
Chameleon: Multi-Persona Binary Compatibility for Mobile Devices

Jeremy Andrus, Alexander Van’t Hof, Naser AlDuaij, Christoffer Dall, Nicolas Viennot, and Jason Nieh
{jeremya, alexvh, alduaij, cdall, nviennot, nieh}@cs.columbia.edu

Department of Computer Science
Columbia University

Technical Report CUCS-011-13
April 2013

Abstract
Mobile devices are vertically integrated systems that are
powerful, useful platforms, but unfortunately limit user
choice and lock users and developers into a particular
mobile ecosystem, such as iOS or Android. We present
Chameleon, a multi-persona binary compatibility archi-
tecture that allows mobile device users to run applica-
tions built for different mobile ecosystems together on
the same smartphone or tablet. Chameleon enhances the
domestic operating system of a device with personas to
mimic the application binary interface of a foreign op-
erating system to run unmodified foreign binary appli-
cations. To accomplish this without reimplementing the
entire foreign operating system from scratch, Chameleon
provides four key mechanisms. First, a multi-persona
binary interface is used that can load and execute both
domestic and foreign applications that use different sets
of system calls. Second, compile-time code adaptation
makes it simple to reuse existing unmodified foreign ker-
nel code in the domestic kernel. Third, API interposi-
tion and passport system calls make it possible to reuse
foreign user code together with domestic kernel facili-
ties to support foreign kernel functionality in user space.
Fourth, schizophrenic processes allow foreign applica-
tions to use domestic libraries to access proprietary soft-
ware and hardware interfaces on the device. We have
built a Chameleon prototype and demonstrate that it im-
poses only modest performance overhead and can run
iOS applications from the Apple App Store together with
Android applications from Google Play on a Nexus 7
tablet running the latest version of Android.

1 Introduction
Mobile devices such as tablets and smartphones are
changing the way that computing platforms are de-
signed, from the separation of hardware and software
concerns in the traditional PC world, to vertically inte-
grated platforms. Hardware components are integrated

together in compact devices using non-standard inter-
faces. Software is customized for the hardware, often
using proprietary libraries to interface with specialized
hardware. Applications are tightly integrated with par-
ticular libraries and frameworks, and often only available
on particular hardware devices.

These design decisions and the maturity of the mo-
bile market can limit user choice and stifle innovation.
Users who want to run iOS gaming applications on their
smartphones are stuck with the smaller screen sizes of
those devices. Users who prefer the larger selection of
hardware form factors available for Android are stuck
with the poorer quality and selection of Android games
available compared to the well populated Apple App
Store [15]. Android users cannot access the rich multi-
media content available in Apple iTunes, and iOS users
cannot easily access Flash-based Web content. Some
companies release cross-platform variants of their soft-
ware, but this requires developers to master many dif-
ferent graphical, system, and library APIs, and creates
a massive support and maintenance burden on the com-
pany. Many developers who lack such resources choose
one platform over another, limiting user choice. Com-
panies or researchers that want to build innovative new
devices or mobile software platforms are limited in the
functionality they can provide because they lack access
to the huge application base of existing platforms. New
platforms without an enormous pool of user applications
face the difficult, if not impossible, task of end user
adoption, creating huge barriers to entry into the mobile
device market.

In the traditional PC world, users can use virtual ma-
chines (VMs) such as VMWare Workstation [29] or Par-
allels Desktop [25] to run applications intended for one
platform on a different platform. While VMs are use-
ful for desktop and server computers, using them for
smartphones and tablets is problematic for at least two
reasons. First, mobile devices are more resource con-
strained, and running an entire additional operating sys-
tem (OS) and user space environment in a VM just to

1



run an application imposes high overhead. High over-
head and slow system responsiveness are much less ac-
ceptable on a smartphone than on a desktop computer
because smartphones are often used for just a few min-
utes or even seconds at a time. Second, mobile devices
are tightly integrated hardware platforms that incorpo-
rate a plethora of devices using non-standard interfaces,
such as GPUs. VMs provide no effective mechanism to
enable applications to directly leverage these hardware
device features, severely limiting performance and mak-
ing existing VM-based approaches unusable on smart-
phones and tablets.

To give users greater freedom of choice, make it pos-
sible for developers to write once and run on multiple
platforms, reduce barriers to entry in the mobile device
market, and help spur innovation by making huge ap-
plication markets available on alternative platforms, we
have created Chameleon. Chameleon is a binary compat-
ibility architecture that allows users to run applications
written and compiled for different mobile ecosystems si-
multaneously on the same smartphone or tablet. We in-
troduce the notion of foreign binaries, those developed
for another OS, the foreign OS, and domestic binaries,
those developed for the given device’s OS, the domestic
OS. Chameleon defines a persona as an execution mode
assigned to each thread on the system, identifying the
thread as executing either a foreign or domestic binary.
Chameleon supports multiple personas by extending the
kernel’s application binary interface (ABI) to be aware
of both foreign and domestic threads.

Chameleon supports running foreign binaries by en-
hancing the domestic OS with four key mechanisms
to leverage existing unmodified application frameworks
and kernel code. First, Chameleon provides a multi-
persona binary interface. For each persona, Chameleon
provides a binary loader to interpret the actual contents
of the application binary and associated libraries, a sys-
tem call interface, and an asynchronous signal delivery
mechanism that works with each persona. Chameleon
can then load and execute foreign applications writ-
ten for a different mobile ecosystem that uses a com-
pletely different kernel ABI. Second, Chameleon intro-
duces duct tape, a novel compile-time code adaptation
layer, that allows unmodified foreign kernel code to be
directly compiled into the domestic kernel to provide for-
eign binaries with kernel services not otherwise present
in the domestic kernel. Third, Chameleon introduces
API interposition that allows foreign kernel services to
be implemented in user space leveraging existing do-
mestic kernel services via passport system calls to ex-
port the familiar foreign API to the foreign binary. Us-
ing these mechanisms, Chameleon can then execute for-
eign applications that require kernel-level services not
available in the domestic OS. Fourth, Chameleon cre-

ates schizophrenic processes that can allow foreign ap-
plications to use domestic libraries to access propri-
etary software and hardware interfaces on the device.
A schizophrenic process is a process that executes code
using multiple binary personas. Because it is common
for user space libraries on mobile devices to directly use
or manage custom hardware resources, those libraries
cannot be used on a different mobile device with dif-
ferent hardware. However, mobile devices typically
have similar functionality implemented using different
libraries and hardware. Using schizophrenic processes,
Chameleon replaces the foreign library used by a foreign
application with the existing domestic library used by
domestic applications to provide fast and efficient direct
access to underlying closed hardware, such as GPUs.

Using these mechanisms, we have built a Chameleon
prototype for use on Android devices that can run un-
modified iOS applications along with Android applica-
tions on the same device. Our approach leverages exist-
ing software infrastructure as much as possible, includ-
ing using existing application frameworks across both
iOS and Android ecosystems with no modification. We
demonstrate the effectiveness of our prototype by run-
ning various iOS applications from the Apple App Store
together with Android applications from Google Play on
a Nexus 7 tablet running the latest version of Android.
Users can interact with iOS applications using multi-
touch input, and iOS applications can leverage GPU
hardware to display smooth accelerated graphics. Using
both system-level and application-level benchmarks, we
demonstrate that Chameleon imposes only modest per-
formance overhead and can yield faster performance on
iOS applications than their Android counterparts on An-
droid hardware because of the greater efficiencies of run-
ning native iOS code instead of Java as used by Android.

2 Overview of Android and iOS

To understand how Chameleon runs iOS applications on
Android, we first provide a brief overview of the opera-
tion of Android and iOS. We limit our discussion to cen-
tral components providing application startup, graphics,
and input on both systems. A complete explanation of
both systems is beyond the scope of this paper.

Figure 1 shows an overview of these two systems.
Android is built on the Linux kernel and runs on ARM
CPUs. The Android framework consists of a number of
system services and libraries used to provide application
services, graphics, input, and more. For example, Sys-
temServer starts Launcher, the homescreen application
on Android, and SurfaceFlinger, the rendering engine
which uses the GPU to compose all the display surfaces

2



 iOS Kernel

IOKit
Android Linux 

Kernel

Su
rfa

ce
Fl

in
ge

r

La
un

ch
er

An
dr

oi
d 

Ap
p

Sy
st

em
Se

rv
er

Sp
rin

gB
oa

rd

no
tif

yd

iO
S 

Ap
p

la
un

ch
d

co
nfi

gd

VFS Layer

Sockets

Security
G

ra
ph

ics

In
pu

t

M
ac

h 
IP

C

In
pu

t

G
ra

ph
ics

Mach BSD

Figure 1: Android and iOS architectures

for different applications and display the final composed
surface to the screen.

Each Android application is compiled into Dalvik’s
Dex bytecode format. Tapping the icon on the home-
screen launches a separate Dalvik VM instance to run the
application. When a user interacts with Android appli-
cations input events are delivered from the Linux device
driver through the Android framework to the application.
The application displays content by obtaining window
memory in the form of a display surface from Surface-
Flinger and draws directly into the window memory. An
application can attach an OpenGL context to the window
memory and use the OpenGL ES framework to render
high-end, animated graphics in the window memory us-
ing the GPU.

iOS runs on ARM CPUs like Android, but its software
ecosystem is substantially different. iOS is built on the
XNU kernel [6], a hybrid combination of a monolithic
BSD kernel and a Mach microkernel running in a single
kernel address space. XNU leverages the high perfor-
mance BSD socket and VFS subsystems, but also bene-
fits from the IPC mechanisms provided by Mach IPC.
iOS makes extensive use of both the BSD and Mach
XNU services. The iOS user space framework consists
of a number of user space daemons. launchd is re-
sponsible for booting the system, and starting, stopping,
and maintaining services and applications. launchd
starts Mach IPC services such as configd, the system
configuration daemon, notifyd, the asynchronous no-
tification server, and mediaserverd, the audio/video
server. launchd also starts the SpringBoard applica-
tion, which displays the iOS homescreen from which
users can launch applications, handles and routes user
input to applications, and uses the GPU to compose dis-
play surfaces for applications onto the screen. Spring-
board is analogous to an amalgamation of Surface-
Flinger, Launcher, and SystemServer in Android.

