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Abstract

Computational complezity has two goals: finding the inherent cost of
some problem, and finding optimal algorithms for solving this problem.
Information-based complexity (1BC) studies the complexity of problems
for which the available information is partial, contaminated by error, and
priced. Examples of such problems include integration, approximation,
ordinary and partial differential equations, integral equations, and the so-
lution of nonlinear problems such as root-finding and optimization. In this
talk, we give a brief overview of IBC. We focus mainly on the integration
problem (which is a simple, yet important, problem that can be used to
illustrate the main ideas of 1BC) and the approximation problem (which
will be of most interest to specialists in learning theory). One important
issue that we discuss is the “curse of dimension”—the depressing fact that
the worst case complexity of many problems depends exponentially on di-
mension, rendering them intractable. We explore 1BC-based techniques
for vanquishing the curse of dimension. In particular, we find that ran-
domization beats intractability for the integration problem but not for
the approximation problem; on the other hand, both these problems are
tractable in the average case setting under a Wiener sheet measure.

1 Introduction

Computational complezity is a measure of the intrinsic computational re-
sources required to solve a problem. In addition, those who study the
computational complexity of a problem typically are interested in opti-
mal algorithms, i.e., algorithms consuming the minimal resources neces-
sary to solve the problem. An example is given by the sorting problem
in a decision-tree model of computation. For a given n > 0, we want to
know the complexity (minimal number of decisions) of sorting a set of



n elements chosen from a fixed totally-ordered set. We also want to find
an optimal algorithm, i.e., one that sorts any set of size n using a min-
imal (or nearly-minimal) number of comparisons. It is well-known that
if we use a worst case setting to measure the cost of an algorithm, then
the complexity is proportional to n log n, and mergesort and heapsort are
nearly-optimal.

Note that we have complete information for the sorting problem; that
is, we can completely specify any particular instance of the sorting prob-
lem using a finite amount of resources (e.g., bits). This is because of
the inherently-finite nature of the problem. But (as we shall see), many
problems require infinitely-many degrees of freedom for their complete
specification. Hence using a finite a finite amount of resources, what we
can know about any particular instance of such a problem is necessarily
incomplete.

Information-based complexity (1BC) studies the complexity of problems
for which we don’t have complete information about any problem instance.
More precisely, IBC studies the complexity of problems for which the avail-
able information is

e partial, i.e., the available information doesn’t uniquely identify the
problem instance,

e contaminated by error, such as roundoff or measurement error, and
e priced, so that each information measurement has a cost.

Because of space limitations in this article, we omit proofs and biblio-
graphic references. The interested reader should consult the Bibliography
of this paper (especially [5]) for citations and fuller discussion.

2 An Example: The Integration Prob-
lem

We can illustrate the basic concepts of IBC via a simple example, univariate
integration. Suppose we want to compute integrals

S(f):/O f(x)dz VfeF.

Here, F' is a given class of integrands. Unless we are very lucky, the
class F' will generally include functions that don’t have closed-form an-
tiderivatives, so we won’t be able to apply the fundamental theorem of
the calculus.

What do we know about any f € F when trying to compute S(f)?
Typically, we only have the information

N(f) = [f(t2), -, ftn)].

Here, the sample points t1,...,t, € [0.1] may be chosen either adap-
tively (i.e., each sample point can depend on the previously-chosen sam-
ple points, so that the sample points depend on f) or non-adaptively (the
same sample points can be used for all f). Clearly, this information is



partial (unless F' is finite-dimensional). Moreover, roundoff or measure-
ment error can contaminate the information values. Finally, there is a
cost for obtaining each information value; depending on the nature of the
class I, this cost might be the cost of running a subroutine or the cost of
running an experiment.

For the sake of concreteness, let us suppose that F' is the class of all
functions f: [0,1] — R satisfying the Lipschitz condition

IFE€) —fml < 1€ —nl  VEne[0,1].

(We refer to this knowledge as global information, as opposed to the local
information N(f) about any particular f € F.) We then construct an
approximation

S(f) = U(f) = ¢(N(f)).

The quality of such an approximation is given by its error

e(U) = sup |S(f) = U(f)I.

feF

Note that this is a worst case error measure; other definitions (such as
average, probabilistic, and randomized) can be used as well.

Figure 1: Functions sharing the same information

Note that the available information N(f) does not uniquely charac-
terize any f € F', see Figure 1. This leads to a powerful adversary prin-
ciple, namely, that U(f) must approximate S( f) for any f € F satisfying
N(f) = N(f). More precisely, let us define the radius of information as

r(N) = sup radS(Nfl(y)),
yEN(F)

with rad denoting the radius of a set. We then have

r(N) = nf Ce(¢,N).

