
Hardware-Accelerated Range Partitioning

Lisa Wu, Raymond J. Barker, Martha A. Kim, Kenneth A. Ross
Department of Computer Science, Columbia University, New York, New York, USA

{lisa,rjb2150,martha,kar}@cs.columbia.edu

Abstract
With global pool of data growing at over 2.5 quinitillion

bytes per day and over 90% of all data in existence created
in the last two years alone [23], there can be little doubt that
we have entered the big data era. This trend has brought
database performance to the forefront of high throughput, low
energy system design. This paper explores targeted deploy-
ment of hardware accelerators to improve the throughput and
efficiency of database processing. Partitioning, a critical oper-
ation when manipulating large data sets, is often the limiting
factor in database performance, and represents a significant
amount of the overall runtime of database processing work-
loads.

This paper describes a hardware-software streaming frame-
work and a hardware accelerator for range partitioning, or
HARP. The streaming framework offers seamless execution
environment for database processing elements such as HARP.
HARP offers performance, as well as orders of magnitude
gains in power and area efficiency. A detailed analysis of
a 32nm physical design shows 9.3 times the throughput of
a highly optimized and optimistic software implementation,
while consuming just 3.6% of the area and 2.6% of the power
of a single Xeon core in the same technology generation.

1. Introduction
In the era of big data, fields as varied as natural language
processing, medical science, national security, and business
management all rely on the ability to sift through and analyze
massive, multi-dimensional data sets. These communities rely
on computer systems to quickly and efficiently process vast
volumes of data. In this work we explore deploying specialized
hardware to more effectively address this task.

Databases are designed to help managing large quantities of
data, allowing users to query and update the information they
contain. The database community has been developing algo-
rithms to support fast or even real-time queries over relational
databases. As data sizes grow, big databases increasingly par-
tition the data among multiple tasks that operate on sub tables
instead of the large database. Partitioning, as illustrated in the
small example in Figure 1, assigns each record in a large table
to a smaller table based on the value of a particular field in the
record, which is the transaction date in Figure 1. Partitioning
enables the resulting partitions to be processed independently
and more efficiently (e.g., in parallel and with better cache
locality). Partitioning is used in virtually all modern database
systems including Oracle Database 11g [39], IBM DB2 [22],

5/6/11
2/2/11

7/27/11
6/1/11

10/10/11
9/3/11

5/20/11
12/6/11

5/6/11

2/2/11

7/27/11

5/20/11

12/6/11

9/3/11

10/10/11

6/1/11
date qty sku

date qty sku

3/1/11

Input Table Partitioned DataSplitters

7/1/11

10/1/11

<

<

<
>=

>=

>=

Figure 1: An example table of sales records range partitioned
by date, into smaller tables. Processing big data
one partition at a time makes working sets cache-
resident, dramatically improving the overall analysis
speed.

and Microsoft SQL Server 2012 [33] to improve performance,
manageability and availability in the face of big data, and the
partitioning step itself has become a key determinant of query
processing in big database.

Now is the time to explore custom hardware for handling
large data. At the same moment we hit the power wall, per-
formance gains of commodity hardware started slowing, and
data sizes started to explode. As the price of memory drops,
modern databases are not typically disk I/O bound [1, 19],
with many databases now either fitting into main memory or
having a memory-resident working set.

We present a design for a an ASIC Hardware-Accelerated
Range Partitioner, or HARP. We demonstrate that software im-
plementations of partitioning on a general purpose processor
have fundamental performance limitations that cause parti-
tioning to be a bottleneck. HARP both accelerates the data
partitioning itself and frees up processors for other compu-
tations. Since database and other data processing systems
represent a common high-value server workload in this age of
big data, the impact of improvements in partitioning perfor-
mance would be widespread.
This paper makes the following four contributions.
• A detailed software scaling analysis range partitioning. Our

analysis quantifies how severely the severity of the bottle-
neck, even after existing techniques such as SIMD instruc-
tions and multi-threading are deployed (Section 3).

• A hardware-software architecture for data stream process-
ing. Data streams are managed via explicit software in-
structions and hardware stream buffers from which they are
processed by HARP, a specialized processing element for
range partitioning (Section 4).

