A Competitive-Collaborative Approach for
Introducing Software Engineering in a CS2 Class

Swapneel Sheth, Jonathan Bell, Gail Kaiser
Department of Computer Science, Columbia University, New York, NY 10027
{swapneel, jbell, kaiser} @cs.columbia.edu

Abstract—Introductory Computer Science (CS) classes are typ-
ically competitive in nature. The cutthroat nature of these classes
comes from students attempting to get as high a grade as possible,
which may or may not correlate with actual learning. Further,
there is very little collaboration allowed in most introductory
CS classes. Most assignments are completed individually since
many educators feel that students learn the most, especially in
introductory classes, by working alone. In addition to completing
“normal” individual assignments, which have many benefits, we
wanted to expose students to collaboration early (via, for example,
team projects). In this paper, we describe how we leveraged
competition and collaboration in a CS2 to help students learn
aspects of computer science better — in this case, good software
design and software testing — and summarize student feedback.

Index Terms—Tournament; HALQ; Team Projects; Software
Design; Software Testing;

I. INTRODUCTION

Students at top US universities grow increasingly compet-
itive — racing against each other to achieve better grades.
Within coursework, this can translate to students feeling like
they must always be working to one-up the other when
studying, completing assignments, and on exams. One part
of the problem in such situations is that grades in a classroom
is typically a zero-sum game, where it’s either not possible or
highly unlikely that all students get the highest grade. Many
universities suggest a “curve” for the class to ensure unifor-
mity in grading for students and to prevent grade inflation.
This high-pressure situation can discourage communication
between students and may result in an unpleasant learning
environment. Further, this kind of competition may or may
not lead to better learning of the class material. One way to
address this is to use the inherent competitive aspects to help
students learn certain parts of the syllabus better.

Another way to ameliorate this problem would be to in-
troduce collaborative assignments in the curriculum, where
students work together to complete assignments and learn
the material. However, in introduction-level computer science
courses, educators have shied away from collaborative work,
citing concerns of individual student accountability [18].

In addition to lacking collaborative work, introductory CS
courses also typically focus very little on teaching software
testing [9]], [[13]], [[14]], even though previous work has found
it highly beneficial [8], [13]. We sought to address these
concerns by creating a competitive-collaborative approach to
teaching software engineering in an introductory level CS

course. This paper describes our approach and provides an
evaluation of its usage in a CS2 class at Columbia University.

II. BACKGROUND

COMS 1007, Object Oriented Programming and Design
with Java, is the second course in the track for CS majors
and minors at Columbia University. The class is also required
for majors in several other engineering disciplines including
Electrical Engineering and Industrial Engineering and is used
by other students to satisfy their general science or Computer
Science requirement. The first author taught this course in
Spring (January-May) 2012[]_1 The course goals are “A rigorous
treatment of object-oriented concepts using Java as an example
language” and “Development of sound programming and
design skills, problem solving and modeling of real world
problems from science, engineering, and economics using
the object-oriented paradigm” [|6]. The prerequisite for the
course is familiarity with programming and Java (demon-
strated through a successful completion of the CS1 course at
Columbia or another university, or passing marks on the AP
Computer Science Exam).

In Spring 2012 the class enrollment was 129, which con-
sisted largely of freshmen and sophomores (first and second
year undergraduates). The list of topics covered were Ob-
ject Oriented Design, Design Patterns, Interfaces, Graphics
Programming, Inheritance and Abstract Classes, Networking,
and Multithreading and Synchronization. There were five
roughly biweekly assignments, which contained both theory
and programming, and one midterm, and one final exam.

III. APPROACH AND EVALUATION
A. Competition

1) Battleship Tournament: The second assignment for the
class focused on design principles and in particular, using
interfaces in Java. For the assignment, which constituted 8%
of the overall course grade, the students had to implement a
Battleship game. Battleship is a 2-player board game where
each player has a 10x10 grid to place five ships of different
lengths at the start of the game. Each player’s grid is not
visible to the other player and the player needs to guess the
location of the other player’s ships. Thus, by alternating turns,
each player calls out “shots,” which are grid locations for the

IThe introductory sequence of courses has undergone a change and COMS
1007 had become an honors version of the CS1 course since Fall 2012.

other player. If a ship is present at that location, the player
says “Hit,” else it’s a “Miss.” The game ends when one of the
players has hit all the parts of all the opponent’s ships.

The students needed to implement this game in Java with an
emphasis on good design and none on the graphical aspects;
the students could create any sort of user interface they wanted
— a simple command line based user interface would suffice
as far as the assignment was concerned. To emphasize good
design, we provided the students with three interfaces as a
starting-off point for the assignment. The three interfaces,
Game, Location, and Player, are shown in Listings m
2l] respectively.

To reinforce the notion of “programming to an interface, not
to an implementation” [[10]], there was a battleship tournament
after the assignment submission deadline. For the tournament,
the teaching staff would provide implementations of the Game
and Location interfaces and use each student’s Player im-
plementation. (In particular, the students were told to provide
two implementations of the Player — a Human Player that
is interactive and can ask the user for input and a Computer
Player that can play automatically; this latter player would
be used for the tournament.) As long as the students’ code
respected the interfaces, they would be able to take part in the
tournament.

The tournament logistics were as follows: First, all student
players played 1000 games against a simple AI written by
the teaching staff. From these results, we seeded a single-
elimination bracket for the student players to compete directly.
Thus, players with good strategies would progress through
the rounds and defeat players with weaker strategies. As an
added extra incentive, there were extra credit points awarded to
students based on how well they performed in the tournament.