That is, the radius of information is a sharp lower bound on the errors of
all algorithms using said information.



Let fiower and fupper be the lower and upper functions of the envelope
of functions sharing the same information as f, and let fi,ia = %( Sfiower +
fupper) be the center of this envelope. Defining ¢*(N(f)) = S(fmia), we
have

e(¢”,N)=r(N) = sup S(h).
heF
h(t1)=-=h(tn)=0

That is, this central algorithm is an optimal error algorithm.

Using the second equality in the previous equation, we find that

n—1
r(N) = %t% + % Z(ti+1 — ti)2 + %(1 — tn)z.
i=1
Moreover, if N(f) = [y1,...,Yn], our optimal error algorithm takes the
form
n—1
" (N(f)) =t + Z 5 + yir1) (tivr — ti) + yn(1 — tn).
i=1

That is, the optimal error algorithm is a linear algorithm.

We previously mentioned that information can be adaptive or non-
adaptive. Clearly, non-adaptive information is simpler than adaptive in-
formation. Moreover, non-adaptive information can be evaluated in par-
allel. One might ask whether adaptive information has any advantage
over non-adaptive information. The answer is “no.” For any adaptive
information N®, there exists non-adaptive information N™°" such that

card N"*" < card N* and  7T(N"") < r(N?).

Here, card N is the maximal number of information evaluations used by
N(f) over all f e F.

We now know how to choose an algorithm that best makes use of given
information. What is the best way of choosing the information? That is,
we want to find

r(n) = inf 7(N),

card N<n

the nth minimal radius of information. Then

1
r(n) = w0

which is achieved by the nth optimal information

Nu(f) = [f(t1),- -, F(E2)]

where .
tZ=212;1 (1<i<n)
Hence .
Un(f) = & (Na(h) = = 3 £02D)
i=1

is an nth minimal error algorithm. Note that this is a simple midpoint
quadrature rule.



So far, we have only discussed optimality at the error level. If we want
to discuss complexity, we need to introduce a model of computation. The
classical model assumes that each information evaluation has cost ¢, and
each arithmetic operation has cost 1. For an approximation U = (¢, N),
we let

cost(U) = sup cost (U(f)),
fer
where cost (U(f)) is the cost of sampling the information y = N(f) plus
the cost of combining this information to produce ¢(y). That is, we measur
cost in a worst case setting. Then for any € > 0, we define the e-complexity
as

comp(e) = e(%]n)f<S cost(U).

We get an easy lower bound of the form
comp(e) > ¢ - m(e),

where
m(e) =inf{n>0:r(n) <e}
is the e-cardinality number, i.e., the minimal number of evaluations needed
to insure that the radius of information is less than e.
From the formula for the nth minimal radius, we find that

m(e) = HJ :

Since the midpoint rule using the information N, can be computed using
n function evaluations and n arithmetic operations, it follows that

1 1
— | < < < — .
| £ < comple) < cost < (e 4 1) | ]

Since we generally expect ¢ > 1, these bounds are very tight.

3 A General Formulation of 1BC

Although the analysis in the preceding section dealt with a specific model
problem (univariate integration over a Lipschitz class), the basic concepts
readily extend to general problems. Such a problem is given by a class F'
of problem elements, a normed linear space G, and a solution operator
S: F — G. What we know about any f € F' is given by information
operators N: F' — H, generally of the form

N(f) =[M(f), - A (f)] for Ai,..., A\n € A.

Here, A is a class of permissible information operations. One such choice
is A, the class of all continuous linear functionals. If F is a class of
functions defined over some domain, we can also choose standard infor-
mation AS*Y consisting of function or derivative evaluations. This infor-
mation can be either exact or noisy, as well as either non-adaptive or
adaptive.

For such a problem, the goals of IBC are the same as for the integration
problem of §2:



e For given information N, determine r(IN) and an optimal error al-
gorithm using N.

e For a given nonnegative integer n, determine r(n) and nth minimal
error algorithm.

e For given £ > 0, determine comp(e) and optimal complexity algo-
rithm.

