
Make Parallel Programs Reliable with Stable Multithreading

Junfeng Yang, Heming Cui, Jingyue Wu, John Gallagher, Chia-Che Tsai, Huayang Guo, Yang Tang, Gang Hu
Department of Computer Science

Columbia University

ABSTRACT
Our accelerating computational demand and the rise of multicore
hardware have made parallel programs increasingly pervasive and
critical. Yet, these programs remain extremely difficult to write,
test, analyze, debug, and verify. In this article, we provide our view
on why parallel programs, specifically multithreaded programs, are
difficult to get right. We present a promising approach we call stable
multithreading to dramatically improve reliability, and summarize
our last four years’ research on building and applying stable multi-
threading systems.

1 Introduction
Reliable software has long been the dream of many researchers,
practitioners, and users. In the last decade or so, several research
and engineering breakthroughs have greatly improved the reliabil-
ity of sequential programs (or the sequential aspect of parallel pro-
grams). Successful examples include Coverity’s source code ana-
lyzer [7], Microsoft’s Static Driver Verifier [3], Valgrind memory
checker [17], and certified operating systems and compilers [20].

However, the same level of success has not yet propagated to par-
allel programs. These programs are notoriously difficult to write,
test, analyze, debug, and verify, much harder than the sequen-
tial versions. Experts consider reliable parallelism “something of a
black art” [9] and one of the grand challenges in computing [1, 18].
Unsurprisingly, widespread parallel programs are plagued with in-
sidious concurrency bugs [15], such as data races (concurrent ac-
cesses to the same memory location with at least one write) and
deadlocks (threads circularly waiting for resources). Some worst of
these bugs have killed people in the Therac 25 incidents and caused
the 2003 Northeast blackout. Our study also reveals that these bugs
may be exploited by attackers to violate confidentiality, integrity,
and availability of critical systems [24].

In recent years, two technology trends have made the challenge
of reliable parallelism more urgent. The first is the rise of multi-
core hardware. The speed of a single processor core is limited by
fundamental physical constraints, forcing processors into multicore
designs. Thus, developers must resort to parallel code for best per-
formance on multicore processors. The second is our accelerating
computational demand. Many physical-world computations, such
as search and social networking, are now computerized and hosted
in the cloud. These computations are massive, run on the “big data,”
and serve millions of users and devices. To cope with these massive
computations, almost all services employ parallel programs to boost
performance.

If reliable software is an overarching challenge of computer sci-
ence, reliable parallelism is surely the keystone. This keystone chal-
lenge has drawn decades of research efforts, producing numerous
ideas and systems, ranging from new hardware, new programming

languages, new programming models, to tools that detect, debug,
avoid, and fix concurrency bugs. As usual, new hardware, lan-
guages, or models take years, if not forever, to adopt. Tools are
helpful, but they tend to attack derived problems, not the root cause.

Over the past four years, we have been attacking fundamen-
tal, open problems in making shared-memory multithreaded pro-
grams reliable. We target these programs because they are the
most widespread type of parallel programs. Many legacy programs,
such as the Apache web server and the MySQL database, are multi-
threaded. New multithreaded programs are being written every day.
This prevalence of multithreading is unsurprising given its wide
support from many platforms (e.g., Linux, Windows, and MacOS)
and languages (e.g., Java and C++11). For the same reasons, we be-
lieve multithreading will remain prevalent in the foreseeable future.

Unlike sequential programs, multithreaded programs are nonde-
terministic: repeated executions of the same multithreaded program
on the same input may yield different (e.g., correct v.s. buggy)
behaviors, depending on how the threads interleave. Conventional
wisdom has long blamed this nondeterminism for the challenges
in reliable multithreading [13]. For instance, testing becomes less
effective: a program may run correctly on an input in the testing
lab because the interleavings tested happen to be correct, but ex-
ecutions on the same exact input may still fail in the field when
the program hits a buggy, untested interleaving. To eliminate non-
determinism, several groups of brilliant researchers have dedi-
cated significant effort to build deterministic multithreading sys-
tems [2, 4, 6, 8, 12, 14, 19].

Unfortunately, as explained later in this article, nondeterminism
is responsible for only a small piece of the puzzle. Its cure, deter-
minism, is neither sufficient nor necessary for reliability. Worse,
determinism sometimes harms reliability rather than improves it.

We believe the challenges in reliable multithreading have a rather
quantitative root cause: multithreaded programs have too many pos-
sible thread interleavings, or schedules. For complete reliability, all
schedules must be correct. Unfortunately, ensuring so requires a
great deal of resources and efforts simply because the set of sched-
ules is just enormous. For instance, testing all possible schedules
demands astronomical CPU time. (See §2 for detailed discussion.)

We attacked this root cause by asking: are all the exponentially
many schedules necessary? Our study reveals that many real-world
programs can use a small set of schedules to efficiently process a
wide range of inputs [10]. Leveraging this insight, we envision a
new approach we call stable multithreading (SMT) that exponen-
tially reduces the set of schedules for reliability. We have built three
systems: TERN [10] and PEREGRINE [11], two compiler and run-
time systems to address key challenges in implementing SMT sys-
tems; and an effective program analysis framework atop SMT to
demonstrate key benefits of SMT [22]. These systems are designed
to be compatible with existing hardware, operating systems, thread

libraries, and programming languages to simplify adoption. They
are also mostly transparent to developers to save manual labor. We
leave it for future work to create new SMT programming models
and methods that help active development.

Our initial results with these systems are promising. Evaluation
on a diverse set of widespread multithreaded programs, including
Apache and MySQL, show that TERN and PEREGRINE dramatically
reduce schedules. For instance, they reduce the number of sched-
ules needed by parallel compression utility PBZip2 down to two
schedules per thread count, regardless of the file contents. Their
overhead is moderate, less than 15% for most programs. Our pro-
gram analysis framework enables the construction of many program
analyses with precision and coverage unmatched by their counter-
parts. For instance, a race detector we built found previously un-
known bugs in extensively checked code with almost no false bug
reports.

In the remaining of this article, we first present our view on why
multithreaded programs are hard to get right. We then describe our
SMT approach, its benefits, and the three SMT systems we built.
We finally present some results and conclude.