User-Level iOS Services

Chameleon Kernel

Su
rfa

ce
Fl

in
ge

r

La
un

ch
er

An
dr

oi
d 

Ap
p

Sy
st

em
Se

rv
er launchd notifyd

configd

iOS App

iOS App

ChameleonW

ChameleonW eventpump

eventpump

Figure 2: System Integration Overview

iOS applications are written in Objective-C and are
compiled and run as native binaries in an extended
Mach-O [3] format. This is in stark contrast to the Java
archives used by Android applications, which are not
loaded as native binaries, but interpreted by the Dalvik
VM. On iOS, binaries are loaded directly by an OS level
Mach-O loader, which reads the application binary, loads
its text and data segments and jumps to the application
entry point. Dynamically linked libraries are loaded by
dyld, a user space binary, which is called from the
Mach-O loader. Examples of frequently used libraries in
iOS applications include UIKit, the user interface frame-
work, QuartzCore and OpenGL ES, the core graphics
frameworks, and WebKit, the Web browser engine.

3 Operational Model and System
Integration

Chameleon provides a familiar user experience when
running iOS applications on Android. Applications are
launched from the Android home screen, just like any
other Android application, and users can switch seam-
lessly between domestic Android applications and for-
eign iOS applications. Chameleon accomplishes this
without running the iOS kernel or the main SpringBoard
application, but instead overlays a file system (FS) hier-
archy on the existing Android FS, allowing iOS appli-
cations to access familiar iOS paths, and provides back-
ground user-level services required by iOS applications.
The background user-level services are not visible to
users, but establish key OS level functionality in user
space necessary to run iOS applications. Since we fo-
cus on running iOS applications on Android, we use the
terms foreign and iOS, and domestic and Android, inter-
changeably to help describe Chameleon. Figure 2 shows
an overview of the integration of iOS functionality into

3



our Android-based Chameleon prototype.
Chameleon overlays the iOS FS hierarchy onto the ex-

isting Android FS, allowing iOS to access files using
existing iOS-specific FS paths, while at the same time
maintaining the domestic Android FS hierarchy, allow-
ing domestic applications and services to function un-
interrupted. Chameleon supports the use of personas to
isolate and switch between foreign and domestic views
of the FS using familiar techniques such as chroot and
FS unioning [30], but because there are no naming con-
flicts between iOS and Android, our prototype imple-
mentation avoids the overhead of such approaches and
simply creates the iOS FS entries inside the Android FS.
Chameleon sets up subdirectories for running iOS appli-
cations, including /Applications, /Documents, /Library,
and /System/Library.

iOS applications running on Chameleon need access
to a number of application framework components in-
cluding libraries and user-level services. Instead of re-
implementing these components, a task which would
require substantial engineering and reverse-engineering
efforts, we simply copy the existing binaries from
iOS and run them on the domestic system, leveraging
Chameleon’s binary compatibility architecture. How-
ever, not all libraries can simply be copied from the iOS
device due to optimizations on the iOS device discussed
in Section 6. Therefore, we combined binaries from
an iOS device with binaries from the Xcode SDK, Ap-
ple’s development environment. Background user-level
services such as launchd, configd, and notifyd
were copied from the iOS device, where core framework
libraries were copied from the Xcode SDK.

Chameleon fully supports Apple’s I/O Kit kernel-level
driver support framework as part of the Chameleon ker-
nel, described in more detail in Section 4. I/O Kit works
seamlessly with existing Android device drivers to ac-
cess the domestic device hardware resources. Services
such as launchd require functional I/O Kit and kernel-
level Mach IPC services, also supported by Chameleon,
to start and function properly.

However, launchd assumes it is the first application
on the system and therefore has a PID of 1. It further
relies on iOS-specific OS services to be notified of avail-
able applications in the file system. Chameleon lever-
ages PID virtualization [24] in the form of namespaces
to allow launchd to run with a perceived PID of 1,
despite it not being the first process on the system. We
complement Chameleon’s seamless integration of PID
namespaces with imported foreign Mach IPC function-
ality for fully compliant IPC mechanisms.

Since the Android application environment differs
substantially from iOS, Chameleon provides some user-
level integration mechanisms to ensure a familiar user
experience. For example, in iOS, where launchd de-

tects new applications and ensures that they appear in
SpringBoard, Chameleon introduces chameleond, which
leverages Linux’s existing inotify framework to detect
new iOS applications, extract the application icon from
the foreign application package, and notify the Android
Launcher of the new application. Launcher then places
the iOS icon on the Android homescreen, as shown in
Figure 6a.

Because the application launch procedure and the bi-
nary format of iOS and Android applications are com-
pletely different, iOS applications cannot simply be
started by the Android Launcher. To provide seamless
system integration, and to keep changes to Android core
user space components to a minimum, Chameleon intro-
duces a proxy service, ChameleonW, which integrates
the execution of an application, from tapping an icon
in the Android Launcher, to running a foreign binary
and integrating with background user-level iOS services.
ChameleonW, is a standard Android application that the
Android Launcher can start directly. It receives events
and can be managed by Launcher like any other An-
droid application, providing an integrated user experi-
ence when running iOS applications. For example, the
iOS application shows up under Android’s recent activ-
ity list, and can be selected or terminated like a normal
Android application. Our approach is also compatible
with Android’s security model, but a detailed discussion
is beyond the scope of this paper. Chameleon launches
a separate copy of ChameleonW for each iOS applica-
tion running on the system. ChameleonW adapts to the
respective iOS application it is running, providing the
familiar application icon, and facilitates starting iOS bi-
nary applications by issuing Java Native Interface (JNI)
calls to call the unmodified iOS launchctl command,
which in turn requests that the launchd service run
the iOS application, replicating the application launch
mechanism on iOS.

To further provide seamless integration between the
two systems, the iOS application must be notified about
Android system events, such as the application going
into the background, the display rotating, or simply to
receive input when the application is active. Because
ChameleonW is a standard Android application, it will
automatically be notified of such events by the Android
framework, but it must forward this info to the iOS ap-
plication. We accomplish this last step by leveraging
Chameleon’s API interposition to hook into the iOS ap-
plication startup procedure at a known point and launch
a per-application thread, the eventpump. The eventpump
runs in the context of the iOS application and receives
events from the Android ChameleonW application over
a standard BSD socket, a mechanism ubiquitously avail-
able on both Android and iOS. ChameleonW can then
send events via eventpump to the iOS application to

4



direct its execution, such as touch input, display rotation,
accelerometer, proximity, and volume change events. In
fact, ChameleonW will even use eventpump to notify
the iOS application that it is headed into the background,
so that the application can save any necessary state and
prepare for imminent termination, just as it would when
running on an iPhone or iPad.

4 Architecture

To support its operational model, Chameleon needs to be
able to run unmodified iOS binaries on Android, includ-
ing iOS applications, frameworks, and services. This is
challenging because iOS binaries are built to run on iOS,
not Linux or Android. iOS provides a different system
call interface from Linux, and iOS binaries make exten-
sive use of OS services not available on Linux, such as
Mach IPC [5].

At a high-level, the solution to providing binary com-
patibility is straightforward. The interaction between ap-
plications and an OS is defined by the kernel application
binary interface (ABI). The ABI consists of the binary
loader which interprets the physical contents of the ap-
plication binary and associated libraries, asynchronous
signal delivery, and the system call interface. To run iOS
binaries, we just need to implement the iOS ABI in An-
droid. However, there are two key challenges. First, iOS
is a complex, closed-source system and simply reimple-
menting the system call interface from scratch would be
a tedious, difficult, and error-prone process. Second,
the behavior of some system calls is not well-defined.
For example, the ioctl system call passes in a device-
specific request code and a pointer to memory, and its
behavior is device-specific. Without any understanding
of how ioctls are used, simply implementing the system
call itself is of little benefit to applications.

To address these problems, Chameleon provides a
multi-persona binary compatibility architecture that pro-
vides two key features. First, it provides mechanisms
that make it simple to use existing kernel and user code
from foreign sources and incorporate them in Android.
Although iOS is closed source, it is built on the XNU
kernel, which is open source, and there are a variety of
open source projects based on XNU. Chameleon makes
it possible to import the code from XNU and related
projects to into Android to implement substantial por-
tions of the iOS ABI without a substantial reimplemen-
tation effort. Second, Chameleon introduces a funda-
mentally new capability, schizophrenic processes. This
mechanism supports iOS applications that use closed
iOS libraries which issue device-specific system calls to
access iOS proprietary hardware. By replacing those
libraries with Android libraries, which provide access

iOS Application

Mach-O
Loader

XNU ABI 
Compatibility

Standard Linux 
ABI

iOS Libraries

Chameleon
Libraries libschizo

Android 
Libraries

iOS
Mach IPC
Services

configd
launchd

notifyd

IOKit
Driver Bridge

 XNU Source
IOKit

Mach IPC

Duct Tape

Chameleon Linux Kernel

Figure 3: Overview of Chameleon architecture

to Android proprietary hardware, unmodified iOS ap-
plications can access Android hardware. This mecha-
nism is based on the fact that closed libraries and closed
hardware must rely on open interfaces for applications
to use them. Rather than operating on opaque system
calls, Chameleon operates at a higher level to leverage
the same open interfaces used by applications to provide
the required functionality.

