaire for the Privacy Requirements user study is shown next. We already
have IRB approval for the study (valid till 07/16/2014) and so far, 157 participants for the online
questionnaire and 15 participants for the follow-up interviews.

31

Privacy	
 Requirements	
 Survey	

1. Software	
 Development	
 Experience	

	

1) Do	
 you	
 have	
 any	
 experience	
 doing	
 software	
 development?	

a) Yes	

b) No	

	

If	
 No,	
 go	
 directly	
 to	
 Section	
 2.	

	

2) How	
 long	
 have	
 you	
 been	
 involved	
 in	
 software	
 development?	

a) Less	
 than	
 1	
 year	

b) 1-­‐5	
 years	

c) 5-­‐10	
 years	

d) More	
 than	
 10	
 years	
 	

2. Concerns	
 about	
 privacy	
 as	
 an	
 end	
 user	

	

Imagine	
 you	
 are	
 a	
 user	
 of	
 a	
 system	
 that	
 might	
 have	
 access	
 to	
 sensitive	
 data.	
 These	

systems	
 can	
 range	
 from	
 social	
 networks	
 like	
 Facebook,	
 Google+	
 to	
 any	
 system	
 that	

collects	
 user	
 data	
 like	
 Amazon,	
 Netflix,	
 etc.	

	

1) How	
 important	
 is	
 the	
 privacy	
 issue	
 in	
 Software	
 Engineering?	

a) Very	
 important	

b) Important	

c) Normal	

d) Less	
 important	

e) Least	
 important	

2) Would	
 you	
 be	
 willing	
 to	
 use	
 the	
 system	
 if	
 you	
 are	
 worried	
 about	
 privacy	
 issues?	

a) Definitely	
 –	
 I	
 don’t	
 care	
 about	
 privacy	

b) Probably	
 yes	

c) Unsure	

d) Probably	
 not	

e) Definitely	
 not	
 –	
 if	
 there	
 are	
 privacy	
 concerns,	
 I	
 won’t	
 use	
 this	
 system	

3) Would	
 the	
 following	
 lead	
 to	
 privacy	
 concerns?	

a) Aggregation	
 of	
 data	
 –	
 On	
 collecting	
 data	
 over	
 a	
 period	
 of	
 time	
 and	

aggregating	
 it,	
 new	
 trends	
 in	
 your	
 behavior	
 might	
 emerge,	
 which	
 might	
 not	

be	
 expected	

i) Yes	

ii) No	

iii) Unsure	

b) Distortion	
 of	
 Data	
 –	
 The	
 data	
 processing/recommendation	
 system	
 might	

distort	
 the	
 data	
 or	
 the	
 your	
 intent	
 and	
 may	
 be	
 highly	
 misleading	

i) Yes	

ii) No	

iii) Unsure	

c) Data	
 Sharing	
 –	
 The	
 collected	
 data	
 might	
 be	
 used	
 not	
 just	
 for	
 this	
 system,	
 but	

given	
 to	
 third	
 parties	
 for	
 purposes	
 like	
 advertising	

i) Yes	

ii) No	

iii) Unsure	

d) Data/Privacy	
 breaches	
 –	
 Malicious	
 users	
 might	
 be	
 able	
 to	
 get	
 access	
 to	

sensitive	
 information	
 about	
 you	
 (and	
 other	
 users)	
 in	
 the	
 system	

i) Yes	

ii) No	

iii) Unsure	

e) Other	
 additional	
 concerns?	
 Why?	

	

	

	

	

	

4) What	
 will	
 help	
 in	
 reducing	
 user	
 concerns	
 about	
 privacy?	

a) Privacy	
 Policy	
 (or	
 EULA,	
 etc.)	
 –	
 Describing	
 what	
 the	
 system	
 will/won’t	
 do	

with	
 the	
 data	

i) Yes	

ii) No	

iii) Unsure	

b) Privacy	
 Laws	
 –	
 Describing	
 which	
 local/national	
 law	
 the	
 system	
 is	
 complaint	

with	
 (e.g.,	
 HIPAA	
 in	
 the	
 US,	
 European	
 privacy	
 laws)	

i) Yes	

ii) No	

iii) Unsure	

c) Anonymizing	
 all	
 data	
 –	
 Ensuring	
 that	
 none	
 of	
 the	
 data	
 has	
 any	
 identifiers	
 to	

tie	
 the	
 data	
 to	
 an	
 individual	
 user	

i) Yes	

ii) No	

iii) Unsure	

d) Technical	
 Details	
 –	
 Describing	
 the	
 algorithms/source	
 code	
 of	
 the	
 system	
 in	

order	
 to	
 achieve	
 higher	
 trust	
 (e.g.,	
 encryption	
 of	
 all	
 data)	

i) Yes	

ii) No	

iii) Unsure	

e) Details	
 on	
 usage	
 –	
 Describe	
 (preferably,	
 in	
 easy	
 to	
 understand	
 words)	

what/how	
 the	
 data	
 will	
 be	
 used	

i) Yes	

ii) No	

iii) Unsure	

f) Other	
 additional	
 approaches?	
 Why?	

	

	

5) Should	
 the	
 system	
 have	
 special	
 mechanisms	
 in	
 place	
 to	
 protect	
 your	
 privacy	

based	
 on	
 the	
 following:	

a) Gender	

i) Yes	

ii) No	

iii) Unsure	

b) Users	
 with	
 varying	
 levels	
 of	
 concern	
 about	
 privacy	

i) Yes	

ii) No	

iii) Unsure	

c) Users	
 with	
 varying	
 levels	
 of	
 technical	
 expertise	

i) Yes	

ii) No	

iii) Unsure	

d) Other	
 additional	
 categories?	
 Why?	
 	

6) What	
 information	
 about	
 you	
 should	
 systems	
 never	
 capture?	
 Why?	

	

	

	

7) What	
 information	
 about	
 you	
 can	
 be	
 captured?	
 Why?	

	

	

	

8) What	
 information	
 about	
 you	
 should	
 systems	
 never	
 share?	
 Why?	

	

	

	

9) What	
 information	
 about	
 you	
 can	
 be	
 shared?	
 Why?	

	

	

	

10) Do	
 you	
 have	
 any	
 specific	
 additional	
 privacy	
 concerns	
 for	
 the	
 following	
 types	
 of	

systems?	

a) Social	
 Network	
 Systems	

b) E-­‐commerce	
 Systems	

c) Recommendation	
 Systems	

d) Location-­‐based	
 Services	

e) Others	
 (please	
 specify)	

	

	

	

	

Please	
 go	
 to	
 Section	
 4.	

	
 	

3. Concerns	
 about	
 privacy	
 as	
 a	
 software	
 developer	

	

Imagine	
 that	
 you	
 are	
 a	
 software	
 developer	
 building/modifying	
 a	
 complex	
 system	

that	
 has	
 access	
 to	
 sensitive	
 user	
 information.	
 	

