
Effectiveness of Teaching Metamorphic Testing
Technical Report cucs-020-12

Kunal Swaroop Mishra

Department of Computer Science

Columbia University

New York, NY, 10027

Gail Kaiser

Department of Computer Science

Columbia University

New York, NY, 10027

Abstract— This paper is an attempt to understand the

effectiveness of teaching metamorphic properties in a

senior/graduate software engineering course classroom

environment through gauging the success achieved by students in

identifying these properties on the basis of the lectures and

materials provided in class. The main findings were: (1) most of

the students either misunderstood what metamorphic properties

are or fell short of identifying all the metamorphic properties in

their respective projects, (2) most of the students that were

successful in finding all the metamorphic properties in their

respective projects had incorporated certain arithmetic rules into

their project logic, and (3) most of the properties identified were

numerical metamorphic properties. A possible reason for this

could be that the two relevant lectures given in class cited

examples of metamorphic properties that were based on

numerical properties. Based on the findings of the case study,

pertinent suggestions were made in order to improve the impact

of lectures provided for Metamorphic Testing.

Keywords-Metamorphic Testing, Software Engineering Education,

Unit Testing

I. INTRODUCTION

Although testing cannot assure the absence of errors in many

situations, it still remains the most proven technique to

improve credibility of a program. Many a times, majority of

the test cases come out to be successful. These successful test

cases are often thought to be useless and kept aside for

regression testing or discarded. More often, test suite acts as

the only form of formal specification since most specifications

written in prose are as use cases or usage scenarios.

Considering the fact that testing is a costly and labor intensive

procedure, it is wise to make the best use of each test case.

Since successful test cases are ignored most of the times,

meaningful spec-related information contained in them remain

untapped [1].

Metamorphic Testing can be used to extract useful

information from the successful test-cases. Metamorphic

properties of the successful test cases can be utilized to build

follow up test cases, enlarging the test suite [1]. Execution of

the metamorphic test cases may reveal bugs that the original

test suite did not and provide sufficient confidence in the

program, upon successful bug fixes, which conventional

testing techniques like equivalence partitioning and boundary

analysis might not have. We now present the basic concept of

Metamorphic Testing (MT).

Concept of Metamorphic Testing

MT is a technique for generating follow up test cases from

successful test cases. Consider a program p that implements a

function f. Let the test suite for testing the program p be

T={t1,t2,t3,…,tn}. If there is a test oracle present, then the

output of p(t1), p(t2), …., p(tn) can be verified against the

result of f(t1), f(t2), …. , f(tn). If the test results are successful,

MT can be applied [1]. MT can be applied even when there is

no test oracle and thus, we cannot know whether the original

test results passed or not [5][7]. But using MT in the absence

of a test oracle was not covered by the course, and thus is

outside the scope of this paper.

MT generates follow up test cases T’= { t1’, t2’,…, tn’} based

on the metamorphic property(s) contained in the function

implemented in the program. A simple example of a function

to which metamorphic testing could be applied would be one

that calculates the standard deviation of a set of numbers.

Certain transformations of the set would be expected to

produce the same result. For instance, permuting the order of

the elements should not affect the calculation; nor would

multiplying each value by -1, since the deviation from the

mean would still be the same (think about the numbers being

“flipped" around the zero on the number line) [2].

Furthermore, other transformations will alter the output, but in

a predictable way. For instance, if each value in the set were

multiplied by 2, then the standard deviation should be twice as

much as that of the original set, since the values on the number

line are just “stretched out" and their deviation from the mean

becomes twice as great. Thus, given one set of numbers, we

can create three more sets (one with the elements permuted,

one with each multiplied by -1, and another with each

multiplied by 2), and get a total of four test cases; moreover,

given the output of only the first test, we can predict what the

other three should be [2].

The above examples can be thought of as numerical since they

are derived from numerical properties directly. An example of

a not so directly numerical MT would be as follows; if you

search the corpus "Romeo and Juliet" for the word Romeo as

first test case, you will find certain lines. If you then search

with “Romeo and foo” where “foo” is not present in the

corpus, you will find zero lines. Further, if you now search

with “Romeo or foo” you will find exactly the same lines as

for the original case. This particular example does not have an

evident mathematical/numerical/set property in it yet a

metamorphic property could be derived. It could be argued

that the property derived is still mathematical but the problem

statement did not have a direct connotation for it.

As part of this experiment, we did not compare the

performance of students in conventional testing techniques

with their performance in metamorphic testing. The paper only

critiques on how well the students understood metamorphic

testing.

In the next section, we will discuss the rationale for this

experiment. After that we will discuss the setup for the student

project in Case Study Group section. Then we will take a look

into the various students’ projects in Projects’ Description &

Metamorphic properties section. After that we will discuss

our findings in Observations section and then put forward our

suggestions in Suggestions section. We will then discuss

about our future work in Future Work section and finally

conclude with Conclusion.

II. EXPERIMENT RATIONALE

The rationale of this review, of Metamorphic Testing
conducted in various student projects, is to understand the
effectiveness of teaching Metamorphic Testing Concept in a
senior/graduate software engineering course class room setting
and to suggest future changes to the mode of the lectures based
on the central findings of the case study. MT can be can be
used both at the unit (subroutine) level and at the full system
level. In this experiment, students were asked to apply MT at
the unit level. The following research questions are the central
aspects of the case study:

1) To what extent were the students successful in finding
metamorphic properties for testing in their respective projects?
The measure of students’ success depended on whether we
could find metamorphic properties in the project that the
students could not find.