Even though the extra credit was not a lot (10 points
for the assignment, accounting for only 0.8% of the total
course grade), the combination of the extra credit and the
competitive aspect made almost the entire class participate in
the tournament. 116 out of 129 students (89.92%) of the class
elected to take part in the tournament, and of those that wanted
to be in the tournament, 107 (92.24%) had implementations
that functioned well enough (e.g., didn’t crash) and competed
in the tournament.

2) Gamification using HALO: Introductory CS classes typ-
ically do not focus on software testing 9], [[13[], [14]. A lot of
students’ mental model when they start learning programming
is that “if it compiles and runs without crashing, it must
work fine.” In spite of numerous attempts to introduce testing
early in CS programs and many known benefits to inculcating
good testing habits early in one’s programming life [§]], [[13],
students remain averse to software testing as there is low
student interest and engagement in software testing [9].

To address this problem, we built a system called HALO —
“Highly Addictive social.ly Optimized Software Engineering”
[2], [17]. HALO uses game-like elements and motifs from
popular games like World of Warcraft [4] to make the whole
software engineering process and in particular, the software
testing process, more engaging and social. HALO is not

o =

The game interface — this will control the Battleship
game .

3 % It will keep track of 2 versions of the “board” — one
for each player.

4 =« It will let players take turns.

5 It will announce hits , misses, and ships sunk (by
calling the appropriate methods in the Player
interface/class).

6 @author swapneel

7T %

8 x/

9 public interface Game {

10

11 int SIZE = 10;

12

13 int CARRIER = 5;

14 int BATTLESHIP = 4;

15 int SUBMARINE = 3;

16 int CRUISER = 3;

17 int DESTROYER = 2;

18

19

20 This method will initialize the game.

21 % At the end of this method, the board has been

set up and the game can be started

22 « @param pl Player 1

23 @param p2 Player 2

24

25 void initialize (Player pl, Player p2);

26

27 IEE

28 « This is the start point of playing the game.

29 « The game will alternate between the players

letting them take shots at the other team.

30 # @return Player who won

31 %/

32 Player playGame();

33

34}

Listing 1: The Game Interface

1 /%=

2 The Location interface to specify how x and y
coordinates are represented.

3 % This can be used to represent the location of a ship
or a shot.

4 If the location is a shot, the isShipHorizontal ()
method can return an arbitrary value.

5 * @author swapneel

6

7 =/

8 public interface Location {

9

10

11 Gets the x coordinate

12 @return the x coordinate

3 #/

14 int getX();

15

16

17 « Gets the y coordinate

18 @return the y coordinate

19 #/

20 int getY();

21

22

23 This method will indicate whether the ship is

horizontal or vertical.

24 « Can return an arbitrary value if the location

is used to indicate a shot (and not a ship)

25 @return true if ship is horizontal , false

otherwise

26 w/

27 boolean isShipHorizontal () ;

28

29 }

Listing 2: The Location Interface

The Player interface
Each player will get to choose where to place the 5
ships and how to take turns shooting at enemy ships

W N =

4 % @author swapneel

5 %

6 x/

7 public interface Player {
8

9 /%%

10 % This method will place a ship on the grid.

11 # This method should guarantee correctness of
location (no overlaps, no ships over the
edge of the board, etc.)

12 % @param size the size of the ship to place

1 # @param retry if an earlier call to this

method returned an invalid position, this

method will be called again with retry set
to true.

14 # @return The Location of the ship

15 w/

16 Location placeShip(int size, boolean retry);

17

18 IEX]

19 # This method will get the new target to aim for

20 # @return The Location of the target

21 %/

22 Location getTarget();

23

24 IEX]

25 # This method will notify the Player of the
result of the previous shot

26 % @param hit true, if it was a hit; false
otherwise

27 % @param sunk true, if a ship is sunk; false
otherwise

28 %/

29 void setResult(boolean hit, boolean sunk);

30

31}

Listing 3: The Player Interface

a game; it leverages game mechanics and applies them to
the software development process. For example, in HALO,
students are given a number of “quests” that they need to
complete. These quests are used to disguise standard soft-
ware testing techniques like white and black box testing,
unit testing, and boundary value analysis. Upon completing
these quests, the students get social rewards in the form of
achievements, titles, and experience points. They can see how
they are doing compared to other students in the class. While
the students think that they are competing just for points and
achievements, the primary benefit of such a system is that the
students’ code gets tested a lot better than it normally would
have. Our current prototype implementation of HALO is a
plugin for Eclipse and a screenshot is shown in Figure

In this class, we used HALO for three assignments. In
the first two cases, HALO was not a required part of the
assignment; students could optionally use it if they wanted to.
For the last case, students could earn extra credit (10 points
for the assignment, accounting for 0.8% of the overall course
grade) by completing the HALO quests.

The final course assignment allowed students to design their
own projects (described further in Section [[II-BI)), making it
difficult for us to pre-define HALO quests, since each project
was different. Instead, students were offered extra credit in
exchange for creating HALO quests for their projects, thus

emphasizing the “learning by example” pedagogy. Out of
the 124 students who submitted Assignment 5, 77 students
(62.1%) attempted the extra credit, and 71 out of these 77
students (92.21%) got a perfect score for the HALO quests
that they had created.

a) An Assignment on Java Networking — Getting and
Analyzing Data from the Internet - The CIA World Factbook:
We now describe an assignment that was given to the class
and the HALO quests that were created for it.

