
A Finer Functional Fibonacci on a Fast fpga

Stephen A. Edwards

Columbia University, Department of Computer Science

Technical Report CUCS–XXX-13

February 2013

Abstract

�rough a series of mechanical, semantics-preserving transformations, I show how

a three-line recursive Haskell program (Fibonacci) can be transformed to a hardware

description language—Verilog—that can be synthesized on an fpga.�is report lays

groundwork for a compiler that will perform this transformation automatically.

1 Introduction 2

2 Transforming Fib to Hardware Form 2

2.1 Scheduling: Transforming to Continuation-Passing Style 2

2.2 Capturing Free Variables: Lambda Li�ing . 3

2.3 Representing Continuations with a Type . 4

2.4 Making In-Memory Types Explicit . 5

2.5 Making Memory Operations Explicit . 6

2.6 Inserting Explicit Memory Operations . 7

3 Implementing Fib in Verilog 8

3.1 Verilog Types for Haskell Types . 8

3.2 Constants: Type Tag Fields . 10

3.3 Module Interface . 10

3.4 Local Signals . 11

3.5 �e Continuation Stack Memory . 12

3.6 �e State Process . 12

3.7 �e �b and �bp functions . 13

3.8 �e load and store functions . 15

3.9 �e loadp function . 17

4 Verilog Testbench 19

1

1 Introduction

�is is an extension of my earlier report [2]. Here, I model memory operations directly in

Haskell and target Verilog instead of vhdl.

Following the style of Reynolds [4], I start with a high-level functional program and trans-

form it, step by step, into a far simpler dialect that has a trivial translation into synchronous

hardware suitable for running on an fpga.�e longer-term goal is to automate all of these

tasks in a compiler to enable most Haskell programs to be transformed into hardware.

�is report is written a in a “Literate Programming” style. All the Haskell and Verilog

code fragments have been extracted directly from this document into source �les and run

through their respective compilers for veri�cation.

2 Transforming Fib to Hardware Form

Our starting point is the following naïve algorithm for computing Fibonacci numbers. With

an eye toward a hardware implemention, we have constrained the domain and range of this

function to be 8 and 32-bit unsigned integers, respectively.

�b :: Word8→Word32

�b 1 = 1 −− Base case
�b 2 = 1 −− Base case
�b n = �b (n−1) + �b (n−2) −− Recurse twice and sum results

2.1 Scheduling: Transforming to Continuation-Passing Style

First, to make the control �ow, and in particular the sequencing of recursive calls, explicit, we

transform this to continuation-passing style [1]. We split the operations in the third case into

separate functions and add a continuation argument k—a function responsible for continuing

the computation to which the result of the recursive call will be passed.

�b ′ :: Word8→ (Word32→ Word32)→ Word32

�b ′ 1 k = k 1 −− Base case
�b ′ 2 k = k 1 −− Base case
�b ′ n k = �b ′ (n−1) −− First recursive call

(λn1 → �b ′ (n−2) −− Second recursive call
(λn2 → k (n1 + n2))) −− Sum results

�b :: Word8→Word32

�b n = �b ′ n (λx → x)

2.2 Capturing Free Variables: Lambda Li�ing

Next, we name each lambda term and perform lambda li�ing [3] to capture all free variables

as arguments.�is replaces true recursion with tail recursion with continuations.

call :: Word8→ (Word32→ Word32)→ Word32 −− Entry
c1 :: Word8→ (Word32→ Word32)→ Word32→ Word32 −− Continuation 1
c2 :: Word32→ (Word32→ Word32)→ Word32→ Word32 −− Continuation 2
c3 :: Word32→ Word32 −− Return

call 1 k = k 1 −− Base case (return)
call 2 k = k 1 −− Base case (return)
call n k = call (n−1) (c1 n k) −− First recursive call (call)
c1 n k n1 = call (n−2) (c2 n1 k) −− Second recursive call (call)
c2 n1 k n2 = k (n1 + n2) −− Sum Results (return)
c3 x = x −− Return �nal result

�b :: Word8→Word32

�b n = call n c3

2.3 Representing Continuations with a Type

Next, we represent continuations with an algebraic data type.�ere are three ways continua-

tions are “constructed” in this example: c1 with two arguments, c2 with two arguments, and

c3 by itself, so the type becomes

data Continuation = C1 Word8 Continuation −− Second recursive call
| C2 Word32 Continuation −− Sum Results
| C3 −− Return �nal result

