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ABSTRACT
Challenges arise in testing applications that do not have
test oracles, i.e., for which it is impossible or impractical to
know what the correct output should be for general input.
Metamorphic testing, introduced by Chen et al., has been
shown to be a simple yet effective technique in testing these
types of applications: test inputs are transformed in such a
way that it is possible to predict the expected change to the
output, and if the output resulting from this transformation
is not as expected, then a fault must exist.

Here, we improve upon previous work by presenting a new
technique called Metamorphic Runtime Checking, which au-
tomatically conducts metamorphic testing of both the entire
application and individual functions during a program’s ex-
ecution. This new approach improves the scope, scale, and
sensitivity of metamorphic testing by allowing for the identi-
fication of more properties and execution of more tests, and
increasing the likelihood of detecting faults not found by
application-level properties. We also present the results of
new mutation analysis studies that demonstrate that Meta-
morphic Runtime Checking can kill an average of 170%
more mutants than traditional, application-level metamor-
phic testing alone, and advances the state of the art in test-
ing applications without oracles.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing and De-
bugging

General Terms
Reliability
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1. INTRODUCTION
In the testing of software, a “test oracle” [41] is required

to indicate whether the output is correct for the given input.
Despite a recent interest in the testing community in creat-
ing and evaluating test oracles [49], still there are a variety
of problem domains for which a practical test oracle does not
exist in the general case. Applications in the fields of scien-
tific computing, simulation, machine learning, etc. fall into
a category of software that Weyuker describes as “Programs
which were written in order to determine the answer in the
first place. There would be no need to write such programs,
if the correct answer were known” [54]. Thus, in the general
case, it is not possible to know the correct output in advance
for arbitrary input. In other domains, such as optimization,
determining whether the output is correct is just as difficult
as it is to derive the output in the first place, and creating
an efficient, practical oracle may not be feasible.

Although some faults in such programs - such as those
that cause the program to crash or produce results that are
obviously wrong to someone who knows the domain - are
easily found, and partial oracles may exist for a subset of
the input domain, subtle errors in performing calculations
or in adhering to specifications can be much more difficult
to identify without a practical, general oracle.

Much of the recent research into addressing the so-called
“oracle problem” has focused on the use of a technique called
metamorphic testing [10] in domains such as bioinformat-
ics [11], machine learning [32, 56], scientific computing [24],
and simulation [12, 44]. As the name implies, in metamor-
phic testing changes are made to existing test inputs in such
a way (based on the program’s “metamorphic properties”)
that it is possible to predict what the change to the output
should be. That is, if program input I produces output O,
additional test inputs based on transformations of I are gen-
erated in such a manner that the change to O (if any) can
be predicted. In cases where the correctness of the original
output O cannot be determined, i.e., if there is no test ora-
cle, program failure can still be detected if the change to O
is not as expected when using the new input.

Through our own past investigations into metamorphic
testing [32, 33, 34], we have garnered three key insights.
First, the metamorphic properties of individual functions
are often different than those of the application as a whole.
Thus, by checking for additional and different relationships,
we can reveal defects that would not be detected using only
the metamorphic properties of the full application. Second,



the metamorphic properties of individual functions can be
checked in the course of executing metamorphic tests on the
full application. This addresses the problem of generating
test cases from which to derive new inputs, since we can sim-
ply use those inputs with which the functions happened to be
invoked within the full application. Third, when conducting
tests of individual functions within the full running applica-
tion in this manner, checking the metamorphic properties of
one function can sometimes detect defects in other functions,
which may not have any known metamorphic properties, be-
cause the functions share internal application state.

In order to advance the state of the art in testing appli-
cations that do not have practical, general test oracles, this
paper seeks to make metamorphic testing more effective by
improving: the number and types of metamorphic proper-
ties that can be checked (scope); the number and types of
metamorphic tests that are run for a single program input
(scale); and the likelihood of revealing subtle faults that
would not cause a violation of an application-level meta-
morphic property (sensitivity).

In order to realize these improvements, we present a solu-
tion based on checking the metamorphic properties of the en-
tire application and those of individual functions (or meth-
ods, procedures, subroutines, etc.) as the full application
runs. That is, the program under test is not treated only
as a black box, but rather metamorphic testing also occurs
within the application, at the function level, in the context
of the running program. This will allow for the execution
of more tests and also makes it possible to check for subtle
faults inside the code that may not cause violations of the
application’s metamorphic properties.

In presenting this new solution, this paper makes three
contributions:

1. A new type of testing called Metamorphic Run-
time Checking (Section 4). This is a new approach
that improves metamorphic testing in that metamor-
phic properties of individual functions, not only the
entire application, are also specified and then checked
as the program is running.

2. An architecture of a Metamorphic Runtime Checking
framework called Columbus (Section 5). This archi-
tecture allows for checking both application-level and
function-level metamorphic properties as the program
runs.

3. The results of new studies that show that Metamor-
phic Runtime Checking is more effective than other
techniques in detecting faults in programs without test
oracles (by up to 123%) and more effective than tra-
ditional, application-level metamorphic testing (by up
to 1,350%) (Section 6).

Although Metamorphic Runtime Checking does not pre-
clude other testing approaches, and could presumably be
applied to applications that do have oracles, the focus of
this work is on those that do not.

