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Abstract—A cyber-physical system (CPS) is a system featuring
a tight combination of, and coordination between, the system’s
computational and physical elements. System reliability is a
critical requirement of cyber-physical systems. An unreliable
CPS often leads to system malfunctions, service disruptions,
financial losses and even human life. Improving CPS reliability
requires an objective measurement, estimation and comparison
of the CPS system reliability. This paper describes FARE
(Failure Analysis and Reliability Estimation), a framework for
benchmarking reliability of cyber-physical systems. Some prior
researches have proposed reliability benchmark for some specific
CPS such as wind power plant and wireless sensor networks.
There were also some prior researches on the components
of CPS such as software and some specific hardware. But
according to the best of our knowledge, there isn’t any reliability
benchmark framework for CPS in general. FARE framework
provides a CPS reliability model, a set of methods and metrics
on the evaluation environment selection, failure analysis and
reliability estimation for benchmarking CPS reliability. It not
only provides a retrospect evaluation and estimation of the
CPS system reliability using the past data, but also provides
a mechanism for continuous monitoring and evaluation of CPS
reliability for runtime enhancement. The framework is extensible
for accommodating new reliability measurement techniques and
metrics. It is also generic and applicable to a wide range of
CPS applications. For empirical study, we applied the FARE
framework on a smart building management system for a large
commercial building in New York City. Our experiments showed
that FARE is easy to implement, accurate for comparison and can
be used for building useful industry benchmarks and standards
after accumulating enough data.

Index Terms—cyber-physical system, reliability, failure analy-
sis, software reliability, reliability estimation, machine learning,
data mining, statistical analysis

I. INTRODUCTION

A cyber-physical system (CPS) is a system featuring a
tight combination of, and coordination between, the system’s
computational and physical elements [1]. Typical applications
of CPS include sensor-based systems and intelligent control
systems. Sensor-based systems such as smart building man-
agement systems and wireless sensor networks utilize many
distributed sensors to measure and collect system or environ-
mental data and transmit these information to a centralized
system for processing. Intelligent control systems include
smart grid operation control systems, autonomous automotive
systems, medical monitoring, process control systems, dis-
tributed robotics, and automatic pilot avionics.

System reliability is a critical requirement of cyber-physical
systems[2]. An unreliable CPS often leads to system mal-
functions, service disruptions, financial losses and even hu-
man life [3]. Improving CPS reliability requires an objective
measurement, estimation and comparison of the CPS system
reliability. Some prior researches have proposed reliability
benchmark for some specific CPS such as wind power plant
and wireless sensor networks. There were also some prior
researches on the components of CPS such as software and
some specific hardware. But there isn’t any reliability bench-
mark framework for CPS in general, according to the best of
our knowledge. This paper describes FARE (Failure Analysis
and Reliability Estimation), a framework for benchmarking
reliability of cyber-physical systems. The FARE framework
provides a set of methods and metrics on failure analysis, data
quality measurement and monitoring, operational availability
measurement and reliability estimation for benchmarking CPS
reliability.

The advantages of FARE framework include a more general
and accurate representation of the CPS reliability; additional
reliability metrics; CPS-specific holistic system reliability; em-
phasis of actual use and continual evaluation. The framework
is extensible for accommodating new reliability measurement
techniques and metrics. It not only provides a retrospect
evaluation and estimation of the CPS system reliability using
the past data, but also provides a mechanism for continuous
monitoring and evaluation of CPS reliability for runtime
enhancement.

For empirical study, we implemented FARE framework as
a software application and applied it on a smart building man-
agement system for a large commercial building in New York
City. Our experiments showed that FARE is easy to implement,
accurate for comparison and can be used for building useful
industry benchmarks and standards after accumulating enough
data.

In the following section, we provide definitions for the terms
used in this paper. In section III, we describe FARE framework
including CPS reliability model, selection of testing environ-
ment, failure analysis and reliability estimation. For empirical
evaluation, we present our implementation, experiments and
results in section IV. We then compare some related work in
section V before conclusion in section VI.



II. DEFINITIONS

Formal definitions for the reliability related terms used in
this paper are described as follows. Some of these definitions
are similar to what are defined in the ANSI/ISO/ASQ stan-
dards [4], [5].
• Reliability is defined as the probability that a given item

will perform its intended function for a given period of
time under a given set of conditions.

• Failure is the inability of a system or component to
perform its required function within the specified per-
formance requirement. It is the manifestation of a fault
in the system or a human mistake.

• Fault or Defect is an incorrect step, process, or data
definition in a system or program.