2) What were the reasons that contributed to the
performance of the students on finding MT properties? The
reasons that could contribute to the students’ performance
could be to do with the quality of the lectures and materials
provided in class. It could also be how important the students
perceived the concept to be. We delve deeper into this in the
Observations section.

3) What were the types of MT properties that the
students found in their projects? Mostly the students found the
conventional numerical metamorphic properties that were
derivatives of the examples delivered in class or contained in
the provided materials. In this experiment, first author was an
impartial observer and was in no way involved with the course
offering by the second author, and it was the first author who

looked for metamorphic properties in the students’ projects and
evaluated whether or not the students had found them. As an
impartial observer, the author could find various
unconventional metamorphic properties that dealt with
numbers and sequences or rankings. We shall discuss this
further in the Observations section.

4) What were the main causes for the students to find the
properties that they did? As discussed in (2) above, the
materials provided to the students did not contain broader set of
examples showing metamorphic properties. This may be a
reason why the students could only find simple, basic
numerical metamorphic properties which were similar to the
ones contained in the material provided to the class. Perhaps,
these examples were so basic that the students could not dig
deep into the concept of Metamorphic Testing and could not
find varied metamorphic properties. Further, some of the
students did not understand the concept and reported properties
that are not metamorphic.

It is worth mentioning that there were no such projects
encountered where students could define some or all of the
metamorphic properties but were not able to come up with
corresponding test cases, i.e., the derivations of the new test
cases.

III. CASE STUDY GROUP

The projects under consideration in this case study are the

projects done by senior/graduate students as part of the

curriculum of Advanced Software Engineering course that was

imparted at CS department, Columbia University to both

Undergraduate and Graduate students in Fall,2011. The course

is designed to impart knowledge about software lifecycle from

the viewpoint of designing and implementing N-tier

applications with special emphasis on quality assurance [6].

The projects were carried out by group of four students. There

were a total of seventeen projects and all the seventeen

projects were considered for this case study. In the following

section, these projects are discussed at a greater depth.

In order to equip the students with an insight of MT, there

were two lectures provided in class. The first lecture [3] was

an introductory note about MT. The subsequent lecture [4]

delved deeper into the fundamentals of Metamorphic Testing

with citations of examples demonstrating metamorphic

properties. The examples were of numerical type as, in an

introductory class like this, such examples would make it

simpler for the students to understand metamorphic properties.

Some of the examples discussed in those lectures were:

Suppose we have a test case that finds the sum of N numbers

and let’s assume that sum to be S. The test case exhibits the

following metamorphic properties:

1) Permute the N numbers and the sum would still be S.

2) Add 2 to each number and then the sum would be S +

(N*2).

http://ase.cs.columbia.edu/confluence/download/attachments/786582/20Oct11.ppt?version=1&modificationDate=1318453043000
http://ase.cs.columbia.edu/confluence/download/attachments/786582/MetamorphicTesting-Columbia-17Nov2011.ppt?version=1&modificationDate=1321497303000

3) Multiply 2 to each number and then the sum would

be 2*S.

4) Include another number A in the set (making the set

N +1) and then the sum would be S + A.

5) Exclude a number F from the set, making the total

elements of the set N-1. The sum now would be S –

F.

Further, the students were assigned a paper [5] written by

Christian Murphy, Kuang Shen and Gail Kaiser for a follow

up reading on Metamorphic Testing which contained

examples of metamorphic properties similar to the ones

mentioned above.

IV. PROJECTS’ DESCRIPTION & METAMORPHIC PROPERTIES

All the seventeen student projects, submitted as part of the

course, are now discussed with importance being given to the

key idea of the project along with the metamorphic properties

discovered by the students. First author’s comments about

each of the projects are also mentioned so as to give the

readers an idea about how did the projects perform with

respect to finding and testing metamorphic properties.

Project 1
The project intended to build a social site that would discuss

and help in discovering restaurants based on the ethnicity of

the cuisine served in the restaurants. The site would be seeded

with a knowledge base about various ethnic cuisines, so that

reviews of restaurants, in addition to being rated by users,

could be rated in a slightly more objective way. The students

also planned to acquire data from MenuPages, or some similar

site, to include information about the restaurants' dishes and

the authenticity of those dishes along with the reviews and any

other information.

Metamorphic properties:

1) If a given restaurantId and page number 1 returns a

certain view, then the same restaurantId with any

page number <= 0 should return the same view.

2) If a given restaurantId and a given page number

returns a valid view, then the same restaurantId with

any page number should return a valid view.

3) For a given restaurantId, if page number X and page

number X+1 return the same view, and both views

are valid, then for any integer Y > X + 1, the same

valid view should be returned.

4) If a given restaurantId and page number 1 returns a

failure message, then that restaurantId and any page

number (positive, negative, or zero) should return the

same failure message.

5) For a given restaurantId, if the page number 1 returns

a valid view, then the empty page argument should

return the same valid view.