We fractured the �b function into three pieces (call, c1, c2), but for in sequential operation,

such as our hardware will eventually exhibit, only one is ever active at once. We can encode

the various calls with another algebraic data type.�ere are two choices: call is called directly;
the other three are continuations.

data Call = Call Word8 Continuation −− Tail-Recursive Entry
| Cont Continuation Word32 −− Continuation

With this, we can combine these pieces into a single tail-recursive function and a wrapper:

�b ′ :: Call → Word32

�b ′ (Call 1 k) = �b ′ (Cont k 1) −− Base case
�b ′ (Call 2 k) = �b ′ (Cont k 1) −− Base case
�b ′ (Call n k) = �b ′ (Call (n−1) (C1 n k)) −− First call
�b ′ (Cont (C1 n k) n1) = �b ′ (Call (n−2) (C2 n1 k)) −− Second call
�b ′ (Cont (C2 n1 k) n2) = �b ′ (Cont k (n1 + n2)) −− Sum results
�b ′ (Cont (C3) x) = x −− Return result

�b :: Word8→Word32

�b n = �b ′ (Call n C3)

2.4 Making In-Memory Types Explicit

In part, our memory machinery uses pointers in the usual way, although such pointers are

local to each unique memory. Here, we choose to use eight bits per pointer because that is

the smallest standard integer type in Haskell; selecting appropriate sizes for each pointer will

be an interesting exercise.�is also raises the question of whether we want to introduce the

notion of global memory addresses.

type ContPtr = Word8 −− Pointer to a Continuation object

Because we know the continuations are always in a stack, there is no need to store their

“next” pointers in memory.

data ContBits = CB1 Word8 −− Second Recursive Call
| CB2 Word32 −− Sum Results
| CB3 −− Bottom of stack/return �nal result

We model the small memory in which we will store this data on the fpga with an

immutable Haskell array that begins life uninitialized.

type ContMem = Array ContPtr ContBits

emptyMem :: ContMem

emptyMem = array (minBound::ContPtr,maxBound::ContPtr) []

While a reference to a continuation is atomic to a user-level program, in our Haskell

implementation it consists of a pointer-array pair.

type ContRef = (ContPtr, ContMem)

data Continuation = C1 Word8 ContRef −− Second Recursive Call
| C2 Word32 ContRef −− Sum Results
| C3 −− Return �nal result

2.5 Making Memory Operations Explicit

Now, we introduce two functions: store, which stores a new continuation in memory and

returns a reference, and load, which, given a reference, returns a contintuation.

�e store function looks at the successor of the continuation being stored and uses that to

calculate the address of the new continuation (i.e., the address just above the successor).�e

base case is C3, which is always placed in address 0.

store :: Continuation → ContRef

store c = let (p, m, c ′) = case c of

C1 n (p, m)→ (p, m, CB1 n)

C2 n1 (p, m)→ (p, m, CB2 n1)

C3 → (0, emptyMem, CB3) in

let p′ = p + 1 in −− Place in next memory location
(p′ , m // [(p′ , c ′)]) −−Write memory

�is store implementation is a little unorthodox. A traditional write operation takes an

address and a value; our store only takes a value, much like a constructor in an object-oriented

language, but the value directs where it should be stored in the stack.

�e C3 continuation is unique in that there is ever at most one of them in existence at

any time. It would be possible to make it implicit: never stored in memory but encoded as a

special index (e.g., −1). However, I suspect using a sentinel value in memory is faster since

it simpli�es the load logic (which does not have to check for a special index), even though

it wastes some memory and, in this case, actually requires an additional bit (to distinguish

three cases instead of two). However, I should compare these two with an experiment.

�e load function has the opposite e�ect of store and has more traditional types: given a

reference to a continuation, it returns the data it contains. In addition to using the data in

memory, load also reconstructs the reference to the next continuation by subtracting one

from the reference. However, because load takes a cycle on our fpgas (i.e., the address is

presented a clock cycle before the data becomes available) we break load into two functions
and use the function call to denote the clock cycle boundary.�ere is a scheduling question

here: where should the p − 1 operation reside? I arbitrarily put it before the clock cycle.

load :: ContRef → Continuation

load (p, m) = let p′ = p − 1 in −− Successor just below us
loadp (p′ , m, m ! p) −− Read memory

loadp :: (ContPtr, ContMem, ContBits)→ Continuation

loadp (p′ , m, d) = case d of

CB1 n → C1 n (p′ , m) −− Reconstruct
CB2 n1 → C2 n1 (p′ , m)

CB3 → C3

2.6 Inserting Explicit Memory Operations

We now have all the pieces to transform the �b function into a form suitable for hardware.