• Mistake is a human action that produces an incorrect
result.

• Error is the difference between a computed, observed, or
measured value or condition and the true, specified, or
theoretically correct value or condition.

III. FRAMEWORK

A. CPS Reliability Model
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Fig. 1. CPS reliability model.

Composition of CPS [6] is used as the basis of CPS relia-
bility model. As illustrated in Fig. 1, a simple CPS reliability
model consists of physical component or hardware, cyber
component or software, and communication among them. At
the system level, CPS reliability can be measured or estimated
and it is an integration of different components’ reliability.

B. Selection of Evaluation Environment

Reliability estimation depends on the results or data col-
lected from the tests or the actual use of the system. Fig.
2 illustrates the decision tree approach in selecting different
evaluation environments where the failure data will be col-
lected. The top-level category determines whether the results
are based on tests in a lab environment or actual use in
the operational environment. In a lab environment, some
tests are based on life test that simulates the actual running
environment. Life test includes Highly Accelerated Life Test
(HALT) and Life Test (LT) in a normal pace. The HALT is
similar to stress test that creates a situation such that failure
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Fig. 2. Decision tree for selecting evaluation environment.

is more likely to happen. It is a method based on physics-of-
failure.

Without a life test, in a lab environment, components’
reliability data can be used to construct the whole system’s
reliability. Although there are many ways to do the composi-
tional reliability, those estimates are often not indicative or
accurate for representing the whole system reliability. One
reason is the communication failure that is often not easy to
be incorporated in these models [7].

Reliability estimation in actual use employs continual failure
data processing to enable rolling estimates that are often
useful in system performance monitoring, especially for hu-
man operators of these systems. There are several advantages
for employing reliability estimation in actual use. The first
advantage is that it enables real-time feedback to the operators
or systems so that corrective actions can be implemented in a
manual or autonomic fashion. Second, it enables large long-
running systems such as power grids or smart buildings to be
continuously monitored for reliability improvement or degra-
dation. Those systems are often not possible to be simulated in
a lab environment due to its complexity and the unpredictable
running environment. The continual reliability estimates can
be further used to construct reliability profile for the system
under study. The reliability profiling may show reliability
changes in related to different factors such as seasonality and
usage pattern.

Not every type of CPS can be evaluated during actual use.
For example, medical systems need to be properly tested for
reliability prior to its use in the medical operations. Lab testing
for these systems is needed.

C. Failure Analysis

Failure analysis includes failure detection and diagnostics.
As illustrated in Fig. 3, failure detection provides information
for further diagnostics, along with domain knowledge and
heuristics.

1) Failure Detection: The failure manifestation can be used
as a proxy to system failure. For example, an out of range
measurement indicates a system failure. Failure might be
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Fig. 3. Failure analysis.

Rating Description of Detection
1 Almost certain to detect
2 Very high chance of detection
3 High chance of detection
4 Moderately high chance of detection
5 Medium chance of detection
6 Low chance of detection
7 Slight chance of detection
8 Remote chance of detection
9 Very remote chance of detection
10 No chance of detection; no inspection

TABLE I
RATING OF DETECTION OF FAILURE.

induced by the external environment, a human mistake or an
internal system fault. Automated anomaly detection techniques
such as those using machine learning and data mining can be
used for more intelligent detection of failures. Table I lists the
ratings for detection of failure [8].

2) Failure Diagnostics:
• Root cause analysis (RCA) is used to classify failure type,

analyze its nature and mechanism.
• Corrective action recommendation is used to correct the

current failure and avoid future recurrence of the same
type of failure.

• Preventive action recommendation is used to prevent
occurrence of a certain potential failure before it happens.
Cost versus benefits can be a factor in determining
preventive action such as replacement or inspection of
the components.

3) Failure Severity and Impact: To evaluate failure severity
and impact, the U.S. military developed Failure Mode Effects
Analysis (FMEA) [8] in the 1940s. FMEA and its standards
were further developed by the aerospace, automotive and other
industries. Table II lists the ratings for failure severity.

D. Reliability Estimation

Reliability may be measured in different ways depending
on the particular situation [9]. Reliability can be estimated
using a qualitative or a quantitative method. Some systems’
reliability cannot be estimated quantitatively due to various
reasons such as lacking of failure data. For these systems,
qualitative method using heuristics may be applicable.