2 Why Are Multithreaded Programs So Hard
to Get Right?

We start with preliminaries, then describe the challenges caused by
nondeterminism and by too many schedules. We then explain why
nondeterminism is a lesser cause than too many schedules.

2.1 Preliminaries: Inputs, Schedules, and Buggy Schedules
To ease discussion, we use input to broadly refer to the data a pro-
gram reads from its execution environment, including not only the
data read from files and sockets, but also command line arguments,
return values of external functions such as gettimeofday, and any
external data that can affect program execution. We use schedule to
broadly refer to the (partially or totally) ordered set of communi-
cation operations in a multithreaded execution, including synchro-
nizations (e.g., lock and unlock operations) and shared memory
accesses (e.g., load and store instructions to shared memory). Of
all the schedules, most are correct, but some are buggy and cause
various failures such as program crashes, incorrect computations,
and deadlocked executions. Consider the toy program below:

// thread 1 // thread 2
lock(l); lock(l);
*p = . . .; p = NULL;
unlock(l); unlock(l);

The schedule in which thread 2 gets the lock before thread 1 is
buggy and causes a dereference-of-NULL failure. Consider another
example. The toy program below has data races on balance:

// thread 1 // thread 2
// deposit 100 // withdraw 100
t = balance + 100;

balance = balance − 100;
balance = t;

The schedule with the statements executed in the order shown is
buggy and corrupts balance.

2.2 Challenges Caused by Nondeterminism
A multithreaded program is nondeterministic because even with the
same program and input, different schedules may still lead to dif-
ferent behaviors. For instance, the two toy programs in the previous
subsection do not always run into the bugs. Except the schedules
described, all their other schedules lead to correct executions.

This nondeterminism appears to raise many challenges, espe-
cially in testing and debugging. Suppose an input can execute under
n schedules. Testing n−1 schedules is not enough for complete re-
liability because the single untested schedule may still be buggy.
An execution in the field may hit this untested schedule and fail.
Debugging is challenging, too. To reproduce a field failure for di-
agnosis, the exact input alone is not enough. Developers must also
manage to reconstruct the buggy schedule out of n possibilities.

Figure 1a depicts the traditional multithreading approach. Con-
ceptually, it is a many-to-many mapping, where one input may ex-
ecute under many schedules because of nondeterminism, and many
inputs may execute under one schedule because a schedule fixes the
order of the communication operations but allows the local compu-
tations to operate on any input data.

2.3 Challenges Caused by Too Many Schedules
To make a multithreaded program completely reliable, we must en-
sure that no schedules are buggy, either manually by thinking really
hard or automatically by applying tools. Either way, the number
of the schedules determines the amount of efforts and resources
needed.

Unfortunately, a typical multithreaded program has an enormous
number of schedules. For a single input, the number of schedules
is asymptotically exponential in the schedule length. For instance,
given n threads competing for a lock, each order of lock acquisi-
tions forms a schedule, easily yielding n! total schedules. (A lock
implementation that grants locks to threads based on the arrival or-
der, such as a ticket lock, does not reduce the set of schedules, be-
cause the threads may arrive at the lock operations in n! different
orders.) Aggregated over all inputs, the number of schedules is even
greater.

Finding a few buggy schedules in these exponentially many
schedules thus raises a series of “needle-in-a-haystack” challenges.
For instance, to write correct multithreaded programs, developers
must carefully synchronize their code to weed out the buggy sched-
ules. As usual, humans err when they must scrutinize many possi-
bilities to locate corner cases. Various forms of testing tools suffer,
too. Stress testing is the common method for (indirectly) testing
schedules, but it often redundantly tests the same schedules repeat-
edly while missing others. Recent work made testing more powerful
by systematically enumerating through schedules for bugs [16], but
we seriously lack resources to cover more than a tiny fraction of all
exponentially many schedules.

2.4 Determinism is Overrated
Researchers have built several systems to make multithreading de-
terministic, hoping to address the challenges raised by nondeter-
minism. Yet, little has been done to solve the needle-in-a-haystack
challenges caused by too many schedules. We believe the commu-
nity has charged nondeterminism more than its share of the guilt
and overlooked the main culprit that multithreaded programs sim-
ply have too many schedules. We argue that determinism, the cure
of nondeterminism, is neither sufficient nor necessary for reliability.
Determinism 6=⇒ reliability. Determinism provides only a nar-
row type of repeatability: it guarantees that executions are repeat-
able if both the program and the input remain exactly the same,
and has no jurisdiction otherwise. However, developers often ex-
pect repeatabilities for executions on slightly varied programs or
inputs. For instance, adding a printf statement purely for debug-
ging should in principle not make the bug disappear. Unfortunately,
determinism does not provide these expected repeatabilities, and
sometimes even undermines them [2, 5, 10].

To illustrate, consider some existing deterministic systems that
force a multithreaded program to always use the same—but

Inputs Schedules

(a) Traditional.

Inputs Schedules

(b) Deterministic.

Inputs Schedules

(c) Stable (deterministic).

Inputs Schedules

(d) Stable (nondeterministic).

Figure 1: Different multithreading approaches. Red stars represent buggy schedules.

arbitrary—schedule to process the same input. Figure 1b depicts
such a system. This arbitrary mapping destabilizes program be-
haviors over multiple inputs. A slight input change, as slight as
a bit flip, may force a program to discard a correct schedule and
(ad)venture into a vastly different, buggy schedule.

This instability is counterintuitive at least, and actually raises
new reliability challenges. For instance, as confirmed in our ex-
periments [10], testing one input provides little assurance on very
similar inputs, despite that the input differences do not invalidate
the tested schedule. Debugging now requires every bit of the bug-
inducing input, including not only the data a user typed, but also
environment variables, shared libraries, etc. A different user name?
Error report doesn’t include credit card numbers? The bug may
never be reproduced, regardless of how many times developers
retry, because the schedule chosen by the deterministic system for
the altered input happens to be correct. In addition to inputs, these
deterministic systems destabilize program behaviors over minor
code changes as well, so adding a printf for debugging may cause
the bug to deterministically disappear.