The CIA has an excellent collection of detailed information
about each country in the world. It’s called the CIA World
Factbook. You can find it here https://www.cia.gov/library/
publications/the-world-factbook/ For this assignment, you’ll
write a program in Java to get and analyze data from the CIA
World Factbook website. You should not download any of the
information to a local file and read from it. Your program must
interact directly with the website. (This way your programs
will work even when the CIA updates the Factbook, which
is done every year.) Once you have a basic program that
can interact with CIA World Factbook, use it to answer the
following questions. Describe in detail the algorithm you used
and the answers in your readme. txt file.

1) List countries in South America that are prone to earth-

quakes.

2) Find the country with the lowest elevation point in
Europe.

3) List all countries in the southeastern hemisphere.

4) List countries in Asia with more than /0 political parties.

5) Find all countries that have the color blue in their flag.

6) Find the top 5 countries with the highest electricity
consumption per capita. (Electricity consumption % pop-
ulation)

7) A landlocked country is one that is entirely enclosed by
land. For example, Austria is landlocked and shares its
borders with Germany, Czech Republic, Hungary, etc.
There are certain countries that are entirely landlocked
by a single country. Find these countries.

8) I want to go on a vacation with a friend. Our goal is
to visit as many capital cities as we can in as short a
geographical distance as possible. To make things easier
(and not worry about spherical geometry), we are fine
with travelling to capitals that are within /0 degrees of
latitude and longitude of each other. Find the lat/long
coordinates and the list of countries/capitals so that the
number of capitals is maximized.

9) Wild card — come up with an interesting question. List

the question and find the answer to it.
Wild card — come up with an interesting question. List
the question and find the answer to it.

Note: For the italicized parts in the above, your code should
be able to deal with any similar input (e.g., from a user). This
should not be hard coded.

Hint: It might be easier to use the text/low bandwidth
version of the website in your program.

b) HALO Quests: We now describe the HALO quests
that we used for the above assignment.

10)

https://www.cia.gov/library/publications/the-world-factbook/
https://www.cia.gov/library/publications/the-world-factbook/

8600 [5] Java - invivo-expreval/src/edufcolumbia/ps|/invivoexp: ampl java - Eclipse - fUsers/jon/Documents /workspace
=il [3-0-Q- |G |®c - 198] 812 5lv o v cr [4 Plug-in Dev... [Ped DE<C/C++> §dJava rowsing £D0Team Synchr... [F] PHP 35.Debug [@hjaval »
[2 Package Explorer 53 Eg[e -0 Sl RS rties |11 P =0 3 s (ob Bytecode Reference| =

T doning 1 > Assignment 2 (due 2 months, 1 week and 6 days ago)

b B Referenced Libraries
¥ B RE System Library [Java SE 6 (MacOS X Default)]

1 jass.modern.core
I mindew-runtime 3
0 mtndew-tester :
[native-detector
Eatomeat

[columbus2-runtime 2
T columbus2-tester
¥ (= commons -compiler

3
4 package edu.colunbia.psl.invivoexpreval.samples;
5

s 6@ import java.io.*;[]
3

¥ {} edu.columbia.psl.commons.compiler

bt
¥ [J) AbstractCompilerFactory java 14 public class InVivoExprEvalExample extends Traverser {

» [J] AbstractjavaSourceClassLoader.java 159 public static class foo {

» [1] CausedException java 168 public static void bar() {

» [J] CompileException java 17 System.out.printin("Check™);

» [J) CompilerfactoryFactory,java ;: N 3

> [Cookable java 420= public static void main(String[] args) throws CompileException,
> J)classBodyEualuator.ava 21 Exprevaluator ee = new ExprivaluatorC

» [J] ICompilerFactory.java 22 "cad?c
» [J] ICookable.java 23 int.class,
» (1] IExpressionEvaluator java 24 new String[] { "c

/1 expression

» [J) IscriptEvaluator java 25

» [J) IsimpleCompiler.java 26 2
» [J) LocatedException java. s Integer res = null;
» [3] Location.java 5
¥ [J] PrimitiveWrapper.java 30 res - (Integer) ee.evaluate(
P @ JRE System Library [Java SE 6 (MacOS X Default)] 31 new Object[] 7/ parameterValues
¥ 52 invivo-expreval 32 new Integer(18),
v i@ 33 new Integer(11),
» 15 edu.columbia.psl.invivoexpreval 34 . ¥
35 ;
¥ f# edu.columbia.pslinvivoexpreval samples o ;
3’3@‘ Do E— P 36 } catch (InvocationTargetException) {
InVivoExprEvalExample.java 7 /7 T0D0 Auto-generated catch block
[5) package heml 38 e.printStackTrace();
b} edu.columbia.psl.invivoexpreval.util 39 3
» 1 edu.columbia.psl.invivoexpreval.util.enumerator 40 System.out.println("res = " 4 res);
» # edu.columbia.psl.invivoexpreval.uti.iterator 41
edu.columbia.psl.invivoexpreval properties 42 ee = new ExprEvaluator(
43 "a.bar()", // expression

a4 void.class,

45 new String[] { "a", 1, /1 paraneterNames
& buiid 46 new Class[] { foo.class } 7/ parameterTypes

> lib " 3
T invive-junit-runner 48
T invivo-junit-tester 49 try {
> 1522 invivo-runtime 50 res = (Integer) ee.evaluateC
[invivo-runtime-c 51 new Object(] { 77 parameterValues
52 new Foo()

/1 expressionType
"d" 3, /1 parameterNames.
5 new Class[] { int.class, int.class } // parameterTypes

4/ expressionType

> Assignment 3 (due L month, L week and 5 days ago)
¥ Assignment 4 (due 3 weeks and 2 days ago)
v TARDIS
7] The Unicorn and the Wasp

EXTERMINATE! EXTERMINATE!
[Partners in Crime or your Companion
] Blink

¥ The Sonic Screwdriver
[Human Nature
[The Sontaran Stratagem
[] Amy's Choice

EXTERMINATE! EXTERMINATE!