Figure 3 provides an overview of the Chameleon ar-
chitecture, which can be thought of in terms of four com-
ponents. First, Chameleon provides XNU ABI compat-
ibility by implementing a Mach–O loader for the Linux
kernel, the XNU system call interface, and supporting
signal delivery. For most system calls, a simple wrapper
is implemented which maps arguments from XNU struc-
tures to Linux structures, then calls the corresponding
Linux system call or reuses existing Linux kernel APIs.
Second, Chameleon provides a duct tape layer to import
foreign kernel code to support system calls that require
a core kernel subsystem not in Linux. Third, Chameleon
provides an API interposition layer implemented as iOS
libraries to support system calls that can be more easily
implemented in user space by using existing foreign user
code together with special Linux system calls. Finally,
Chameleon provides schizophrenic processes using the
libschizo iOS library to support applications that use
closed iOS libraries which issue device-specific system
calls such as ioctl. We describe these components in
further detail in the following sections.

4.1 Kernel ABI
Before an application is executed, its binary format
must be properly loaded and interpreted by the kernel.
iOS uses the Mach–O format, not supported in Linux.
Chameleon provides a Mach–O loader for the Linux ker-

5



nel which is registered as a standard binary format han-
dler within the kernel, allowing the kernel to automat-
ically choose to use the Mach–O loader when an iOS
binary is executed in user space. When the Chameleon
loader launches a new process, it tags the process with
a persona that is used by the kernel in all subsequent
interactions with user space. Personas are tracked on a
per thread basis, namely per task struct in Linux,
enabling an application process with multiple threads to
support multiple personalities.

An application’s primary interface to the kernel is
through system calls. Each kernel may have a differ-
ent system call entry and exit path, and a different set of
system calls available. Chameleon uses the persona of
a thread to select among different kernel ABIs. It main-
tains one or more system call dispatch tables for each
persona, switches among them based on the persona of
the calling thread and the system call number, and man-
ages the entry and exit path differences through persona-
tagged support functions. For example, the system call
ABI on iOS is vastly different from that of Linux in that
there are multiple categories of system calls, each with
its own calling convention and error reporting mecha-
nism. Chameleon is aware of the foreign kernel’s calling
conventions, and uses the persona of the calling thread
to decide how to handle a system call upon entry to the
kernel. Chameleon further translates the foreign calling
convention to an internal Linux calling convention, mak-
ing it possible to, for example, call existing Linux system
call implementation functions. Similarly, Chameleon
also examines a thread’s persona on its return path to
user space, and reports the exit status of the system call
as per the thread’s persona.

Because the iOS kernel is based on a POSIX-
compliant BSD, most of the BSD system calls overlap
with functionality already provided by the Linux ker-
nel. For most system calls, a simple wrapper is imple-
mented which maps arguments from XNU structures to
Linux structures when necessary and then simply calls
the Linux implementation. For BSD system calls that
have no corresponding Linux system calls, but for which
similar Linux functionality exists, the wrapper reuses ex-
isting Linux kernel functions to implement the respective
system calls. For example, Chameleon implements the
posix spawn system call, which is a flexible method
of starting a thread or new application, by leveraging the
linux clone and exec system calls.

Chameleon uses the persona of a thread for proper sig-
nal delivery. While most OSes can deliver asynchronous
signals to an application, the semantics and implemen-
tation can vary widely between OSes. When a thread
returns to user space from the kernel, Chameleon uses
the thread’s persona to account for these semantic differ-
ences in signal delivery, including the user space signal

delivery entry point and function parameters passed to
the signal handler. Processes or threads of different per-
sonas can send and receive signals amongst one another.

4.2 Duct Tape

Some iOS system calls require a core subsystem that
does not exist in the Linux kernel. A prime example of
this is the Mach IPC mechanism used extensively by iOS
applications. The Mach IPC interface is a rich and com-
plicated API providing interprocess communication and
memory sharing. Implementing such a subsystem from
scratch in the Linux kernel would be a daunting task.

To address this problem, Chameleon introduces duct
tape, a novel compile–time code adaptation layer that
allows source code from a foreign kernel to be directly
compiled into the domestic kernel. The duct tape layer
translates foreign kernel APIs such as synchronization,
memory allocation, process control, and list manage-
ment, into domestic kernel APIs. The resulting mod-
ule or subsystem is a first–class member of the domestic
kernel and can be accessed by both foreign and domes-
tic applications. We refer to the process of compiling
foreign kernel code in a domestic kernel as cross–kernel
compilation.

Chameleon successfully uses duct tape for three dif-
ferent subsystems from the XNU kernel [6] into An-
droid’s Linux kernel: BSD pthread support, Mach IPC,
and Apple’s I/O Kit device driver framework, the lat-
ter is discussed in Section 5.1. BSD pthread support in
iOS differs substantially from Linux in how functional-
ity is separated between the pthread library and the ker-
nel. The iOS user space pthread library makes extensive
use of kernel–level support for mutexes, semaphores,
and condition variables. This support is found in the
bsd/kern/pthread support.c file in the open
source XNU code provided by Apple. Chameleon used
duct tape to directly compile this file without modifica-
tion.

The Mach IPC subsystem is significantly more com-
plicated than BSD pthread support. It involves many dif-
ferent header files and a large collection of C files found
in the osfmk/ipc/ and osfmk/kern/ XNU source
directories. Chameleon uses duct tape to directly com-
pile the majority of Mach IPC as a part of Linux, but
some parts were designed to work in a significantly dif-
ferent kernel environment, and therefore had to be reim-
plemented. In particular, the XNU kernel stack defaults
to 16KB, twice that of the Linux kernel, and the XNU
Mach IPC code takes direct advantage of deep call stacks
to access queuing structures recursively, which would
not work in Linux. Therefore we reimplemented the
queuing structures used in the XNU source to better fit
with the Linux kernel environment.

6



4.3 API Interposition

Some iOS system calls require a core subsystem that
does not exist in the Linux kernel and cannot be eas-
ily implemented using duct tape. For example, the XNU
kernel provides the BSD kqueue and kevent notification
mechanism. The implementation of this mechanism is
distributed throughout the XNU kernel source so that
it can notify user space of myriad kernel events. The
mechanism is built on a single system call entry point,
but data semantics to register for and receive notification
of events are highly subsystem-specific. Adding support
for this mechanism in Linux, would involve changes to
almost all core subsystems of the kernel, and is there-
fore not an attractive approach. To address this problem,
Chameleon uses API interposition to interpose between
the foreign binary and the kernel, allowing a user space
library to implement the intended notification mecha-
nism on top of existing Linux functionality. Library in-
terposition is as simple as configuring an environment
variable to load a library, which overrides symbolic ref-
erences. As it turns out, existing open source user level
implementations of some iOS services are available and
can be directly used with API interposition.

Because we are implementing foreign OS services
in user space based on domestic kernel functionality,
Chameleon needs access to a variety of domestic system
calls, not available from a foreign persona. For example,
we implement FS notification support using Linux’s in-
otify functionality, but there are not inotify system calls
in iOS. To address this issue, we introduce passport sys-
tem calls. A passport system call is a new foreign system
call in Chameleon, which allows threads with a foreign
personality to indirectly call domestic system calls.

Chameleon successfully combines API interposition
and passport system calls to provide two important iOS
kernel subsystems: (1) The kqueue and kevent kernel
notification mechanism, and (2) pthread workqueues, a
set of APIs introduced by Apple that extend the pthread
API. Chameleon implements kqueue and kevent sys-
tem calls in the libkqueue library, based on the open
source XDispatch project [22]. A number of bug fixes
and semantic changes to the original XDispatch were in-
corporated into libkqueue to fully support iOS binaries.

The pthread workqueue API is a feature in the iOS
kernel that extends basic pthread support with a num-
ber of features to support prioritized workqueue threads.
Pthread workqueues are used heavily by Apple’s Grand
Central Dispatch [4] libraries, which are linked into al-
most all applications and system services running in
user space. Implementing pthread workqueue sup-
port in Linux would involve radical changes to exist-
ing process management components due to the se-
mantics of the API, and other attempts to implement

such functionality in existing kernels are not yet com-
plete [16]. Chameleon implements pthread workqueue
support in user space using existing Linux pthread sup-
port. Chameleon pthread workqueue support library
is called pthread workqueue and is also based on
XDispatch.

4.4 Schizophrenic Processes

Applications on mobile devices often make use of closed
and proprietary hardware and software stacks. For ex-
ample, the OpenGL ES libraries on both Android and
iOS directly communicate with the graphics hardware
through proprietary software and hardware interfaces us-
ing device-specific ioctls, or opaque IPC messages.

Chameleon cannot simply implement kernel-level
support for foreign closed libraries because the seman-
tics of ioctls or opaque IPC messages used by the closed
libraries are unknown. Further, the semantics are likely
to be closely tied to the underlying foreign hardware
which is not present on the domestic device. Because
of the tight vertical integration across hardware and soft-
ware on mobile devices, library developers often discard
cumbersome abstractions present on desktop PCs in fa-
vor of direct communication with hardware.