Another problem with an arbitrary mapping as in Figure 1b is that
the number of all possible schedules remains enormous (asymptot-
ically as enormous as the minimum of (1) the number of all pos-
sible inputs and (2) the number of all possible schedules). Thus,
the needle-in-a-haystack challenges remain. For instance, testing
all schedules may now require testing all inputs, another difficult
challenge we have no idea how to solve.

For those curious minds, deterministic multithreading systems
may be implemented in several ways. A frequent scheme is to
schedule threads based on logical clocks [4, 19], instead of phys-
ical clocks which change nondeterministically across executions.
Specifically, each thread maintains a logical clock that ticks based
on the code the thread has run. For instance, if a thread has com-
pleted 50 load instructions, tick its clock by 50. Moreover, threads
communicate only when their logical clocks have deterministic val-
ues (e.g., the smallest across the logical clocks of all threads [19]).
In short, local executions tick logical clocks deterministically, and
logical clocks force threads to communicate deterministically. By
induction, a multithreaded execution becomes deterministic. It is
straightforward to see that a slight input change or an additional
printf statement may change the number of completed load in-
structions, thus altering the schedule and destabilizing program be-
haviors.
Reliability 6=⇒ determinism. Determinism is not necessary for
reliability because a nondeterministic system with a small set of
schedules can be made reliable easily. Consider an extreme case.
The system depicted in Figure 1d is nondeterministic because it
maps some inputs to more than one schedules. However, each input

maps to at most two schedules, so the challenges caused by non-
determinism (§2.2) are easy to solve. For instance, to reproduce a
field failure given an input, developers can easily afford to search
for one out of only two schedules.

3 Shrink the Haystack with Stable Multi-
threading

Motivated by the limitations of determinism and the needle-in-a-
haystack challenges caused by exponentially many schedules, we
investigated a central research question: are all the exponentially
many schedules necessary? A schedule is necessary if it is the only
one that can (1) process specific inputs or (2) yield good perfor-
mance under specific scenarios. Removing unnecessary schedules
from the haystack would make the needles easier to find.

We investigated this question on a diverse set of popular multi-
threaded programs, ranging from server programs such as Apache,
to desktop utilities such as the aforementioned PBZip2, to parallel
implementations of computation-intensive algorithms such as fast
Fourier transformation. These programs use diverse synchroniza-
tion primitives such as locks, semaphores, condition variables, and
barriers. Our investigation reveals two insights:

First, for many programs, a wide range of inputs share the same
equivalent class of schedules. Thus, one schedule out of the class
suffices to process the entire input range. Intuitively, an input often
contains two types of data: (1) metadata that controls the commu-
nication of the execution, such as the number of threads to spawn;
and (2) computational data that the threads locally compute on. A
schedule fixes the metadata in the input, but it allows the computa-
tional data to vary. Thus, it can process any input that has the same
metadata. For instance, consider the aforementioned PBZip2 which
splits an input file among multiple threads, each compressing one
file block. The communication, i.e., which thread gets which file
block, is independent of the thread-local compression. As long as
the number of threads remains the same, PBZip2 can use two sched-
ules (one if the file can be evenly divided and another otherwise) to
compress any file, regardless of the file data.

This loose coupling of inputs and schedules is not unique to
PBZip2; many other programs also exhibit this property. Table 1
shows a sample of our findings. The programs shown include
three real-world programs, Apache, PBZip2, and aget (a paral-
lel file download utility) and five implementations of computation-
intensive algorithms from two widely used benchmark suites, Stan-
ford’s SPLASH2 and Princeton’s PARSEC.

Second, the overhead of enforcing a schedule on different inputs
is low. Presumably, the exponentially many schedules allow the
runtime system to react to various timing factors and select a most
efficient schedule. However, results from the SMT systems we built

Program Purpose Constraints on inputs sharing schedules
Apache Web server For a group of typical HTTP GET requests, same cache status
PBZip2 Compression Same number of threads
aget File download Same number of threads, similar file sizes
barnes N-body simulation Same number of threads, same values of two configuration variables
fft Fast Fourier transform Same number of threads
lu-contig Matrix decomposition Same number of threads, similar sizes of matrices and blocks
blackscholes Option pricing Same number of threads, number of options no less than number of threads
swaptions Swaption pricing Same number of threads, number of swaptions no less than number of threads

Table 1: Constraints on inputs sharing the same equivalent class of schedules. For each program listed, one schedule out of the class suffices to process any
input satisfying the constraints shown in the third column.

invalidated this presumption. With carefully designed schedule rep-
resentations (§4.2), our systems incurred less than 15% overhead
enforcing schedules for most evaluated programs (§6). We believe
this moderate overhead is worth the gains in reliability. In general,
users most likely prefer a program that runs 20% slower but crashes
80% less often.

Leveraging these insights, we have invented stable multithread-
ing (SMT), a new multithreading approach that vastly shrinks
the haystack by reusing schedules over inputs, addressing all the
needle-in-a-haystack challenges at once. In addition, SMT also sta-
bilizes program behaviors over inputs that map to the same sched-
ule and minor program changes that do not affect the schedules.
Figure 1c and Figure 1d depict two SMT systems.

SMT systems may be either deterministic, such as the many-to-
one mapping in Figure 1c, or nondeterministic, such as the many-to-
few mapping Figure 1d. A many-to-few nondeterministic mapping
improves performance because the runtime system can choose an
efficient schedule out of a few for an input based on current timing
factors, but it increases the efforts and resources needed for relia-
bility. Fortunately, the choices of schedules are only a few (e.g., a
small constant such as two), so the challenges caused by nondeter-
minism are easy to solve.

3.1 Benefits

By vastly shrinking the haystack, SMT brings numerous reliability
benefits to multithreaded programs. We describe several below.
Testing. By reducing the set of schedules, SMT automatically in-
creases testing coverage, defined as the ratio of tested schedules
over all schedules. For instance, consider PBZip2 again which
needs only two schedules per thread count. Testing 32 schedules
effectively covers from 1 to 16 threads. Given that (1) PBZip2
achieves peak performance when the thread count is identical or
close to the core count and (2) the core count of a typical machine
is up to 16, 32 tested schedules can practically cover all executions
in the field.
Debugging. Reproducing a bug now does not require the exact in-
put, as long as the original and the altered inputs map to the same
schedule. It does not require the exact program either, as long as
the changes to the program do not affect the schedule. Users may
remove private information such as credit card numbers from their
bug reports. Developers may reproduce the bugs in different envi-
ronments or add printf statements.
Analyzing and verifying programs. Static analysis can now focus
only on the set of schedules enforced in the field, gaining preci-
sion. Dynamic analysis enjoys the same benefits as testing. Model
checking can now check drastically fewer schedules, mitigating the
state explosion problem. Interactive theorem proving becomes eas-
ier, too, because verifiers need prove theorems only over the set of
schedules enforced in the field. We will describe these benefits in
more detail in §5.
Avoiding errors at runtime. Programs can also adaptively learn

correct schedules in the field, then reuse them on future inputs to
avoid unknown, potentially buggy schedules. We will describe this
benefit in more detail in §4.1.