2. BACKGROUND
Metamorphic testing [10] was introduced as a general tech-

nique for creating follow-up test cases based on existing
ones, particularly those that have not revealed any faults,
by reusing test cases to create additional test inputs whose

expected outputs can be predicted. In metamorphic test-
ing, if input x produces an output f(x), the function’s (or
application’s) metamorphic properties can be used to guide
the creation of a transformation function t, which can be
applied to the input to produce t(x); this transformation
then allows us to predict the output f(t(x)), based on the
(already known) value of f(x). In the case where f has an
oracle, then if we know that f(x) is correct, we could also
know whether f(t(x)) is correct. Studies have shown that
these additional test cases have fault-finding capabilities be-
yond that of the original test set [58].

For a simple example of metamorphic testing, consider a
function that calculates the standard deviation of a set of
numbers. Certain transformations of the set would be ex-
pected to produce the same result: for instance, permuting
the order of the elements should not affect the calculation,
nor should multiplying each value by -1. Furthermore, other
transformations should alter the output, but in a predictable
way: if each value in the set were multiplied by 2, then the
standard deviation should be twice that of the original set.

Clearly metamorphic testing can be very useful in the
absence of an oracle: even if it were not possible to know
whether the initial output is correct, if the new output that
results from transforming the input does not have the ex-
pected relationship with the original output, then a fault
must exist in the implementation [13, 58]. Although satisfy-
ing these metamorphic properties does not indicate correct-
ness, a violation of a property would indicate that one (or
both) of the outputs is incorrect.

As an example from the domain of machine learning, a-
nomaly-based network intrusion detection systems build a
model of “normal” traffic based on previous observations,
and then later look for outliers that may be indicative of an
attack. The model may be created according to the byte dis-
tribution of incoming network payloads, since the distribu-
tion in worms, viruses, etc. may deviate from that of normal
network traffic [53]. When a new payload arrives, its byte
distribution is then compared to the model, and anything
deemed anomalous causes an alert. When testing such a
program, it may not be possible to know a priori whether a
particular input should raise an alert, since it depends on the
model. However, if while the program is running we take the
new payload and randomly permute the order of its bytes,
the result (anomalous or not) should be the same, since the
model only concerns the distribution, not the order. If the
result is not the same, and this property is violated, then a
fault must exist in the implementation.

Despite recent successes in demonstrating that metamor-
phic testing can be effectively applied to real-world programs
in domains for which there is no practical, general test or-
acle (e.g., [11], [12], [44], [56], etc.), there is still room for
improvement when it comes to its ability to detect faults. By
identifying more metamorphic properties (i.e., increasing the
scope), deriving more test cases for each program input (in-
creasing the scale), and checking for subtle faults that may
not cause a violation of application-level metamorphic prop-
erties (increasing the sensitivity), we can make metamorphic
testing even more effective.

Our solution is a new technique called Metamorphic Run-
time Checking, further discussed in Section 4. In this ap-
proach, we check the metamorphic properties at the func-
tion level while conducting metamorphic testing at the sys-
tem level. By running more tests with more inputs in more
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Figure 1: Model of Metamorphic Runtime Checking of program P and its constituent function f. Metamorphic
Runtime Checking combines program-level metamorphic testing with function-level metamorphic checking, by performing
such checking at runtime.

parts of the code, we are more likely to detect faults, even
in programs for which there is no general, practical oracle.

3. RELATED WORK
Metamorphic Runtime Checking can be considered a cross

between metamorphic testing and runtime assertion check-
ing [14], in that the metamorphic properties that are checked
are analogous to program invariants: at the point in the
program execution in which the function is called, its meta-
morphic properties are expected to hold, given the current
function inputs and application state. Although we cannot
know for certain just from observation that a given prop-
erty will always hold, and satisfying the property does not
indicate correctness, if the metamorphic property is ever vi-
olated then a fault has been revealed.

Although these approaches are similar, there are some key
differences between metamorphic properties and program in-
variants. First, invariants and assertions address how vari-
ables relate to each other, or variable’s expected values, but
do not describe the expected relations between outputs that
result from multiple executions with transformed inputs.
Additionally, in practice assertions typically are read-only
and do not have side effects; in our approach, though, the
properties rely on additional invocations of the functions,
which are allowed to have side effects, but these side effects
are contained so as not to affect the running program.

Metamorphic properties are similar in some ways to alge-
braic specifications [15], though algebraic specifications of-
ten declare legal sequences of function calls that should pro-
duce an expected result, but do not describe how a particular
function should react when its input is changed. The run-
time checking of algebraic specifications has been explored

in [39] and [46], though neither work considered the partic-
ular issues that arise from testing without oracles. Other
work in this area has focused on consistency checking of ab-
stract data types [47], but has not sought to create oracles
for applications that do not otherwise have them.

Recent work in metamorphic testing has focused on its ap-
plicability in different domains (e.g., [23, 44, 51]), but not on
improving its general effectiveness in terms of scope, scale,
and sensitivity. Beydeda [8] first brought up the notion
of combining metamorphic testing and self-testing compo-
nents, but did not investigate an implementation or consider
the effectiveness on testing applications without oracles, as
we do here.

Finally, the work presented here builds on our own prelim-
inary research into function-level metamorphic testing [35] in
two significant ways. First, in this paper we describe a new
execution model (Section 4) and new framework architec-
ture (Section 5) that allows for checking the function-level
metamorphic properties in parallel with and in the same
state as the original function execution, as opposed to run-
ning the test cases sequentially. Additionally, we present the
results of new empirical studies (Section 6) comparing this
new approach to other testing techniques, and investigate
the particular benefits of using function-level metamorphic
testing in addition to system-level testing.