Chameleon solves the problem of direct access to
proprietary hardware through the novel concept of
schizophrenic processes. A schizophrenic process is a
process which executes code using multiple personas.
Endowing processes with the ability to execute code us-
ing multiple personas allows foreign applications to use
domestic libraries to interact with the domestic hard-
ware. For example, iOS applications in Chameleon can
load and execute code from the Android OpenGL ES
library and thereby directly interact with the hardware
on the underlying Android device. Chameleon leverages
the fact that while the implementation of proprietary li-
braries and their interface to kernel drivers is closed, the
API on the application side is well-known, and is typi-
cally similar across platforms such as iOS and Android.

Note that schizophrenic processes differ from both
API interposition and passport system calls. API inter-
position allows the execution of new foreign user space
code in a foreign binary. Passport system calls allow the
issuing of specifically-identified domestic system calls
from a foreign binary. In contrast, schizophrenic pro-
cesses allow the execution of domestic user space bina-
ries within a foreign binary, including the issuing of all
domestic system calls.

Chameleon encapsulates schizophrenic process sup-
port in a library called libschizo. This library is
compiled as a foreign binary library, so it can link di-
rectly with the foreign binary that wishes to use domestic
services. It provides a switching API comprising three

7



key components. First, it provides the ability to inter-
pret and load domestic binaries, which involves the use
of a complete domestic dynamic loader within libschizo.
For example, Chameleon incorporates a cross-compiled,
library version of the Android ELF loader.

Second, libschizo provides the ability to switch the
thread local storage (TLS) pointer from one persona to
another so that each persona used by a thread can main-
tain its own state. The contents of the TLS vary from sys-
tem to system, and initializing domestic libraries would
wipe out any state already initialized by the foreign ap-
plication. For example, the errno variable is stored in a
particular location in the TLS which may differ between
the foreign and domestic systems.

Third, libschizo provides the ability to switch from the
foreign persona to the domestic persona and back again
using a passport system call. This passport system call
allows the foreign calling thread to tell the domestic ker-
nel to switch personas, and using the same system call
within the domestic persona to switch back to the for-
eign persona.

Chameleon replaces a foreign library with domestic
functionality by generating a surrogate library, which is
used to direct calls to foreign libraries from the applica-
tion into domestic libraries. Surrogate libraries are cre-
ated by scanning the foreign library being replaced for
entry points and generating a wrapper function, called a
surrogate function, for each possible entry point. The
surrogate library is dynamically loaded instead of the
original foreign library thereby intercepting calls made
to the foreign library.

When a foreign application calls a surrogate function,
the surrogate uses the libschizo switching API to enact a
schizophrenic function call as follows:

1. Upon first invocation, the surrogate function uses
libschizo’s ability to load and interpret domestic
binaries to load the appropriate domestic library
and locate the required entry point. The libschizo
switching API stores a pointer to the entry point in
a locally scoped static variable for efficient reuse.

2. The arguments to the function call are stored on the
stack.

3. The TLS pointer is changed to point to the domestic
TLS instead of the foreign TLS.

4. A passport system call is executed that switches the
calling thread’s persona from foreign to domestic.

5. The arguments to the function call are restored from
the stack.

6. The domestic function call is invoked through the
symbol stored in step 1.

7. Upon return from the function, the return value is
saved on the stack.

8. A domestic system call is executed that switches
the calling thread’s persona from domestic back to
foreign.

9. The TLS pointer is changed to point to the foreign
TLS instead of the domestic TLS, and any TLS val-
ues such as errno are copied into the proper for-
eign TLS location.

10. The function return value is restored from the stack,
and control is returned to the calling function.

Because Chameleon maintains kernel binary personas
on a per thread basis, a foreign application can exe-
cute using multiple personas simultaneously from mul-
tiple threads, and each thread executing schizophreni-
cally within a foreign application is free to use all of
the facilities of the domestic OS including spawning
additional threads which will inherit the current per-
sona. Chameleon leverages a schizophrenic OpenGL
ES library, discussed in detail in Section 5.3, to pro-
vide fully accelerated graphics to foreign iOS applica-
tions. Chameleon also uses schizophrenic function calls
to a custom integration library to enable iOS applications
to perform actions normally performed by SpringBoard
such as displaying alerts and opening URLs.

5 iOS Subsystems on Android
To describe more clearly how the binary compatibil-
ity mechanisms work, we give a few examples of how
Chameleon uses them together to provide binary com-
patibility in the context of key iOS subsystems. We dis-
cuss devices, input, and graphics. A discussion of all
subsystems is beyond the scope of this paper.

5.1 Devices

Chameleon uses duct tape to make underlying hardware
devices available via I/O Kit to iOS applications and li-
braries in the same manner as I/O Kit is used on iOS.
I/O Kit is Apple’s open source driver framework based
on NeXTSTEP’s DriverKit. It is written primarily in a
restricted subset of C++, and is accessed via Mach IPC.
To directly compile the I/O Kit framework, Chameleon
added a basic C++ runtime to the Linux kernel. The run-
time support was based on Android’s Bionic libc, and
kernel Makefile support was added such that the compi-
lation of C++ files from within the kernel required noth-
ing more than assigning the object name to the obj-y
Makefile variable. Chameleon used duct tape and its

8



Linux kernel C++ runtime to directly compile the major-
ity of the I/O Kit code found in the XNU iokit source
directory without modification. 1 In fact, we initially
compiled Chameleon with the I/O Kit framework found
in XNU v1699.24.8, but later directly applied source
code patches to upgrade to the I/O Kit framework found
in XNU v2050.18.24.

Chameleon makes devices available via both the
Linux device driver framework and I/O Kit. Using
a small hook in the Linux device add function,
Chameleon creates an I/O Kit registry entry for every
registered Linux device. For each device, Chameleon
provides a I/O Kit driver class that interfaces with the
corresponding Linux device driver. This allows iOS ap-
plications to use I/O Kit to query the I/O Kit registry
to locate devices or properties, as well as access the de-
vices.

For example, iOS applications expect to inter-
act with the device framebuffer through a C++
class named AppleM2CLCD which derives from the
IOMobileFramebuffer C++ class interface. Us-
ing the C++ runtime support added to the Linux ker-
nel, the Chameleon prototype added a single C++ file
in the Linux display driver’s source tree that defines a
class named AppleM2CLCD. This C++ class acts as a
thin wrapper around the Linux device driver’s function-
ality. The class is instantiated and registered with I/O Kit
through a small interface function called on Linux ker-
nel boot. The duct taped I/O Kit code will then match
the C++ driver with the Linux device node (previously
added from the Linux device add function). After
the driver class instance is matched to the device class
instance, iOS user space can query and use the device
as a standard iOS device. We believe that a similar pro-
cess can be done for most devices found on a tablet or
smartphone.

5.2 Input

No user-facing application would be complete without
input from both the user and devices such as the ac-
celerometer. In iOS, every application monitors a Mach
IPC port for incoming low–level event notifications and
passes these events up the user space stack through ges-
ture recognizers and event handlers. The events sent to
this port include mouse, button, accelerometer, proxim-
ity and touch screen events.

Chameleon creates a new thread in each iOS applica-
tion to act as a bridge between the Android input sys-

1Portions of the I/O Kit codebase
such as IODMAController.cpp and
IOInterruptController.cpp were not necessary as they
are primarily used by I/O Kit drivers communicating directly with
hardware.

Mach IPC

I/O Kit

OpenGL ES CoreGraphics

GPU

QuartzCore / CoreAnimation

UIKit

CPU

IOCoreSurface

iOS Kernel

iOS
User Space

IOMobileFramebufferGPU Driver

Hardware

IOSurface

Figure 4: Overview of iOS Graphics Components

tem and the Mach IPC port expecting input events. This
thread, the eventpump, simply listens for events from the
Android ChameleonW wrapper application via a BSD
socket and pumps those events into the iOS application
via Mach IPC. In the future, this intermediary thread
could be avoided with a minimal Linux Mach IPC wrap-
per ABI.

5.3 Graphics

Chameleon uses a combination of kernel ABI emula-
tion, duct taped driver interfaces, API interposition, and
schizophrenic processes to provide binary compatibility
for 2D and 3D graphics. To understand how this works,
we first provide an overview of the iOS graphics sub-
system, as shown in Figure 4. User space libraries such
as UIKit and CoreAnimation render user content, such
as buttons, text, and images, using CoreGraphics and
OpenGL ES system libraries. These system libraries
communicate directly to the iOS kernel via Mach IPC,
and use I/O Kit drivers to allocate and share graphics
memory, control hardware facilities such as frame rates
and subsystem power, and perform more complex ren-
dering tasks such as those required for 3D graphics. 2D
graphics in iOS uses the CoreGraphics or QuartzCore
API to draw into graphics memory allocated by IOSur-
face and the IOCoreSurface I/O Kit driver, and then dis-
play the results using the IOMobileFramebuffer driver.
3D graphics uses the standard OpenGL ES API [21, 23]
as well as some Apple-specific extensions and a custom
Objective-C interface to the iOS native windowing sys-
tem.

The iOS graphics subsystem presents a particularly
interesting challenge to any mobile binary compatibil-
ity system: highly optimized user space libraries are

9



Linux Display Driver

IOMobileFramebuffer 
wrapper

Chameleon
Linux Kernel

QuartzCore, 
CoreGraphics...