3.2 Caveats
SMT is certainly not for every multithreaded program. It works well
with programs whose schedules are loosely coupled with inputs, but
there are also other programs. For instance, a program may decide
to spawn threads or invoke synchronizations based on every bit of
the input. For these programs, SMT may degenerate to DMT.

SMT provides repeatabilities over similar inputs and programs
when the input or program changes do not affect schedules, such as
adding a printf for debugging. As discussed in the previous sec-
tion, it is already better than deterministic multithreading systems.
However, there is still room to improve. For instance, when devel-
opers change their programs by adding synchronizations, it may be
more efficient to update previously computed schedules rather than
to recompute from scratch. We leave this idea for future work.

4 Building Stable Multithreading Systems
Although the vision of stable multithreading is appealing, realizing
it faces numerous challenges. Three main challenges are:

• How can we compute the schedules to map inputs to? The
schedules must be feasible so executions reusing them do not
get stuck. They should also be highly reusable and easy to
compute.

• How can we enforce schedules deterministically and effi-
ciently? “Deterministically” so executions that reuse a sched-
ule cannot deviate even if there are data races, and “effi-
ciently” so overhead does not offset reliability benefits.

• How can we handle multithreaded server programs? They of-
ten run for a long time and react to each client request as it
arrives, making their schedules very specific to a stream of
requests and difficult to reuse.

Over the past four years, we have been tackling these challenges
and building SMT systems, which resulted in two SMT prototypes,
TERN [10] and PEREGRINE [11], that frequently reuse schedules
with low overhead. This section describes our solutions to these
challenges. Our solutions are by no means the only ones; others
have also built systems that stabilize schedules [2, 14].

4.1 Computing Schedules
Crucial to implementing SMT is how to compute the set of sched-
ules for processing inputs. At the bare minimum, a schedule must
be feasible when enforced on an input, so the execution does not
get stuck or deviate from the schedule. Ideally, the set of sched-
ules should also be small for reliability. One possible idea is to pre-
compute schedules using static source code analysis, but the halt-
ing problem makes it undecidable to statically compute schedules

guaranteed to work dynamically. Another possibility is to compute
schedules on the fly while a program is running, but the computa-
tions may be complex and their overhead high.

Instead, we compute schedules by recording them from past ex-
ecutions; the recorded schedules can then be reused on future in-
puts to stabilize program behaviors. TERN, our system implement-
ing this idea, works as follows. At runtime, it maintains a persistent
cache of schedules recorded from past executions. When an input
arrives, TERN searches the cache for a schedule compatible with
the input. If it finds one, it simply runs the program while enforcing
the schedule. Otherwise, it runs the program as is while recording
a new schedule from the execution, and saves the schedule into the
cache for future reuse.

The TERN approach to computing schedules has several bene-
fits. First, by reusing schedules shown to work, TERN may avoid
potential errors in unknown schedules, improving reliability. A real-
world analogy is the natural tendencies in humans and animals to
follow familiar routes to avoid possible hazards along unknown
routes. Migrant birds, for example, often migrate along fixed fly-
ways. Why don’t our multithreading systems learn from them and
reuse familiar schedules? (The name TERN comes from the Arctic
Tern, a bird species that migrates the farthest among all animals.)

Second, TERN explicitly stores schedules, so developers and
users can flexibly choose what schedules to record and when. For
instance, developers can populate a cache of correct schedules dur-
ing testing and then deploy the cache together with their program,
improving testing effectiveness and avoiding the overhead to record
schedules on user machines. Moreover, they can run their favorite
checking tools over the schedules to detect a variety of errors, and
choose to keep only the correct schedules in the cache.

Lastly, TERN is efficient because it can amortize the cost of
recording and checking one schedule over many executions that
reuse the schedule. Recording and checking a schedule is more ex-
pensive than reusing a schedule, but, fortunately, TERN need do it
only once for each schedule and then reuse the schedule over many
inputs, amortizing the overhead.

A key challenge facing TERN is to check that an input is com-
patible with a schedule before executing the input under the sched-
ule. Otherwise, if (for example) TERN tries to enforce a schedule
of two threads on an input that requires four, the execution would
not follow the schedule. This challenge turns out to be the most
difficult one we must solve in building TERN. Our final solution
leverages several advanced program analysis techniques, including
two new ones we invent. We refer interested readers to our research
papers [10, 11] for details, and only describe the high level idea
here.

When recording a schedule, TERN tracks how the synchroniza-
tions in the schedule depend on the input. It captures these depen-
dencies into a relaxed, quickly checkable set of constraints called
the precondition of the schedule. It then reuses the schedule on all
inputs satisfying the precondition, avoiding the runtime cost of re-
computing schedules.

A naïve way to compute the precondition is to collect constraints
from all input-dependent branches in an execution. For instance, if a
branch instruction inspects input variable X and goes down the true
branch, we add a constraint that X must be nonzero to the precondi-
tion. A precondition computed this way is sufficient, but it con-
tains many unnecessary constraints concerning only thread-local
computations. Since an over-constraining precondition decreases
schedule-reuse rates, TERN removes these unnecessary constraints
from the precondition.