	

1) How	
 important	
 is	
 the	
 privacy	
 issue	
 in	
 Software	
 Engineering?	

a) Very	
 important	

b) Important	

c) Normal	

d) Less	
 important	

e) Least	
 important	

2) Do	
 you	
 think	
 users	
 will	
 be	
 willing	
 to	
 use	
 the	
 system	
 if	
 they	
 are	
 worried	
 about	

privacy	
 issues?	

a) Definitely	
 –	
 most	
 users	
 don’t	
 care	
 about	
 privacy	

b) Probably	
 yes	

c) Unsure	

d) Probably	
 not	

e) Definitely	
 not	
 –	
 if	
 there	
 are	
 privacy	
 concerns,	
 no	
 one	
 will	
 use	
 this	
 system	

3) Would	
 the	
 following	
 lead	
 to	
 privacy	
 concerns?	

a) Aggregation	
 of	
 data	
 –	
 On	
 collecting	
 data	
 over	
 a	
 period	
 of	
 time	
 and	

aggregating	
 it,	
 new	
 trends	
 in	
 user	
 behavior	
 might	
 emerge,	
 which	
 the	
 user	

might	
 not	
 expect	

i) Yes	

ii) No	

iii) Unsure	

b) Distortion	
 of	
 Data	
 –	
 The	
 data	
 processing/recommendation	
 system	
 might	

distort	
 the	
 data	
 or	
 the	
 user’s	
 intent	
 and	
 may	
 be	
 highly	
 misleading	

i) Yes	

ii) No	

iii) Unsure	

c) Data	
 Sharing	
 –	
 The	
 collected	
 data	
 might	
 be	
 used	
 not	
 just	
 for	
 this	
 system,	
 but	

given	
 to	
 third	
 parties	
 for	
 purposes	
 like	
 advertising	

i) Yes	

ii) No	

iii) Unsure	

d) Data/Privacy	
 breaches	
 –	
 Malicious	
 users	
 might	
 be	
 able	
 to	
 get	
 access	
 to	

sensitive	
 information	
 about	
 other	
 users	
 in	
 the	
 system	

i) Yes	

ii) No	

iii) Unsure	

e) Other	
 additional	
 concerns?	
 Why?	

	

	

	

	

	

4) What	
 will	
 help	
 in	
 reducing	
 user	
 concerns	
 about	
 privacy?	

a) Privacy	
 Policy	
 (or	
 EULA,	
 etc.)	
 –	
 Describing	
 to	
 the	
 user	
 what	
 the	
 system	

will/won’t	
 do	
 with	
 the	
 data	

i) Yes	

ii) No	

iii) Unsure	

b) Privacy	
 Laws	
 –	
 Describing	
 to	
 the	
 user	
 which	
 local/national	
 law	
 the	
 system	
 is	

complaint	
 with	
 (e.g.,	
 HIPAA	
 in	
 the	
 US,	
 European	
 privacy	
 laws)	

i) Yes	

ii) No	

iii) Unsure	

c) Anonymizing	
 all	
 data	
 –	
 None	
 of	
 the	
 data	
 has	
 any	
 identifiers	
 to	
 tie	
 the	
 data	
 to	

the	
 user	

i) Yes	

ii) No	

iii) Unsure	

d) Technical	
 Details	
 –	
 Describing	
 the	
 algorithms/source	
 code	
 of	
 the	
 system	
 in	

order	
 to	
 achieve	
 higher	
 trust	
 (e.g.,	
 encryption	
 of	
 all	
 data)	

i) Yes	

ii) No	

iii) Unsure	

e) Details	
 on	
 usage	
 –	
 Describe	
 (preferably,	
 in	
 easy	
 to	
 understand	
 words)	

what/how	
 the	
 data	
 will	
 be	
 used	

i) Yes	

ii) No	

iii) Unsure	

f) Other	
 additional	
 approaches?	
 Why?	

	

	

5) Should	
 the	
 system	
 have	
 special	
 mechanisms	
 in	
 place	
 to	
 protect	
 the	
 privacy	
 of	
 the	

users	
 based	
 on	
 the	
 following:	

a) Gender	
 of	
 the	
 users	

i) Yes	

ii) No	

iii) Unsure	

b) Users	
 with	
 varying	
 levels	
 of	
 concern	
 about	
 privacy	

i) Yes	

ii) No	

iii) Unsure	

c) Users	
 with	
 varying	
 levels	
 of	
 technical	
 expertise	

i) Yes	

ii) No	

iii) Unsure	

d) Other	
 additional	
 categories?	
 Why?	
 	

6) What	
 information	
 about	
 the	
 user	
 should	
 systems	
 never	
 capture?	
 Why?	

	

	

	

7) What	
 information	
 about	
 the	
 user	
 can	
 be	
 captured?	
 Why?	

	

	

	

8) What	
 information	
 about	
 the	
 user	
 should	
 systems	
 never	
 share?	
 Why?	

	

	

	

9) What	
 information	
 about	
 the	
 user	
 can	
 be	
 shared?	
 Why?	

	

	

	

10) Do	
 you	
 have	
 any	
 specific	
 additional	
 privacy	
 concerns	
 for	
 the	
 following	
 types	
 of	

systems?	

a) Social	
 Network	
 Systems	

b) E-­‐commerce	
 Systems	

c) Recommendation	
 Systems	

d) Location-­‐based	
 Services	

e) Others	
 (please	
 specify)	
 	

4. User	
 demographics	

	

1) Are	
 you	
 or	
 have	
 you	
 been	
 involved	
 with	
 academia	
 (as	
 a	
 researcher,	
 faculty	

member,	
 PhD	
 student	
 or	
 postdoc)?	

a) Yes	

b) No	

2) Are	
 you	
 or	
 have	
 you	
 been	
 involved	
 with	
 industry?	

a) Yes	

b) No	

3) In	
 which	
 continent	
 have	
 you	
 primarily	
 lived	
 in	
 the	
 last	
 few	
 years?	

a) North	
 America	

b) South	
 America	

c) Europe	

d) Asia	

e) Africa	

f) Multiple	
 –	
 Please	
 specify	

g) Other	
 –	
 Please	
 specify	

4) In	
 which	
 continent	
 were	
 you	
 born?	

a) North	
 America	

b) South	
 America	

c) Europe	

d) Asia	

e) Africa	

f) Other	
 –	
 Please	
 specify	

5) In	
 which	
 continent	
 have	
 you	
 lived	
 the	
 longest?	

a) North	
 America	

b) South	
 America	

c) Europe	

d) Asia	

e) Africa	

f) Multiple	
 –	
 Please	
 specify	

g) Other	
 –	
 Please	
 specify	

6) Would	
 you	
 be	
 interested	
 in	
 participating	
 in	
 a	
 follow-­‐up	
 telephone	
 or	
 in	
 person	

interview?	

a) Yes	

b) No	

	

If	
 Yes,	
 please	
 provide	
 your	
 contact	
 details	
 below:	

	

Name:	

Email:	

	

	

	

B Crowdsourcing Privacy Settings User Study

40

Crowdsourced	
 Privacy	
 Settings	
 Survey	

1. Facebook	
 Privacy	
 Settings	
 Background	

	

1) How	
 often	
 do	
 you	
 use	
 Facebook?	

a) Daily	

b) Weekly	

c) Monthly	

d) Rarely	

	

2) Are	
 you	
 aware	
 of	
 the	
 fine-­‐grained	
 privacy	
 settings?	

a) Yes	

b) No	

	

3) How	
 happy	
 are	
 you	
 with	
 the	
 default	
 settings?	

a) Very	
 Happy	

b) Happy	

c) Neutral	

d) Unhappy	

e) Very	
 Unhappy	

	

4) Why?	