Linux GPU 
driver

LinuxCoreSurface

Android
OpenGLES,
EGL, gralloc

Linux gralloc driver

IOSurface

iOS
App

OpenGLES

Figure 5: Chameleon Graphics Compatibility Architec-
ture

tightly integrated with mobile hardware. Libraries such
as QuartzCore and OpenGL ES, call into a set of pro-
prietary, closed source, helper libraries which, in turn,
use closed source opaque calls via Mach IPC to closed
source kernel drivers which control black-box pieces of
hardware. The Mach IPC calls to the kernel drivers are
essentially used as device-specific system calls. Unlike
the modern desktop OS, there are no well-defined inter-
faces to graphics acceleration hardware, such as the Di-
rect Rendering Infrastructure used by the X Window sys-
tem. Neither implementing kernel–level emulation code
nor duct taping a piece of non–existent GPU driver code
will solve this problem.

Chameleon enables 2D and 3D graphics in iOS appli-
cations through a novel combination of I/O Kit Linux
driver wrappers, a schizophrenic OpenGL ES library,
and API interposition. Figure 5 shows an overview of
how the iOS graphics subsystem is mapped to Android.
Chameleon uses all of the original unmodified iOS li-
braries from Figure 4, except for OpenGL ES, and re-
places iOS kernel components from Figure 4 with Linux
kernel components.

For 2D graphics, Chameleon supports the iOS Core-
Graphics or QuartzCore API using the original unmod-
ified CoreGraphics and QuartzCore/CoreAnimation li-
braries, but it interposes on the IOSurface library to al-
locate the graphics memory needed using the unmodi-
fied Android gralloc library and the underlying Linux
gralloc driver. Chameleon uses API interposition and
schizophrenic calls to the Android gralloc library to tie
the allocated memory to Android GraphicBuffer objects
which are designed to be shared between graphics hard-
ware via OpenGL ES and the CPU via direct pixel ma-
nipulation. Instead of using the iOS IOMobileFrame-
buffer driver to display the results, Chameleon uses an

IOMobileFramebuffer I/O Kit interface wrapped around
the existing Linux display driver to display the results.
To provide the zero-copy memory semantics expected
by the IOSurface library, Chameleon provides Linux-
CoreSurface, a reverse-engineered IOCoreSurface I/O
Kit driver. However, 2D graphics support is insufficient
for iOS applications to work because 3D graphics is used
extensively by iOS drawing and composing functions.

For 3D graphics, Chameleon supports the iOS
OpenGL ES API by replacing the entire iOS OpenGL
ES library using schizophrenic processes to call the An-
droid graphics libraries. The iOS OpenGL ES API con-
sists of two parts, the standard OpenGL ES API [21, 23]
and some Apple-specific EAGL extensions. Chameleon
provides an iOS replacement OpenGL ES library with
a schizophrenic surrogate entry point for every exported
symbol in both of these categories.

For the standard OpenGL ES API entry points,
Chameleon provides a set of surrogate functions
conforming to the schizophrenic switching API in
Chameleon’s iOS replacement OpenGL ES library
which then call the Android OpenGL ES library. Be-
cause each of these entry points has a well-defined
function prototype, the process of creating surrogate
functions is automated by a script that analyzes ex-
ported symbols in the iOS OpenGL ES Mach-O library,
searches through a directory of Android ELF shared ob-
jects for a matching export, and automatically generates
a surrogate function.

For the Apple-specific EAGL extensions, these do not
exist on Android. These extensions are used to con-
trol window memory and graphics context. The script
used to analyze exported symbols in the iOS OpenGL
ES Mach-O library will generate a C function stub for
the EAGL exported symbols which do not match any ex-
port in any Android ELF library. These then need to be
implemented in some fashion. However, the EAGL ex-
tensions are Apple’s replacement for the Native Platform
Graphics Interface Layer (EGL) standard, and this is im-
plemented in an Android EGL library. Chameleon uses
schizophrenic calls to the Android EGL functions to im-
plement the EAGL extensions. Android’s EGL library,
used in combination with Android’s SurfaceFlinger ser-
vice, manages windows memory into which iOS appli-
cations render. Allocating this memory via the stan-
dard Android SurfaceFlinger service allows Chameleon
to manage the iOS display in the same manner all An-
droid application displays are managed.

The Chameleon graphics subsystem allows many iOS
applications to render without issue and supports the
necessary 3D graphics drawing and composing functions
used by iOS. However, because our initial prototype was
designed to run system services, such as the window
composer, in the same process as the application itself,

10



and because the OpenGL ES standard only allows a sin-
gle rendering thread per process, our prototype is lim-
ited to a single graphics context. This means advanced
3D games, or any application that explicitly creates an
OpenGL ES context will not work properly. Many ap-
plications, however, exclusively use the QuartzCore 2D
drawing APIs that utilize the system OpenGL ES con-
text. These applications render without issue.

6 Experimental Results

We have implemented a Chameleon prototype for run-
ning iOS and Android applications on an Android de-
vice and present some experimental results to measure
its performance. We compared three different Android
system configurations to measure the performance of
Chameleon: (1) Linux binary and Android applications
running on vanilla Android, (2) Linux binary and An-
droid applications running on Chameleon, and (3) iOS
binary applications running on Chameleon. For our ex-
periments, we used a Nexus 7 tablet with a 1.3 GHz
quad-core NVIDIA Tegra 3 CPU, 1 GB RAM, 16 GB of
flash storage, and 7” LED-backlit IPS LCD display with
1280x800 screen resolution at 216ppi, running Android
4.2, also known as Jelly Bean, the latest version of An-
droid. We also ran iOS binary applications on a jailbro-
ken iPad mini with a 1 GHz dual-core A5 CPU, 512 MB
RAM, 16 GB of flash storage, and 7.9” LED-backlit IPS
LCD display with 1024x768 screen resolution at 163ppi,
running iOS 6.1.2, the latest version of iOS. Since the
iPad Mini was released at roughly the same time frame
as the Nexus 7 and has a similar form factor, it provides
a useful point of comparison even though it costs over
50% more than the Nexus 7.

We used both micro-benchmarks and real applications
to evaluate the performance of Chameleon. To mea-
sure the latency of common low-level OS operations, we
used micro-benchmarks from lmbench 3.0 and com-
piled two versions, a ELF Linux binary and a Mach–
O iOS binary, using the standard Linux GCC 4.4.1 and
Xcode 4.2.1 compilers, respectively. We used four cate-
gories of lmbench tests: basic operations, system calls
and signals, process creation, and local communication
and file operations. To measure real application perfor-
mance, we used comparable iOS and Android PassMark
applications available from the Apple App Store [26]
and Google Play [27], respectively. PassMark conducts
a wide range of resource intensive throughout tests to
evaluate CPU, memory, disk, and graphics performance.
For example, it measures how many graphics operations
it can do per second. We used PassMark because it is a
widely used, commercially-supported application avail-
able on both iOS and Android, and provides a conser-

vative measure of application performance. We normal-
ize all results using the vanilla Android performance as
the baseline to compare across systems. This is useful
to measure Chameleon performance overhead, but also
provides some key observations regarding the character-
istics of Android and iOS applications.

6.1 Obtaining iOS Applications

For our experiments, we downloaded iOS applications
from the Apple App Store. In the future, we envision
that developers and application distributors would be in-
centivized to provide alternative distribution methods.
For example, Google Play might be incentivized to take
advantage of Chameleon to make a greater number and
higher quality of applications available for Android de-
vices. However, using the App Store required a few more
steps to install the applications on an Android device
because of various security measures used by the App
Store.

App Store applications, unlike iOS system applica-
tions such as Stocks, are encrypted and can only be de-
crypted using the key stored on an iOS device. We use a
script that can download and decrypt applications using
any jailbroken iOS device. To illustrate this point, we
used an old iPhone 3GS updated with iOS 5.0.1 for this
purpose. The decryption process we based our method
on is widely used and documented [28].

Figure 6 shows screenshots of the Nexus 7 tablet with
various iOS applications that we installed and ran on the
device. The homescreen shows iOS and Android appli-
cations side by side that users can execute in a seamless
manner. The iOS Stocks application receives live market
data over WiFi; quotes are from March 27, 2013. The
iOS Constitution application by Clint Bagwell Consult-
ing is only available on the Apple App Store and pro-
vides a superior user experience to those available on
Google Play [9].

6.2 Microbenchmark Measurements

Figure 7 shows the results of running lmbench mi-
crobenchmarks on the four different system configura-
tions. Vanilla Android performance is normalized to one
in all cases, so those results are not explicitly shown.
These measurements are latencies, so smaller numbers
are better. Measurements are shown at two scales to pro-
vide a clear comparison despite the wide range of results.

First, Figure 7 shows basic CPU operation measure-
ments for integer multiply, integer divide, double preci-
sion floating point add, double precision floating point
multiply, and double precision bogomflop tests. None
of these tests exercise Chameleon functionality, but they

11



(a) Android homescreen with iOS applications (b) iOS Stocks application (c) Constitution for iPhone and iPod Touch

Figure 6: Chameleon running iOS applications

provide a comparison that reflect differences in the An-
droid and iOS hardware and compilers used. The basic
CPU operation measurements were essentially the same
for all three system configurations using the Android de-
vice, except for the integer divide test, which showed
that the Linux compiler generated more optimized code
than the iOS compiler. In all cases, the measurements
for the iOS device were worse than the Android device,
confirming that the iPad mini’s CPU is not as fast as the
Nexus 7’s CPU for basic math operations.