We illustrate how TERN works using a simple program based
on the aforementioned parallel compression utility PBZip2. Fig-

1 : main(int argc, char *argv[]) {
2 : int i, nthread = atoi(argv[1]);
3 : for(i=0; i<nthread; ++i)
4 : pthread create(worker); // create worker threads
5 : for(i=0; i<nthread; ++i)
6 : worklist.add(read block(i)); // add block to work list
7 : // Error: missing pthread join() operations
8 : worklist.clear(); // clear work list
9 : . . .
10: }
11: worker() { // worker threads for compressing file blocks
12: block = worklist.get(); // get a file block from work list
13: compress(block);
14: }
15: compress(block t block) {
16: if(block.data[0] == block.data[1])
17: . . .
18: }

Figure 2: An example program based on parallel compression utility
PBZip2. It spawns nthread worker threads, splits a file among the threads,
and compresses the file blocks in parallel.

// main // worker 1 // worker 2
4: pthread create(worker);
4: pthread create(worker);
6: worklist.add();

12: worklist.get();
6: worklist.add();

12: worklist.get();
8: worklist.clear();

Figure 3: A synchronization schedule of the example program. Each syn-
chronization is labeled with a line number from Figure 2.

ure 2 shows this example. Its input includes all command line argu-
ments in argv and the input file data. To compress a file, it spawns
nthread worker threads, splits the file accordingly, and compresses
the file blocks in parallel by calling function compress. To coordi-
nate the worker threads, it uses a synchronized work list. (Here we
use work-list synchronization for clarity; in practice, TERN handles
Pthread synchronizations.) The example actually has a bug: it is
missing pthread_join operations at line 7, so the work list may
be used by function worker after it is cleared at line 8, causing po-
tential program crashes. This bug is based on a real bug in PBZip2.

We first illustrate how TERN records a schedule and its precon-
dition. Suppose we run this example with two threads, and TERN
records a schedule as shown in Figure 3, which avoids the use-after-
free bug. (Other schedules are also possible.) To compute the pre-
condition of the schedule, TERN first records the outcomes of all ex-
ecuted branch statements that depend on input data. Figure 4 shows
the set of constraints collected. It then applies advanced program
analyses to remove the constraints that concern only local compu-
tations and have no effects on the schedule, including all constraints
collected from function compress. The remaining ones simplify to
nthread = 2, which forms the precondition of the schedule. TERN
stores the schedule and precondition into the schedule cache.

We now illustrate how TERN reuses a schedule. Suppose we want
to compress a completely different file also with two threads. TERN
will detect that nthread satisfies nthread = 2, so it will reuse the
schedule in Figure 3 to compress the file, regardless of the file data.
This execution is reliable because the schedule avoids the use-after-
free bug. It is also efficient because the schedule orders only syn-
chronizations and allows the compress operations to run in paral-
lel. Suppose we run this program again with four threads. TERN will
detect that the input does not satisfy the precondition nthread = 2,
so it will record a new schedule and precondition.

3: 0 < nthread ? true
3: 1 < nthread ? true
3: 2 < nthread ? false
5: 0 < nthread ? true
5: 1 < nthread ? true
5: 2 < nthread ? false
16: . . . // constraints collected from compress()

Figure 4: All input constraints collected for the schedule. Each constraint
is labeled with a line number from Figure 2. Constraints collected from
function compress are later removed by TERN because they have no effects
on the schedule. The remaining constraints simplify to nthread = 2.

Synchronization
schedule

Synchronization
schedule

Memory access
schedule

Memory access
schedule

Hybrid
schedule

Hybrid
schedule

Bug!Bug!

Figure 5: Hybrid schedule idea. Circles represent synchronizations, and tri-
angles memory accesses. A synchronization schedule is efficient because
it is coarse-grained, but it is not deterministic because data races may still
cause executions to deviate from the schedule and potentially hit a bug. A
memory access schedule is deterministic, but it is slow because it is fine-
grained. A hybrid schedule combines the best of both by scheduling mem-
ory access only for the racy portion of an execution and synchronizations
otherwise.

4.2 Efficiently Enforcing Schedules
Prior work enforces schedules at two different granularities: shared
memory accesses or synchronizations, forcing users to trade off ef-
ficiency and determinism. Specifically, memory access schedules
make data races deterministic but are prohibitively inefficient (e.g.,
1.2X-6X as slow as traditional multithreading [4]); synchroniza-
tion schedules are much more efficient (e.g., average 16% slow-
down [19]) because they are coarse grained, but they cannot make
programs with data races deterministic, such as our second toy pro-
gram (§2) and many real-world multithreaded programs [15, 23].
This determinism v.s. performance challenge has been open for
decades in the areas of deterministic execution and replay. Because
of this challenge, TERN, our first SMT system, enforces only syn-
chronization schedules.

To address this challenge, we have built PEREGRINE, our second
SMT system [11]. The insight in PEREGRINE is that although many
programs have races, these races tend to occur only within minor
portions of an execution, and the majority of the execution is still
race-free. Intuitively, if a program is full of data races, most of them
would have been caught during testing. Empirically, we analyzed
the executions of seven real programs with races, and found that,
despite millions of memory accesses, only up to 10 data races were
detected per execution.

Since races occur rarely, we can schedule synchronizations for
the race-free portions of an execution, and resort to scheduling
memory accesses only for the “racy” portions, combining both
the efficiency of synchronization schedules and the determinism of
memory access schedules. These hybrid schedules are almost as
coarse-grained as synchronization schedules, so they can also be
frequently reused. Figure 5 illustrates this idea.

How can we predict where data races may occur before an exe-
cution actually starts? One possible idea is to use static analysis to
detect data races at compile time. However, static race detectors are
notoriously imprecise: a majority of their reports tend to be false

Thread 1 Thread 1

Thread 2Thread 2

Thread 3Thread 3

Request
arrival

Request
arrival

TimeTime

RecordRecord ReuseReuse Record
partial

Record
partial

Reuse
partial

Reuse
partial

RequestsRequests Thread
blocked

Thread
blocked

Thread
running

Thread
running

Request
processed

Request
processed

Window
boundary

Window
boundary

Figure 6: Recording and reusing schedules for a server program with three
threads. The continuous execution stream is broken down into windows of
requests, and PEREGRINE records and reuses schedules across windows.

reports, not true data races. Scheduling many memory accesses in
the false reports would severely slow down the execution.