	

5) Have	
 you	
 ever	
 changed	
 the	
 default	
 privacy	
 settings?	

a) Yes	

b) No	

	

6) How	
 often	
 do	
 you	
 change	
 your	
 privacy	
 settings?	

a) Never	

b) Set	
 once	
 and	
 forget	

c) Regularly	

	

7) What	
 is	
 the	
 main	
 purpose	
 of	
 privacy	
 settings	
 for	
 you?	

a) Block	
 a	
 few	
 friends	

b) Block	
 family	

c) Block	
 everyone	
 other	
 than	
 friends	

d) Other	

	

8) How	
 happy	
 are	
 you	
 with	
 the	
 privacy	
 settings	
 provided	
 by	
 Facebook?	

a) Very	
 Happy	

b) Happy	

c) Neutral	

d) Unhappy	

e) Very	
 Unhappy	

	

9) Why?	

	

10) 	
 How	
 easy	
 is	
 it	
 to	
 change	
 your	
 privacy	
 settings?	

a) Very	
 Easy	

b) Easy	

c) Neutral	

d) Hard	

e) Very	
 Hard	

	

11) 	
 How	
 comfortable	
 are	
 you	
 with:	

a) Other	
 people	
 sharing	
 your	
 information	

i) Very	
 comfortable	

ii) Comfortable	

iii) Neutral	

iv) Uncomfortable	

v) Very	
 uncomfortable	

b) Applications	
 accessing	
 your	
 data	

i) Very	
 comfortable	

ii) Comfortable	

iii) Neutral	

iv) Uncomfortable	

v) Very	
 uncomfortable	

	

12) 	
 Should	
 you	
 have	
 some	
 control	
 over	
 this?	

a) Other	
 people	

i) Yes	

ii) Uncertain	

iii) No	

b) Applications	

i) Yes	

ii) Uncertain	

iii) No	

	

	
 	

2. Crowdsourced	
 Privacy	
 Settings	

	

====Based	
 on	
 our	
 analysis,	
 your	
 score	
 is	

 =====	

Friends	
 Average	
 Score	
 –	
 X/100	

	
 (Higher	
 score	
 =>	
 more	
 sharing,	
 less	
 privacy)	

	

1) What	
 is	
 your	
 reaction	
 to	
 the	
 score?	

a) Very	
 surprised	

b) Surprised	

c) Neutral	

d) Sort	
 of	
 expected	

e) Exactly	
 as	
 expected	

	

2) Would	
 you	
 like	
 a	
 mechanism	
 where	
 your	
 privacy	
 settings	
 mimic	
 the	
 privacy	

settings	
 of	
 (a	
 group	
 of)	
 friends?	

a) Yes	

b) Uncertain	

c) No	

	

3) Would	
 you	
 like	
 a	
 mechanism	
 where	
 your	
 privacy	
 settings	
 towards	
 a	
 person	
 are	

identical	
 to	
 the	
 privacy	
 settings	
 of	
 that	
 person	
 to	
 you	
 (E.g.,	
 if	
 person	
 A	
 has	
 hidden	

his	
 photos	
 from	
 you,	
 your	
 photos	
 will	
 also	
 be	
 hidden	
 from	
 A)?	

a) Yes	

b) Uncertain	

c) No	
 	

	

4) Would	
 you	
 like	
 privacy	
 settings	
 in	
 the	
 following	
 manner?	

a) List	
 of	
 all	
 privacy	
 settings	
 (current	
 Facebook	
 default)	

i) Strongly	
 Agree	

ii) Agree	

iii) Neutral	

iv) Disagree	

v) Strongly	
 Disagree	

b) Point	
 Score	
 of	
 your	
 settings	
 (similar	
 to	
 the	
 start	
 of	
 this	
 section)	

i) Strongly	
 Agree	

ii) Agree	

iii) Neutral	

iv) Disagree	

v) Strongly	
 Disagree	

c) Coarse	
 Grained	
 Settings	
 –	
 Very	
 Private,	
 Neutral,	
 Very	
 Public	
 (similar	
 to	
 video	

games	
 with	
 modes	
 like	
 Easy/Medium/Hard)	

i) Strongly	
 Agree	

ii) Agree	

iii) Neutral	

iv) Disagree	

C User Connections on Facebook
Table 2 shows the user connections that are available via the Facebook API.

44

Name Description

accounts The Facebook apps and pages owned by the current user.
achievements The achievements for the user.
activities The activities listed on the user’s profile.
albums The photo albums this user has created.
apprequests The user’s outstanding requests from an app.
books The books listed on the user’s profile.
checkins The places that the user has checked-into.
events The events this user is attending.
family The user’s family relationships
feed The user’s wall.
friendlists The user’s friend lists.
friendrequests The user’s incoming friend requests.
friends The user’s friends.
games Games the user has added to the Arts and Entertainment section of their profile.
groups The Groups that the user belongs to.
home The user’s news feed.
inbox The Threads in this user’s inbox.
interests The interests listed on the user’s profile.
likes All the pages this user has liked.
links The user’s posted links.
locations Posts, statuses, and photos in which the user has been tagged at a location.
movies The movies listed on the user’s profile.
music The music listed on the user’s profile.
mutualfriends The mutual friends between two users.
notes The user’s notes.
notifications The notifications for the user.
outbox The messages in this user’s outbox.
payments The Facebook Credits orders the user placed with an application.
permissions The permissions that user has granted the application.
photos Photos the user (or friend) is tagged in.
picture The user’s profile picture.
pokes The user’s pokes.
posts The user’s own posts.
questions The user’s questions.
scores The current scores for the user in games.
statuses The user’s status updates.
subscribedto People you’re subscribed to.
subscribers The user’s subscribers.
tagged Posts the user is tagged in.
television The television listed on the user’s profile.
updates The updates in this user’s inbox.
videos The videos this user has been tagged in.

Table 2: User Connections as listed on the Facebook User API [36]

45

D Privacy Testing and Twitter
Twitter, as opposed to Facebook, has a completely different model with respect to privacy. While
Facebook has a very fine-grained control model for controlling what’s visible to whom, Twitter
has a very coarse-grained model. Users can choose if their accounts are “protected” or not, with
the account being not protected as the default setting [103]. If the account is not protected, all
tweets are public and can be viewed by anyone. If the account is protected, it can only be viewed
by the followers of that person. There is no mechanism for deciding this on a per-tweet basis, for
example. Regardless of whether the account is protected or not, anyone can still see the number of
tweets, the number of followers, and the number of following for any user.

Thus, the only setting that matters in terms of privacy is whether the account if protected or
not. Our Twitter tool, described below, uses the same social approach for detecting if the privacy
settings change. In addition to this, to show the generalizability of our approach in dealing with
different kinds of social systems, we decided to treat some other user information as “sensitive”
— i.e., if Twitter had more fine-grained controls for these types of information, our approach (and
tool) would still be able to detect changes in privacy settings. A partial list of user fields from the
Twitter User API is shown in Table 3. For the purposes of our tool and empirical study, we treated
these as sensitive information as well and inform the user when these change.