(Part of Assignment 4, due 3 weeks and 2 days ago)
Background

The CIA factbook has some unstructured data - not all of itis organized
properly. This may not be as annoying (or life threatening) as Daleks, but
Your programs should be able to deal with this correctly and not crash for get
Cormeimg this auestwil evard you with 30.XP
Objectives

Partners in Crime o your Companion

it

5L problems | @ javadoc [Declaration | E Console | Plug-in

ncies 4 search | Debug | i Bytecode |4 servers | HALG Dashboard 5

Jon Bell (seeatie |

Achi MMMz o330 |

Recent Achievements:

The hardest part... nah, the easiest part! - May 15, 2012

Conquered Square One - Feb 27, 2012
The Tree Walker - Nov 11, 2011
Time Cop - Nov 11, 2011

Quest Progress ML o1t |
pssionment 2 IMIESFSatests | Due 2 months, 1 week and 6 days ago 2 ian o (1055
e —— TP | moScrlecmEdsre
e O MR of = oo T T e et

Level 3 Level 4

Experience Points: B E N I I I B oo o ool - |

Leaders
(By XP poins; top 30)

2: Kyle L Gelnett (345)

3: Angela Kay Clague (935)
4 Maxwell Hume (915)

5: Christopher Scott So. (915)
6: Shensi Ding {905)

7: Pin-Joe Ko (305)

& Vanshil Shah (905)

9: Daniel Kaplan (880)

10: Ruriko Araki (875)

11: Tanvi Bikhchandani (875)

Fig. 1: The HALO Eclipse plugin: The bottom part (highlighted in red) shows the dashboard, which keeps track of the
achievements, experience points, leaderboards; The top right part (highlighted in blue) shows the quest list and progress

i) TARDIS — To interact with the CIA World Factbook, it
would be nice to have a TARDIS. No, not like in the show,
but a java program that can Transfer And Read Data from
Internet Sites. Completing this quest will reward you with
30 XP.

i)

New Earth — This will probably be your first program
that talks to the Internet. While this isn’t as complex
as creating a new Earth, you should test out the basic
functionality to make sure it works. Can you program
read one page correctly? Can it read multiple pages?
Can it read all of them?

The Unicorn and the Wasp — Just like Agatha Christie,
you should be able to sift through all the information
and find the important things. Are you able to filter
information from the webpage to get only the relevant
data?

EXTERMINATE! EXTERMINATE! — The CIA fact-
book has some unstructured data - not all of it is organized
properly. This may not be as annoying (or life threatening)
as Daleks, but your programs should be able to deal
with this correctly and not crash (or get exterminated).

Completing this quest will reward you with 30 XP and
unlock Achievement: Torchwood.

e Partners in Crime or your Companion — You can get

help for parsing through the HTML stuff - you could
do it yourself, you could you regular expressions, you
could use an external HTML parsing library. Regardless
of who your partner in crime is, are you sure that it’s
working as expected and not accidentally removing or
keeping information that you would or wouldn’t need,
respectively?

Blink — Your program doesn’t need to be afraid of
the Angels and can blink, i.e., take longer than a few
seconds to run and get all the information. However,
this shouldn’t be too long, say 1 hour. Does your
program run in a reasonable amount of time?

iii) The Sonic Screwdriver — This is a useful tool used by
the Doctor to make life a little bit easier. Does your code
make it easy for you to answer the required questions?
Completing this quest will reward you with 40 XP.

e Human Nature — It might be human nature to hard

code certain pieces of information in your code. But

your code needs to be generic enough to substitute the
italicized parts of the questions? Is this possible?

o The Sontaran Stratagem — For some of the questions,
you don’t need a clever strategy (or algorithm). But
for some of the latter questions, you do. Do you have
a good code strategy to deal with these?

e Amy’s Choice — You have a choice of 2 wild card
questions. Did you come up with an interesting ques-
tion and answer it?

c) Student-created HALO Quests: We now describe
several of the HALO quests that students created for their
own projects. This highlights that students understood the
basics of software testing, which was the goal with HALO.
We include a short description of the project (quoted from
student assignment submissions) along with the quests, since
students could define their own project.

“Drawsome Golf: Drawsome Golf is a multi-player
miniature golf simulator where users draw their own
holes. After the hole is drawn, users take turns
putting the ball towards the hole, avoiding the obsta-
cles in their path. The person who can get into the
hole in the lowest amount of strokes is the winner.

1) Perfectly Framed (Task): Is the panel for the hole
situated on the frame? Is there any discrepancy
between where you click and what shows up on the
screen? Is the Information Bar causing problems?

2) Win, Lose, or Draw (Task): Are you able to draw
lines and water? Are you able to place the hole
and the tee box? Can you add multiple lines and
multiple ponds? Could you add a new type of line?

3) Like a Rolling Stone (Task): Does the Ball Move
where it is supposed to? Do you have a good
formula for realistic motion of the ball?