6) If a given restaurantId returns an invalid restaurantId

error page redirect for a given Review, then it should

return the same error page for all Reviews.

7) If a given restaurantId and a given Review object

with weight attribute X returns a given valid redirect

page, then the same valid redirect page should be

returned for any weight attribute Y.

8) If a given restaurantId and a given Review object

with non-Null text attribute X returns a given valid

redirect page, then the same valid redirect page

should be returned for any non-Null text attribute Y.

If a pair of input arguments create a new Review r

with a given timestamp X, then the same pair of input

arguments one minute later should create the same

Review r with the timestamp X + 1 minute.

Comments:

The metamorphic properties found by the students, as part of

the project, are in accordance with what the author thinks.

Besides, the author could not find any extra metamorphic

property. The properties listed also seemed very interesting as

they were not exactly numerical properties. However, it could

be argued that they are derivatives of numerical metamorphic

properties.

Project 2

The students intended to build a hotel management system that

would help users to search for hotels, tariffs, etc. and book

rooms as per their stay. The users of the site could search for

hotels based on tariff/room/availability. The user could book

available rooms as per his/her criteria.

Metamorphic properties:

1) Book a room for duration 11th - 15th. Increment the

start and end date by 2 days and book the room for

duration 13th - 17
th

 makes a booking of 5 days in

both the cases.

2) Book a room for duration 11th - 15th. Now book the

same room for date 16th. Check that the date 16th is

included in the reservation.

3) Book a room for duration 11th - 15th. Now cancel the

booking for one day i.e. 15th. Check that the date

15th is excluded from the reservation.

4) Book a room for 3 durations in any random order i.e.

21st-25th, 10th-15th, 16th-20
th

. The room is booked

for duration 10th to 25
th

.

Comments:

The author could not think of any additional metamorphic

properties. The students could figure out these metamorphic

properties because of the fact that the project’s core idea was

based on numerical properties which are easy to associate with

Metamorphic Testing.

Project 3

The students designed a multi-player interactive game. Users

could log on to the system to initiate the game. Once logged

on, a player would be given an identity randomly - killer,

medic, or lay person. Each player would only know his/her

own identity when the game starts. The game is essentially a

battle; the killer against the lay people and medics. The battle

is fought while identities are not revealed and ended when

identities are exposed. The lay people would win when the

identities of all the killers have been revealed and the killers

would win when the only people left in the game are killers.

The goal of the medics in the game is to heal lay people that

have been killed by the killers.

Metamorphic properties:

None Identified.

Comments:

The students perhaps could not identify any metamorphic

property. Hence, they did not mention any. One metamorphic

property, evident from the project description is the way

assignment of role is handled. It is basically request _number

mod 3. Suppose first person logs in; she will be assigned killer

(since 1 mod 3 = 1). This could have been pointed out by the

students. Either, it was hard for them to understand the

property or they did not understand MT.

Project 4

The project was an implementation of a board game. The users

would attend this small game by putting pieces of different

shapes on the square chessboard. In this game, the users were

required to use their own strategies to put their own pieces.

Metamorphic properties:

1) Encryption of passwords using encoding algorithm.

Comments:

The property listed is not really a metamorphic property. But

position of a piece on a board is a metamorphic property, i.e.,

position of a piece on the board now (after some game time

has elapsed) as compared to position of that piece on the board

during the start of the game is a metamorphic property.

Further, the position of all the pieces on a board could be

identified as the state of the board and the current state of the

board (after some game time has elapsed) as compared to the

state of the board during start of the game could be a

metamorphic property as well. Students failed to point out

these properties. Again, it may be the case that the students did

not understand metamorphic properties well.

Project 5

The students implemented a gang game. In the game there are

several gangs in the world. Each gang has its own base and

members, while the final mission is to conquer other gang's

base and be the greatest gang in the City. Every player in the

world belongs to one gang, and has his/her own profile,

weapons and money. Players could cooperate with their

friends in the same gang to rob banks, collect protection

money or join other exciting missions. After successfully

finishing these missions, the system would provide user with

money as awards, which would enable a user to upgrade

weapons and base. When one gang is powerful enough, it

could try to conquer other gang's base and expand its territory.

Metamorphic properties:

1) Player with weapon whose power is 20 can attack the

guard whose health is 100 and make his health 80.

2) Player whose credits are 200, when buys a 100

credits weapon his credits become 100.

Comments:

What has been listed as a metamorphic property is not exactly

a metamorphic property. Rather the property should have

been that when the guard with health 100 is attacked by a

weapon of 20 and a weapon of 30 his health is 50 and when

the same guard with health 100 is first attacked by weapon of

30 and then by weapon of 20, his health is 50 again. The

students could have also considered where both test cases in

the pair start from the same state, i.e., both test cases have

initial health of H. So, at health H when attacked with weapon

of W if remaining health is X, then it should be that at the

same health H when attacked with weapon of W+10

remaining health should be X-10. Further, if at health H when

attacked with weapon W results in remaining health as X, then

at health H-10 when attacked with weapon W remaining

health should be X-10 (provided that original H > 10 since we

cannot go below 0).

Project 6

The project students implemented a social networking site that

aimed at automatically providing users with customized social

activities and like-minded friends. When web-users would be

browsing this site, joyful mingles and like-minded friends

would be immediately recommended based on the knowledge

of user's personal information, which would be collected from

user's profile or pop-up questionnaires.