Field Description

description The user-defined UTF-8 string describing their account.
favourites count The number of tweets this user has favorited in the account’s lifetime.
followers count The number of followers this account currently has.
friends count The number of users this account is following (AKA their “follow-

ings”).
geo enabled When true, indicates that the user has enabled the possibility of geotag-

ging their Tweets.
listed count The number of public lists that this user is a member of.
protected When true, indicates that this user has chosen to protect their Tweets.
statuses count The number of tweets (including retweets) issued by the user.
verified When true, indicates that the user has a verified account.
withheld in countries When present, indicates a textual representation of the two-letter coun-

try codes this user is withheld from.
withheld scope When present, indicates whether the content being withheld is the “sta-

tus” or a “user.”

Table 3: Partial list of Users Fields from the Twitter User API [105]

D.1 Prototype Tool
Our prototype tool can detect privacy bugs for Twitter. Similar to the Facebook prototype tool
described in Section 5.3.1, it is easily configurable and can fetch any data provided by the Twitter
API. For the purposes of this study, we focused on getting only the partial list of User fields shown

46

========2012−06−19 and 2012−06−19========
f r i e n d s c o u n t−Old : 2 , 140 , New : 2 , 142
========2012−06−19 and 2012−06−19========
protected-Old: 2, false, New: 2, true
========2012−06−19 and 2012−06−19========
protected-Old: 2, true, New: 2, false
========2012−06−21 and 2012−06−22========
f o l l o w e r s c o u n t−Old : 2 , 138 , New : 2 , 137
s t a t u s e s c o u n t−Old : 2 , 548 , New : 2 , 551

Listing 6: Privacy Monitoring of @swapneel — Output as seen from our tool

in Table 3. Similar to the Facebook tool, the Twitter tool consists of two components: the Data
Monitor and the Diff Visualizer.

The Data Monitor is implemented as a set of Ruby scripts. It uses the Twitter library [73] to
get data from the Twitter API. The Diff Visualizer, similar the Facebook Diff Visualizer, is also a
set of Ruby scripts that parses each log file and creates a human readable output if there is a diff
between any consecutive runs for a user. The rest of the workings of the Data Monitor are similar
to the Facebook tool described in Section 5.3.1. We do not repeat the implementation details of
the tools due to space limitations. The main difference is that this tool focuses on the user fields
shown in Table 3; the rest of the implementation is similar. The other difference is that, for Twitter
due to its lack of fine-grained privacy controls, we do not distinguish between Major and Minor
Differences.

========2012−06−19 and 2012−06−20========
s t a t u s e s c o u n t−Old : 2 , 904 , New : 2 , 906
========2012−06−20 and 2012−06−21========
l i s t e d c o u n t−Old : 2 , 67 , New : 2 , 68
s t a t u s e s c o u n t−Old : 2 , 906 , New : 2 , 910
========2012−06−21 and 2012−06−22========
f o l l o w e r s c o u n t−Old : 2 , 877 , New : 2 , 876
s t a t u s e s c o u n t−Old : 2 , 910 , New : 2 , 912
========2012−06−22 and 2012−06−23========
f o l l o w e r s c o u n t−Old : 2 , 876 , New : 2 , 878
s t a t u s e s c o u n t−Old : 2 , 912 , New : 2 , 913
========2012−06−23 and 2012−06−25========
f o l l o w e r s c o u n t−Old : 2 , 878 , New : 2 , 879
========2012−06−25 and 2012−06−26========
f o l l o w e r s c o u n t−Old : 2 , 879 , New : 2 , 880
========2012−06−26 and 2012−06−27========
f o l l o w e r s c o u n t−Old : 2 , 880 , New : 2 , 882
========2012−06−27 and 2012−06−28========
f o l l o w e r s c o u n t−Old : 2 , 882 , New : 2 , 883
========2012−06−28 and 2012−06−29========
f o l l o w e r s c o u n t−Old : 2 , 883 , New : 2 , 885
f r i e n d s c o u n t−Old : 2 , 1015 , New : 2 , 1016

Listing 7: Privacy Monitoring of @ICSEConf — Output as seen from our tool

47

D.2 Feasibility
We ran our Twitter prototype tool and collected data for some of the first author’s research col-
leagues (n = 10). The data was collected roughly every day for each user for approximately four
weeks (from May 19, 2012 to July 20, 2012).

We also collected data for the first author (@swapneel) and changed the account to protected
(and back to open) and verified if the tool can detect changes in privacy settings. The tool could,
indeed, pick up the changes in privacy settings. The output from the Diff Visualizer (highlighted
in red) in shown in Listing 6.

One of the twitter accounts for which the data was collected was the official ICSE twitter
account (@ICSEconf). If we assume that the fields listed in Table 3 are sensitive information, our
tool can detect changes in these as well. The partial output from the Diff Visualizer is shown in
Listing 7.

Recently, a bug was found in Twitter where users who wanted to follow others were “arbitrarily,
randomly, and haphazardly” unfollowed [77]. This “unfollow” bug was acknowledged by the
Twitter team and they said that they were working on a fix. Our tool would have been able to
detect this bug as well as follows: Say I started following two new users today. If the output
from the Diff Visualizer was anything other than two, we know that there is a bug with following
someone. The user could then check which user got unfollowed and follow the user again, if
needed.

48

References
[1] ACM. ACM Proceedings. http://dl.acm.org/proceedings.cfm, 2011.

[2] Nabil R. Adam and John C. Worthmann. Security-control methods for statistical databases: a comparative
study. ACM Comput. Surv., 21(4):515–556, 1989.

[3] Dakshi Agrawal and Charu C. Aggarwal. On the design and quantification of privacy preserving data min-
ing algorithms. In PODS ’01: Proceedings of the twentieth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pages 247–255, New York, NY, USA, 2001. ACM.

[4] Alex Koppel. Koala. https://github.com/arsduo/koala/, April 2010.

[5] Apple Developer. iOS Dev Center. http://developer.apple.com/devcenter/ios/index.
action, 2007.

[6] Lars Backstrom, Cynthia Dwork, and Jon Kleinberg. Wherefore art thou r3579x?: anonymized social networks,
hidden patterns, and structural steganography. In WWW ’07: Proceedings of the 16th international conference
on World Wide Web, pages 181–190, New York, NY, USA, 2007. ACM.

[7] M. Barbaro, T. Zeller, and S. Hansell. A face is exposed for AOL searcher no. 4417749. New York Times, 9,
2006.

[8] BBC. German Street View goes live with enhanced privacy. http://www.bbc.co.uk/news/
technology-11673117, November 2010.

[9] BBC. Governments ‘not ready’ for new European privacy law. http://www.bbc.co.uk/news/
technology-12677534, March 2011.

[10] Leland L. Beck. A security mechanism for statistical database. ACM Trans. Database Syst., 5(3):316–3338,
1980.

[11] Andrew Begel, Khoo Yit Phang, and Thomas Zimmermann. Codebook: discovering and exploiting relation-
ships in software repositories. In ICSE ’10: Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering, pages 125–134, New York, NY, USA, 2010. ACM.