4) When We Collide (Task): Does the Ball handle
collisions correctly? Is the behavior correct for
when the ball hits a line, a wall, the hole, or a
water hazard?”

“Matrix code encoder/decoder: The user will select

a text file that he/she would like to encode or decode

and will select the alphabet and numerical key for

use. Encoded messages can be sent to a designated
user using the networking principles we have learned
in class.

1) T'll Handel It!: Are your classes passing each
other the correct information? Make sure there
is no overlap between the calculations performed
by one class and those of another. Are variables
updated correctly to reflect user input?

2) Liszt Iterators: During the matrix multiplication
process, it is necessary to keep track of several
iterators simultaneously. Is each of these iterators
incrementing and/or resetting at appropriate mo-
ments? Does each one accomplish a specific task?

3) What are you Haydn?: Encapsulation is key!
Encapsulation makes it much easier to understand

code and to make changes later on. Have you
broken tasks into subtasks, each united by a mini-
goal? How can you break up the encoding and
decoding methods? Can you break the GUI into
bite-sized pieces?”

B. Collaboration

1) Team Projects: Most introductory CS courses at
Columbia University (and other universities [18]]) typically
have only individual assignments and allow no collaboration
on the assignments. On the other hand, most graduate classes
and real world projects typically are done in (large) teams. We
felt that it would be beneficial for students to work in teams
as early as possible. Thus, for the last assignment of the class,
the students could optionally work in a team of up to three
people. If they chose this option, they could define any project
that they liked subject to a few constraints described below.
The alternative would be to do an individual “default” project
that was defined by the teaching staff.

In terms of constraints for the custom projects, we provided
them with two categories, which corresponded to the material
they had learnt in the course of the semester. The teams needed
to choose at least two topics from each category and use them
in their project in a meaningful way. Category 1 was roughly
“design” and Category 2 was roughly “functionality.” These
are described below:

a) Category 1 — Any two of the following:
o Formal Design (CRC, Class diagrams, Sequence/State
Diagrams)
o Interfaces (Define and use)
« Inheritance
o Design Patterns
b) Category 2 — Any two of the following:
o Java Graphics
« Networking
o Multithreading
e Advanced Java (Data Structures, Reflection, External
Libraries, etc.)

One further pedagogical incentive for custom projects is to
allow students the freedom to choose to do something that
they really like and importantly, deal with the ambiguity that
results out of it. Typically, most assignments in universities
are very well defined. There is a specific and well-outlined
set of requirements that students need to accomplish to do
well on the assignments. However, this does not mimic most
real-world projects where requirements are often ambiguous
or uncertain, may change over time, and so on.

Thus, through this assignment (and a similar flavor to some
of the earlier assignments), students would learn how to deal
with ill-defined programming assignments. We saw this with
almost all the teams — many had ideas that changed and
evolved over time; some had to modify the scope because they
didn’t have enough time to do what they wanted; some had to
change part of the project as it was not technically feasible or
would require a time-intensive manual effort; a few abandoned

the project idea and decided to do the default option as it was
“easier.”

41 of the 129 (31.78%) students ended up doing the default
individual assignment. Out of the rest, 11 did the custom
project, but with a team size of one. Thus, 69 students
(53.49%) did the custom project in teams of two or more.

There were a lot of interesting projects that resulted out of
this. A nice side-effect of letting students choose their own
projects was that the projects ended up being something that
the students really cared about — resulting in many projects
that were socially relevant and/or arty. The students wanted to
build something that other people would use or something that
would help them do a certain task better. Many of the projects
had relevance to something outside of this class. Some of the
most creative projects are described below (quoted from the
project summary submitted by the teams):

o “Meal Planner: A meal planner that uses the USDA
nutrient database to pull nutrient profiles from food. It
allows a user to create recipes, share them, and learn
about the % values of the foods. It’s intended to simplify
nutrition.”

o “Scheduler Program: Our final project is a course
scheduler for Columbia. It interacts with a SQL database
(which we built using a crawler) in order to get and
set information about Columbia courses and the users
of the program. The program allows users to create
profiles (containing information such as name, username,
major, etc.), search the entire Columbia course direc-
tory according to certain parameters (subject, instructor,
year, etc.), and receive recommendations based on profile
information. The program also features a GUI, several
interfaces, and threading.”

« “SparkNotes requires you to pay for PDF versions of
their Sparknotes, so students have to use the text version,
which is split into chapters and unwieldy for mobile view-
ing. Our program is designed to provide a java application
interface for quickly navigating and reading Sparknotes
book summaries. This allows the user to browse the
site without ads or extraneous content. Additionally, our
program can export the content sections for any given
book to a plaintext file, allowing the content to be stored
and read on virtually any device. One example use case
would be exporting the text file and saving it on a mobile
device for offline use (say, on the subway).”

e “iSong: A centralized search engine for songs on the
Internet. It uses different websites as sources. Each
website finds songs via its own technique. For example,
amazon.com dig.ccmixter.org have their own database;
mp3skull.com uses its own algorithm to find mp3s. The
idea is that we can parse the results of these searches
into a list of song objects, sort them and display them
into a graphical user interface. The user who searches a
song on the internet only has to type his query once in
the GUI, and it does the search on all the websites. In
that sense, we can consider iSong as a centralized search
engine. The advantage of using it is a serious gain of time,

as the user does not have to search manually on every
websites anymore. Another cool part is that the program
uses polymorphism so that anyone can in theory (utopia)
creates his own retrievers for the websites of his choice,
making the search more comprehensive. In practice, it
will help at the maintenance level if we want to add more
retrievers later.”