Metamorphic properties:

1) The metamorphic property of the test unit was that

you could do permutation and combination of the

original test cases and generate new test cases.

Comments:

The author does not think that the property listed is a

metamorphic property. What could be a metamorphic

property is, the recommendations done for users with

similarities. The order should not matter but the

recommendations should be same for all similar users.

Project 7

The students implemented a fantasy football league where

there were team owners who managed the teams and there was

a commissioner who controlled the creation of the league.

Before the start of the professional football season, a league

Commissioner would log into the fantasy football application

and, using an administrative console, would create the fantasy

football League in which a group of Team Owners would

play. Naturally, the league Commissioner would also be

responsible for creating the Team Owner accounts that each

person playing in the league would use to log into the

application. Through a lottery, each Team Owner would be

assigned a slot order number in which they would draft real

National Football League (NFL) Players. Once the draft is

completed and Team Owners would finalize their starting

rosters, after each week of the NFL season scoring for each

fantasy team would be calculated whereby Players would earn

their team points based on their performance in their weekly

games.

Metamorphic properties:

1) The metamorphic property was the team’s counter

per position player, i.e., if a player is benched or

started, the team counter should change accordingly.

Comments:

The property listed is correct as per the author. But the

students could have also identified another metamorphic

property; on randomly adding/removing players from certain

positions, do the credits add/reduce correctly? Since the

project has a strong numerical underlying, the mentioned

property could have been identified. For instance, a player p1

at position A has a value of X and a player p2 at position B

has value of Y. If p1 is removed followed by removal of p2,

the value of credits should T-X-Y (where T is the team’s total

credit). Alternatively, if p2 is removed followed by p1’s

removal, the total credit should still be T-X-Y. Further, if total

credit of the team were T-10, removal of p1 followed by

removal of p2 should have resulted in total credit of T-X-Y-10

as compared to T-X-Y when the team’s initial credit was T.

Project 8

The project implemented is a shooting based game where

users are challenged to shoot as many targets as possible in the

allotted time. Different targets are worth different points. The

duck which is the most challenging to shoot is worth the most

at 20 points. The army men are worth the second most at 10

points. Lastly the plane is worth the least amount at 5 points.

As users select games, they are assigned to the next available

game room. Each game room would close when it has reached

the maximum amount of players and another room would be

opened.

Metamorphic properties:

1) Changing a valid user ID to another valid user ID

should yield correct result.

2) Changing invalid user ID to another invalid user ID

should throw exception in both cases.

3) Changing an invalid user ID to a valid user ID should

go from yielding an error to correctly working.

4) Changing a valid user ID to an invalid user ID should

go from correctly storing information to yielding an

error.

Comments:

The students identified most of the properties that the author

could. But the author could identify three metamorphic

properties which are not listed by the students. They are 1) the

list of top scores won’t change if a game is played and the

score generated in the game is not greater than the tenth score

on the list. 2) Similarly, for list of top users as well afore

mentioned metamorphic property could be used. 3) Since this

is a shooting game with points involved, the students could

have used the following metamorphic property; Assume a

shooter starts with zero points and first shoots a duck to get 20

points and then shoots an army man to get 10 points bringing

her total point tally to 30. Imagine another shooter playing in

another game room starts off at zero point and first shoots an

army man worth 1 point and then shoots a duck worth 10

points amassing a total of 30 points as well, i.e., irrespective of

the order of targets, if two players have shot down the same

set and number of targets, they should have same total points.

Similarly, if a player had 5 points then shooting a duck and

then an army man in that particular order would have taken his

points tally to 35 as compared to 30 points when the player

started with zero points.

Project 9

The students implemented a stock paper trading tool with

integrated social networking functionality. The project

combined concepts of a regular online brokerage service with

collaborative aspects of social networks, which included

friends, posting comments on the profiles of other users,

private messaging and rankings of individual traders.

Metamorphic properties:

1) Buying 10X shares would be 10 times costlier than

buying x shares.

Comments:

The property mentioned is a straightforward metamorphic

property that the students would have found in the materials

provided in the class. In fact, it is not really stated properly; a

metamorphic property always involves a pair of test cases.

The stated property is only one test case. What could have

been an identifiable metamorphic property is a sequence of

transactions that lead to a same amount. For instance, let’s

assume a buyer has amount A. When the buyer buys shares

worth a total of amount X, then the buyer is left with A-X(and

A-X > 0). Now when the buyer buys shares worth a total of

amount Z, then the buyer is left with A-X-Z (again we assume

A-X-Z > 0). If another buyer with total amount A buys shares

worth Z first and then shares worth X, he should have leftover

amount of A-X-Z as well. Further, since there is a social status

sharing wall, it could be tested that suppose the wall holds “n”

messages and if there are “n” new updates then the user's wall

would hold the new “n” messages and the old “n” messages

would vanish. The ranking page can also exhibit metamorphic

properties similar to the ones mentioned in Project 8’s

comments.

Project 10

The students implemented a multi-player economics game

where a player had either a seller or a buyer role. The goal of

the game is to obtain as much money as possible. As a user

accumulates money, he would be awarded badges or upgrades

or some form of flair. The game is continuous as people log on

they would be placed in whichever role has fewest people. The

application would keep track of each user's current role, their

accumulated cash, and their current buy/sell price.