We scheduled the operations, especially the recursive calls, by transforming the code to

continuation-passing style, eliminated free variables using lambda li�ing, introduced an

explicit continuation type to make it purely tail-recursive, removed the recursion from the

continuation type by introducing explicit references, and �nally introduced memory manage-

ment functions able to load and store continuation objects to and from memory.

We need to introduce one additional type: a concrete representation of the Call type. As
an optimization, we will “inline” the value of the continuation object when it is actually used

(i.e., being pattern-matched) in the Cont case; we will leave it as a reference in the Call case
since we do not need to know its contents.

data Call = Call Word8 ContRef −− Tail-Recursive Entry
| Cont Continuation Word32 −− Continuation

With this �nal type in hand, we can now express the �b function in a form suitable for

hardware translation.

�bp :: Call → Word32

�bp (Call 1 kr) = �bp (Cont (load kr) 1)

�bp (Call 2 kr) = �bp (Cont (load kr) 1)

�bp (Call n kr) = �bp (Call (n−1) (store (C1 n kr)))

�bp (Cont (C1 n kr) n1) = �bp (Call (n−2) (store (C2 n1 kr)))

�bp (Cont (C2 n1 kr) n2) = �bp (Cont (load kr) (n1 + n2))

�bp (Cont (C3) x) = x

�b :: Word8→Word32

�b n = �bp (Call n (store C3))

�e �bp function is tail recursive and its bodies consists of primitive arithmetic functions

(e.g., +, −), type constructors, and explicit memory read and write operations whose results

are only passed as arguments to (tail-) recursive calls of �bp.
In hardware, each invocation of �bp will be mapped to a single cycle. Because the fpgas

we consider use synchronous (one-cycle) rams, the memory operations work naturally in

this setting—the result of a load is only used in the next clock cycle.

Furthermore, although load and store are called frommultiple sites, these sites aremutually

exclusive so only a single instance of these functions is needed along with a trivial arbiter to

select their arguments.

3 Implementing Fib in Verilog

Here is the block diagram illustrating the various functions and how they communicate.

Information �ow is generally le� to right; the feedback paths to the input of �pb are the

exceptions. Note that the small circles—where two output signals join—actually represent

simple arbiters that select between two possible sources for a signal.

�b

�bp

load

store

stack

loadp
do

we
di
a

result

arg1

A compulsory timescale de�nition for the simulator:

‵ timescale 1 ns / 100 ps

3.1 Verilog Types for Haskell Types

Representing eight- and thirty-two-bit unsigned words is straightforward; we use a little-

endian style. We arbitrarily represent the ContPtr type with 8 bits. Choosing an appropriate

numbers of bits for each pointer type (tantamount to bounding the size of memory or the

maximum possible number of objects of a particular type) is an interesting problem.

In our Haskell model, the ContRef consists of a pointer and the memory into to which it

points, but in hardware, we leave the memory implicit because we know every such reference

will refer to the same memory.�us, a ContRef object is just eight bits.
7 0

Word8

31 0

Word32

7 0

ContRef

For the Continuation type, we use the �rst few bits to encode the tag and align the ContRef
�elds. I suspect optimizing such layouts is an interesting algorithmic problem in general.

C1nkr

029333441

C2n1kr Continuation

C3

�e ContBits type—what is stored in the stack memory—is the same a�er dropping the

ContRef �eld:

CB1n

02933

CB2n1 ContBits

CB3

�e Call type implements a trick. In this program, the Continuation �eld of a Cont is
always generated by a call to the load function, and the ContRef �eld of a Call is always
generated by a call to store. Because of the nature of memory in the fpga, load is a sequential

(single-cycle) function. By assigning these �elds to di�erent bits in the Call type, it obviates
the need to add multiplexers that select between these two sources in the next cycle.

nkr Call

0183233404182

Call
Contn1/n2Continuation

C1nkr

414350747582

C2n1kr

C3

�is layout is taking even more advantage of the �exibility of the types. I am not sure

whether it is good idea to share the eight bits of the n �eld in the Call type with the n1/n2
�eld in the Cont type. Doing so reduces the number of �ip-�ops but introduces the need for

muxes that decide how to load them.�is is a particular kind of state assignment problem

that involves a lot of don’t-care values and a particular way of looking at states; I’ve not seen a

problem exactly like this in the literature.