« “What Should I Wear is a program that advices the
user of what clothing/items to wear/bring depending on
various weather conditions. It uses weather.com as a
database, so it covers any zip code found in that website.
It has functionality to work for up to three days ahead
(any more and the data is just too unreliable).”

e “Corn Maze Race! Users compete one-on-one to see
who can complete a series of mazes in the fewest num-
ber of moves. The mazes are randomly generated and
presented to the user in a "corn maze” style, i.e. the user
can only see the area around him or her, not the whole
maze. When the user finds and lands on the star, the maze
is complete. The server then displays the information and
determines the winner.”

« “The Swapagtochi game is inspired by Tamagotchi. Like
a Tamagotchi, a Swapagotchi ages as time passes and
needs to be taken care of. The game does not tell
the user what the Swapagotchi wants, so the use must
determine items to give the Swapagotchi based on the
weather icon and how much time has passed. The goal
of the game is to keep the Swapagotchi happy, which
can be attained by meeting his requests (for food, when
hungry) and for weather protection (sunglasses when hot
and sunny, umbrella when rainy). Swapagotchi is special
because weather is determined by the weather of the
user’s zipcode (or any zipcode they decide to answer)
from the weather channels website”

« “Database Searcher: We have created a program that can
sort a database of contacts. It contains name, major, email,
region, school, year graduating and comments section.
This directory is searchable and users can create cus-
tomized searches/subsists from the main list (ex: create
a list of all the CS majors who graduated in 2008 from
Columbia College and live in Arizona). Information is
inputted into the system through the user loading a csv
file or html file or manually through the command line.
We were inspired to do this by our club (the Society of
Women Engineers) and plan on using it for our own club
database to keep in contact with SWE alumni.”

« “Synthesizer is an application that creates song com-
posed using Java. The compose method creates and adds
Phrases and Parts to the Score. I used external music
libraries for Java the main one being JMusic. [am a music
and computer science double major, and I was looking for
a way to realize the music I write using my computer.”

Finally, many students also decided to implement games
such as or similar to Sudoku, Multiplayer Minesweeper,
Guess Who?, Hangman, Checkers, Online Poker, Bejeweled,

Scrabble, Mafia, Monopoly, Yahtzee, Tetris, and Dance Dance
Revolution.

2) Lectures in Class: The meeting schedule for the class
was two 75 minute lectures per week. The goals with the
class lectures were the following: first, as the students are new
to CS, we wanted to ensure that stereotypes about CS being
“geeky” and “boring” are not reinforced; second, very often in
CS classes, students get used to the notion of very precise and
well-defined assignments and when they go work for industry
or pursue a Ph.D., they realize that this is typically not the
case and making this transition may not be easy.

For the first goal, a very informal and collaborative class-
room environment was created. From the first day of class,
students were encouraged to participate, interrupt, and disagree
with the material being talked about. This resulted in a
lot of discussion and sharing of thoughts and ideas among
the students. This is much harder to do with large class
sizes, but even with 129 students in the class, the classroom
environment was interactive and fun. We deliberately didn’t
use a lecture/presentation style of teaching. Another strategy,
which worked out well, was to get the students involved in
deciding some of the material that would be taught. Since the
course syllabus offers a bit of flexibility, students appreciated
that they had a voice in what was being taught (which is
typically not the case in most courses).

The second goal was addressed in three ways. First, all
assignments had an element of uncertainty and vagueness
about it. Initially, this lead to some anxiety and nervousness
in the students, but towards the end of the semester, they were
much more relaxed and comfortable dealing with ambiguity.
Second, the custom projects that the students could do (as
described in Section further strengthened this goal.
Finally, the classroom lectures reinforced all of these aspects
along with the importance of being flexible and accepting that
uncertainty is the nature of the beast when it comes to CS.

IV. FEEDBACK

In this section, we now describe the qualitative feedback
about the course structure given by the students. This feedback
comes from various sources such as midterm and end of
semester surveys, public reviews of the class, and email sent
to the first author.

A. Feedback on the Competitive Aspects

HALO received mixed reviews — many students found it
was very useful; other students found that it was not beneficial.
Figure [2| shows the students’ reasons on why HALO was
beneficial. Figure [3| shows why students thought it was not
beneficial. The main takeaway for us with HALO was the
following: Since it was either completely optional or only for
extra credit, typically only students who are doing really well
in the class will use it. Students who are having a hard time
in the class will not want to do something that’s optional. In
an analogous manner, students will only do the extra credit
if they’ve managed to complete the assignment early enough
and sufficiently well. Thus, HALO quests needed to be more

It helped, but | It made sure that

had other | did everything
Made it more programming important and
fun, 3 difficulties, 1\ fwas more fun, 2

Made sure that |
did everything,

but would have Ma}de SUre that I
anyway, 2 : did everything
important for the
Clarified assignment, 16
assignment and
what was

Put me on the
right track to
complete the

assignment, 11

expected of me,
4

Fig. 2: Reasons HALO helped students (n=39)

| had general
programming
difficulties aside,
1

_——

The tasks were

too trivial, and Only benefit was
didn't help me, extra credit -
12 tasks were too

trivial for me, 12

The quests got in
the way and
were unhelpful, 4

Fig. 3: Reasons HALO was not beneficial to students (n=29)

oriented towards the students doing well in the assignment.
On the other hand, HALO quests need to entice the struggling
students as they might benefit the most by being able complete
the basic tasks of the assignment. Ideally, we would like to
have some adaptability or dynamic nature of the quests where
the difficulty of the quests will self-adjust based on what the
students would find it most useful for. For example, students
who are struggling with the assignment might want quests
for very basic things; whereas students who are doing well
might want quests for the more challenging aspects of the
assignment.