SALES

WEATHER

partition
(SALES)

join(1)partition
(WEATHER)

join(2) join(3) join(4)

join(SALES,WEATHER)

SALES_1

SALES_2

SALES_3

SALES_4
WEATHER_1

WEATHER_2 WEATHER_3

WEATHER_4

Without partitioning, even smaller
table exceeds cache capacity,
consequently lookups thrash and the
join operation is slow.

After partitioning, small table
partitions are cache resident,
accelerating per-partition joins.

Figure 2: Joining two large tables easily exceeds cache capacity. State of the art join implementations, partition the tables to be
joined then compute partition-wise joins, each of which exhibits substantially improved cache locality [28, 2]. Joins are
extremely expensive on large datasets, and partitioning represents a significant fraction, up to half, of the observed
join time [28].

• An evaluation of the area, power, and efficiency of the
HARP design. Synthesized, placed and routed, a single
HARP unit would occupy just 3.3% of the area of a com-
modity Xeon processor core and can process up to 3.72
GB/sec of input (at least 9.3 times more than a single Xeon
core), matching the throughput of 16 software threads (Sec-
tion 5.2).

• A detailed sensitivity analysis of HARP designs. These
studies quantify tradeoffs between specialization and flex-
ibility. We demonstrate that HARP tolerates unbalanced
data distribution, that throughput is most sensitive to record
width, and that area and power are directly proportional to
the partitioning fanout (Section 5.3-Section 5.6).

2. Background and Motivation

Here we provide some background on the range partitioning
operation and its deployment and prevalence in databases.

Range Partitioning. Partitioning a table splits the table into
multiple smaller tables called partitions. Every row in the orig-
inal table will be assigned to one partition, based on its value
in the key field. Figure 1 shows an example table of sales trans-
actions partitioned based on the date of the transaction. For
each record in the table the destination partition is computed
from the key value. This work focuses on a method called
range partitioning which splits the space of keys into contigu-
ous ranges, for instance by quarter as illustrated in Figure 1.
The boundary values of these ranges are called splitters.

Benefits of Partitioning. Partitioning large data tables has
many benefits. Once tables become so large that the tables
themselves or their associated processing metadata cannot
fit into a cache, the analysis speed drops off rapidly. The
partitioned tables can be processed more expeditiously. When
a quarterly sales report is needed, instead of having to process
all the sales records, only the partitioned tables containing
desired quarter(s) need to be processed. Another use case
is to provide real-time sales updates. Since the records are

partitioned by date, if a new sale is made, the only partition
that needs updating is the partition that contains today’s date.
You can also imagine distributing various partitions of a huge
database to different locations. If the sales records were to be
partitioned by geographical regions, then the sale records of
New York can be stored in a facility on the east coast for faster
access.

Partition-Wise Joins. A commonly used database opera-
tion is a join operation. A join takes a common key from two
different tables and creates a new table containing information
from both tables based on a particular condition. For example,
if one wants to analyze whether the weather effects sales, one
would join the sales records with the weather records on the
date of each transaction. In this case records from the SALES
table are joined with records from the WEATHER table where
SALES.date == WEATHER.date. If the WEATHER table is
too large to fit in the cache, this whole process will have very
poor cache locality, as illustrated in Figure 2-left. On the other
hand, if both tables are partitioned on date, each partition can
be joined in a pairwise fashion illustrated by Figure 2-right.
When each partition of the WEATHER table fits in the cache,
joining each partition can proceed much more rapidly. When
the data is large enough, the time spent partitioning is more
than offset by the time saved with the resulting cache-friendly
partition-wise joins.

Most queries begin with one ore more joins to cross refer-
ence tables. Already join operations are critical to database
performance, as evidenced by the substantial optimization and
many different implementations tailored to an array of possi-
ble scenarios. Because query optimizers strive to filter the data
as soon as possible after the join, the initial join operation is
expected to further dominate as data sizes grow. Analyses of
the state of the art in join implementations have indicate that
up to half of the time spent performing a join is attributable to
range partitioning [28].

2

Partitioning Desirata. A good partitioning algorithm will
have several properties. One useful property of range parti-
tioning is that the resulting partitions are ordered. Ordered
partitions are useful when a global sort of the data is required.
A second property is record order preservation, specifically
that all records in a partition appear in the same order they
were found in the input record stream. This property is im-
portant for some algorithms, including radix sorting. While
range partitioning itself does not enforce this, our hardware
implementation HARP does have this property.