[12] S. Berkovsky, Y. Eytani, T. Kuflik, and F. Ricci. Enhancing privacy and preserving accuracy of a distributed
collaborative filtering. In RecSys ’07: Proc. of the 2007 ACM conf. on Recommender systems, pages 9–16,
2007.

[13] Smriti Bhagat, Graham Cormode, Balachander Krishnamurthy, and Divesh Srivastava. Privacy in dynamic
social networks. In Proceedings of the 19th international conference on World wide web, WWW ’10, pages
1059–1060, New York, NY, USA, 2010. ACM.

[14] Bloomberg News. Baidu Sued in New York Court for Censoring China Internet Search Re-
sults. http://www.bloomberg.com/news/2011-05-18/baidu-com-accused-in-u-s-
lawsuit-of-aiding-chinese-internet-censorship.html, May 2011.

[15] Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Practical privacy: the sulq framework. In
PODS ’05: Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, pages 128–138, New York, NY, USA, 2005. ACM.

[16] Avrim Blum, Katrina Ligett, and Aaron Roth. A learning theory approach to non-interactive database privacy.
In STOC ’08: Proceedings of the 40th annual ACM symposium on Theory of computing, pages 609–618, New
York, NY, USA, 2008. ACM.

[17] Bianca Bosker. Facebook CEO ‘Doesn’t Believe In Privacy’. http://www.huffingtonpost.com/
2010/04/29/zuckerberg-privacy-stance_n_556679.html, April 2010.

[18] Brad Fitzpatrick. LiveJournal. http://www.livejournal.com/, 1999.

[19] Gerardo Canfora, Luigi Cerulo, Marta Cimitile, and Massimiliano Di Penta. Social interactions around cross-
system bug fixings: the case of freebsd and openbsd. In Proceeding of the 8th working conference on Mining
software repositories, MSR ’11, pages 143–152, New York, NY, USA, 2011. ACM.

49

http://dl.acm.org/proceedings.cfm
https://github.com/arsduo/koala/
http://developer.apple.com/devcenter/ios/index.action
http://developer.apple.com/devcenter/ios/index.action
http://www.bbc.co.uk/news/technology-11673117
http://www.bbc.co.uk/news/technology-11673117
http://www.bbc.co.uk/news/technology-12677534
http://www.bbc.co.uk/news/technology-12677534
http://www.bloomberg.com/news/2011-05-18/baidu-com-accused-in-u-s-lawsuit-of-aiding-chinese-internet-censorship.html
http://www.bloomberg.com/news/2011-05-18/baidu-com-accused-in-u-s-lawsuit-of-aiding-chinese-internet-censorship.html
http://www.huffingtonpost.com/2010/04/29/zuckerberg-privacy-stance_n_556679.html
http://www.huffingtonpost.com/2010/04/29/zuckerberg-privacy-stance_n_556679.html
http://www.livejournal.com/

[20] Miguel Castro, Manuel Costa, and Jean-Philippe Martin. Better bug reporting with better privacy. In Proceed-
ings of the 13th international conference on Architectural support for programming languages and operating
systems, ASPLOS XIII, pages 319–328, New York, NY, USA, 2008. ACM.

[21] James Clause and Alessandro Orso. Camouflage: automated anonymization of field data. In Proceeding of the
33rd international conference on Software engineering, ICSE ’11, pages 21–30, New York, NY, USA, 2011.
ACM.

[22] E. Cohen and M. Strauss. Maintaining time-decaying stream aggregates. In Proc. of the 22nd ACM SIGMOD-
SIGACT-SIGART symposium on principles of database systems (PODS), pages 223–233, 2003.

[23] Noam Cohen. It’s Tracking Your Every Move and You May Not Even Know. http://www.nytimes.
com/2011/03/26/business/media/26privacy.html, March 2011.

[24] T. Dalenius. Towards a methodology for statistical disclosure control. Statistik Tidskrift, 15:429–444, 1977.

[25] Yi Ding and Xue Li. Time weight collaborative filtering. In CIKM ’05: Proceedings of the 14th ACM inter-
national conference on Information and knowledge management, pages 485–492, New York, NY, USA, 2005.
ACM.

[26] Irit Dinur and Kobbi Nissim. Revealing information while preserving privacy. In PODS ’03: Proceedings
of the twenty-second ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages
202–210, New York, NY, USA, 2003. ACM.

[27] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data analysis.
Theory of Cryptography, pages 265–284, 2006.

[28] C. Dwork and K. Nissim. Privacy-preserving datamining on vertically partitioned databases. Lecture Notes in
Computer Science, pages 528–544, 2004.

[29] Cynthia Dwork. Differential privacy. IN ICALP, 2:1–12, 2006.

[30] Cynthia Dwork, Moni Naor, Omer Reingold, Guy N. Rothblum, and Salil Vadhan. On the complexity of
differentially private data release: efficient algorithms and hardness results. In STOC ’09: Proceedings of the
41st annual ACM symposium on Theory of computing, pages 381–390, New York, NY, USA, 2009. ACM.

[31] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N.
Sheth. Taintdroid: an information-flow tracking system for realtime privacy monitoring on smartphones. In
Proc. of the 9th USENIX Conf. on Operating systems design and impl., pages 1–6, 2010.

[32] U.S. Energy Information Administration. International Energy Outlook 2010 - Highlights. http://www.
eia.doe.gov/oiaf/ieo/highlights.html, May 2010.

[33] Alexandre Evfimievski, Johannes Gehrke, and Ramakrishnan Srikant. Limiting privacy breaches in privacy
preserving data mining. In PODS ’03: Proceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages 211–222, New York, NY, USA, 2003. ACM.

[34] Facebook. Facebook Developers. http://developers.facebook.com/, 2007.

[35] Facebook. Graph API. https://developers.facebook.com/docs/reference/api/, 2007.

[36] Facebook. User. https://developers.facebook.com/docs/reference/api/user/, 2007.

[37] Facebook Developers. Bugs – Can no longer access FriendList members on test users. https://
developers.facebook.com/bugs/368623589859564, June 2012.

[38] Facebook Developers. Bugs – Some of the friendlists do not show members from Graph API, why?? https:
//developers.facebook.com/bugs/400876833291706, April 2012.

[39] Lujun Fang and Kristen LeFevre. Privacy wizards for social networking sites. In Proceedings of the 19th
international conference on World wide web, WWW ’10, pages 351–360, New York, NY, USA, 2010. ACM.

[40] Dan Fletcher. How Facebook Is Redefining Privacy. http://www.time.com/time/business/
article/0,8599,1990582.html, May 2010.

50

http://www.nytimes.com/2011/03/26/business/media/26privacy.html
http://www.nytimes.com/2011/03/26/business/media/26privacy.html
http://www.eia.doe.gov/oiaf/ieo/highlights.html
http://www.eia.doe.gov/oiaf/ieo/highlights.html
http://developers.facebook.com/
https://developers.facebook.com/docs/reference/api/
https://developers.facebook.com/docs/reference/api/user/
https://developers.facebook.com/bugs/368623589859564
https://developers.facebook.com/bugs/368623589859564
https://developers.facebook.com/bugs/400876833291706
https://developers.facebook.com/bugs/400876833291706
http://www.time.com/time/business/article/0,8599,1990582.html
http://www.time.com/time/business/article/0,8599,1990582.html

[41] Daniel M. German, Jens H. Webber, and Massimiliano Di Penta. Lawful software engineering. In Proceedings
of the FSE/SDP workshop on Future of software engineering research, FoSER ’10, pages 129–132, New York,
NY, USA, 2010. ACM.