Some of the student comments (both positive and negative)
on the competitive aspects of the class are shown below:

o “I really liked the class tournaments. If only there was a
way to make them like mandatory.”

o “the assignments are completely doable, and he helps
us with them by giving us Halo quests which provide a
checklist of things one should be doing (they’re themed,
so the last one was Doctor Who themed!).”

« “I think it’s awesome that you’re sneaking your taste in
music into the HALO quests. The Coldplay references

are hilarious. PLEASE make every HALO quest music-
themed. It keeps me awake and happy as I do my
homework.”

« “He wasted my time in various ways such as having a
battleship tournament in class instead of actually teach-
ing. Instead of fully utilizing the fact that there was a
computer and projector in the room, he would write some
code on the board, which could take a little while. This
class seriously felt like “here’s a homework assignment,
now go do it and become a better programmer.” ”

B. Feedback on the Collaborative Aspects

Some of the student comments (both positive and negative)
on the collaborative aspects of the class are shown below:

« “I’ve been working at a startup for a few months now and
I’ve come to realize how virtually everything that’s of any
significance at all gets done in a combination of working
as a group and as individuals; what you accomplish alone
is so much smaller in scale than what you can achieve in
a group. In addition, I’ve found that there aren’t as many
incredibly-well-defined assignments when you’re creating
a product - almost everything is a tradeoff in priorities,
and it’s incredibly important not to get panicky when
you feel like you don’t have a clear definition so you can
work out (with your team) how to develop a plan going
forward. You're the first teacher I've had to recognize
that, to share those insights with the class, and to actually
apply that kind of “well, duh” real life expertise to the
way you teach class. ”

« “He made the class environment enjoyable. His course-
work was stressful but he made it feel like good stress.
When an assignment is completely, you feel as if you’'ve
accomplished a great feat.”

o “He’s really nice and approachable. I learned a lot from
him. He kept workload manageable and interesting. He
also often asked the class what they wanted to learn about
and then taught about that.”

o “Professor Swapneel was a very approachable, funny
professor who was very knowledgeable in the field of
computer science. He did a great job in explaining the
course material, and created a comfortable classroom
environment.”

o “Definitely the most approachable and responsive teacher
that I have had since my time at Columbia. He is very
knowledgeable about the material and always finds a way
to make class interesting, despite the material, which can
make it easy to descend into a typical, dry lecture course.
Overall, I learned a lot and appreciated my class time.”

o “T just wanted to say thank you for making class so
engaging. It’s really rare to feel like learning is a
collaborative experience between the professor and the
students, and even rarer to feel like it’s a collaborative
experience amongst the students themselves, and you’ve
been awesome at fostering that kind of environment.”

o “I only audited the lecture part this course, but the
preparation, delivery, and fair approach to course load and

grading was motivational. It was truly wonderful to see an
instructor focus on educating the class rather than focus
on various ways to achieve a mid 70s class average. This
was so different than my previous CS class experiences.”

o “Swap made 1007 a very great experience for me. I had
initial doubts when I first signed up for the class because
I wasn’t sure if CS was for me, but this course has
solidified my interest in majoring in Computer Science.”

« “The workload was appropriate for the assignment, but
the directions were too vague. I ended up doing far more
for the assignment than was needed, because the design
criteria for the assignment was too vaguely defined. The
result was that anything could be considered a bad design
decision unless I fully implemented the idea (ie stripped
down blog vs. a blog that can easily integrate into a server
and become fully functional), which was far more work
than the assignment required.”

o “I don’t think it would be difficult to give assignments
that were somewhat more focused (and perhaps shorter
but more frequent).”

Finally, although anecdotal in nature, many students said
that they were now considering or decided to do a major in
CS or a double-major in CS after taking this class.

V. RELATED WORK

Collaboration has proven to be an important aspect in CS
courses. TankBrains [3]] is a collaborative and competitive
game used in a CS course where students competed to develop
better Als. Bug Wars [5] is a classroom exercise where
students seed bugs in code, swap examples, and compete to
find the most bugs (in each other’s code). While TankBrains
and Bug Wars are specific programming activities, we present
a general approach to teaching introductory computer science
that is both cooperative and competitive.

There have been several approaches towards integrating
games into CS curricula. One of the earliest such attempts was
Software Hut, where the authors formulated their project-based
software engineering course as a game [12]]. Groups competed
to be the most “profitable” — where performance was tracked
by “program engineering dollars” (a fictional currency). This
technique is similar to ours in that we both track student
performance with points, but we also added in other game
concepts, such as quests and achievements. KommGame is an
interface that encapsulates many collaborative software devel-
opment activities such as creating documentation or reporting
and resolving bugs and tracks each student with karma points
[15]]. This social and collaborative environment represented
real world open source development environments.

SimSE [16] and Problems and Programmers [1] are two
simulation-oriented games that give students a “real world”
software engineering experience. These two projects are
games, whereas we have built a game layer on top of the
regular course environment. Somewhat similar, Wu’s Castle
[7] is a game to teach students basic programming constructs
such as loops — but again, this is a game.

There are other approaches aimed specifically at integrating
testing into the early CS curriculum. Bug Hunt [9] is a web-
based tutorial application that teaches students about software
testing. However, Bug Hunt did not use any game elements,
unlike our approach. Goldwasser proposed a “gimmick” for
teaching software testing [[11], where students competed to
achieve better test suites. This is similar to our work in that it
involves a competitive aspect.