3.2 Constants: Type Tag Fields

I encode the tag �elds of the three main algebraic types in binary. One-hot may be better for

some.

‵de�ne C1 2 ′d 0 // Continuation
‵de�ne C2 2 ′d 1
‵de�ne C3 2 ′d 2

‵de�ne CB1 2 ′d 0 // ContBits
‵de�ne CB2 2′d 1
‵de�ne CB3 2′d 2

‵de�ne Call 1 ′d 0 // Call
‵de�ne Cont 1 ′d 1

3.3 Module Interface

�e main module, which implements the �b function, takes a single 8-bit input and produces

a 32-bit output.�e call input indicates the input (arg1) is valid (and that the function should

start); the ret output indicates the result is valid and the function has terminated.�is su�ces

for now, but later we will want a more complicated communication protocol.

module �b(input clk ,

input call , // strobe
input [7:0] arg1 , // Word8
output reg ret , // strobe
output reg [31:0] result // Word32
);

�e bigger question going forward is what, exactly, the environment must guarantee about

these signals. E.g., are the input arguments valid only when call is high or must they be held?

When, if ever, should we use four-phase handshaking?

clk

call

arg1 a b

ret

result �b a �b b

3.4 Local Signals

Each function needs a signal indicating whether it is active in the current cycle and a vector

for its arguments. Exceptions include the top-level function �b, which is only called from

outside. Its activation, argument, and result signals are ports.

reg �bp_call ;

reg [82:0] �bp_arg1 ; // Call

reg store_call ;

reg [41:0] store_arg1 ; // Continuation
reg [7:0] store_result_d ; // ContRef
reg [7:0] store_result ; // ContRef

reg load_call ;

reg [7:0] load_arg1 ; // ContRef

reg loadp_call ;

reg [7:0] loadp_arg1 ; // ContRef
reg [41:0] loadp_result ; // Continuation

�e �bp function calls itself recursively, so it needs a register that indicates it will run in

the next cycle and its argument. We introduce _d signals to express these.

reg �bp_call_d ;

reg [32:0] �bp_arg1_d ; // Call without output from load, store
reg [32:0] �bp_arg1_q ; // Call without output from load, store

Both the store and load functions need some internal variables.

reg [7:0] store_p ; // ContRef
reg [7:0] store_pprime ; // ContRef
reg [33:0] store_cprime ; // ContBits
reg store_write ; // Write to continuation memory

reg [7:0] load_p; // ContRef
reg [7:0] load_pprime; // ContRef
reg loadp_call_d ;

3.5 �e Continuation Stack Memory

For simplicity, the continuation memory is a simple single-port ram, although the fpga

supports fancier types.�is follows Altera’s suggested template for a single-port ram with

old-data-read-during-write behavior.

reg [33:0] cont_ram [255:0]; // ContBits: the stack itself

reg [7:0] cont_addr; // ContRef
reg cont_write_enable ;

reg [33:0] cont_write_data ; // ContBits
reg [33:0] cont_read_data ; // ContBits

always @(posedge clk) begin

cont_read_data <= cont_ram[cont_addr];

if (cont_write_enable)

cont_ram[cont_addr] <= cont_write_data ;

end

3.6 �e State Process

�e other state-holding elements are, by design, simple.�e strobe and arguments for �bp
are latched, as is the result from store and the argument for loadp, since each must cross the

clock boundary.

�e state-holding elements consist of the machinery for the tail calls and the load and

store functions.

always @(posedge clk) begin

�bp_call <= �bp_call_d ;

loadp_call <= loadp_call_d ;

�bp_arg1_q <= �bp_arg1_d ;

store_result <= store_result_d ;

loadp_arg1 <= load_pprime;

end

3.7 �e �b and �bp functions

�e �b and �bp functions share a resource: the �bp function itself, but arbitration between

the two is simple since we can assume that two calls never occur simultaneously. As such,

both bodies can be synthesized together and we can let the synthesis tool infer the muxes.