Metamorphic properties:

1) The change in the amount of money that the buyer

has should be exactly equal to A - P. As this is linear

in A, any metamorphic property of linear functions

applies to the change in buyer money. For instance, if

we increase the allowance by a certain amount D, we

will expect the resulting change in money to also

increase by D. If we multiply both A and P by the

same constant K > 0, the resulting change in money

should also change by the same factor K.

2) The change in the amount of money that the seller

has should be exactly equal to P - C in every case,

except for the case when P <= 0. Therefore, the same

metamorphic properties apply as in the previous unit

test. For instance, increasing the asking price by D

should result in an increase to the change in money of

the same D. For P <= 0, all values should result in the

same error and therefore we cannot extract any

metamorphic properties.

Comments:

The metamorphic properties identified by the students are

mostly in accordance with what the author thinks. However,

the students could have identified more properties. Another

metamorphic property could be if a buyer or seller did back to

back transaction, the left over amount should be same

irrespective of the order of the transactions. Similar

metamorphic properties have been described in the comment

section of Project 9, 8, 7 and 5.

Project 11

Students implemented a game board with several spaces along

the margin, forming a loop. Spaces indicated different

properties, such as a building, a hospital, a chance room, etc.

Two to three players would start one game with a specific

amount of money for each at initialization of the game. All

players would start from the low-right corner check of the

board, and go clockwise in turns. In each turn, each player

would throw the dice and advance his/her piece around the

board to the corresponding number of squares.

Metamorphic properties:

1) A player with $1000 wants to upgrade a property cost

$500. He/she has $500 left.

2) Player A with $1000 robs player B with $1000 of

$500; after robbing, A has $1500 left, and B has $500

left.

3) A player with $1000 wants to buy a property cost

$500. He/she has $500 left.

4) A player with $1000 should pay the rent $500.

He/she has $500 left.

Comments:

The property mentioned is a straightforward metamorphic

property that the students would have found in the materials

provided in the class. But again, these aren't really stated

properly; a metamorphic property always involves a pair of

test cases. The stated properties come across as single test

cases. An identifiable metamorphic property could be one

where two players with same starting amount did N similar

transactions but in different order and ended up at equivalent

leftover amount after those N transactions. Similar

metamorphic properties have been described in the comments

section of Project 9, 8, 7 and 5. Further, there could be more

metamorphic properties like rolling a dice twice and seeing

where a player lands could be one. If the dice throws out the

same numbers but in different order, the player’s position

should not change, given the player started from the same

starting position. The position of all the pieces on a board

could be identified as the state of the board and the current

state of the board (after some game time has elapsed) as

compared to the state of the board during start of the game

could be a metamorphic property as well (as discussed in

comments section of Project 4).

Project 12

The students created a card game called hearts. New user

would run the client application to connect to the server, and

would register a new ID in the login page and then log into the

game lobby. After entering the lobby, the user would choose

which table to join. The user would join one table and the

lobby page would transfer to a READY/EXIT page, as soon as

4 people are inside. The user would click READY along with

other users to begin the game. After the game, the user would

get his rank and score.

Metamorphic properties:

Not clearly mentioned.

Comments:

The students did not mention any metamorphic property

clearly. The testing of ranking and scoring functionalities

would have metamorphic properties. Similarly, top ranks list

would also have metamorphic property as discussed earlier.

Project 13

The students created an online version of the popular casino

game BlackJack.

Metamorphic properties:

1) Changing the order or arrangement of the cards in

your hand does not change its value.

2) Many hands are semantically equivalent. Hands are

measured by their value, and many hands can have

cards that end up adding up to the same value as

other hands. For example, an 8 of hearts and 7 of

spades is "semantically equivalent" to a 9 of spades

and a 6 of hearts, whose value is also 15.

3) Adding a card to hand adds the value of that card to

your hand. Ex. If you have a hand worth 10, let's say

a 5 of hearts and another 5 of clubs, and you hit to

gain a 10 of hearts, you now have a hand worth 20.

Comments:

The students could find all the metamorphic properties that the

author could find. A possible reason for this could be that the

project was based on numerical properties.

Project 14

The students tried to create a social network based man page.

The project aimed to provide a meaningful user interactive

man page that would allow users to view the comments, useful

tips and practical examples of the commands.

Metamorphic properties:

None Identified. They assumed that metamorphic properties

are applicable only to numerical input/output.

Comments:

The students here thought that metamorphic properties are

only for numbers and could not be extended beyond that. The

metamorphic property existing in their project is related to

their functionality that searches for top searched command.

Now if a user searches for a command that is less searched

than the least top searched command, the list displayed for top

searched commands should not be altered. Since the students

did not understand Metamorphic Testing correctly, they could

not identify this property.

Project 15

This was a question game: users would compete with each

other to solve series of questions in a short amount of time.

When a game would start, people would answer n questions in

a row and they would be rated on the number of good answers.

Everything would be done under a strong time constraint and

should look as smooth as possible. So, as soon as a user would

answer he would see the result and then would be able to go

and join a new game.