4. APPROACH
Metamorphic Runtime Checking is an extension of our

previous work in Automated Metamorphic System Testing
[34], in which an application’s metamorphic properties are
specified and then the program is executed multiple times:
once with the original input, and then again for each of



the transformed inputs, according to the properties, after
which the new outputs are compared to the original to de-
termine whether any properties have been violated. Despite
the demonstrated effectiveness of this approach, it does not
utilize properties of individual functions, only those of the
entire application.

In our new approach, additional metamorphic tests are
logically attached to the functions for which metamorphic
properties have been specified. Upon a function’s execution,
the corresponding tests are executed as well: the arguments
are modified according to the specification of the function’s
metamorphic properties, the function is run again in the
same application state as the original, and the output of
the function with the original input is compared to that of
the function with the modified input. If the result is not
as expected according to the specified property, then a fault
has been exposed.

As shown in Figure 1, the tester provides a program in-
put to a Metamorphic Runtime Checking framework, which
then transforms it according to the metamorphic property
of the program P (for simplicity, this diagram only shows one
metamorphic property, but a program may, of course, have
multiple). The framework then invokes P with both the orig-
inal input and the transformed input; as seen at the bottom
of the diagram, when each program invocation is finished,
the outputs can be checked according to the property.

While each invocation of P is running, though, metamor-
phic properties of individual functions can be checked as
well. As shown on the left side of Figure 1, in the invoca-
tion of P with the original program input, before a function
f is called, its input x can be transformed according to the
function’s property to give t(x). The function is called with
each input, and then f(t(x)) is evaluated according to the
original value of f(x) to see if the property is violated.

Meanwhile, in the additional invocation of P (right side of
the diagram), function-level metamorphic testing still occurs
for function f, this time using input x’, which results from
the transformed program input to P. In this case, f(t(x’))
and f(x’) are compared.

By incorporating function-level metamorphic properties
into the testing, we can improve the scope and scale of meta-
morphic testing by running more tests using more proper-
ties and more inputs. In this example, if we used only the
application-level property of P, we would run just one test.
However, by also considering P’s functions, we can now check
two properties and run a total of three tests. Additionally,
this also allows us to improve the sensitivity of metamorphic
testing by revealing subtle faults at the function level that
may not violate application-level properties. Our study (de-
scribed in-depth in Section 6.3) shows that this sensitivity
gain can increase the effectiveness of metamorphic testing
by up to 1,350% (on average, 170%).

In order to conduct Metamorphic Runtime Checking, the
tester must first identify the metamorphic properties of the
application to be tested and its constituent functions. This
can be done manually, using domain knowledge or guidelines
as presented in [32], or can be done automatically, as in [25].

Once the metamorphic properties have been determined,
they must be expressed in such a way that the properties
can be checked at runtime. In previous work, we discussed
the use of configuration files for specifying application-level
properties [34], and we have also explored using code annota-
tions based on the Java Modeling Language [26] for function-

level properties [35]. Any of these approaches can be used
in Metamorphic Runtime Checking.

Last, testing can commence. Unlike in conventional unit
testing, in Metamorphic Runtime Checking the tester need
not construct any specific test harness; rather, metamorphic
testing is conducted by simply executing the program with
selected test inputs. The testing framework would allow
for the checking of both application-level and function-level
properties, and report any violations.

5. ARCHITECTURE
In this section we introduce the architecture of a testing

framework for Metamorphic Runtime Checking, which we
call Columbus.

5.1 Overview of Application-Level Testing
The Columbus framework is an extension of the Amster-

dam framework for application-level metamorphic testing,
which we introduced in our work on Automated Metamor-
phic System Testing [34] and is only summarized here.

In the Amsterdam framework, metamorphic properties of
the entire application are specified using a configuration file.
The framework executes the program with the original in-
put, and then modifies the program inputs according to the
properties. The program is then run again with the new
inputs, but additional invocations are run in separate sand-
boxes so that they do not interfere with each other. Once all
executions have finished, the outputs are checked according
to the specified properties, and any violations are reported.

The Columbus framework builds upon Amsterdam by al-
lowing testers to also specify function-level properties, and
then by conducting additional metamorphic testing as the
program invocations execute, as described below.

5.2 Function-Level Testing
In order to perform metamorphic testing of an individual

function during the execution of the program, the Columbus
framework needs to: execute the function with the original
input and get the original output; transform the input ac-
cording to the specified metamorphic property; call the func-
tion again, this time with the new input, but in the same
application state as the original function call; and then get
the new output and compare it to the original, again accord-
ing to the specified property, to see whether the property was
violated. All but the first of these steps would be repeated
for each of the function’s specified properties.

One challenge is that the testing framework must ensure
that the additional function invocations do not adversely af-
fect the state of the running program: the goal is that the
instrumented application should still produce the same out-
put as an uninstrumented version, even though Metamor-
phic Runtime Checking is being conducted. For instance,
assume that the program calls function f with input x, which
is transformed according to the metamorphic property to
t(x). In order for the program to continue to run as nor-
mal after the metamorphic tests have been run, the testing
framework must ensure that the return value sent to the call-
ing function is f(x), and not f(t(x)). Likewise, any side
effect of calling f(x), such as modifying a global variable,
must be permitted, but the framework must make sure that
any side effect of calling f(t(x)) is hidden.