Second, Figure 7 shows system call and signal han-
dler measurements including null system call, read,
write, open/close, and signal handler tests. The
null system call measurement shows the overhead in-
curred by Chameleon on a system call that does no
work, providing a conservative measure of the cost of
Chameleon. The overhead is 8.5% over vanilla Android
in running the same Linux binary, which is due to the
need to determine the persona of the calling thread and
route the call to the corresponding system call dispatch
table. The overhead is 40% for running the iOS binary
over vanilla Android running the Linux binary, which
shows the additional cost of using the iOS persona and
translating the system call into the corresponding Linux
system call. These overheads end up in the noise for sys-
tem calls that actually perform some function, as shown
by the measurements for the other system calls. Run-
ning the iOS binary on the Nexus 7 using Chameleon
is much faster on these system call measurements than
running the same binary on the iPad mini, illustrating a

benefit of using Chameleon to leverage the different per-
formance characteristics of Android hardware instead of
being limited to only iOS hardware.

The signal handler measurement shows the overhead
incurred by Chameleon in delivering a signal to the same
process that generated the signal. This is a conservative
measurement because no work is done by the process as
a result of signal delivery. The overhead is small, 3%
over vanilla Android in running the same Linux binary,
which is due to the added cost of determining the per-
sona of the target thread. The overhead is 25% for run-
ning the iOS binary over vanilla Android running the
Linux binary, which shows the additional cost of us-
ing the iOS persona. This involves some translation of
the signal information and using a larger signal delivery
structure with more information, as expected by iOS bi-
naries. Running the iOS binary on the iPad mini takes
175% longer than running the same binary on the Nexus
7 using Chameleon for the signal handler test.

Third, Figure 7 shows five sets of process cre-
ation measurements, fork+exit, fork+exec, and
fork+sh tests. The fork+exit measurement
shows that Chameleon incurs negligible overhead ver-
sus vanilla Android in running a Linux binary despite
the fact that it must do some extra work in the form of
Mach IPC initialization. However, Chameleon takes al-
most 14 times longer to run the iOS binary version of
the test compared to the Linux binary. The absolute dif-
ference in time is roughly 3.5 ms, with the Linux bi-
nary taking 245 µs and the iOSbinary taking 3.75 ms.

12



0	  

1	  

2	  

3	  
0	  

10	  
20	  
30	  
40	  
50	  
60	  
70	  

int
	  m
ul	  

int
	  di
v	  

do
ub
le	  
ad
d	  

do
ub
le	  
mu
l	  

nu
ll	  s
ysc
all
	  

rea
d	  

wr
ite
	  

op
en
/cl
os
e	  

sig
na
l	  

for
k+
ex
it	  

ex
ec
	  an
dro
id	  

ex
ec
	  io
s	  

sh
	  -‐c
	  an
dro
id	  

sh
	  -‐c
	  io
s	  

bo
go
mfl
op
s	  

pip
e	  

AF
_U
NI
X	  

sel
ec
t	  1
0	  f
d	  

sel
ec
t	  1
00
	  fd
	  

sel
ec
t	  2
50
	  fd
	  

cre
ate
	  0K
	  fil
e	  

de
let
e	  0
K	  fi
le	  

cre
ate
	  10
K	  fi
le	  

de
let
e	  1
0K
	  fil
e	  

Chameleon	  Android	  
Chameleon	  iOS	  
iOS	  

Figure 7: Microbenchmark latency measurements normalized to vanilla Android; lower is better performance.

There are two reasons for this difference. First, the pro-
cess running the iOS binary consumes significantly more
memory than the Linux binary because the iOS dynamic
linker, dyld, maps 90 MB of extra memory from 115
different libraries, irrespective of whether those libraries
are used by the binary. fork must then duplicate the
page table entries corresponding to all of that extra mem-
ory, incurring almost 1 ms of extra overhead. Second, an
iOS process does a lot more work in user space when it
forks because iOS libraries use pthread atfork to
register callbacks that are called before and after fork.
Similarly, for each library, dyld registers a callback that
is called on exit, resulting in the execution of 115 han-
dlers on exit. These user space callbacks account for
2.5 ms of extra overhead. Note that the fork+exit
measurement on the iPad mini is significantly faster than
using Chameleon on the Android device due to a shared
library cache optimization that is not yet supported in
the Chameleon prototype implementation. To save time
on library loading, iOS’s dyld stores common libraries
pre-linked on disk in a shared cache in lieu of storing
the libraries separately. iOS treats the shared cache in a
special way and optimizes how it is handled.

The fork+exec measurement is done in several
unique variations on Chameleon made possible by us-
ing schizophrenic processes. The test spawns a child
process which executes a simple hello world program,
but we compile two versions of the program, a Linux bi-
nary and an iOS binary. The test itself is also compiled
as both a Linux binary and an iOS binary. On a vanilla
Android system, the only way to run the test is to run a
Linux binary that spawns a child to run a Linux binary.
Similarly, on an iOS system, the only way to run the test
is to run an iOS binary that spawns a child to run an iOS
binary. Using Chameleon, the test can be run four differ-
ent ways, a Linux binary can spawn a child to run either
a Linux or an iOS binary, and an iOS binary can spawn

a child to run either a Linux or an iOS binary.

Figure 7 shows all fork+exec measurements using
Chameleon. exec android tests spawn a child to run
a Linux binary. Chameleon incurs negligible overhead
versus vanilla Android when the test program is a Linux
binary that spawns a child to run a Linux binary. The ac-
tual time it takes to run this test is roughly 590 µs, a little
more than twice the time it takes to run the fork+exit
measurement, reflecting the fact that executing the hello
world program is more expensive than simply exiting.
Chameleon takes 4.8 times longer to run the test when
the test program is an iOS binary that spawns a child to
run a Linux binary. The extra overhead is due to the cost
of an iOS binary calling fork, as discussed previously in
the case of the fork+exitmeasurement. Interestingly,
the fork+exec measurement is 3.42 ms, which is less
than the fork+exit measurement. This is because the
child process replaces its iOS binary with the hello world
Linux binary, and this is less expensive than having the
original iOS binary exit because of all the exit handlers
that it has to execute.

exec ios tests spawn a child to run an iOS binary.
This is not possible on vanilla Android, so there is no
vanilla Android performance that we can normalize all
results against as a baseline. To compare the different
fork+exec measurements, we instead normalize the
performance against the vanilla Android system running
a Linux binary that spawns a child running a Linux bi-
nary. This comparison is intentionally unfair and skews
the results against the tests that spawn a child running the
more heavyweight iOS binary. Nevertheless, using this
comparison, Figure 7 shows that spawning a child to run
an iOS binary is much more expensive. This is because
dyld loads 90 MB of extra libraries when it starts the
iOS binary. Unlike fork in which copy-on-write can be
used to limit this cost to the duplicating page tables, the
cost for exec involves not just creating the page tables,

13



but also mapping in the actual libraries themselves. This
is very expensive because the Chameleon prototype im-
plementation does not use the shared cache optimization,
but uses non-prelinked libraries and dyld walks the
filesystem to load all the libraries on every exec. The
extra overhead for starting with an iOS binary instead
of a Linux binary is due to the cost of the iOS binary
calling fork, as discussed previously in the case of the
fork+exit measurement. Running the fork+exec
test on the iPad mini is faster than using Chameleon on
the Android device because of its use of the shared cache
optimization, which avoids the need to walk the filesys-
tem to load all the libraries.

Similar to the fork+exec measurement, the
fork+sh -c measurement is also done in sev-
eral variations on Chameleon made possible by us-
ing schizophrenic processes. sh -c android tests
launch a shell to run a Linux binary. Chameleon again
incurs negligible overhead versus vanilla Android when
the test program is a Linux binary, but takes 110% longer
when the test program is an iOS binary. The extra over-
head is due to the cost of an iOS binary calling fork,
as discussed previously in the case of the fork+exec
measurement, but because the sh -c android mea-
surement takes longer, 6.8 ms using the iOS binary,
the relative overhead is less than in the case of exec
android.

sh -c ios tests launch a shell to run an iOS bi-
nary. This is not possible on vanilla Android, so we
again use the same sh -c android baseline for com-
parison, skewing the results against the sh -c ios
tests. Nevertheless, using this comparison, Figure 7
shows that spawning a child to run an iOS binary is
much more expensive for the same reasons as for the
fork+exec measurement. Because the sh -c ios
test takes longer, the relative overhead is less than in the
case of exec ios.

Fourth, Figure 7 shows local communication and
filesystem measurements including pipe, AF UNIX,
select on 10 to 250 file descriptors, and creating and
deleting 0 KB and 10 KB files. The measurements were
quite similar for all three system configurations using the
Android device. However, the measurements for the iOS
device were significantly worse than the Android device
in a number of cases. Perhaps the worst offender was the
select test, whose overhead increased linearly with
the number of file descriptors to more than 10 times the
cost of running the test on vanilla Android, and simply
failed to complete for 250 file descriptors. In contrast,
the same iOS binary runs using Chameleon on Android
with performance that was the same as running a Linux
binary on vanilla Android across the wide range in the
number of file descriptors used for the measurements.

6.3 Application Measurements

Figure 8 shows the results of running the iOS and An-
droid PassMark benchmark applications [26, 27] on the
four different system configurations. Vanilla Android
performance is normalized to one in all cases, so those
results are not explicitly shown. These measurements are
in operations per second, so larger numbers are better.