Many of the concepts discussed in §2 can be extended in the obvious
way for more general problems. Hence we can talk about the radius
of information, optimal error algorithms and the optimality of central
algorithms, optimal information, minimal error algorithms, cardinality
numbers, and complexity, for general problems. Moreover, many of the
results of §2 hold for more general linear problems (i.e., where F' is a
balanced convex subset of a linear space and S is linear). For example,
nonadaptive and adaptive information are (roughly) equally powerful for
all linear problems. Moreover, linear algorithms have optimal error for
many linear problems.

4 Problems Studied by 1BC

As far as particular applications are concerned, 1BC has successfully stud-
ied problems in integration, approximation, ordinary and partial differen-
tial equations, integral equations, ill-posed problems, roots of nonlinear
equations, and nonlinear optimization.

Of all the problems studied by IBC, perhaps the approximation problem
is of greatest interest to researchers in learning theory. It fits within the
IBC framework as follows. Let F' C G, and define the solution operator
S:F — G as

S(fy=f VfeFL
As a rule, F' is a subset of a function space G. This problem has been
studied for both A and A®*Y. Lack of space prevents us from going into
detail here, but we shall mention a few results in the next section.

5 The Curse of Dimension

Define F, as the class of all r-times differentiable functions f: [0, l]d — R,
subject to the constraint that for any f € F’., the derivatives of f having
total order up through r are bounded by 1. Consider the problems of d-
dimensional integration and approximation in the class F., with error for
the approximation problem being measured in the max-norm. For the in-
tegration problem, only A®*Y will be permissible information, while for the
approximation, either AS*Y or A*! will be permissible. The e-complexity
of both of these problems is proportional to c (1/¢)%". (Moreover, A**
is as powerful as A*! for the approximation problem.)

Note that complexity of these problems is exponential in d, rather
than (say) polynomial. In other words, these problems are provably in-
tractable (as opposed to the NP-complete or NP-hard problems of discrete
complexity theory, which are only conjectured to be intractable). We say



that such problems suffer from the “curse of dimension.” Note that high-
dimensional problems (with d in the hundreds or thousands) occur in
many areas (including science, economics, and finance). Many of these
high-dimensional problems are afflicted with the curse of dimension.

Moreover, the curse’s shadow even casts a pall over problems of mod-
erate dimension. For example, suppose that ¢ = 10~¢. Ignoring propor-
tionality constants, 10'® arithmetic operations will be necessary to solve a
problem with d = 3 and r = 1. If we (generously) assume 10'° operations
per second, solving this problem for this error threshold will take more
than three years!

How can we vanquish this curse? Certainly, choosing a better algo-
rithm won’t help, since we’re talking about the complexity of the problem,
i.e., the minimal cost of solving the problem over all algorithms.

One idea is to weaken the worst case assurance. The randomized set-
ting allows randomized approximations U-(f) to the solution S(f), where
7 is chosen at random from a probability space. The most famous ran-
domized algorithm is Monte Carlo quadrature. It is known that the ran-
domized error of n-point Monte Carlo for integration over F, is 1/4/n,
and so cost of using Monte Carlo to get an e-approximation of integration
over F, is at most (c 4 1)[1/¢]?. Since this bound is independent of d,
Monte Carlo beats intractability for integration.

Since randomization beats intractability for integration, one might
hope that the same holds for the approximation problem over F,. Un-
fortunately, this is not the case; it is known that the randomized and
worst case e-complexities for approximation are about the same, and so
randomization does not break intractability for approximation. It is an
open problem to determine for which problems randomization breaks in-
tractability.

The average case setting is another setting we can use in our attempts
to break intractability. Here, the error of an approximation is given by its
expectation with respect to a probability measure on the class of problem
elements. To be specific, let Fi, be the class of continuous functions on I¢,
equipped with the Wiener sheet measure. Then the e-complexity of inte-
gration over Fy, is proportional to ¢ (1/¢)(log 1/5)(‘171)/27 with sampling
at reflections of shifted Hammersley points. Moreover, the e-complexity
of approximation over F,, is proportional to c (1/¢)*(log1/¢)*!. Hence
both integration and approximation are tractable in 1/¢ in the average
case setting for the Wiener sheet measure. Said tractability of approxi-
mation will be good news for people working in learning theory.

6 For Further Information

The monograph [5] is an expository overview of IBC, covering both fun-
damentals and a selection of interesting topics. It also has an extensive
bibliography of over 430 items.

Those interested in complete statements and proofs of theorems see [4],
as well as [1], [2], and [3]. These books also contain extensive bibliogra-
phies.

In addition, there is an IBC website at http://www.ibc-research.org.



Among other features, this website provides a searchable bibliographic
database at http://www.ibc-research.org/search-refs.cgi.
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