Since existing runtime assertion checking techniques (as
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3: Transform x to t(x)

4: Execute f(t(x))

5: Compare Outputs
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Figure 2: Model of Columbus framework for
function-level metamorphic testing. Upon invocation
of a function that Columbus will check, we fork execution
to allow normal execution to continue while (in a sandbox)
the input is transformed and the function is tested.

surveyed in [14]) and monitoring tools (such as Gamma [40])
do not support executing a function multiple times and do
not safeguard against side effects, a new solution is required.

Figure 2 shows how the Columbus framework supports
function-level metamorphic testing. First, the framework
intercepts the call to function f, which can be accomplished
through wrapping the function or by injecting code. Note
that neither the signature of the function nor its return
type is changed, and the calling function is never aware that
metamorphic testing is being conducted.

Before the body of function f is invoked, the framework
must create a “sandbox” so that the extra function calls do
not affect the state of the running application. In native lan-
guages like C and C++, this can be accomplished by forking
the process: the test inherits the state of the program at the
time of the original function call, but does not affect it when
the function is run a second time. In managed languages like
Java and C#, for which forking the entire virtual machine is
unwieldy, deep cloning (and using isolation techniques as de-
scribed in [6]) can be used to make copies of all objects that
may be affected. A new thread can then be spawned here,
using references to the sandboxed/cloned objects, instead of
the original.

Alternatively, a rollback mechanism could be used to ex-
ecute the test case, record its results, restore the original
state, and then execute the code with the original input.

In order to run the test, the input x to the function f

is first modified according to the particular metamorphic
property to give t(x). The transformation that should be
applied to the input can be specified using code annotations
[35], a configuration file, etc. Then the (uninstrumented)
implementation of the function is invoked using this new
input t(x).

In the original function call (right-hand side of Figure 2),
the function f is invoked with the unmodified input x, and
once it completes, the output f(x) can be logged or immedi-

ately shared with the test. If the tests run in a separate pro-
cess from the original, then a mechanism like shared memory
or message passing would need to be used here, otherwise
this can be done with a global/static variable.

Once the test case has determined that the original func-
tion call has finished, e.g., using signals between processes
or by using shared flags, the outputs f(x) and f(t(x)) are
compared according to the metamorphic property. Just as
the transformation required the specification of a function
t, a function g must be specified for checking the outputs,
and then success or failure of the test can be indicated here
by determining whether f(t(x)) = g(f(x)).

Finally, the test terminates, the output f(x) that results
from the original input is returned to the calling function,
and the rest of the program continues as normal.

5.3 Prototype Implementations
In order to conduct the experiments described in the fol-

lowing section, we created prototype implementations of the
Columbus framework for both C and Java applications. For
specifying the metamorphic properties and generating the
test cases, we built upon our previous work [35] using code
annotations based on the Java Modeling Language (JML)
[26]. Listing 1 shows the specification of the properties
for a standard deviation method in Java, using the exam-
ples described in Section 2. Keywords such as \permute
and \multiply refer to built-in functions in the framework;
other keywords for manipluating arrays or Collections in-
clude \reverse, \include, \exclude, \concatenate, \split,
etc. Also, the \result keyword refers to the output of the
original function call, as is standard in JML.

For creating the sandbox and sharing the function out-
puts, we modified the Invite framework used for “in vivo
testing” [31], which allows for the execution of unit tests
alongside a running program. We further reduced the per-
formance overhead of sandboxing test executions using our
tool for test case isolation, VmVm [6]. The overhead intro-
duced by these tools is discussed in Section 6.4.

/∗@
@meta standardDev (\ permute (A) ) == \ r e s u l t ;
@meta standardDev (\mult ip ly (A, −1) ) ==

\ r e s u l t ;
@meta standardDev (\mult ip ly (A, 2) ) ==

\ r e s u l t ∗ 2 ;
∗/
double standardDev ( i n t A [ ] ) { . . . }
\vspace {10 pt}

Listing 1: Specifying metamorphic properties of a
standard deviation function in Java. Columbus uses a
markup based on JML [26] to specify properties.

Although this prototype framework preserves the internal
state of the application during function-level test execution,
it does not currently prevent external side effects that may
change the system, e.g., files, a database, the network, etc.
A possible solution would be integration with a record/re-
play system such as Chronicler [7] to record execution of the
program up to the point at which the metamorphic testing
would be conducted, and then execute the tests later and/or
in a different environment so that potential changes to the
system do not affect the original program execution. This is
left as future work.



# of Metamorphic Properties
identified at the level of:

Name Domain Language LOC Functions Invariants Application Function

C4.5 classification C 5,285 141 27,603 4 40
GAFFitter optimization C++ 1,159 19 744 2 11
JSim simulation Java 3,024 468 306 2 12
K-means clustering Java 717 46 137 4 12
LDA topic modeling Java 1,630 103 1,323 4 28
Lucene information retrieval Java 661 57 456 4 26
MartiRank ranking C 804 19 3,647 4 15
PAYL anomaly detection Java 4,199 164 19,730 2 40
SVM classification Java 1,213 49 2,182 4 4

Table 1: Applications used in experiment. Applications were selected to be representative of different domains that
have no practical test oracles. Invariants were identified using Daikon [18]; metamorphic properties were detected by hand.