PEREGRINE leverages the record-and-reuse approach in TERN
to predict races: a recorded execution can effectively foretell what
may happen for executions reusing the same schedule. Specifically,
when recording a synchronization schedule, PEREGRINE records a
detailed memory access trace. From the trace, it detects data races
that occurred (with respect to the schedule), and adds the mem-
ory accesses involved in the races to the schedule. Now, this hybrid
schedule can be efficiently and deterministically enforced, solving
the aforementioned open challenge. To reuse the schedule on other
inputs, PEREGRINE provides new precondition computation algo-
rithms to guarantee that executions reusing the schedule will not run
into any new data races. To enforce an order on memory accesses,
PEREGRINE modifies a live program at runtime using a safe, effi-
cient instrumentation framework we built [21].

4.3 Handling Server Programs
Server programs present three challenges for SMT. First, they may
run continuously, making their schedules effectively infinite and too
specific to reuse. Second, they often process inputs, i.e., client re-
quests, as soon as the requests arrive. Each request may arrive at
a random moment, causing a different schedule. Third, since re-
quests do not arrive at the same time, PEREGRINE cannot check
them against the precondition of a schedule upfront.

Our observation is that server programs tend to return to the same
quiescent states, so PEREGRINE can use these states to split a con-
tinuous request stream down to windows of requests, as illustrated
in Figure 6. Specifically, PEREGRINE buffers requests as they arrive
until it gathers enough requests to keep all worker threads busy. It
then runs the worker threads to process the requests, while buffer-
ing newly arrived requests to avoid interference between windows.
If PEREGRINE cannot gather enough requests before a predefined
timeout, it proceeds with the partial window to reduce response
time. By breaking a request stream into windows, PEREGRINE can
record and reuse schedules across (possibly partial) windows, sta-
bilizing server programs. Windowing reduces concurrency, but the
cost is moderate based on our experiments.

5 Applying Stable Multithreading For Better
Program Analysis

As discussed in §3, stable multithreading can be applied in many
ways to improve reliability. In this section, we describe a program
analysis framework we have built atop PEREGRINE to effectively
analyze multithreaded programs, a well-known open challenge in
program analysis.

PrecisionPrecision

C
o

ve
ra

ge
C

o
ve

ra
ge

Static
Analysis

Dynamic
Analysis

Best of both
worlds?

Best of both
worlds?

Figure 7: The coverage v.s. precision tradeoff facing program analysis. For
multithreaded programs, static analysis tends to have high coverage (miss no
bugs) but imprecise (many false error reports), whereas dynamic analysis
tends to be precise (no false reports) but cover few schedules (miss many
bugs).

static analysis

all possible
schedules

w/o SMT w/ SMT

dynamic analysis

Figure 8: Program analysis with and without SMT. Without SMT, static
analysis tends to analyze many more schedules than all possible schedules;
dynamic analysis tends to analyze a tiny fraction of all possible schedules.
SMT shrinks the schedule domain, automatically improving both static anal-
ysis and dynamic analysis.

At the core of this open challenge lies the tradeoff between pre-
cision and coverage. Of the two common types of program analy-
sis, static analysis, which analyzes source code without running it,
covers all schedules but with poor precision (e.g., many false pos-
itives). The reason is that it must over-approximate the enormous
number of schedules, and thus it may analyze a much larger set of
schedules, including those impossible to occur at runtime. Not sur-
prisingly, it may detect many “bugs” in the impossible schedules.
Dynamic analysis, which runs code and analyzes the executions,
precisely identifies bugs because it sees the code’s precise runtime
effects. However, running code takes resources, and we just cannot
afford to enumerate more than a tiny fraction of all possible sched-
ules. Consequently, the next execution may well hit an unchecked
schedule with errors. Figure 7 illustrates this difficult tradeoff of
coverage and precision.

Fortunately, SMT shrinks the set of possible schedules, enabling
a new program analysis approach that gets the best of both static
analysis and dynamic analysis. Figure 8 illustrates the high level
idea of this approach. It statically analyzes a parallel program over
only a small set of schedules at compile time, then dynamically en-
forces these schedules at runtime. By focusing on only a small set
of schedules, we vastly improve the precision of static analysis and
reduce false error reports; by enforcing the analyzed schedules dy-
namically, we guarantee high coverage. Dynamic analysis benefits,
too, because it enjoys automatically increased coverage defined as
the ratio of checked schedules over all schedules.

A key challenge in implementing this approach is how to stat-

ically analyze a program with respect to a schedule. A static tool
typically invokes many analyses to compute the final results. To
modify this tool for improved precision, a naïve method is to mod-
ify every analysis involved, but this method would be quite labor-
intensive and error-prone. It may also be fragile: if a crucial analysis
is unaware of the schedule, it may easily pollute the final results.

To solve this challenge, we have created a new program analysis
framework and algorithms to specialize a program according to a
schedule. The resultant program has simpler control and data flow
than the original program, and can be analyzed with stock analy-
ses, such as constant folding and dead code elimination, for vastly
improved precision. In addition, our framework provides a precise
def-use analysis that computes how values are defined and used in
a program. The results computed by this analysis are much more
precise than regular def-use analyses, because ours reports only
facts that may occur when the given schedule is enforced at run-
time. These precise results can be the foundation of many powerful
tools such as race detectors.

We illustrate the high-level idea of our framework reusing the
example in Figure 2. Suppose we want to build a static race detec-
tor that flags when different threads write the same shared memory
location concurrently. Although different worker threads do access
disjoint file blocks, existing static analysis may not be able to deter-
mine this fact for a variety of difficult problems. For instance, since
nthread, the number of threads, is determined at runtime, static
analysis often has to approximate these dynamic threads as one or
two abstract thread instances. It may thus collapse different threads’
accesses to distinct block as one access, emitting false race reports.

Fortunately, such difficult problems are greatly simplified by
SMT. Suppose whenever nthread is 2, we always enforce the
schedule shown in Figure 3. Since the number of threads is fixed,
our framework rewrites the example program to replace nthread
with 2. It then unrolls the loops and clones function worker to give
each worker thread its own copy, so distinguishing different worker
threads becomes automatic.

Our framework enables the construction of many high coverage
and highly precise analyses. For instance, we have built a static race
detector within the framework. It found seven previously unknown,
harmful races in programs extensively checked by previous tools.
Moreover, it emits extremely few false reports, zero for 10 out of 18
programs, a huge reduction compared to other static race detectors.