A third property is skew-tolerance. Skew is the term for
uneven data distribution across partitions. In the sales records
example above, if summer sales far exceed winter sales, then
the date ranges in the summer months would skew the parti-
tioning operation. Skew result in one or more partitions being
much larger than others and negating many of the benefits of
partitioning. HARP handles skew at two levels. First, we im-
plement a variant of range partitioning described by Ross and
Cieslewicz [43] that is less vulnerable to skew. This scheme
includes one equality partition per splitter, where the entire
partition gets just a single key. If the user assigns expected hot
keys to be splitters, they will get their own partition, helping
to balance the data across partitions. Second, the HARP mi-
croarchitecture is skew tolerant meaning that in the presence
of skew, the partitioning throughput degrades minimally.

3. Software Range Partitioning Analysis

Here we identify performance limitations for software parti-
tioning on general purpose CPUs. In Section 3.2 we analyze
single-core performance in detail. Since partitioning perfor-
mance scales with additional cores are used [8, 28, 2], in
Section 3.3 we quantify multithreaded performance as well.

3.1. Methodology

We characterize an optimistic partitioning microbenchmark
whose inner loop runs over an input table reading in a record
at a time, r, computing r’s partition using a partition function
p= partition f unction(r), and then writing r to the destination
partition p.

We experiment with 8 byte records (4 byte key, 4 byte
payload) as in [28] and 16 byte records (8 byte key and 8 byte
payload) as in [8, 2]. The latter configuration will be most
directly comparable to our hardware partitioner that is tuned
for 16 byte records. Keys and payloads are stored columnwise
in separate arrays.1

We evaluate different partitioning methods by varying the
(inlined) implementation of partition f unction(). We consid-
ered range partitioning and three other methods for compari-
son:

1When the key and payload were stored contiguously, we saw an improve-
ment in performance near the TLB capacity, because the TLB footprint is half
as big.

1. No partitioning: All items go to a single partition. This
method is similar in behavior to memcpy and provides a
baseline software throughput.

2. Hash partitioning: Partitions are computed using a multi-
plicative hash of each record’s the key value.

3. Direct partitioning: Like hash partitioning, but avoids hash-
ing by treating the key itself as the hash value.

4. Range partitioning: Equality range partitioning, using the
state of the art algorithm from [43]. This implementation
requires a binary search of the splitter array.

Our software measurements are optimistic. We use the ideal
input distributinon (i.e., uniform random), and in the case of
range partitioning, splitters were also uniformly distributed.
Real-world data sets will typically have less favorable charac-
teristics. The measurements are also optimistic with respect
to output data layout. Prior to partitioning it is impossible to
know exactly how many records will land in each partition,
making it impossible to pre-allocate the perfect amount of out-
put memory. Kim et al. [28] make an additional pass through
the input to calculate partition sizes so that partitions are free
of fragmentation, arguing that since the partitioning process
is compute-bound, the extra pass through the data has only a
small performance impact. Another approach is simply to al-
locate large chunks of memory, on demand, as the partitioning
operation runs. This software microbenchmark is optimistic in
that it pre-allocates memory and performs no bounds checking
during partitioning. Properly managing output memory can
only slow performance.

The code was compiled with gcc version 4.4.3 at optimiza-
tion level 3 and executed on an 8-core 2.4 GHz Intel Xeon
E5620 [24] with 48 GB of RAM. The memory subsystem
of this platform is capable of 32 GB/sec of total bandwidth.
We present software performance as compute throughput in
GB/sec. A partitioner operating at X GB/sec would consume
2X GB/sec of memory bandwidth (X GB/sec of data in + X
GB/sec of data out). We ran each algorithm 9 times on an
input of 108 records, and take the median measurement over
the 9 runs.

3.2. Single Core Software Partitioning

Figure 3 shows the throughput of the four partitioning methods
for 128-way and 256-way partitioning on 8-byte records. The
range partitioning configurations used 63 and 127 splitters
respectively. As a result, the number of partitions in each case
are actually 127 and 255 rather than 128 and 256.

The no-partitioning method (labeled “none” in Figure 3) is
similar in behavior to memcpy. Comparing direct and hash par-
titioning, the data indicate that the hash function computation
incurs only mild cost. Comparing with prior results, the cycle
cost of 128-way hash partitioning is close to that observed in
[28] for a single core. Additionally, the significant drop in
throughput between 128- and 256-way partitioning is consis-
tent with the observations of [28] that 128-way partitioning is
the largest partitioning factor that does not incur excessive L1

3

Figure 3: Compute throughput for different partitioning algo-
rithms. Range partitioning is the most costly for
both 128-way partitioning (left) and 256-way parti-
tioning (right).