To begin with, we reset the outputs from this block. Activation signals are cleared;

everything else gets X’s.

always @(*) begin

ret = 0; // Return a result
result = 32 ′b X;

�bp_call_d = 0;

�bp_arg1_d = 33 ′b X;

load_call = 0; // Load continuation from memory
load_arg1 = 8 ′b X;

store_call = 0; // Store continuation in memory
store_arg1 = 42′b X;

�e argument to �bp is assembled from three sources: state-holding �ip-�ops from �bp
itself, the output from store (the address stored), and the output from lopd (the continuation).

�bp_arg1 = { loadp_result , store_result , �bp_arg1_q };

When �b is invoked, call is asserted and the argument is presented at the arg1 port. In
this case, C3 is stored in the memory (to initialize the stack) and the function is invoked in

the next cycle via �bp_call_d.

if (call) begin

// �bp (Call n (store C3))
�bp_call_d = 1;

�bp_arg1_d = {24 ′b X, arg1 , ‵Call };

store_call = 1;

store_arg1 = {40 ′b X, ‵C3};

end

�e body of �bp implements the pattern-matching, arithmetic, and load/store operations

de�ned by the �bp function described in §2.6.

Its function is to produce four strobe/value pairs: one for the result, one for a tail call, one

for calling load, and one for calling store.
All the other cases correspond to the patterns in the �bp function from §2.6.

if (�bp_call) begin

if (�bp_arg1 [0] == ‵Call && �bp_arg1 [8:1] == 8′d 1) begin

// �bp (Call 1 kr) = �bp (Cont (load kr) 1)
load_call = 1;

load_arg1 = �bp_arg1 [40:33];

�bp_call_d = 1;

�bp_arg1_d = { 32 ′d 1, ‵Cont };

end else if (�bp_arg1 [0] == ‵Call && �bp_arg1 [8:1] == 8′d 2) begin

// �bp (Call 2 kr) = �bp (Cont (load kr) 1)
load_call = 1;

load_arg1 = �bp_arg1 [40:33];

�bp_call_d = 1;

�bp_arg1_d = { 32 ′d 1, ‵Cont };

end else if (�bp_arg1 [0] == ‵Call) begin

// �bp (Call n kr) = �bp (Call (n-1) (store (C1 n kr)))
store_call = 1;

store_arg1 = { �bp_arg1 [40:33], 24′b X, �bp_arg1 [8:1], ‵C1 };

�bp_call_d = 1;

�bp_arg1_d = { 24′b X, �bp_arg1 [8:1] − 8 ′d 1, ‵Call };

end else if (�bp_arg1 [0] == ‵Cont && �bp_arg1 [42:41] == ‵C1) begin

// �bp (Cont (C1 n kr) n1) = �bp (Call (n-2) (store (C2 n1 kr)))
store_call = 1;

store_arg1 = { �bp_arg1 [82:75], �bp_arg1 [32:1], ‵C2 };

�bp_call_d = 1;

�bp_arg1_d = { 24′b X, �bp_arg1 [50:43] − 8 ′d 2, ‵Call };

end else if (�bp_arg1 [0] == ‵Cont && �bp_arg1 [42:41] == ‵C2) begin

// �bp (Cont (C2 n1 kr) n2) = �bp (Cont (load kr) (n1 + n2))
load_call = 1;

load_arg1 = �bp_arg1 [82:75];

�bp_call_d = 1;

�bp_arg1_d = { �bp_arg1 [32:1] + �bp_arg1 [74:43], ‵Cont };

end else if (�bp_arg1 [0] == ‵Cont && �bp_arg1 [42:41] == ‵C3) begin

// �bp (Cont (C3) x) = x
ret = 1;

result = �bp_arg1 [32:1];

end

end

end

3.8 �e load and store functions

Because both load and store access the continuation memory (never simultaneously), it is

easiest to combine their two bodies in a single process and have the synthesis tool insert the

mux that feeds either the read or the write address to the memory.

always @(*) begin

load_p = 8 ′b X;

load_pprime = 8 ′b X;

loadp_call_d = 0;

store_p = 8 ′b X;

store_pprime = 8 ′b X;

store_cprime = 34 ′b X;

store_result_d = 8 ′b X;

cont_addr = 8 ′b X;

cont_write_enable = 0;

cont_write_data = 34 ′b X;

�e load function calculates p′ and passes the old address to the continuation memory.