6 Evaluation
To demonstrate the feasibility and benefits of SMT, we describe the
main results of PEREGRINE, our latest SMT system. The following
subsections focus on two evaluation questions:

§6.1: Can PEREGRINE frequently reuse schedules? The higher the
reuse rate is, the more stable program behaviors become, and
the more efficient PEREGRINE is.

§6.2: Can PEREGRINE efficiently enforce schedules? A low over-
head is crucial for programs that frequently reuse schedules.

We choose a diverse set of 18 programs as our evaluation bench-
marks. These programs are either widely used real-world parallel
programs, such as the Apache web server and the aforementioned
PBZip2, or parallel implementations of computation-intensive al-
gorithms in standard benchmark suites.

6.1 Stability
To evaluate PEREGRINE’s stability, i.e., how frequently it can reuse
schedules, we compare the preconditions it computes to the best
possible preconditions derived from manual inspection. (Some of

Program-Workload Reuse Rates (%) Schedules
Apache-CS 90.3% 100
MySQL-simple 94.0% 50
MySQL-tx 44.2% 109
PBZip2-usr 96.2% 90

Table 2: Schedule reuse rates under given workloads. Column Schedules
indicates the number of schedules in the schedule cache.

0

0.5

1.0

1.5

A

pa
ch

e-
TP

U
T

A

pa
ch

e-
R

E
S

P

 P

B
Zi

p2

 a
ge

t

 p

fs
ca

n

 b

ar
ne

s

 f
ft

 l

u-
co

nt
ig

 lu
-n

on
-c

on
tig

ra

di
x

 w
at

er
-s

pa
tia

l
w

at
er

-n
sq

ua
re

d

oc
ea

n

 f
m

m

ch

ol
es

ky
 b

la
ck

sc
ho

le
s

 s

w
ap

tio
ns

 s
tre

am
cl

us
te

rN
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

TERN
PEREGRINE

Figure 9: Normalized execution time when reusing schedules. A bar with
value greater (smaller) than 1 indicates a slowdown (speedup) compared
to traditional multithreading. The overhead is smaller than 15% for most
programs, and up to 50% for two. Five programs run faster because TERN
or PEREGRINE safely skips blocking operations.

the manually derived preconditions are shown in Table 1.) For half
of the 18 programs, the preconditions PEREGRINE computes are as
good as or close to the manually derived preconditions, and PERE-
GRINE can indeed frequently reuse schedules for the programs. For
the other programs, the preconditions are more restrictive.

We also evaluate stability by measuring the schedule reuse rates
under given workloads. Table 2 shows the results, obtained from
TERN and replicable in PEREGRINE. The four workloads are either
real workloads we collect or synthetic workloads used by the devel-
opers themselves (§A). For three out of the four workloads, TERN
can reuse a small number of schedules to process over 90% of the
workloads. For MySQL-tx, TERN has a lower reuse rate largely be-
cause the workload is too random to reuse schedules. Nonetheless,
TERN manages to process 44.2% of the queries with a small num-
ber of schedules.

6.2 Efficiency
The overhead of enforcing schedules is crucial for programs that
frequently reuse schedules. Figure 9 shows this overhead for both
TERN and PEREGRINE. Each bar represents the execution time with
TERN or PEREGRINE normalized to traditional multithreading, av-
eraged over 500 runs. For Apache, we show the throughput (TPUT)
and response time (RESP).

We make two observations about this figure. First, for most pro-
grams, the overhead numbers are less than 15%, demonstrating
that SMT can be efficient. For two programs (water-nsquared
and cholesky), the overhead is relatively large because they do
a large number of mutex operations within tight loops. However,
this overhead is still below 50%, and much lower than the 1.2X-6X
overhead of a prior DMT system [4]. For five programs (barnes,
lu-non-contig, radix, water-spatial, and ocean), there is
actually a speedup because TERN and PEREGRINE can safely skip
blocking operations [10, 11].

Second, PEREGRINE’s overhead is only slightly larger than
TERN’s, demonstrating that full determinism can also be efficient.

Recall that TERN schedules only synchronizations, whereas PERE-
GRINE additionally schedules memory accesses to make data races
deterministic. The TERN and PEREGRINE bars in the figure are very
close, showing that the additional overhead in PEREGRINE is neg-
ligible.

7 Conclusion and Future Work
Through conceiving, building, applying, and evaluating SMT sys-
tems, we have demonstrated that SMT is feasible; it can stabilize
program behaviors for better reliability, work both efficiently and
deterministically, and greatly improve precision of static analysis.
We believe SMT offers new promise to solve the grand parallel pro-
gramming challenge. However, TERN and PEREGRINE are still re-
search prototypes, and not yet ready for wide adoption. Moreover,
the ideas we have explored are just the first few in this direction of
SMT; the bulk of work still lies ahead:
• At the system level, can we build efficient, lightweight SMT

systems that work automatically with all multithreaded pro-
grams? TERN and PEREGRINE require recording executions
and analyzing source code, which can be heavyweight. As the
number of cores increases, can we build SMT systems that scale
to hundreds of cores?
• At the application level, we have only scratched the surface: im-

proving program analysis is just one cool application we can
build atop SMT. There are many others, such as improving
testing coverage, verifying a program with respect to a small
set of dynamically enforced schedules, and optimizing thread
scheduling and placement based on a schedule because it ef-
fectively predicts the future. Moreover, the idea of stabilizing
schedules may apply to other parallel programming models
such as MPI and OpenMP.
• At a concept level, can we reinvent parallel programming to

greatly reduce the set of schedules? For instance, a multithread-
ing system may disallow schedules by default, and only allow
those that developers explicitly write code to enable. Since de-
velopers are already of different calibers, we may let only the
best programmers decide what schedules to use, reducing the
likelihood of programming errors.

We invite readers to join us in exploring this fertile and exciting
direction of stable multithreading and reliable parallelism.

References
[1] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubi-

atowicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel,
and K. Yelick. A view of the parallel computing landscape. Commun.
ACM, 52(10):56–67, 2009.

[2] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient system-enforced
deterministic parallelism. Commun. ACM, 55(5):111–119, May 2012.