TLB thrashing.

Range-partitioning needs more cycles per record, and thus
has lower throughput, because it must traverse the splitter
array. It is possible to improve the splitter array lookups by
using SIMD techniques such as those discussed by Schlegel et
al. [45]. We downloaded the code from [45] and observed that
the time for a SIMD-enhanced binary search on our machine
(without actually outputting the partitions) was about 30 cycles
for 128 splitters, and 50 cycles for 256 splitters. When ac-
counting for reading and writing data, SIMD searches improve
the throughput of range partitioning up to 40% (less when the
L1 TLB is thrashing). Even so, this 0.38 GB/sec partitioning
throughput (corresponding 0.77 GB/sec memory throughput),
does not come close to using the available memory bandwidth.

3.3. Parallel Scaling

Because range partitioning scales with multiple threads, we
also measured the performance of multithreaded software.
Figure 4 shows the scaling behavior of 128-way hash and
range partitioning for both 8 byte and 16 byte records.2 As
this data indicate, using 16 threads can improve software range
partitioning throughput by a factor of ten. Ultimately, in all
cases, the threads begin contending for shared resources other
than memory bandwidth and the performance improvements
tail off. For range partitioning, the partitioning throughput
peaks with 16 threads at 2.75 GB/sec for 8 byte records and 4.5
GB/sec for 16 byte records. Given that the memory bandwidth
of the system is sufficient to process 16 GB/sec of input (plus
and 16 GB/sec of output for a total of 32 GB/sec), deploying
all compute resources in this fashion still consumes just 17%
and 28% of the available memory bandwidth.

2There are 16 hardware threads available, on 8 processor cores.

Figure 4: Partitioning bandwidth (in GB/sec of input) achieved
for 128-way software partitioning using hash and
range partitioning, as a function of the number of
parallel threads. Data is shown for both 8 byte and
16 byte records.

4. Hardware Accelerated Range Partitioning
Architecture

As the software experiments show, software is capable of satu-
rating memory bandwidth when bringing data into a core for
processing, however it becomes a bottleneck when comput-
ing the partition itself. We present a framework in which the
computation is accelerated in hardware (via HARP), but all
input and data stream management is left to software to max-
imize flexibility and simplify the interface to the accelerator.
Figure 5 shows a block diagram of the major components in
the system. The two stream buffers, one running from mem-
ory to HARP and the other from HARP to memory, decouple
HARP from the rest of the system. One set of instruction set
extensions moves data between the processor, memory, and
the stream buffers. A second set of instructions provides con-
figuration and control for the HARP accelerator, which freely
pulls data from and pushes data to the stream buffers.

4.1. System Architecture

To ensure that HARP can process data at the desired through-
put, the framework surrounding the accelerator must address
the following three concerns: (1) records need to be readily
available to HARP for partitioning, (2) records need to be
written out to memory as fast as possible once HARP has
processed them, and (3) the machine must continue seamless
execution after an interrupt, exception, or context switch. We
use a hardware-software streaming framework based on the
concept outlined in Jouppi’s prefetch stream buffer work [27].

Table 1 describes the instructions are used to manage the
data streams. sbload is issued by the processor and loads
data from memory into the SBin. Each sbload takes as an
argument the address from which to load memory and the
number of bytes to load. sbstore works on reverse, taking

4

Core

L1I L1D

Shared Cache

HARP
(Figure 6)

sbload

sbpeekSBin

sb
st
or
e

SBout

Memory Controller

*set_splitter
 partition_start
 partition_stop

*

Figure 5: Block diagram of a HARP system architecture

data from the head of the SBout and writing it to the specified
address.

SBin has a simple stride prefetcher that uses the burst size
(64 bytes for our study) as the stride and prefetches up to the
next 15 record bursts within the same page boundary. sbload
checks the head of the SBin FIFO before sending requests to
memory as strided accesses will likely hit in the SBin. In the
event that the issued sbload misses the SBin FIFO, the entire
SBin FIFO is invalidated, and the missed sbload is sent out to
memory along with a new set of 15 prefetches. We prefetch
the next 15 bursts based on Palacharla and Kessler’s work [40]
on tuning streaming prefetches. All told, SBin holds 16 entries
of 64 bytes each.