�ere is no explicit “read enable” input; the memory is assumed to read unless written to.

if (load_call) begin

load_p = load_arg1 ;

load_pprime = load_p − 8 ′d 1;

loadp_call_d = 1;

cont_addr = load_p;

end

�e store function seems richer; it converts a Continuation object into a ContBits object
and instructs the memory to store it. In practice, the conversion should be just a bit slice.

if (store_call) begin

// case c of
if (store_arg1 [1:0] == ‵C1) begin // C1 n

store_p = store_arg1 [41:34];

store_cprime = {24 ′b X, store_arg1 [9:2], ‵CB1};

end else if (store_arg1 [1:0] == ‵C2) begin // C2 n1
store_p = store_arg1 [41:34];

store_cprime = { store_arg1 [33:2], ‵CB2};

end else if (store_arg1 [1:0] == ‵C3) begin // C3
store_p = 8 ′d 0;

store_cprime = {32 ′b X, ‵CB3};

end

store_pprime = store_p + 8 ′d 1;

cont_write_enable = 1;

cont_write_data = store_cprime ;

cont_addr = store_pprime ;

store_result_d = store_pprime ;

end

end

3.9 �e loadp function

�e loadp function reconstructs a Continuation object from the ContBits object read from

memory.�is should distill down to little more than concatenating bit vectors.�e result, in

loadp_result is passed to the �bp function.

always @(*) begin

loadp_result = 42′b X;

if (loadp_call) begin

// case d of
if (cont_read_data [1:0] == ‵CB1)

// CB1 n -> C1 n (p’, m)
loadp_result = { loadp_arg1 , 24′b X, cont_read_data [9:2], ‵C1};

else if (cont_read_data [1:0] == ‵CB2)

// CB2 n1 -> C2 n1 (p’, m)
loadp_result = { loadp_arg1 , cont_read_data [33:2], ‵C2};

else if (cont_read_data [1:0] == ‵CB3)

// CB3 -> C3
loadp_result = { 40′b X, ‵C3 };

end

end

�is is the end of the �bmodule.

endmodule

!"

#$%&

'()(*+,--..&/

!(''0,1..&/

0(''0,1..&/

'()(23),--..&/

>?@A8:BC

D
(,1..&/

4,1..&/

(''"0

5"$

'()((

'()(4
23)&

CEF/,

' 6

70"

"+(

#$0+

G
(,1..&/

4,1..&/

"63($

G
(,1..&/

4,1..&/

"63($

G
(,8..&/

4,8..&/

"63($

G
(,8..&/

4,8..&/

"63($

G
(,8..&/

4,8..&/

"63($

G
(,8..&/

4,8..&/

"63($

G
(,8..&/

4,8..&/

"63($

' 6

70"

"+(

#$0+
'

"+(

6

70"

#$0+

5"$

'()((

'()(4
23)&

CEF/,

' 6

70"

"+(

#$0+

5"$

'()((

'()(4
23)&

CEF/,

5"$

'()((

'()(4
23)&

CEF/,

5"$

'()((

'()(4
23)&

CEF/,

&

8

&

88
&

88

&

8
&

8

5"$

'()((

'()(4
23)&

CEF/,

5"$

'()((

'()(4
23)&

CEF/,

' 6

70"

"+(

#$0+

5"$

'()((

'()(4
23)&

CEF/,

5"$

'()((

'()(4
23)&

CEF/,

5"$

'()((

'()(4
23)&

CEF/,

5"$

'()((

'()(4
23)&

CEF/,

5"$

'()((

'()(4
23)&

CEF/,

!"#$%&'(
)*+,%'&-.%/0123345%67879:%!;"<=4

)*+,%'&-.%/0123345%67879:%!;"<=.

;"'=,%'&-.0>3345%67879:%!;"<=4
&?$%67879:%!;"<=

7==@

ABC=.CDD

';E'FG2H4

';E'FG2H.

';E'FG2H2

!"#$%&'(3&'==&%'0>3345
!"#$%&?'=%='$'0113345

I/<';J

2BC=4CDD

I/<';K

2BC=.CDD

)*+,%'&-.%/0123345

)*+,%!';;

;"'=,%'&-.0>3345

G$"&?%'&-.0@.331@5

G$"&?%!';;

G$"&?%!';;H4
G$"&?%!';;H.