VI. CONCLUSION

In this paper, we described a competitive-collaborative ap-
proach for teaching a CS2 class. The competitive aspects that
we used in the class leveraged a code tournament and HALO
to teach students good software design and the basics of
software testing. The collaborative aspects allowed students to
work in teams to create a project of their choice. This resulted
in many interesting projects, including some socially relevant
and arty projects. Finally, a fun, informal, and collaborative
classroom was used to prevent creating stereotypes that CS
is boring. The overall student feedback for the class was
very positive. Most of the students enjoyed the competitions,
the HALO quests, and the team projects and many students
decided to major in CS after the class.

ACKNOWLEDGMENT

The authors are members of the Programming Systems
Laboratory is funded in part by NSF CCF-1161079, NSF
CNS-0905246, and NIH U54 CA121852.

REFERENCES

[1] A. Baker, E. O. Navarro, and A. van der Hoek. An Experimental Card
Game for teaching Software Engineering Processes. Journal of Systems
and Software, 75(1-2):3 — 16, 2005. Software Engineering Education
and Training.

[2] J. Bell, S. Sheth, and G. Kaiser. Secret Ninja Testing with HALO
Software Engineering. In Proceedings of the 4th international workshop
on Social software engineering, SSE *11, pages 43—47, New York, NY,
USA, 2011. ACM.

[3] K. Bierre, P. Ventura, A. Phelps, and C. Egert. Motivating OOP by
blowing things up: An Exercise in Cooperation and Competition in an
Introductory Java Programming Course. In Proceedings of the 37th
SIGCSE technical symposium on Computer science education, SIGCSE
’06, pages 354-358, New York, NY, USA, 2006. ACM.

[4]
[5]
[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

Blizzard Entertainment. World of Warcraft. http://us.battle.net/wow/en.
R. Bryce. Bug Wars: A Competitive Exercise to find Bugs in Code. J.
Comput. Sci. Coll., 27(2):43-50, Dec. 2011.

Columbia Engineering - The Fu Foundation School of Engineering
and Applied Science. Bulletin 2011-2012. http://bulletin.engineering.
columbia.edu/files/seasbulletin/201 1Bulletin.pdf, 2011.

M. Eagle and T. Barnes. Experimental evaluation of an educational
game for improved learning in introductory computing. SIGCSE Bull.,
41:321-325, March 2009.

S. H. Edwards. Rethinking computer science education from a test-
first perspective. In Companion of the 18th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and
applications, OOPSLA °03, pages 148-155, New York, NY, USA, 2003.
ACM.

S. Elbaum, S. Person, J. Dokulil, and M. Jorde. Bug Hunt: Making Early
Software Testing Lessons Engaging and Affordable. In Proceedings of
the 29th international conference on Software Engineering, ICSE *07,
pages 688-697, Washington, DC, USA, 2007. IEEE Computer Society.
E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns:
Elements of reusable object-oriented design, 1995.

M. H. Goldwasser. A gimmick to integrate software testing throughout
the curriculum. SIGCSE Bull., 34:271-275, February 2002.

J. Horning and D. Wortman. Software Hut: A Computer Program
Engineering Project in the Form of a Game. Software Engineering,
IEEE Transactions on, SE-3(4):325 — 330, July 1977.

U. Jackson, B. Z. Manaris, and R. A. McCauley. Strategies for
effective integration of software engineering concepts and techniques
into the undergraduate computer science curriculum. In Proceedings of
the twenty-eighth SIGCSE technical symposium on Computer science
education, SIGCSE ’97, pages 360-364, New York, NY, USA, 1997.
ACM.

E. L. Jones. Integrating testing into the curriculum arsenic in small
doses. SIGCSE Bull., 33:337-341, February 2001.

T. Kilamo, I. Hammouda, and M. A. Chatti. Teaching collaborative
software development: a case study. In Proceedings of the 2012
International Conference on Software Engineering, ICSE 2012, pages
1165-1174, Piscataway, NJ, USA, 2012. IEEE Press.

E. O. Navarro and A. van der Hoek. SimSE: an educational simulation
game for teaching the software engineering process. In Proc. of the
9th annual SIGCSE conference on Innovation and technology in CS
education, ITiCSE *04, pages 233-233, 2004.

S. Sheth, J. Bell, and G. Kaiser. HALO (Highly Addictive, socially
Optimized) Software Engineering. In Proceeding of the st international
workshop on Games and software engineering, GAS *11, pages 29-32,
New York, NY, USA, 2011. ACM.

L. Williams and L. Layman. Lab partners: If they’re good enough for the
natural sciences, why aren’t they good enough for us? In Proceedings
of the 20th Conference on Software Engineering Education & Training,
CSEET ’07, pages 72-82, Washington, DC, USA, 2007. IEEE Computer
Society.

http://us.battle.net/wow/en
http://bulletin.engineering.columbia.edu/files/seasbulletin/2011Bulletin.pdf
http://bulletin.engineering.columbia.edu/files/seasbulletin/2011Bulletin.pdf

	Introduction
	Background
	Approach and Evaluation
	Competition
	Battleship Tournament
	Gamification using HALO

	Collaboration
	Team Projects
	Lectures in Class

	Feedback
	Feedback on the Competitive Aspects
	Feedback on the Collaborative Aspects

	Related Work
	Conclusion
	References