Metamorphic properties:

1) If we shuffle the submission order, the score gained

from right answers shouldn't change (though the

bonus point will change) and the result screen

ranking should be the same if who gets the bonus

point can't change the ranking.

2) If we change the answers but keep the submission

time the same, the bonus point should award to the

same user.

3) If everyone submits n second earlier, the bonus point

should award to the same user.

4) If everyone answers one more question right

(everyone's score++), the ranking should remain the

same.

Comments:

The students found all the properties that the author could

find. The students also found some interesting properties

related to time.

Project 16

The students implemented a basic competitive typing game.

This typing game would enable two players to play head to

head in a game of "who-can-type-this-arbitrary-string-the-

fastest". The implementation would be played remotely by

multiple users over the internet. The game would be

implemented as a client/server application; the server would

maintain a database of each user's login, their overall statistics

and the possible strings that could be used in a round of the

game. There would also be an admin maintaining the

application.

Metamorphic properties:

1) On addition of new Words per Minute the user’s old

Words per Minute should become the weighted

average of the old WPM and the new one.

2) If you type some multiple times of some number of

words in a given time then that should multiply the

resultant words per minute by said multiple.

Comments:

The students identified most of the properties that the author

identified. But there were more properties that the students

failed to identify such as if you click on “view game history”

after playing an extra game, it should display n+ 1 games,

where n is the number of games being displayed before

playing that extra game. The top ten players’ list can also

have a metamorphic property that has already been discussed

earlier.

Project 17

The students designed an online poker game.

Metamorphic properties:

1) Multiplying the small blind by any positive integer

should not change its equivalence class.

2) Multiplying the small blind by any negative integer

or zero should change its equivalence class (except

when small Blind = 0)

3) Multiplying i by any positive integer should not

change its equivalence class.

4) Multiplying i by any negative integer should always

change its equivalence class (except when i = 0)

5) Multiplying i by any multiple of 4 should not change

the method output.

6) abs(seatId) % 4 is a valid input for the id of a seat.

Comments:

The students identified all of the properties that the author

identified as well. This could be possible because of the fact

that the project had a strong numerical underlying. The

students defined an equivalence relation for the game from

which they derived the equivalence class for the game.

V. OBSERVATIONS

Effectiveness of the Metamorphic Properties Lecture

In order to appreciate the inference drawn out from the

findings, the projects were divided into three classes; the

projects that found all the properties found by the first author

were placed in Class A. The projects that could determine

some of the metamorphic properties but not all were put in

Class B. The projects that could not understand what

metamorphic properties are and reported some false

metamorphic properties that did not exist in the project or did

not report any metamorphic property at all were placed in

Class C. TABLE I shows the total number of projects in each

class

TABLE I.

Class Number

of

Projects

Percentage

of Projects

Project

IDs

Class A: found all

Metamorphic Properties

5 29.41 1, 2, 13,

15, 17

Class B: found few

Metamorphic Properties

7 41.18 5, 7, 8,

9, 10,

11, 16

Class C: didn’t

understand/reported

false Metamorphic

Properties

5 29.41 3, 4, 6,

12, 14

From Table1 it can be inferred that the most of the students in

the class either did not understand the concept of metamorphic

testing completely or understood metamorphic testing

partially. Total number of projects in Class B and Class C are

12 which are about 70% of the total projects. In light of this

observation, it can be inferred that most of the students taking

the class could not grasp

the notion of metamorphic properties in testing completely.

Although unlikely, it could also be possible that the students

understood the concept of metamorphic testing but did not

understand how to apply the concept to their own projects, and

if asked to apply to some simple program rather than their own

project, might have been able to do so (but the course did not

address this).

There can be several contributors for the above mentioned

shortcoming. (1) The lectures provided probably could not

reach the students in the form that the instructor expected.

One possible factor for this could be that the materials

provided in class could be inadequate. The examples given in

the class might have been so simple that the students could not

use it as a base so as to extrapolate advanced/different

metamorphic properties. It can also be argued that the

examples provided in those lectures were deliberately

simplified in order to aid the students’ understanding of the

topic. Another reason could be the inability of majority of

students to appreciate the concept of MT when taught in the

class. Since MT is relatively a lesser known topic in unit

testing, it might be the case that the majority of the students

could not relate to MT as they did not have prior

familiarization with MT (2) Overall acceptance of MT by the

students. Since MT was included for the first time in the

curriculum, it could have been the case that the students would

have associated less importance with MT than other

conventional testing approaches. Further, the students might

not have taken a liking for the concept as compared to other

testing concepts taught as MT is not as straight forward as the

other concepts are. And as already mentioned, since MT is not

taught in other lower level classes, students might not relate to

it as readily as compared to other topics with which they have

some familiarity.

Types of Metamorphic properties identified

Most of the metamorphic properties identified in the projects

were of numerical type. The properties identified were either

similar to the examples given in the class or were derivatives

of the same. Most of the students were able to identify these

example related properties. But they failed to identify the

other metamorphic properties in their projects. For example in

Project 8, the students found various metamorphic properties

related to the user ID as discussed in the above section. But

they did not notice the metamorphic property in the

functionality that would list the top scores and top players.

The metamorphic property that lies here is that if player plays

a game when the top ten scores is already populated then after

playing the game if the score of the player is less than the least

score in the top scores’ list, the player’s score will not be

accommodated in the list and hence, the list won’t change.