6. EMPIRICAL STUDIES
To evaluate the effectiveness of Metamorphic Runtime

Checking at detecting faults in applications without test or-
acles, we compare it to runtime assertion checking using
program invariants. When used in applications without test
oracles, assertions can ensure some degree of correctness by
checking that function input and output values are within
a specified range, the relationships between variables are
maintained, and a function’s effects on the application state
are as expected [38]. While satisfying the invariants does
not ensure correctness, any violation of them at runtime in-
dicates an error.

Although we are not aware of any other work that has
specifically attempted to determine the “state of the art”
for testing applications without oracles, runtime assertion
checking is mentioned as a common and effective technique
in the literature, e.g., Baresi and Young’s survey paper [4]
on techniques for testing applications without test oracles,
and Kanewala and Bieman’s paper [24] on testing programs
used in computational science. Additionally, using invariant
detection tools, this approach is easy to automate, and does
not rely on a human tester, as do other approaches such as
N-Version Programming or creating a formal specification.

6.1 Experimental Setup
The experiments described in this section seek to answer

the following research questions:

1. Is Metamorphic Runtime Checking more effective than
using runtime assertion checking for detecting faults in
applications without test oracles?

2. What contribution do application-level and function-
level metamorphic properties make to the effectiveness
of Metamorphic Runtime Checking?

3. Is Metamorphic Runtime Checking suitable for practi-
cal use?

6.1.1 Target Applications
In these experiments, we applied both runtime assertion

checking and Metamorphic Runtime Checking to nine real-
world applications that are representative of different do-
mains that have no practical, general test oracles: supervised
machine learning (classification, clustering, and ranking),

data mining (information retrieval and topic modeling), dis-
crete event simulation, and optimization. The applications
include: C4.5 [43], a decision tree-based machine learning
classification algorithm; GAFFitter [19], an optimization
program that uses a genetic algorithm implemented to solve
the bin-packing problem; JSim [45], a discrete event simu-
lation engine developed at UMass Amherst; K-means [28],
a clustering algorithm as implemented in the Mahout [3]
framework; Latent Dirichlet Allocation (LDA) [9], a
topic modeling algorithm, also as implemented in Mahout;
Lucene [2], a text search engine library that is part of the
Apache framework; MartiRank [20], a machine learning
ranking algorithm, which was developed by researchers at
Columbia University’s Center for Computational Learning
Systems; PAYL [53], an anomaly-based intrusion detection
system implemented by researchers in Columbia University’s
Intrusion Detection System Lab; and Support Vector Ma-
chines (SVM) [52], a machine learning classification algo-
rithm, as implemented in the Weka [55] open-source toolkit.

More detail about the applications is provided in Table
1. Note that for the Java applications, the information only
includes the implementations of the specific algorithms, and
not any underlying frameworks.

6.1.2 Identifying Program Invariants
To create assertions, we used the Daikon invariant detec-

tion tool [18]. Daikon observes the execution of multiple
program runs and creates a set of likely invariants, which
can then be used as assertions for subsequent runs of the
program. Although it is possible to customize the types of
invariants that Daikon can detect, in our experiments we
only use its out-of-the-box features. Note that the invari-
ants created by Daikon only include function pre- and post-
conditions, and do not incorporate any assertions that are
within the function itself.

To create the set of invariants that we could use for run-
time assertion checking, we applied Daikon to each appli-
cation, using the following data sets as input: for SVM,
C4.5, and K-means, 10 of the most popular data sets from
the UC-Irvine repository of machine learning data sets [37];
for MartiRank, ten randomly generated data sets of various
sizes; for PAYL, network traffic on our department’s LAN
over a one-hour period; for Lucene and LDA, the corpus of
Shakespeare’s comedies [30]; and for GAFFitter, a collection
of 84 files ranging in size from 118 bytes to 14.9MB.



0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

LDA 

JSim 

C4.5 

MartiRank 

K-means 

SVM 

GAFFitter 

Lucene 

PAYL 

Average 

Runtime Assertion Checking Metamorphic Runtime Checking 

Figure 3: Results of mutation analysis, showing percentage of mutants killed by each approach. In several
cases, Metamorphic Runtime Checking was far more effective than Runtime Assertion Checking, killing up to 123% more
mutants.

6.1.3 Identifying Metamorphic Properties
To identify the application-level metamorphic properties

for the experiment, we followed the guidelines set forth in
[32], which categorizes the types of properties that applica-
tions in these domains tend to exhibit. Each property was
verified with the data sets described above.

To identify function-level properties, we inspected the source
code and hand-annotated the functions that we expected to
exhibit the types of properties described in [32]. To ensure
that the properties were not limited to only the ones that
we could think of, some of the function-level metamorphic
properties used in this experiment are based on those used
in other, similar studies. In particular, the metamorphic
properties of many machine learning and optimization ap-
plications have been documented elsewhere [5, 24, 57, 56],
and some of the properties used for Lucene are based on
those presented by Zhou et al. [59], in which the authors
applied metamorphic testing to Internet search engines such
as Yahoo!, Google, and Microsoft Live Search.

Although these properties were identified by hand, which
introduces some threat to the validity of the experiment, we
are not aware of any publicly available tool for automati-
cally detecting properties (we currently are developing such
a tool[50], however it is not yet sufficiently stable to use for
such an experiment). However, numerous studies [22, 27,
29] have independently confirmed that these are the types
of properties that tend to be identified by humans anyway,
as do those involving machine learning-based approaches to
property detection [25].