[42] W. Geyer, C. Dugan, D. R. Millen, M. Muller, and J. Freyne. Recommending topics for self-descriptions in
online user profiles. In RecSys ’08: Proc. of the 2008 ACM conference on Recommender systems, pages 59–66,
2008.

[43] Google Developers. Google+ API – Google+ Platform. https://developers.google.com/+/api/,
2011.

[44] Mark Grechanik, Christoph Csallner, Chen Fu, and Qing Xie. Is data privacy always good for software testing?
Software Reliability Engineering, International Symposium on, 0:368–377, 2010.

[45] Ryan Grim. Facebook Blocks Ads For Pot Legalization Campaign. http://www.huffingtonpost.
com/2010/08/24/facebook-blocks-ads-for-p_n_692295.html, August 2010.

[46] I. Hadar, S. Sherman, and O. Hazzan. Learning Human Aspects of Collaborative Software Development.
Journal of Information Systems Education, 19(3):311–319, 2008.

[47] E. Hammer-Lahav, D. Recordon, and D. Hardt. The OAuth 2.0 authorization protocol. http://tools.
ietf.org/html/draft-ietf-oauth-v2/, 2010.

[48] Mary Jean Harrold, James A. Jones, Tongyu Li, Donglin Liang, Alessandro Orso, Maikel Pennings, Saurabh
Sinha, S. Alexander Spoon, and Ashish Gujarathi. Regression test selection for java software. In Proc. of the
16th ACM SIGPLAN Conf. on OO prog., systems, languages, and appl., pages 312–326, 2001.

[49] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John T. Riedl. Evaluating collaborative
filtering recommender systems. ACM Trans. Inf. Syst., 22:5–53, January 2004.

[50] Francis Heylighen and Johan Bollen. Hebbian algorithms for a digital library recommendation system. Parallel
Processing Workshops, International Conference on, 0:439, 2002.

[51] Vilas Jagannath, Qingzhou Luo, and Darko Marinov. Change-aware preemption prioritization. In Proceedings
of the 2011 International Symposium on Software Testing and Analysis, ISSTA ’11, pages 133–143, 2011.

[52] M. Johnson, S. Egelman, and S.M. Bellovin. Facebook and privacy: It’s complicated. In Symp. on Usable
Privacy and Security, 2012.

[53] Steven Johnson. Web Privacy: In Praise of Oversharing. http://www.time.com/time/business/
article/0,8599,1990586.html, May 2010.

[54] Patrick Gage Kelley, Lucian Cesca, Joanna Bresee, and Lorrie Faith Cranor. Standardizing privacy notices: an
online study of the nutrition label approach. In Proceedings of the 28th international conference on Human
factors in computing systems, CHI ’10, pages 1573–1582, New York, NY, USA, 2010. ACM.

[55] Ralf Klinkenberg. Learning drifting concepts: Example selection vs. example weighting. Intell. Data Anal.,
8(3):281–300, 2004.

[56] Andrew J. Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret Burnett, Martin Erwig, Chris
Scaffidi, Joseph Lawrance, Henry Lieberman, Brad Myers, Mary Beth Rosson, Gregg Rothermel, Mary Shaw,
and Susan Wiedenbeck. The state of the art in end-user software engineering. ACM Comput. Surv., 43(3):21:1–
21:44, April 2011.

[57] Yehuda Koren. Collaborative filtering with temporal dynamics. Commun. ACM, 53(4):89–97, 2010.

[58] I. Koychev and I. Schwab. Adaptation to drifting user’s interests. In Proceedings of ECML2000 Workshop:
Machine Learning in New Information Age, pages 39–46. Citeseer, 2000.

[59] A.T. Kronman. Education’s End: Why Our Colleges and Universities Have Given Up on the Meaning of Life.
Yale University Press, 2007.

[60] Last.fm. API. http://www.last.fm/api, 2009.

51

https://developers.google.com/+/api/
http://www.huffingtonpost.com/2010/08/24/facebook-blocks-ads-for-p_n_692295.html
http://www.huffingtonpost.com/2010/08/24/facebook-blocks-ads-for-p_n_692295.html
http://tools.ietf.org/html/draft-ietf-oauth-v2/
http://tools.ietf.org/html/draft-ietf-oauth-v2/
http://www.time.com/time/business/article/0,8599,1990586.html
http://www.time.com/time/business/article/0,8599,1990586.html
http://www.last.fm/api

[61] Neal Lathia, Stephen Hailes, and Licia Capra. Private distributed collaborative filtering using estimated con-
cordance measures. In RecSys ’07: Proceedings of the 2007 ACM conference on Recommender systems, pages
1–8, New York, NY, USA, 2007. ACM.

[62] Soo Ling Lim, Daniele Quercia, and Anthony Finkelstein. Stakenet: using social networks to analyse the
stakeholders of large-scale software projects. In Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering - Volume 1, ICSE ’10, pages 295–304, New York, NY, USA, 2010. ACM.

[63] Yabing Liu, Krishna P. Gummadi, Balachander Krishnamurthy, and Alan Mislove. Analyzing facebook privacy
settings: user expectations vs. reality. In Proc. of the 2011 SIGCOMM Conf. on Internet measurement conf.,
pages 61–70, 2011.

[64] Michelle Madejski, Maritza Johnson, and Steven M. Bellovin. A study of privacy settings errors in an online
social network. Pervasive Computing and Comm. Workshops, IEEE Intl. Conf. on, 0:340–345, 2012.

[65] Frank McSherry and Ilya Mironov. Differentially private recommender systems: building privacy into the net.
In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining,
KDD ’09, pages 627–636, New York, NY, USA, 2009. ACM.

[66] Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In FOCS ’07: Proceedings of
the 48th Annual IEEE Symposium on Foundations of Computer Science, pages 94–103, Washington, DC, USA,
2007. IEEE Computer Society.

[67] Joseph Menn. White House calls for online privacy law. http://www.ft.com/cms/s/0/7267c2c4-
500d-11e0-9ad1-00144feab49a.html, March 2011.

[68] Microsoft. Green Computing, volume 18. The Architecture Journal, 2008.

[69] Claire Cain Miller and Tanzina Vega. Google Introduces New Social Tool and Settles Privacy Charge. http:
//www.nytimes.com/2011/03/31/technology/31ftc.html, March 2011.

[70] C. Murphy, S. Sheth, G. Kaiser, and L. Wilcox. genSpace: Exploring Social Networking Metaphors for Knowl-
edge Sharing and Scientific Collaborative Work. In 1st Intl. Workshop on Social Software Engg. and Applica-
tions, pages 29–36, September 2008.

[71] S. Murugesan. Harnessing green it: Principles and practices. IT Professional, 10(1):24 –33, jan.-feb. 2008.

[72] Arvind Narayanan and Vitaly Shmatikov. How to break anonymity of the netflix prize dataset. CoRR, ab-
s/cs/0610105, 2006.