G$"&?%!';;H2
G$"&?%!';;H1

G$"&?%!,&*(?0.3345

2BC=4CDD

G$"&?%,0>3345

G$"&?%&?G<;$0>3345

;"'=%'&-.H0>3345

G$"&?%'&-.H0.3345

2BC=4CDD

G$"&?%'&-.H013325

2BC=.CDD

G$"&?%'&-.H0J33@5

2BC=.CDD

G$"&?%,H0>3345

ABC=4CDD

!;L

!';;

&?$

'&-.0>3345

&?G<;$01.3345

;"'=%'&-.0>3345

G$"&?%'&-.0.3345

2BC=2CDD

;"'=,%&?G<;$0.3345

2BC=4CDD

I/<';2

2BC=4CDD

G$"&?%&?G<;$0>3345%67879:%!;"<=4

I/<';4

ABC=.CDD

I/<';>

2BC=4CDD

I/<';A

2BC=.CDD

I/<';.

ABC=2CDD

)*+,%!';;%67879:%!;"<=

�e schematic, as reported by the RTL Netlist Viewer from Quartus.

4 Verilog Testbench

‵ timescale 1 ns / 100 ps

module top();

reg clk = 0;

reg call ;

reg [7:0] arg1 ;

wire [31:0] result ;

wire ret ;

always #10 clk = ~clk ;

�b dut(clk , call , arg1 , ret , result);

initial begin

$dump�le(" �b .vcd");

$dumpvars(0, dut);

call = 0;

@(posedge clk);

call = 1;

arg1 = 8 ′d 1;

@(posedge clk);

call = 0;

@(ret == 1);

if (result != 8 ′d 1) begin

$display ("%d: ERROR: expected 1; got %d", $time, result);

$�nish ;

end

@(posedge clk);

call = 1;

arg1 = 8 ′d 2;

@(posedge clk);

call = 0;

@(ret == 1);

if (result != 8 ′d 1) begin

$display ("%d: ERROR: expected 1; got %d", $time, result);

$�nish ;

end

@(posedge clk);

call = 1;

arg1 = 8 ′d 6;

@(posedge clk);

call = 0;

@(ret == 1);

if (result != 8 ′d 8) begin

$display ("%d: ERROR: expected 8; got %d", $time, result);

$�nish ;

end

@(posedge clk);

call = 1;

arg1 = 8 ′d 10;

@(posedge clk);

call = 0;

@(ret == 1);

if (result != 8 ′d 55) begin

$display ("%d: ERROR: expected 55; got %d", $time, result);

$�nish ;

end

$display ("%d: OK: Verilog Simulation terminated successfully " , $time);

$�nish ;

end

initial begin

#10000;

$display ("%d: ERROR: terminated without �nding result " , $time);

$�nish ; // Failsafe
end

endmodule

References

[1] Andrew Appel. Compiling with Continuations. Cambridge University Press, 1992.

[2] Stephen A. Edwards. Functional Fibonacci to a fast FPGA. Technical Report CUCS–010–

12, Columbia University, Department of Computer Science, New York, New York, USA,

June 2012.

[3] �omas Johnsson. Lambda li�ing: Transforming programs to recursive equations. In

Proceedings of Functional Programming Languages and Computer Architecture, volume

201 of Lecture Notes in Computer Science, pages 190–203, Nancy, France, 1985. Springer.

[4] John C. Reynolds. De�nitional interpreters for higher-order programming languages. In

Proceedings of the ACM Annual Conference, pages 717–740, 1972. Reprinted in Higher-

Order and Symbolic Computation 11(4):363–397 Dec. 1998.

	Introduction
	Transforming Fib to Hardware Form
	Scheduling: Transforming to Continuation-Passing Style
	Capturing Free Variables: Lambda Lifting
	Representing Continuations with a Type
	Making In-Memory Types Explicit
	Making Memory Operations Explicit
	Inserting Explicit Memory Operations

	Implementing Fib in Verilog
	Verilog Types for Haskell Types
	Constants: Type Tag Fields
	Module Interface
	Local Signals
	The Continuation Stack Memory
	The State Process
	The fib and fibp functions
	The load and store functions
	The loadp function

	Verilog Testbench