Similar property lies in the top players’ list as well.

In Project 5, the students identified a metamorphic property as

“Player with weapon whose power is 20 can attack the guard

whose health is 100 and make his health 80”. Though the

students manifest that they have some notion of metamorphic

properties, they do not put across the usage of the property

clearly. Metamorphic Testing is used to exploit information

contained in test cases. The above property is basically a

specification that the student should have a tested. It is not a

metamorphic property in its current form. The metamorphic

property would be that when a guard of health 100 is attacked

by a weapon of power 20 and then is again attacked by a

weapon of power 30, the guard’s health is 50. The same guard

with health 100 is when attacked by a weapon of power 30

and then is again attacked by a weapon of power 20, his health

is 50, i.e., in both the cases, the health of the guard is the

same. Another way of testing this metamorphic property

would be to see that when a guard of health 100 is attacked by

a weapon of power 20 and when the same guard of health 100

is attacked by a weapon of power 2 * 20 = 40, the difference

in remaining health of the guard after execution of both the

cases should be equal to the difference of the power of the two

weapons used in both the cases.

Some of the students probably could not comprehend the

concept and mentioned properties that were not metamorphic.

For example in Project 3, the students mentioned in the report

that they were testing metamorphic properties but the

properties are not mentioned in the report. One possible

metamorphic property in their plan could have the way players

are assigned roles. Since the program assigned roles by

determining the number of players modulo four, it could be

tested that a player’s role does not change if the total number

of players are p (where his role would be p modulo 4) and

when the total number of players are p+4 (where his role

would be (p+4)modulo 4).

The students of Project 14 assumed that metamorphic

properties are only applicable to numerical input/output which

is a gross misinterpretation of the concept. However, it should

be noted that this assumption is understandable given the

lecture materials shared in the class. They had a metamorphic

property regarding the functionality top searches similar to the

functionality of top scorers in Project 8 which is discussed

above.

In Project 6, the students assumed that permutation class of

metamorphic properties can be applied to test cases (not the

input) and devised a metamorphic property around this. This is

again an instance of incorrect understanding of metamorphic

testing. This could be contributed to the problem of poor

English of the students, i.e., what the students meant were the

inputs of the test cases.

The students that could identify all the known metamorphic

properties in their projects could do that because the projects

had an arithmetic background. Thus, they could relate to the

examples of MT provided in class in order to derive the

properties that they did. For example in Project 2, the students

found out all the project related metamorphic properties which

are discussed in the above section. Similarly, students of

Project 13 and Project 15 could find all the metamorphic

properties because their projects had a numerical/arithmetic

base.

However, there was only one team (Project 1) whose students

found very unique metamorphic properties. But this could be

termed as an aberration in the metamorphic property finding

trend of the class. For instance, “if a given restaurantId and

page number 1 returns a certain view, then the same

restaurantId with any page number <= 0 should return the

same view” was a metamorphic property identified by the

students doing Project 1. This property is trivial to understand.

But the property does not come across as an obvious

metamorphic property that can be identified by students who

do not have prior familiarization with Metamorphic Testing.

Similarly, the metamorphic property “If a pair of input

arguments create a new Review r with a given timestamp X,

then the same pair of input arguments one minute later should

create the same Review r with the timestamp X + 1 minute” is

another unique property which shows the impact of time on

the project. The property manifests that a Review created with

certain arguments will not change when created at a later time

if the arguments are repeated. This property also corroborates

the fact that these students could find properties that were

different from the examples provided in the class as there was

no such example given in the lectures or the materials

provided.

After analyzing the nature of the properties identified during

this exercise, it can be concluded that almost all the properties

identified were of numerical type. This could be because of

the MT examples given in class. Since the lectures delved into

explaining MT through numerical examples, students could

relate to numerical metamorphic properties better. Further, the

students who could identify all the metamorphic properties

that their project contained could do so because the project

had an arithmetic base.

There were also a few students who did not understand the

concept of MT completely or misinterpreted MT and ended up

in identifying certain properties that were not metamorphic.

This could be because either the students did not concentrate

on the lectures regarding MT or the overall lectures fell short

in explaining MT to the students. For example, students of

Project 3 did mention the term Metamorphic Testing in their

testing plan but did not mention any metamorphic properties.

One possible metamorphic property in their plan could have

the way players are assigned roles. Since the program assigned

roles by determining the number of players modulo four, it

could be tested that a player’s role does not change if the total

number of players are p (where his role would be p modulo 4)

and when the total number of players are p+4 (where his role

would be (p+4)modulo 4). Alternatively, students of Project

14 assumed that metamorphic properties are only applicable to

numbers (probably because of the examples given in class)

and did not find other metamorphic properties that existed in

their program. For example, they have a functionality that

searches for top searched commands. If there are N top

searched commands (let the commands be named 1,2,….N

where 1 is top top-most searched and N is least top-most

searched), then if a command M is searched less number of

times than N, the list of top most searched commands should

not be altered. It is worth noting that this is still numerical, in

a sense, even though the inputs are not actual numbers.

VI. SUGGESTIONS

It can be clearly seen that the lectures fell short of its intent as

almost 70% of the students either failed to understand the

concept of Metamorphic testing or misinterpreted it entirely.