[73] John Nunemaker, Wynn Netherland, Erik Michaels-Ober, and Steve Richert. The Twitter Ruby Gem. http:
//twitter.rubyforge.org/, 2006.

[74] Kevin O’Brien. Technology Butts Up Against Germany’s Privacy Laws. http://www.nytimes.com/
2010/07/12/technology/12disconnect.html, July 2010.

[75] Andrew Odlyzko. A modest proposal for preventing internet congestion. Technical report, AT&T Labs -
Research, 1997.

[76] L. Osterweil. Perpetually testing software. In Proc. of the The Ninth International Software Quality Week, May
1996.

[77] Jeremiah Owyang. Coping With Twitter’s Unfollow Bug. http://techcrunch.com/2012/03/27/
unfollowbug/, March 2012.

[78] Janak J. Parekh, Ke Wang, and Salvatore J. Stolfo. Privacy-preserving payload-based correlation for accurate
malicious traffic detection. In Proc. of the SIGCOMM Workshop on Large-scale attack defense, pages 99–106,
2006.

[79] Vilfredo Pareto. The new theories of economics. The Journal of Political Economy, 5(4):pp. 485–502, 1897.

[80] Thomas Paul, Martin Stopczynski, Daniel Puscher, Melanie Volkamer, and Thorsten Strufe. C4ps: colors for
privacy settings. In Proceedings of the 21st international conference companion on World Wide Web, WWW
’12 Companion, pages 585–586, New York, NY, USA, 2012. ACM.

52

http://www.ft.com/cms/s/0/7267c2c4-500d-11e0-9ad1-00144feab49a.html
http://www.ft.com/cms/s/0/7267c2c4-500d-11e0-9ad1-00144feab49a.html
http://www.nytimes.com/2011/03/31/technology/31ftc.html
http://www.nytimes.com/2011/03/31/technology/31ftc.html
http://twitter.rubyforge.org/
http://twitter.rubyforge.org/
http://www.nytimes.com/2010/07/12/technology/12disconnect.html
http://www.nytimes.com/2010/07/12/technology/12disconnect.html
http://techcrunch.com/2012/03/27/unfollowbug/
http://techcrunch.com/2012/03/27/unfollowbug/

[81] Sarah Perez. Facebook Wins “Worst API” in Developer Survey. http://techcrunch.com/2011/08/
11/facebook-wins-worst-api-in-developer-survey/, August 2011.

[82] F. Peters and T. Menzies. Privacy and utility for defect prediction: Experiments with morph. In Software
Engineering (ICSE), 2012 34th International Conference on, pages 189–199. IEEE, 2012.

[83] H. Polat and Wenliang Du. Privacy-preserving collaborative filtering using randomized perturbation techniques.
In Data Mining, 2003. ICDM 2003. Third IEEE International Conference on, pages 625–628, Nov. 2003.

[84] Xiao Qu, Myra B. Cohen, and Gregg Rothermel. Configuration-aware regression testing: an empirical study
of sampling and prioritization. In Proc. of the 2008 Intl. Symp. on Software testing and analysis, pages 75–86,
2008.

[85] Jason Reed, Adam J. Aviv, Daniel Wagner, Andreas Haeberlen, Benjamin C. Pierce, and Jonathan M. Smith.
Differential privacy for collaborative security. In Proceedings of the Third European Workshop on System
Security, EUROSEC ’10, pages 1–7, New York, NY, USA, 2010. ACM.

[86] LJ Rich. A guide to protecting your privacy on Facebook. http://news.bbc.co.uk/2/hi/
programmes/click_online/8717750.stm, June 2010.

[87] Riva Richmond. Gadgetwise: A Guide to Facebook’s New Privacy Settings. http://gadgetwise.
blogs.nytimes.com/2010/05/27/5-steps-to-reset-your-facebook-privacy-
settings/, May 2010.

[88] Aaron Roth and Tim Roughgarden. Interactive privacy via the median mechanism. In STOC ’10: Proceedings
of the 42nd ACM symposium on Theory of computing, pages 765–774, New York, NY, USA, 2010. ACM.

[89] Indrajit Roy, Srinath T. V. Setty, Ann Kilzer, Vitaly Shmatikov, and Emmett Witchel. Airavat: security and
privacy for MapReduce. In Proceedings of the 7th USENIX conference on Networked systems design and
implementation, NSDI’10, pages 20–20, Berkeley, CA, USA, 2010. USENIX Association.

[90] Anita Sarma, Larry Maccherone, Patrick Wagstrom, and James Herbsleb. Tesseract: Interactive visual ex-
ploration of socio-technical relationships in software development. In Proceedings of the 31st International
Conference on Software Engineering, ICSE ’09, pages 23–33, Washington, DC, USA, 2009. IEEE Computer
Society.

[91] Zachary M. Saul, Vladimir Filkov, Premkumar Devanbu, and Christian Bird. Recommending random walks.
In Proceedings of the the 6th joint meeting of the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software engineering, ESEC-FSE ’07, pages 15–24, New York,
NY, USA, 2007. ACM.

[92] E.J. Schwartz, T. Avgerinos, and D. Brumley. All you ever wanted to know about dynamic taint analysis and
forward symbolic execution (but might have been afraid to ask). In Security and Privacy (SP), 2010 IEEE
Symposium on, pages 317–331. IEEE, 2010.

[93] Israel Shamir. The Guardianı́s Political Censorship of Wikileaks. http://www.counterpunch.org/
2011/01/11/the-guardian-s-political-censorship-of-wikileaks/, January 2011.

[94] Maggie Shiels. Germany officials launch legal action against Facebook. http://news.bbc.co.uk/2/
hi/technology/8798906.stm, July 2010.

[95] Reza Shokri, Pedram Pedarsani, George Theodorakopoulos, and Jean-Pierre Hubaux. Preserving privacy in
collaborative filtering through distributed aggregation of offline profiles. In RecSys ’09: Proceedings of the
third ACM conference on Recommender systems, pages 157–164, New York, NY, USA, 2009. ACM.

[96] V.K. Singh, H. Schulzrinne, and K. Miao. Dyswis: An architecture for automated diagnosis of networks. In
Network Operations and Management Symposium, pages 851–854. IEEE, 2008.

[97] S. Spiekermann and L.F. Cranor. Engineering privacy. Software Engineering, IEEE Transactions on, 35(1):67
–82, jan.-feb. 2009.

53

http://techcrunch.com/2011/08/11/facebook-wins-worst-api-in-developer-survey/
http://techcrunch.com/2011/08/11/facebook-wins-worst-api-in-developer-survey/
http://news.bbc.co.uk/2/hi/programmes/click_online/8717750.stm
http://news.bbc.co.uk/2/hi/programmes/click_online/8717750.stm
http://gadgetwise.blogs.nytimes.com/2010/05/27/5-steps-to-reset-your-facebook-privacy-settings/
http://gadgetwise.blogs.nytimes.com/2010/05/27/5-steps-to-reset-your-facebook-privacy-settings/
http://gadgetwise.blogs.nytimes.com/2010/05/27/5-steps-to-reset-your-facebook-privacy-settings/
http://www.counterpunch.org/2011/01/11/the-guardian-s-political-censorship-of-wikileaks/
http://www.counterpunch.org/2011/01/11/the-guardian-s-political-censorship-of-wikileaks/
http://news.bbc.co.uk/2/hi/technology/8798906.stm
http://news.bbc.co.uk/2/hi/technology/8798906.stm

[98] Anna Cinzia Squicciarini, Mohamed Shehab, and Federica Paci. Collective privacy management in social
networks. In Proceedings of the 18th international conference on World wide web, WWW ’09, pages 521–530,
New York, NY, USA, 2009. ACM.