Figure 8 shows CPU operation measurements for inte-
ger, floating point, find primes, random string sort, data
encryption, and data compression tests. Because Pass-
Mark is a full graphical application, running the applica-
tion on Chameleon necessarily exercises its functional-
ity, but because these tests are primarily CPU intensive,
the resulting overhead for using Chameleon is negligi-
ble. This is evident by comparing the results for run-
ning the Android PassMark application on vanilla An-
droid versus Chameleon. However, unlike the basic CPU
operation measurements obtained using lmbench, the
PassMark measurements show that Chameleon delivers
significantly faster performance when running the iOS
PassMark application on Android. This is because the
Android version is written in Java and is interpreted
through the Dalvik VM while the iOS version is writ-
ten in Objective-C and is compiled and run as a native
binary. Because the Android device is faster than the
iOS device, Chameleon outperforms iOS in running the
CPU tests for the same iOS PassMark application.

Figure 8 shows storage operation measurements for
write and read tests. There is negligible overhead caused
by Chameleon for these tests as evident by comparing
the results for running the Android PassMark applica-
tion on vanilla Android versus Chameleon. However,
Chameleon does have somewhat slower performance on
the storage write test when running the iOS version of
the application. This is not due to any performance over-
head caused by Chameleon, but the modest difference is
more likely caused by small differences in the native li-
braries used by the respective applications. Chameleon
has much better storage read performance when running
the iOS application than vanilla Android. In compari-
son with the iOS device, Chameleon has better storage
read performance but worse storage write performance.
Because storage performance can depend heavily on the
OS, these results may reflect differences in both the hard-
ware and the OS.

Figure 8 shows memory operation measurements for
write and read tests. There is negligible overhead caused
by Chameleon for these tests as evident by comparing
the results for running the Android PassMark applica-
tion on vanilla Android versus Chameleon. Chameleon
delivers significantly faster performance when running
the iOS PassMark application on Android. This is again
because Chameleon can run the iOS application natively

14



0	  

1	  

2	  

3	  

4	  0	  

5	  

10	  

15	  

20	  

Integer	   Floa2ng	  
Point	  

Find	  Primes	   Random	  
String	  Sort	  

Data	  
Encryp2on	  

Data	  
Compression	  

Storage	  
Write	  

Storage	  Read	   Memory	  
Write	  

Memory	  
Read	  

Solid	  Vectors	   Transparent	  
Vectors	  

Complex	  
Vectors	  

Image	  
Rendering	  

Image	  Filters	  

Chameleon	  Android	  

Chameleon	  iOS	  

iOS	  

Figure 8: Application throughput measurements normalized to vanilla Android; higher is better performance.

while Android runs the application through the Dalvik
VM. Chameleon outperforms iOS in running the mem-
ory tests for the same iOS PassMark application, again
reflecting the benefit of using faster Android hardware.

Figure 8 shows graphics measurements for a variety
of graphics operations, including solid vectors, trans-
parent vectors, complex vectors, image rendering, and
image filters. There is negligible overhead caused by
Chameleon for these tests as evident by comparing
the results for running the Android PassMark appli-
cation on vanilla Android versus Chameleon. How-
ever, Chameleon has slower performance when run-
ning the iOS PassMark application on Android. Both
versions use the same native Android OpenGL ES
library, which is why the Android application per-
forms well since the GPU-intensive operations that
dominate this test are performed natively. However,
Chameleon incurs additional overhead due to a subopti-
mal mapping in our unoptimized prototype between the
IOMobileFramebuffer interface and the Linux de-
vice driver. Despite this cost, Chameleon still signifi-
cantly outperforms iOS in running the same iOS Pass-
Mark application across all graphics operations because
of the faster GPU hardware in the Android device. For
example, the solid vector test runs almost twice as fast
using Chameleon versus iOS. Note that PassMark’s 3D
graphics measurements are not included in the results be-
cause the Chameleon prototype implementation does not
yet have complete support for advanced 3D rendering.

7 Related Work
Various previous approaches have explored binary com-
patibility in the context of desktop computers, but little
work has been done for mobile devices. Wine [1] runs
Windows applications on x86 computers running Linux,
including widely-used Microsoft Office productivity ap-
plications. It achieves this by attempting to reimplement
the entire foreign user space library API, such as Win32,
using native APIs. This approach is tedious and over-
whelmingly complex, and Wine has been under devel-

opment for a long time, but continues to chase Windows
as every new release contains new APIs that need to be
implemented. Darling [11] takes a similar approach to
try to run Mac OS X applications on Linux, though it
remains a work in progress unable to run anything other
than very simple applications. In contrast, Chameleon
provides binary personality support in the OS to lever-
age existing unmodified application libraries and frame-
works and avoid rewriting huge amounts of user space
code.

Wabi [19] was a product from Sun Microsystems for
running Windows applications on Solaris. It supported
applications developed for Windows 3.1, but did not sup-
port later versions of Windows and was discontinued.
Unlike Wine, it required Windows 3.1. It replaced low-
level Windows API libraries with versions that translated
from Windows to Solaris calls. Wabi ran on top of So-
laris and provided all of its functionality outside of the
OS, limiting its ability to support applications that re-
quire kernel-level services not available in Solaris. In
contrast, Chameleon is not limited to API interposition
and provides binary personality support in the OS to sup-
port foreign kernel services.

Several BSD variants maintain a binary compatibil-
ity layer for other OSes [12, 13, 17]. The BSD approach
reimplements foreign system calls in the OS, using a dif-
ferent system call dispatch table for each OS to glue the
calls to the BSD kernel. It works for foreign OSes that
are close enough to BSD such as Linux, but attempts
to extend this approach to supporting Mac OS X appli-
cations only provide limited support for command line
tools, not Mac OS X GUI applications [14]. In contrast,
Chameleon provides duct tape and interposition layers
to simplify adding unmodified foreign kernel code to an
OS, and introduces schizophrenic processes that can run
mixtures of foreign and domestic binaries. Unlike previ-
ous approaches, this unique mechanism provides a solu-
tion for supporting graphical applications in mobile de-
vices where hardware acceleration is often exposed di-
rectly to user space and libraries such as OpenGL call
device and platform specific functions.

15



Other partial solutions to binary compatibility have
also been explored. For example, Shinichiro Hamaji’s
Mach-O loader for Linux [18] can load and run some
desktop Apple OS X command line binaries in Linux.
This project supports only command line binaries us-
ing the Linux “misc” binary format and dynamically
overwriting C entry points to system calls. In contrast,
Chameleon provides a complete environment for foreign
binaries including graphics libraries and device access.

Virtual machines have perhaps become the most pop-
ular way to run foreign applications on desktop com-
puters. However, they require purchasing and running
a full guest OS instance, using much more memory
and disk space, and incur additional performance over-
head. Various approaches [7, 10, 20] have attempted to
bring VMs to mobile devices, but these approaches can-
not run unmodified OSes and incur even higher over-
head than their desktop counterparts; memory overhead
is a key problem on memory constrained smartphones.
Lightweight mobile virtualization [2, 8] claims lower
virtualization overhead than other mobile counterparts,
but does not support running different OS instances and
therefore cannot run foreign applications at all. Unlike
Chameleon, none of these previous virtualization ap-
proaches can run foreign iOS applications on Android.

8 Conclusions
Chameleon is the first system to allow users to run un-
modified mobile applications written for one OS on an-
other OS. It provides novel binary compatibility mecha-
nisms including (1) a multi-persona binary interface to
allow foreign binaries to run directly on top of a do-
mestic OS kernel, (2) a static code compilation transla-
tion layer, duct tape, to allow foreign open-source ker-
nel code to be directly compiled as a part of the do-
mestic kernel without modification, (3) API interposition
with passport system calls to implement OS level ser-
vices in user space to support foreign binaries, and (4)
schizophrenic processes, which take advantage of both
foreign and domestic OS services at the same time. We
have built a Chameleon prototype and demonstrate that
it imposes only modest performance overhead and suc-
cessfully runs widely used iOS applications seamlessly
with Android applications.

9 Acknowledgments
Yan Zou helped with running benchmarks to obtain
many of the measurements in this paper. This work
was supported in part by a Facebook Graduate Fellow-
ship and NSF grants CNS-1162447, CNS-1018355, and
CNS-0905246.

References
[1] AMSTADT, B., AND JOHNSON, M. K. Wine.

Linux Journal (Aug. 1994).

[2] ANDRUS, J., DALL, C., VAN’T HOF, A.,
LAADAN, O., AND NIEH, J. Cells: A Virtual Mo-
bile Smartphone Architecture. In Proceedings of
the 23rd ACM Symposium on Operating Systems
Principles (Cascais, Portugal, Oct. 2011), pp. 173–
187.

[3] APPLE, INC. OS X ABI Mach-O File Format
Reference. https://developer.apple.
com/library/mac/#documentation/
DeveloperTools/Conceptual/
MachORuntime/Reference/reference.
html, Feb. 2009. Accessed: 3/20/2013.

[4] APPLE, INC. Grand Central Dispatch (GCD)
Reference. http://developer.apple.
com/library/ios/#documentation/
Performance/Reference/GCD_
libdispatch_Ref/Reference/
reference.html, Nov. 2011. Accessed:
3/28/2013.

[5] APPLE, INC. Porting UNIX/Linux Applications
to OS X. https://developer.apple.
com/library/mac/#documentation/
Porting/Conceptual/PortingUnix/
background/background.html, June
2012. Accessed: 3/27/2013.

[6] APPLE, INC. Source Browser. http:
//www.opensource.apple.com/
source/xnu/xnu-2050.18.24/, Aug.
2012. Accessed: 3/21/2013.