Hence, it is safe to suggest that the method of teaching or

lectures delivery attempted needs to change. Metamorphic

Testing lectures may be made more examples oriented than

what it is in its current form. This would definitely give the

students a better understanding of MT. The examples cited in

the observation section can be looked upon to derive such

examples. Further, if the course aims at making students

understand the concept of metamorphic testing with greater

priority, assignments can be handed out to the students where

they would be asked to find basic numerical metamorphic

properties as well as unusual metamorphic properties like page

contents’ limit testing wherein if a page can hold N items, then

N+1 items would need another page. Alternatively, any

number of items less than N would not affect the total number

of pages. Similarly, top scorers functionality’s (discussed in

above section) metamorphic property where in showing top 10

scores would show same scores in same order if new user did

not score more than least score on the top 10 list can also be

included as an example. Even if the students cannot identify

all the properties, discussion of the solutions of these

assignments would inculcate a better understanding of

metamorphic testing among the students.

Further, it was observed that the majority of the properties

identified by the students were of numerical type. This is also

because of the fact that the students, during the lectures, were

given examples of such basic numerical metamorphic

properties to aid their understanding. However, this did not

give the students a wholesome perspective about metamorphic

properties and their testing. It would be very beneficial if

different sets of metamorphic properties’ examples were

included in the training set as a wider precedent base would

help students identify different metamorphic properties. The

approach described in the above paragraph would also suffice

to address this problem.

VII. FUTURE WORK

Based on our findings, we have two targets for the future. The

short term goal is to overcome the short coming of the

materials provided in the class on Metamorphic Testing so that

the students are well equipped to find these properties in their

own projects.

In order to achieve this, the example base provided in the

class’ slides need to be changed. The base examples need to

have a wider variety of metamorphic property types so that the

students get a large precedent to follow and learn from.

Another approach (as discussed in Suggestions) could be to

assign homework/assignments with respect to only

metamorphic property. This would have two advantages; 1)

Students would give more priority to Metamorphic Testing.

2) Students would understand the concept better. How well the

students understand Metamorphic Testing depends on the

assignments provided. Hence, it is important to come with an

assignment structure that is robust enough to cater to the

curiosities of the students. Hence, the short term goal is to

enhance the material provided in class and come up with full-

bodied assignments for the students and we aim to achieve this

over the summer of 2012.

The long term goal is to implement the enhanced material and

assignments in a class room setting over the fall of 2012

(when the course would be offered again) and gauge the

success achieved by the implementation of the revamped

approach for teaching Metamorphic Testing in a class room

setting. We also intend to come up with introductory level

materials for teaching Metamorphic Testing that would aid

instructors at other schools as well.

Future instructors who intend to work on this subject can look

at the results obtained from our future tests and try to improve

the process if it is deemed feasible or necessary. Further, we

believe that there are other classes of metamorphic properties

yet to be identified. That can be an interesting route to foray

into. It would also be an interesting challenge to build an

educational game that focuses on teaching concepts of

metamorphic testing to students.

VIII. CONCLUSION

This article has introduced the results of teaching the concept

of MT, primarily as a concept to increase the test suite and

thus, increase the chances of catching a bug, in a class room

environment. The results show that concept of MT was not

fully understood by the majority of the class. Further, the

article analyzes the results obtained as a result of the case-

study of various student projects. The observations show that

the material provided in class was inadequate. Further, the

students did not give considerable importance towards

understanding the concept of MT.

Besides the findings, we also suggest reforms in order to

achieve greater success in teaching MT to the class with the

help of enhanced material and assignments. We aim at making

the changes to the material by summer 2012 so that we can

apply these changes to test again when the course would be

again offered in fall 2012.

IX. ACKNOWLEDGMENT (HEADING 5)

The Programming Systems Laboratory is funded in part by

NSF CCF-1161079, NSF CNS-0905246, and NIH 2 U54

CA121852-06.

X. REFERENCES

[1] T. Y. Chen, S. C. Cheung, and S. Yiu. Metamorphic
testing: a new approach for generating next test cases.
Technical Report HKUST-CS98-01, Dept. of Computer
Science, Hong Kong Univ. of Science and Technology,
1998.

[2] C. Murphy and G. Kaiser. Improving thedependability of
machine learning applications.Technical Report CUCS-
49-08, Dept. of ComputerScience, Columbia University,
2008.

[3] http://ase.cs.columbia.edu/confluence/download/attachme
nts/786582/20Oct11.ppt?version=1&modificationDate=13
18453043000

[4] http://ase.cs.columbia.edu/confluence/download/attachme
nts/786582/MetamorphicTesting-Columbia-
17Nov2011.ppt?version=1&modificationDate=132149730
3000

[5] Christian Murphy, Kuang Shen and Gail Kaiser,
Automatic System Testing of Programs without Test
Oracles. International Symposium on Software Testing
and Analysis, July 2009.

[6] http://ase.cs.columbia.edu

[7] Christian Murphy, Kuang Shen and Gail Kaiser, Using
JML Runtime Assertion Checking to Perform
Metamorphic Testing in Applications without Test

Oracles. 2nd IEEE International Conference on Software Testing, Verification and Validation, April 2009