[99] Latanya Sweeney. k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-Based
Syst., 10(5):557–570, 2002.

[100] Kunal Taneja, Mark Grechanik, Rayid Ghani, and Tao Xie. Testing software in age of data privacy: a balancing
act. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on Foundations
of software engineering, SIGSOFT/FSE ’11, pages 201–211, New York, NY, USA, 2011. ACM.

[101] Vincent Toubiana, Vincent Verdot, Benoit Christophe, and Mathieu Boussard. Photo-tape: user privacy pref-
erences in photo tagging. In Proceedings of the 21st international conference companion on World Wide Web,
WWW ’12 Companion, pages 617–618, New York, NY, USA, 2012. ACM.

[102] Twitter. Twitter Developers. https://dev.twitter.com/, 2008.

[103] Twitter. About Public and Protected Tweets. http://support.twitter.com/entries/14016,
2012.

[104] Twitter Developers. Twitter Libraries. https://dev.twitter.com/docs/twitter-libraries/,
2012.

[105] Twitter Developers. Users. https://dev.twitter.com/docs/platform-objects/users,
2012.

[106] UNICEF. Optional Protocol on the sale of children, child prostitution and child pornography. http://www.
unicef.org/crc/index_30204.html, June 2011.

[107] Jessica Vascellaro and Loretta Chao. Google Defies China on Web. http://online.wsj.com/
article/SB10001424052748704117304575137960803993890.html, March 2010.

[108] Gina Venolia, John Tang, Ruy Cervantes, Sara Bly, George Robertson, Bongshin Lee, and Kori Inkpen. Em-
bodied social proxy: mediating interpersonal connection in hub-and-satellite teams. In CHI ’10: Proceedings
of the 28th international conference on Human factors in computing systems, pages 1049–1058, New York,
NY, USA, 2010. ACM.

[109] Vassilios S. Verykios, Elisa Bertino, Igor Nai Fovino, Loredana Parasiliti Provenza, Yucel Saygin, and Yannis
Theodoridis. State-of-the-art in privacy preserving data mining. SIGMOD Rec., 33(1):50–57, 2004.

[110] John Vidal. The end of oil is closer than you think. http://www.guardian.co.uk/science/2005/
apr/21/oilandpetrol.news, April 2005.

[111] Jim Whitehead. Collaboration in software engineering: A roadmap. In 2007 Future of Software Engineering,
FOSE ’07, pages 214–225, Washington, DC, USA, 2007. IEEE Computer Society.

[112] G. Widmer and M. Kubat. Learning in the presence of concept drift and hidden contexts. Machine Learning,
23(1):69–101, 1996.

[113] Alex Wissner-Gross. How you can help reduce the footprint of the Web. http://www.timesonline.
co.uk/tol/news/environment/article5488934.ece, January 2009.

[114] Edward Wyatt. Court Rejects Suit on Net Neutrality Rules. http://www.nytimes.com/2011/04/05/
technology/05net.html, April 2011.

[115] S. Yoo and M. Harman. Regression testing minimization, selection and prioritization: a survey. Softw. Test.
Verif. Reliab., 22(2):67–120, March 2012.

[116] V. Zanardi and L. Capra. Social ranking: uncovering relevant content using tag-based recommender systems.
In RecSys ’08: Proc. of the 2008 ACM Conf. on Recommender systems, pages 51–58, 2008.

[117] J. Zhang and P. Pu. A recursive prediction algorithm for collaborative filtering recommender systems. In RecSys
’07: Proc. of the 2007 ACM conference on Recommender systems, pages 57–64, 2007.

54

https://dev.twitter.com/
http://support.twitter.com/entries/14016
https://dev.twitter.com/docs/twitter-libraries/
https://dev.twitter.com/docs/platform-objects/users
http://www.unicef.org/crc/index_30204.html
http://www.unicef.org/crc/index_30204.html
http://online.wsj.com/article/SB10001424052748704117304575137960803993890.html
http://online.wsj.com/article/SB10001424052748704117304575137960803993890.html
http://www.guardian.co.uk/science/2005/apr/21/oilandpetrol.news
http://www.guardian.co.uk/science/2005/apr/21/oilandpetrol.news
http://www.timesonline.co.uk/tol/news/environment/article5488934.ece
http://www.timesonline.co.uk/tol/news/environment/article5488934.ece
http://www.nytimes.com/2011/04/05/technology/05net.html
http://www.nytimes.com/2011/04/05/technology/05net.html

[118] Lu Zhang, Shan-Shan Hou, Chao Guo, Tao Xie, and Hong Mei. Time-aware test-case prioritization using
integer linear programming. In Proc. of the 2009 Intl. Symp. on Software testing and analysis, pages 213–224,
2009.

[119] Elena Zheleva and Lise Getoor. To join or not to join: the illusion of privacy in social networks with mixed
public and private user profiles. In Proceedings of the 18th international conference on World wide web, WWW
’09, pages 531–540, New York, NY, USA, 2009. ACM.

[120] Yun Zhu, Li Xiong, and Christopher Verdery. Anonymizing user profiles for personalized web search. In
Proceedings of the 19th international conference on World wide web, WWW ’10, pages 1225–1226, New
York, NY, USA, 2010. ACM.

[121] Mark Zuckerberg. Making Control Simple. http://blog.facebook.com/blog.php?post=
391922327130, May 2010.

55

http://blog.facebook.com/blog.php?post=391922327130
http://blog.facebook.com/blog.php?post=391922327130

	Introduction to Societal Computing
	Motivation
	Societal Computing Topics
	Privacy
	Cultural Differences
	Green Computing

	Societal Computing Tradeoffs
	Privacy vs. Green Computing
	Privacy vs. Cultural Differences
	Green Computing vs. Green Computing

	How can we contribute?

	Money for Nothing, Privacy for Free
	Differential Privacy for Free
	Background
	Differential Privacy
	Achieving Differential Privacy
	Concept Drift
	Addressing Concept Drift

	Privacy for Free
	Evaluation
	RQ1 — Feasibility
	Methodology
	RQ2 — Utility
	RQ3 — Sustainability
	Threats to Validity

	Related Work
	Discussion

	Privacy Requirements — Understanding the needs of the users and developers
	Making Privacy Understandable — Crowdsourcing Privacy Settings
	Detecting Privacy Bugs via End-User Regression Testing
	Background and Motivation
	The Social Testing Approach
	Empirical Evaluation
	Privacy and Facebook

	Discussion
	Flexibility
	Generalizability
	Robustness
	Limitations and Threats to Validity

	Related Work

	Research plan
	Appendices
	Privacy Requirements User Study
	Crowdsourcing Privacy Settings User Study
	User Connections on Facebook
	Privacy Testing and Twitter
	Prototype Tool
	Feasibility