[3] T. Ball and S. K. Rajamani. Automatically validating temporal safety
properties of interfaces. In Proceedings of the Eighth International
SPIN Workshop on Model Checking of Software (SPIN ’01), pages
103–122, May 2001.

[4] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman. Core-
Det: a compiler and runtime system for deterministic multithreaded
execution. In Fifteenth International Conference on Architecture Sup-
port for Programming Languages and Operating Systems (ASPLOS
’10), pages 53–64, Mar. 2010.

[5] T. Bergan, J. Devietti, N. Hunt, and L. Ceze. The deterministic ex-
ecution hammer: how well does it actually pound nails? In The 2nd
Workshop on Determinism and Correctness in Parallel Programming
(WODET ’11), Mar. 2011.

[6] E. Berger, T. Yang, T. Liu, D. Krishnan, and A. Novark. Grace:
safe and efficient concurrent programming. In Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOP-

SLA ’09), pages 81–96, Oct. 2009.

[7] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem,
C. Henri-Gros, A. Kamsky, S. McPeak, and D. Engler. A few bil-
lion lines of code later: using static analysis to find bugs in the real
world. Commun. ACM, 53:66–75, February 2010.

[8] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve, S. Heumann,
R. Komuravelli, J. Overbey, P. Simmons, H. Sung, and M. Vakilian. A
type and effect system for deterministic parallel java. In Conference on
Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA ’09), pages 97–116, 2009.

[9] B. Cantrill and J. Bonwick. Real-world concurrency. Commun. ACM,
51(11):34–39, Nov. 2008.

[10] H. Cui, J. Wu, C.-C. Tsai, and J. Yang. Stable deterministic multi-
threading through schedule memoization. In Proceedings of the Ninth
Symposium on Operating Systems Design and Implementation (OSDI
’10), Oct. 2010.

[11] H. Cui, J. Wu, J. Gallagher, H. Guo, and J. Yang. Efficient determinis-
tic multithreading through schedule relaxation. In Proceedings of the
23rd ACM Symposium on Operating Systems Principles (SOSP ’11),
Oct. 2011.

[12] D. R. Hower, P. Dudnik, M. D. Hill, and D. A. Wood. Calvin: De-
terministic or not? free will to choose. In Proceedings of the 2011
IEEE 17th International Symposium on High Performance Computer
Architecture, pages 333–334, 2011.

[13] E. A. Lee. The problem with threads. Computer, 39(5):33–42, 2006.

[14] T. Liu, C. Curtsinger, and E. D. Berger. DTHREADS: efficient deter-
ministic multithreading. In Proceedings of the 23rd ACM Symposium
on Operating Systems Principles (SOSP ’11), Oct. 2011.

[15] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: a com-
prehensive study on real world concurrency bug characteristics. In
Thirteenth International Conference on Architecture Support for Pro-
gramming Languages and Operating Systems (ASPLOS ’08), pages
329–339, Mar. 2008.

[16] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and
I. Neamtiu. Finding and reproducing heisenbugs in concurrent pro-
grams. In Proceedings of the Eighth Symposium on Operating Systems
Design and Implementation (OSDI ’08), pages 267–280, Dec. 2008.

[17] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In Proceedings of the ACM SIG-
PLAN 2007 Conference on Programming Language Design and Im-
plementation (PLDI ’07), pages 89–100, June 2007.

[18] C. O’Hanlon. A conversation with john hennessy and david patterson.
Queue, 4(10):14–22, 2007.

[19] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: efficient de-
terministic multithreading in software. In Fourteenth International
Conference on Architecture Support for Programming Languages and
Operating Systems (ASPLOS ’09), pages 97–108, Mar. 2009.

[20] Z. Shao. Certified software. Commun. ACM, 53(12):56–66, Dec.
2010.

[21] J. Wu, H. Cui, and J. Yang. Bypassing races in live applications with
execution filters. In Proceedings of the Ninth Symposium on Operating
Systems Design and Implementation (OSDI ’10), Oct. 2010.

[22] J. Wu, Y. Tang, G. Hu, H. Cui, and J. Yang. Sound and precise analysis
of parallel programs through schedule specialization. In Proceedings
of the ACM SIGPLAN 2012 Conference on Programming Language
Design and Implementation (PLDI ’12), June 2012.

[23] W. Xiong, S. Park, J. Zhang, Y. Zhou, and Z. Ma. Ad hoc synchro-
nization considered harmful. In Proceedings of the Ninth Symposium
on Operating Systems Design and Implementation (OSDI ’10), Oct.
2010.

[24] J. Yang, A. Cui, S. Stolfo, and S. Sethumadhavan. Concurrency at-
tacks. In the Fourth USENIX Workshop on Hot Topics in Parallelism
(HOTPAR ’12), June 2012.

APPENDIX
A Workloads for Evaluating Stability
We used the following four workloads for evaluating TERN’s sta-
bility:

• Apache-CS: a four-day trace from the Columbia CS website
with 122,000 HTTP requests. A script replays this trace at a
rate of 100 concurrent requests per second onto Apache.

• MySQL-simple: random SQL select queries issued by Sys-
Bench onto MySQL. SysBench is used by MySQL developers
for performance benchmarking.

• MySQL-tx: random SQL select, update, delete, and insert queries
issued by SysBench onto MySQL.

• PBZip2-usr: a random selection of 10,000 files from /usr on
our evaluation machine.

For each workload, we first randomly select 1%-3% of the work-
load to populate the schedule cache. We then run the entire work-
load to measure the overall reuse rates.

	1 Introduction
	2 Why Are Multithreaded Programs So Hard to Get Right?
	2.1 Preliminaries: Inputs, Schedules, and Buggy Schedules
	2.2 Challenges Caused by Nondeterminism
	2.3 Challenges Caused by Too Many Schedules
	2.4 Determinism is Overrated

	3 Shrink the Haystack with Stable Multithreading
	3.1 Benefits
	3.2 Caveats

	4 Building Stable Multithreading Systems
	4.1 Computing Schedules
	4.2 Efficiently Enforcing Schedules
	4.3 Handling Server Programs

	5 Applying Stable Multithreading For Better Program Analysis
	6 Evaluation
	6.1 Stability
	6.2 Efficiency

	7 Conclusion and Future Work
	A Workloads for Evaluating Stability