FARE framework primarily employs quantitative methods
for reliability estimation. The following are some commonly

Rating Severity Description
1 The effect is not noticed by customer
2 Very slight effect noticed by customer, does not annoy or incon-

venience customer
3 Slight effect that causes customer annoyance, but they do not seek

service
4 Slight effect, customer may return product for service
5 Moderate effect, customer requires immediate service
6 Significant effect, causes customer dissatisfaction; may violate

regulation or design code
7 Major effect, system may not be operable; elicits customer com-

plaint; may cause injury
8 Extreme effect, system is inoperable and a safety problem. May

cause severe injury.
9 Critical effect, complete system shutdown; safety risk
10 Hazardous; failure occurs without warning; life threatening

TABLE II
RATING FOR SEVERITY OF FAILURE.

used reliability metrics that are also applicable to the FARE
framework:
• Failure rate is defined as the total number of failures

within an item population, divided by the total time
expended by that population, during a particular mea-
surement interval under stated conditions [10].

• Mean Time Between Failures (MTBF) is the mean (ex-
pected) time between system failures.

• Mean Time To Failure (MTTF) is sometimes used instead
of MTBF in cases where a system is replaced after a
failure, since MTBF denotes time between failures in a
system, which is repaired.

• Mean Time To Repair (MTTR) is the mean time required
to repair a failed component or device.

• Availability or Mission Capable Rate is the proportion
of time a system is in a functioning condition. This is
also called system uptime (x%). Using a simple repre-
sentation, it can be calculated as a ratio of the expected
value of the uptime of a system to the aggregate of the
expected values of up and down time,

• Availability at time t is the probability that the item is
able to function at time t [9].

• Survival Probability is the probability that the item does
not fail in a time interval (0, t] [9].

Additionally, we introduce three new reliability measure-
ment metrics in the FARE framework in order to provide
coverage for some specific evaluation scenarios:
• Theta is the rate of reliability change over time. If MTBF

is used as the reliability measurement, then Theta can be
calculated as

Θ(t) =
MTBF (t)−MTBF (t+ ∆t)

∆t
.

On a MTBF versus time scatter plot chart, Theta indicates
the slop of the linear regression. In a long running
continual evaluation environment, Theta provides a useful
indicator of the reliability improvement or degradation
over time.



• Vega is the rate of reliability change over a selected
variable, which can be any factor of interest. Similar to
Theta, it is a derivative measurement of the reliability
for better indication of the reliability improvement or
degradation with respect to a specific variable.

• Cross-Sectional Failure Percentage (CSFP) is the per-
centage of total failed items within an item population in
use at a specific time t. This may look similar to failure
rate or availability at time t. But they are not the same. In
a simple form, failure rate is the total number of failures
divided by the total time. Availability at time t is the
probability of a single item does not fail at time t. Cross-
sectional failure percentage is the total number of failed
items divided by the total number of items in use at a
given time t. It is a ratio based on actual measurement.
This metric is especially useful for a large system that has
a large number of subsystems or components running in
parallel.

To give some further explanation, we use λ(t) to denote
the failure rate at time t, and R(t) to denote the reliability
function (or survival function), which is the probability of no
failure before time t. Then the failure rate is:

λ(t) =
R(t)−R(t+ ∆t)

∆t ·R(t)
.

As ∆t tends to zero, the above λ becomes the instantaneous
failure rate, which is also called hazard function (or hazard
rate) h(t):

h(t) = lim
∆t→0

R(t)−R(t+ ∆t)

∆t ·R(t)
.

A failure distribution F (t) is a cumulative failure distribution
function that describes the probability of failure up to and
including time t:

F (t) = 1−R(t), t ≥ 0.

For system with a continuous failure rate, F (t) is the integral
of the failure density function f(t):

F (t) =

∫ t

0

f(x) dx.

Then the hazard function becomes

h(t) =
f(t)

R(t)
.

For the Weibull [11], [12] failure distribution, the failure
density function f(t) and cumulative failure distribution func-
tion F (t) are

f(t;λ, k) =

{
k
λ ( tλ )k−1e−(t/λ)k , t ≥ 0
0, t < 0

F (t;λ, k) =

{
1− e−(t/λ)k , t ≥ 0
0, t < 0

where k > 0 is the shape parameter and λ > 0 is the scale
parameter of the distribution. The hazard function when t ≥ 0
can be derived as

h(t;λ, k) =
f(t;λ, k)

R(t;λ, k)
=

f(t;λ, k)

1− F (t;λ, k)
=
k

λ

(
t

λ

)k−1

.

A value of k < 1 indicates that the failure rate decreases
over time. A value of k = 1 indicates that the failure rate
is constant (i.e., k/λ) over time. In this case, the Weibull
distribution becomes an exponential distribution. A value of
k > 1 indicates that the failure rate increases with time.