The total numbers of application-level and function-level
metamorphic properties are listed in Table 1.

6.1.4 Methodology
To determine the effectiveness of the testing techniques,

we used mutation analysis to systematically insert faults into
the source code of the applications described above, and

then determined whether the mutants could be killed (i.e.,
whether the faults could be detected) using each approach.
Mutation analysis has been shown to be suitable for eval-
uation of effectiveness [1], and is generally accepted as the
most objective mechanism for comparing the effectiveness of
different testing techniques [17, 48].

Each mutated version of the program had exactly one mu-
tation. Mutations that yielded a fatal runtime error (crash),
an infinite loop, or an output that was clearly wrong (for in-
stance, not conforming to the expected output syntax, or
simply being blank) were discarded since any reasonable ap-
proach would detect such faults. We also did not consider
“equivalent mutants” for which the inputs used in the exper-
iment produced the same program output as the original,
unmutated version, e.g., those mutants that were not on the
execution path for any test case or that would not have been
killed with a true oracle for these inputs.

For each mutated version, we conducted runtime asser-
tion checking with the invariants detected by Daikon. If any
invariant were violated, the mutant was considered killed.
We then performed Metamorphic Runtime Checking on the
same mutated versions to determine whether any of the spec-
ified metamorphic properties were violated. The inputs used
for mutation analysis were the same as those used for detect-
ing invariants and verifying metamorphic properties, so as
to avoid any issues related to spuriousness (see Threats to
Validity below).

6.2 Evaluation of Effectiveness
Here we answer the first research question: “Is Metamor-

phic Runtime Checking more effective than using runtime
assertion checking for detecting faults in applications with-
out test oracles?”

Table 2 and Figure 3 summarize the results of the first
experiment. The variation in the number of mutants for
each application is due to the different sizes of the source



Mutants Killed

App # Mutants RAC MRC Improvement

C4.5 856 823 804 2.36%
GAFFitter 66 36 20 80%
K-means 35 28 26 7.69%
JSim 36 36 36 0%
LDA 24 24 24 0%
Lucene 15 14 9 55.56%
MartiRank 413 390 366 6.56%
PAYL 40 29 13 123.08%
SVM 287 222 200 11%

Average 197 166 178 6.94%

Table 2: Results of mutation analysis for Runtime
Assertion Checking (RAC) and Metamorphic Run-
time Checking (MRC). For each application, we show the
total number of mutants, the number killed by RAC, the
number killed by MRC and the relative percent improve-
ment. MRC provided varied improvements, up to 123%
(note that in the case of JSim and LDA, RAC already killed
all mutants, and therefore, no improvement was possible).

code, the different number of points in which mutations
could be inserted, the number of equivalent mutants, and
the different number of mutants that led to fatal errors or
obviously wrong output. Overall, Metamorphic Runtime
Checking was more effective, killing 1,602 (90.4%) of the
mutants in the applications, compared to just 1,498 (84.5%)
for assertion checking.

Broadly speaking, Metamorphic Runtime Checking was
more effective at killing mutants that related to operations
on arrays, sets, collections, etc. As an example, MartiRank
includes a function that evaluates the “quality” of a ranking
by using a variant of the Area Under the Curve [21] metric
for an array of items, and some mutations in the experiment
caused the function to omit elements of the array. Daikon
might detect that the quality is always a positive value, that
the array does not change, etc., but none of these would be
violated as a result of this mutation. However, the meta-
morphic property that permuting the elements in the array
should not affect the output would be violated, if a differ-
ent element were omitted upon additional invocation of the
function, and in this case the bug would be found.

On the other hand, runtime assertion checking was more
effective at killing mutants that affected the value of particu-
lar calculations. Such an example comes from the FormTree

function used to create nodes of the decision tree in C4.5.
Part of this function calculates the frequency with which a
class (or “label”) appears in the input data by looking at
each item in the training data and updating a variable with
the appropriate weight.

A mutation in this function such that the addition of the
weight is changed to subtraction may cause the value of the
variable to become negative, in violation of the invariant
(detected by Daikon) that the frequency should always be
greater than or equal to zero; thus, the defect is detected.
However, metamorphic testing does not reveal this defect:
the changes made to the training data values do not affect
the calculation of class frequency, and even though the re-
sulting output is incorrect, none of the metamorphic trans-
formations cause the properties to be violated.

Further analysis could more specifically characterize the
types of faults each approach is most suitable for detecting,
but it follows, then, that runtime assertion checking and
Metamorphic Runtime Checking should be used together in
the testing of applications without test oracles. When used
in combination in our experiments, they were able to kill
95% of the mutants (totaling across all applications): only
88 of the 1,772 survived.

6.3 Contributions to Effectiveness
We now address the second research question: “What con-

tribution do application-level and function-level metamor-
phic properties make to the effectiveness of Metamorphic
Runtime Checking?”

Table 3 shows the results with the mutants grouped by (a)
those that were killed only by application-level metamorphic
properties, (b) those that were killed only by function-level
properties, (c) those that were killed by both types of prop-
erties, and (d) those that were not killed by either one. We
also show the relative improvement in number of mutants
killed by combining both sorts of properties with Metamor-
phic Runtime Checking compared to using only application-
level properties.