[7] BARR, K., BUNGALE, P., DEASY, S., GYURIS,
V., HUNG, P., NEWELL, C., TUCH, H., AND
ZOPPIS, B. The VMware Mobile Virtualization
Platform: Is That a Hypervisor in Your Pocket?
ACM SIGOPS Operating Systems Review (Dec.
2010), 124–135.

[8] CELLROX. Cellrox ThinVisor Technology. http:
//www.cellrox.com/how-it-works/,
Feb. 2013. Accessed: 4/5/2013.

[9] CLINT BAGWELL CONSULTING. Constitution for
iPhone. https://itunes.apple.com/ca/
app/constitution-for-iphone-ipod/
id288657710, Mar. 2013. Accessed: 3/20/2013.

16

https://developer.apple.com/library/mac/#documentation/DeveloperTools/Conceptual/MachORuntime/Reference/reference.html
https://developer.apple.com/library/mac/#documentation/DeveloperTools/Conceptual/MachORuntime/Reference/reference.html
https://developer.apple.com/library/mac/#documentation/DeveloperTools/Conceptual/MachORuntime/Reference/reference.html
https://developer.apple.com/library/mac/#documentation/DeveloperTools/Conceptual/MachORuntime/Reference/reference.html
https://developer.apple.com/library/mac/#documentation/DeveloperTools/Conceptual/MachORuntime/Reference/reference.html
http://developer.apple.com/library/ios/#documentation/Performance/Reference/GCD_libdispatch_Ref/Reference/reference.html
http://developer.apple.com/library/ios/#documentation/Performance/Reference/GCD_libdispatch_Ref/Reference/reference.html
http://developer.apple.com/library/ios/#documentation/Performance/Reference/GCD_libdispatch_Ref/Reference/reference.html
http://developer.apple.com/library/ios/#documentation/Performance/Reference/GCD_libdispatch_Ref/Reference/reference.html
http://developer.apple.com/library/ios/#documentation/Performance/Reference/GCD_libdispatch_Ref/Reference/reference.html
https://developer.apple.com/library/mac/#documentation/Porting/Conceptual/PortingUnix/background/background.html
https://developer.apple.com/library/mac/#documentation/Porting/Conceptual/PortingUnix/background/background.html
https://developer.apple.com/library/mac/#documentation/Porting/Conceptual/PortingUnix/background/background.html
https://developer.apple.com/library/mac/#documentation/Porting/Conceptual/PortingUnix/background/background.html
http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/
http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/
http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/
http://www.cellrox.com/how-it-works/
http://www.cellrox.com/how-it-works/
https://itunes.apple.com/ca/app/constitution-for-iphone-ipod/id288657710
https://itunes.apple.com/ca/app/constitution-for-iphone-ipod/id288657710
https://itunes.apple.com/ca/app/constitution-for-iphone-ipod/id288657710


[10] DALL, C., AND NIEH, J. KVM for ARM. In Pro-
ceedings of the Ottawa Linux Symposium (Ottawa,
Canada, June 2010).

[11] DOLEEL, L. The Darling Project. http:
//darling.dolezel.info/en/Darling,
Aug. 2012. Accessed: 4/5/2013.

[12] DREYFUS, E. Linux Compatibility on BSD for the
PPC Platform. http://onlamp.com/lpt/
a/833, May 2001. Accessed: 5/11/2012.

[13] DREYFUS, E. IRIX Binary Compatibility, Part
1. http://onlamp.com/lpt/a/2623, Aug.
2002. Accessed: 5/11/2012.

[14] DREYFUS, E. Mac OS X binary compatibility
on NetBSD: challenges and implementation. In
Proceedings of the 2004 EuroBSDCon (Karlsruhe,
Germany, Oct. 2004).

[15] FARADAY, OWEN. Android is a deso-
late wasteland when it comes to games.
http://www.wired.co.uk/news/
archive/2012-10/31/android-games,
Oct. 2012. Accessed: 3/21/2013.

[16] FREEBSD. Grand Central Dispatch (GCD) on
FreeBSD. https://wiki.freebsd.org/
GCD, May 2011. Accessed: 3/21/2013.

[17] FREEBSD DOCUMENTATION PROJECT. Linux
binary compatibility. In FreeBSD Handbook, B. N.
Handy, R. Murphey, and J. Mock, Eds. 2000,
ch. 11.

[18] HAMAJI, S. Mach-O Loader for Linux.
https://github.com/shinh/maloader,
Mar. 2011. Accessed: 3/15/2013.

[19] HOHENSEE, P., MYSZEWSKI, M., AND REESE,
D. Wabi CPU emulation. In Hot Chips 8 (1996).

[20] HWANG, J., SUH, S., HEO, S., PARK, C., RYU,
J., PARK, S., AND KIM, C. Xen on ARM: Sys-
tem Virtualization using Xen Hypervisor for ARM-
based Secure Mobile Phones. In Proceedings of the
5th Consumer Communications and Network Con-
ference (Las Vegas, NV, Jan. 2008).

[21] KHRONOS GROUP. OpenGL ES – The Stan-
dard for Embedded Accelerated 3D Graphics.
http://www.khronos.org/opengles/,
Jan. 2013. Accessed: 3/22/2013.

[22] MLBA TEAM. XDispatch - Overview.
http://opensource.mlba-team.de/
xdispatch/docs/current/index.html,
Jan. 2013. Accessed: 3/27/2013.

[23] MUNSHI, A., AND LEECH, J. OpenGL
ES Common Profile Specification Ver-
sion 2.0.25 (Full Specification). http:
//www.khronos.org/registry/gles/
specs/2.0/es_full_spec_2.0.25.pdf,
Nov. 2010. Accessed: 4/8/2013.

[24] OSMAN, S., SUBHRAVETI, D., SU, G., AND
NIEH, J. The Design and Implementation of Zap:
a System for Migrating Computing Environments.
In Proceedings of the 5th Symposium on Operating
Systems Design and Implementation (Boston, MA,
Dec. 2002).

[25] PARALLELS IP HOLDINGS GMBH. Parallels
Desktop. http://www.parallels.com/
products/desktop/. Accessed: 3/22/2013.

[26] PASSMARK SOFTWARE, INC. Per-
formancetestmobile for iphone, ipod
touch, and ipad on the itunes app store.
https://itunes.apple.com/us/
app/performancetest-mobile/
id494438360?ls=1&mt=8, June 2012.
Accessed: 3/14/2013.

[27] PASSMARK SOFTWARE, INC. Passmark perfor-
mancetest – android apps on google play. https:
//play.google.com/store/apps/
details?id=com.passmark.pt_mobile,
Jan. 2013. Accessed: 3/14/2013.

[28] TUNG, C. K. CK’s IT blog: How To Decrypt
iPhone IPA file. http://tungchingkai.
blogspot.com/2009/02/
how-to-decrypt-iphone-ipa-file.
html, Feb. 2009. Accessed: 3/14/2013.

[29] VMWARE, INC. VMware Workstation.
http://www.vmware.com/products/
workstation/. Accessed: 3/22/2013.

[30] WRIGHT, C. P., DAVE, J., GUPTA, P., KRISH-
NAN, H., QUIGLEY, D. P., ZADOK, E., AND
ZUBAIR, M. N. Versatility and Unix Semantics
in Namespace Unification. ACM Transactions on
Storage (Feb. 2006), 74–105.

17

http://darling.dolezel.info/en/Darling
http://darling.dolezel.info/en/Darling
http://onlamp.com/lpt/a/833
http://onlamp.com/lpt/a/833
http://onlamp.com/lpt/a/2623
http://www.wired.co.uk/news/archive/2012-10/31/android-games
http://www.wired.co.uk/news/archive/2012-10/31/android-games
https://wiki.freebsd.org/GCD
https://wiki.freebsd.org/GCD
https://github.com/shinh/maloader
http://www.khronos.org/opengles/
http://opensource.mlba-team.de/xdispatch/docs/current/index.html
http://opensource.mlba-team.de/xdispatch/docs/current/index.html
http://www.khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.25.pdf
http://www.khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.25.pdf
http://www.khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.25.pdf
http://www.parallels.com/products/desktop/
http://www.parallels.com/products/desktop/
https://itunes.apple.com/us/app/performancetest-mobile/id494438360?ls=1&mt=8
https://itunes.apple.com/us/app/performancetest-mobile/id494438360?ls=1&mt=8
https://itunes.apple.com/us/app/performancetest-mobile/id494438360?ls=1&mt=8
https://play.google.com/store/apps/details?id=com.passmark.pt_mobile
https://play.google.com/store/apps/details?id=com.passmark.pt_mobile
https://play.google.com/store/apps/details?id=com.passmark.pt_mobile
http://tungchingkai.blogspot.com/2009/02/how-to-decrypt-iphone-ipa-file.html
http://tungchingkai.blogspot.com/2009/02/how-to-decrypt-iphone-ipa-file.html
http://tungchingkai.blogspot.com/2009/02/how-to-decrypt-iphone-ipa-file.html
http://tungchingkai.blogspot.com/2009/02/how-to-decrypt-iphone-ipa-file.html
http://www.vmware.com/products/workstation/
http://www.vmware.com/products/workstation/

	Introduction
	Overview of Android and iOS
	Operational Model and System Integration
	Architecture
	Kernel ABI
	Duct Tape
	API Interposition
	Schizophrenic Processes

	iOS Subsystems on Android
	Devices
	Input
	Graphics

	Experimental Results
	Obtaining iOS Applications
	Microbenchmark Measurements
	Application Measurements

	Related Work
	Conclusions
	Acknowledgments