The mean time to failure is given by

MTTF =

∫ ∞
0

t · f(t) dt =

∫ ∞
0

R(t) dt.

If MTTR is known, then the availability is

Availability =
MTTF

(MTTF +MTTR)
.

IV. EMPIRICAL STUDY

A. Implementation

We developed a prototype software application named
FARE for this study using Java programming language and
MATLAB. As illustrated in the software architecture diagram
in Fig. 4, the software includes a data preprocessor, a failure
detector, a reliability estimator with metrics and profiler, and
a user interface along with data output component. It was
designed with modular components so that it can be used along
with or embedded in another larger system.

Data Preprocessor

Failure Detector

User Interface

Metrics Profiler

Reliability Estimator

Data Input

Data Output

Fig. 4. FARE software architecture.



B. Smart Building CPS

Smart Building Management System (BMS) at a large office
building in New York City was used for this study. A Building
Management System (BMS) is a type of CPS consisting of both
software and hardware components that controls and monitors
a building’s mechanical and electrical equipment, such as
ventilation, lighting, power systems, fire systems and security
systems. The building energy control system is an important
component of the BMS that reads data feeds representing
internal and exogenous conditions (e.g., temperature, humidity,
electrical load, peak load, fluctuating electricity pricing and
building work schedule) and takes control actions (e.g., adjust
lighting, turn on/off the air-conditioning and shut off partial
elevators) accordingly. Building operators usually have the
ability to change or override control actions taken by the BMS
to accommodate special situations such as severe weather or
changes in the building’s work schedule.

C. Experimental Setup

Fig. 5 illustrates our experimental setup. The building’s
BMS’s software collects various data sources and stores them
in the local BMS database. We established a data transmission
link between the BMS server and the remote server where
FARE software is installed and running.

Data Points

BMS

Firewall

Router Router

Firewall

FARE Application Server

Building

Hub

Hub
Internet

Fig. 5. Experimental setup.

Determination of the failure trigger condition depends on
the data source we use. We first use FARE software to process
the data through the decided failure criteria to obtain a dataset
of failure time series. These data are then processed by the
FARE software to obtain reliability estimates on the fly.

D. Experimental Results

1) Failure Detection: Fig. 6 shows an example BMS data
time series for six months starting from July 1, 2012 to January
1, 2013. As a simple threshold failure detection method, the
data points with value above 80 or below 65 were determined
to be nonconformity or failure.

2) Reliability Estimation: After the failure incidence time
series data is collected, FARE then estimates reliability metrics
as described in Section III-D. To follow the example described
above, the weekly failure rates for the six months are listed and
charted in Fig. 7. Also, the linear regression y = −0.0229x+
1.1169, R2 = 0.03829 shows the improved results over the
time. In this case, the Theta equals −0.0229 using failure rate
as the reliability measurement.

Fig. 6. BMS time series data.

Fig. 7. Weekly failure rate.

V. RELATED WORK

As stated in section III, CPS reliability consists of overall
system reliability and component reliability including phys-
ical component, software and communication. Lee stated in
his paper [1], CPS cannot be deployed for certain mission-
critical applications such as traffic control, automotive safety
or healthcare without improved reliability and predictability.

Some prior researches have been done on component reli-
ability. Pechet and Nash gave a comprehensive review of the
predictive methods for predicting the reliability of electronic
equipment [13]. He et al. described a theoretical framework for
analyzing communication reliability using frequency domain
analysis and reliability calculus [7]. In our BUGMINER paper
[14], we described an approach of software reliability analysis
using Weibull distribution [11], [12] and data mining of bug
reports. These prior work are complementary to the FARE
framework for benchmarking CPS reliability.

Failure analysis has been a popular research area for many
years. Stamatis described theory and execution of Failure



Mode Effect Analysis (FMEA) [15]. Robitaille categorized
and described some common corrective actions in his hand-
book [16]. Their work is complementary to our approach and
has different applicable domain.

VI. CONCLUSION

This paper described FARE (Failure Analysis and Relia-
bility Estimation), a framework for benchmarking reliability
of cyber-physical systems. FARE employs a generic CPS
reliability model, a set of methods and metrics on the eval-
uation environment selection, failure analysis and reliability
estimation for benchmarking CPS reliability. The framework
is extensible for accommodating new reliability measurement
techniques and metrics. Our empirical evaluation demonstrated
that FARE is easy to implement, accurate for comparison and
can be used for building useful industry benchmarks.
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