On average, we saw a 170% improvement in the total
number of mutants killed when combining application-level
properties with function-level properties. The variance in
improvement was high, however, showing a strikingly high
improvement of 1,350% in PAYL, while showing smaller im-
provement in C4.5 and MartiRank. Note that there was
no improvement at all in the JSim and LDA applications,
because application-level properties had already been able
to kill all mutants. We believe that this improvement is
attributed primarily to our increase in: the number of prop-
erties identified (scope); the number of tests run (scale); and
the likelihood that a fault would be detected (sensitivity).

The improvement in the scope of metamorphic testing
was particularly clear in the anomaly-based intrusion de-
tection system PAYL. We were only able to identify two
application-level metamorphic properties because it was not
possible to create new program inputs based on modifying
the values of the bytes inside the payloads (say, increasing
them), since the application itself only allowed for particu-
lar syntactically and semantically valid inputs that reflected
what it considered to be “real” network traffic. These two
properties were only able to kill two of the 40 mutants. How-
ever, once we could use Metamorphic Runtime Checking to
run metamorphic tests at the function level, we were able to
identify many more properties that involved changing the
byte arrays that were passed as function arguments, thus
revealing 27 additional faults.

Likewise, we were able to increase the scale of metamor-
phic testing by running many more test cases. For instance,
in MartiRank, even though we specified function-level prop-
erties for only a handful of functions, many of those are
called numerous times per program execution, meaning that
there are many opportunities for the property to be vio-
lated. A single execution of MartiRank consists of a num-
ber of “rounds” in which the set of input data is broken
into sub-lists: there are N sub-lists in the N th round, each
containing 1/N th of the total number of positive examples
(i.e., examples with a label of 1). Each of the N sub-lists
is sorted by each attribute, ascending and descending, and
then MartiRank determines the attribute and sorting direc-



Mutants Killed by

Application-level Function-level MRC
Application Total Mutants Properties Only Properties Only Both Types Not Killed % Improvement

C4.5 856 133 37 653 33 4.71%
GAFFitter 66 2 14 20 30 63.64%
K-means 35 6 11 11 7 64.71%
JSim 36 14 0 22 0 0.00%
LDA 24 2 0 22 0 0.00%
Lucene 15 5 3 6 1 27.27%
MartiRank 413 298 22 70 23 5.98%
PAYL 40 0 27 2 11 1,350.00%
SVM 287 69 23 130 65 11.56%

Average 197 59 15 104 19 169.76%

Table 3: Number of mutants killed by different types of metamorphic properties. For each application, we show
the total number of mutants, then the number killed only by application-level metamorphic properties, those killed only by
function-level properties, those that were killed by both sorts of properties, those killed by neither, and finally the percent
improvement in performance of combining both techniques with Metamorphic Runtime Checking (MRC). No improvement
was possible for JSim and LDA, as the application-level properties had already been able to kill all mutants.

tion for which the sorting gives the best“quality” ranking, as
described above. In our tests, we ran MartiRank with the
default 10 rounds, meaning that the functions to sort the
elements and calculate the quality were each run over 100
times. Since many of the inputs had 100 attributes in the
data set, and each function had four properties, that’s over
40,000 test cases per function from just a single execution
of the program!

Another reason why function-level properties were able to
kill mutants not killed by application-level properties is that
we were able to improve the sensitivity in terms of the abil-
ity to reveal more subtle faults, as seen in GAFFitter. In the
function to calculate the “fitness” of a given candidate solu-
tion in the genetic algorithm, i.e., how close to the optimal
solution (target) a candidate comes, one of the metamorphic
properties is that changing the ordering of the elements in
the candidate solution should not affect the result, since it
is merely taking a sum of all the elements.

If, for instance, there is a mutation such that the last
element is omitted from the calculation, then the metamor-
phic property will be violated since the return value will be
different after the second function call. However, at the ap-
plication level, such a fault is unlikely to be detected, since
the metamorphic property simply states that the quality of
the solutions should be increasing with subsequent genera-
tions. Even though the value of the fitness is incorrect, it
would still be increasing (unless the omitted element had a
very large effect on the result, which is unlikely), and the
property would not be violated.

One of the more interesting results of this experiment is
that some of the newly discovered faults were in functions
for which metamorphic properties had not been identified
and thus were not being checked using function-level prop-
erties. These faults put the application into a state in which
the metamorphic property of another function would be vi-
olated. For instance, the pauc function in MartiRank is
passed an array of numbers and performs a calculation on
them to determine the quality of the ranking, returning a
normalized result between 0 and 1. One of the metamor-
phic properties of that calculation is that pauc(A’) = 1 -

pauc(A) where A’ is the array in which the values of A are in
reverse order. However, a fault in a separate function that
deals with how the array was populated caused this prop-
erty to be violated because the data structure holding the
array itself was in an invalid state, even though the code to
perform the calculation was in fact correct.

As a slight simplification, we can explain this as follows:
the values in the array A were being stored in a doubly-linked
list, so that MartiRank could calculate the “quality” of the
list by looking at it forwards (ascending) and backwards
(descending). A mutation in the function that created the
linked list caused some of the links to “previous” nodes to
point to the wrong ones. In this case, traversing the linked
list in the forward direction would give ABCDE, but backwards
would give EDBCA, for instance. The metamorphic property
that pauc(A) = 1 - pauc(A’) would only hold if A’ were,
in fact, the exact opposite ordering of A, but clearly in this
case it is not, and Metamorphic Runtime Checking was able
to detect this fault.

6.4 Performance Overhead
Last, we answer the research question, “Is Metamorphic

Runtime Checking suitable for practical use?” by consider-
ing the performance impact of using such an approach.

Although Metamorphic Runtime Checking using function-
level properties is able to detect faults not found by meta-
morphic testing based on application-level properties alone,
this runtime checking of the properties comes at a cost, par-
ticularly if the tests are run frequently. In application-level
metamorphic testing, the program needs to be run one more
time with the transformed input, and then each metamor-
phic property is checked exactly once (just at the end of the
program execution). In Metamorphic Runtime Checking,
however, each property can be checked numerous times, de-
pending on the number of times each function is called, and
the overhead can grow to be much higher.

During the studies discussed above, we measured the per-
formance overhead of our C and Java implementations of
the Columbus framework. Tests were conducted on a server
with a quad-core 3GHz CPU running Ubuntu 7.10 with 2GB



RAM. On average, the performance overhead for the Java
applications was around 3.5ms per test; for C, it was only
0.4ms per test. This cost is mostly attributed to the time it
takes to create the sandbox and test process or thread.

This impact can certainly be substantial from a percent-
age overhead point of view if many tests are run in a short-
lived program. For instance, for C4.5, the overhead was on
the order of 10x, even though in absolute terms it was well
under a second. However, we point out that, for most the
programs we investigated in our study, the overhead was
typically less than a few minutes, which we consider a small
price to pay for being able to detect faults in programs with-
out a practical, general test oracle.

Future work could investigate techniques for improving
the performance of a Metamorphic Runtime Checking frame-
work. Previously we considered an approach whereby tests
were only executed in application states that had not previ-
ously been encountered, and showed that performance could
be improved even when the functions are executed in distinct
states up to 90% of the time [36]. It may be possible to re-
duce the overhead even more, for instance by reusing the
results of previous tests, running tests probabilistically, etc.

6.5 Threats to Validity
In our study, we used Daikon to create the program in-

variants for runtime assertion checking. Although in prac-
tice invariants may typically be generated by hand, and
some researchers have questioned the usefulness of Daikon-
generated invariants compared to those generated by hu-
mans [42], we chose to use the tool so that we could elimi-
nate any human bias or human error in creating the invari-
ants. Additionally, others have independently shown that
metamorphic properties are more effective at detecting de-
fects than manually identified invariants [22], though for pro-
grams on a smaller scale than those in our experiment (a few
hundred lines, as opposed to thousands as in many of the
programs we used).

Daikon can generate spurious invariants if there are not
enough program executions or if there are bugs in the code,
but we mitigated this by using the same inputs for the muta-
tion analysis experiment as for the generation of invariants
and properties. Regardless of whether these “should” hold
for the various functions, any violation of them would neces-
sarily be coming from the inserted mutation, since they were
never violated by those inputs in the unmutated version.

Last, the ability of metamorphic testing to reveal failures
is clearly dependent on the selection of metamorphic prop-
erties, and the results may have varied had we used different
ones instead. However, we have shown that a basic set of
metamorphic properties can be used even without a partic-
ularly strong understanding of the implementation; the use
of domain-specific properties may actually reveal even more
failures [56]. We are actively developing a tool to dynami-
cally detect likely metamorphic properties (using a mecha-
nism comparable to Daikon [18]) which could mitigate this
limitation, however, it is not yet sufficiently stable and val-
idated to use for such a purpose [50].

7. FUTURE WORK
As mentioned above, the “sandbox” in our current im-

plementation of the Columbus framework does not protect
against modification of the external state, e.g. writing to a
database or reading from the network. Although this was

not an issue for the applications used in our experiments,
future work could consider ways to make the sandbox more
robust.

It may also be possible to apply Metamorphic Runtime
Checking to non-functional aspects of the program by spec-
ifying properties related to the system state – such as heap
memory usage, file descriptors, etc. – or“security invariants”
[16] that, if violated upon subsequent function invocations,
indicate a vulnerability. In our mutation analysis experi-
ments, we noticed that some mutations affected whether or
not memory was freed, caused buffer overflows, etc. but
did not change the program output and thus were consid-
ered “equivalent mutants”. Metamorphic properties related
to expected changes in system state may be able to detect
such faults and vulnerabilities.

Finally, even though the applications studied in our ex-
periment have no practical, general test oracle, some of their
constituent functions certainly might, and conventional unit
testing may be able to kill many of the mutations in the pro-
grams. Future research could investigate the effectiveness of
combining traditional unit testing with Metamorphic Run-
time Checking in such cases.

8. CONCLUSION
Metamorphic testing is an effective means of demonstrat-

ing faults in application domains without practical, general
test oracles, such as machine learning, optimization, and
scientific computing. In this paper, we have improved upon
previous work in this area by introducing Metamorphic Run-
time Checking, a new testing approach based on checking the
metamorphic properties of both the entire application and
its individual functions as the program runs. This paper has
also described the architecture of a testing framework called
Columbus.

As shown in our empirical studies, Metamorphic Run-
time Checking is more effective than using runtime assertion
checking, and has three distinct advantages over metamor-
phic testing using application-level properties alone. First,
we are able to increase the scope of metamorphic testing, by
identifying properties for individual functions in addition to
those of the entire application. Second, we increase the scale
of metamorphic testing by running more tests for a given
input to the program. And third, we can increase the sen-
sitivity of metamorphic testing by checking the properties
of individual functions, making it possible to reveal subtle
faults that may otherwise go unnoticed.
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