Software-defined data streams require a programmer’s ex-
plicit memory allocation for each table via malloc or simi-
lar mechanisms. Because the software side performs all of
the memory management, we provide an instruction called
sbpeek which allows software to peek at the partition ID of
the next burst of data to be written from SBout to memory. This
allows software to manage the mapping from partition ID to
memory address, and to issue the sbstore accordingly.

Finally, to ensure seamless execution after an interrupt is
encountered, an exception is raised, or a context switch occurs,
we make a clean separation of architectural and microarchitec-
tural state. Specifically, only the stream buffers themselves,
SBin and SBout , are architecturally visible. No state in the
HARP microarchitecture itself is exposed. By design, this
separates the microarchitecture of the accelerator from the
context, and will help facilitate the use of the stream buffers
by other accelerators in the future. Before the machine sus-
pends the HARP execution to service an interrupt or a context
switch, the OS will execute an sbsave instruction to save
all architectural state. After the interrupt has been serviced,
before resuming the HARP execution, the OS will execute an
sbrestore to ensure the machine states are identical before
and after the interrupt or context switch. The full stream buffer
ISA is summarized in Table 1.

The size of the SBout FIFO is determined by the maximum

Stream Buffer Instructions

sbload <address> <record size>

Load record-sized bytes from specified address in memory to SBin.
sbstore <address> <record size>

Store record-sized bytes from SBout to specified address in memory.
sbpeek <pid>

Return the pid of the burst or records at the head of SBout .
sbsave

Save the contents of SBin into memory,
drain all in-flight data from HARP to SBout ,
and save the resulting contents of SBout into memory.
sbrestore

Populate SBin and SBout using saved data from memory.

Table 1: Instruction extensions for managing the HARP

HARP Instructions

set_splitter <splitter number> <value>

Set the value of a particular splitter (splitter number ranges from 0 to 126).
partition_start

Signal HARP to start partitioning and read bursts of records from SBin.
partition_stop

Signal HARP to stop partitioning and drain all in-flight data to SBout .

Table 2: Instruction extensions for managing the Hardware-
Accelerated Range Partitioner (HARP).

number of states needed to continue seamless execution. In the
baseline instance of the HARP microarchitecture (described
further in Section 5.1), we support up to 127 splitters resulting
in 256 partitions with 64 bytes per burst. Consequently, the
maximum number of in-flight bursts is 256, and so the baseline
SBout has 256 entries.

4.2. HARP Instructions

The HARP accelerator itself can be managed via three simple
instructions as shown in Table 2. set_splitter is invoked
once per splitter; partition_start signals HARP to start
pulling data from the SBin; partition_stop signals HARP
to stop pulling data from SBin and drain all in-flight data to
SBout .

Since the state in the HARP microarchitecture is not visible
to other parts of the machine except for the hardware-software
streaming framework, the splitter registers do not need to be
saved upon interruption. However, all in-flight data in HARP
needs to be drained into the SBout before the sbsave instruc-
tion occurs, in order that HARP resumes execution seamlessly
by pulling from the SBin upon sbrestore instruction.

These HARP instructions, together with the stream buffer
instructions described in the previous section allow full soft-
ware control of all aspects of the partitioning operation, except
for the work of partitioning itself which is handled by HARP.

4.3. The HARP Microarchitecture

We describe a microarchitectural unit, which is tailored to
range partition data highly efficiently.

HARP consists of three modules, as depicted in Figure 6.
The architecture exploits deep pipelining and simple control

5

< s0? = s0? < s1? = s1? > s1?< s1? = s1?

C
on

ve
rt

pa
ra

llle
l

bu
rs

t t
o

st
re

am
 o

f
re

co
rd

s
(F

SM
)

Identify most full buffer, and convert series of records to single burst (FSM)

SBin

(1) Serializer (2) Conveyor

(3) Merge

Partition Buffers

SBout

Figure 6: HARP draws records in bursts, serializing them into a single stream which is fed into a pipeline of comparators. At
each stage of the pipeline, the record key is compared with a splitter value, and the record is either filed in a partition
buffer (downwards) or advanced (to the right) according to the outcome of the comparison. As records destined for the
same partition collect in the buffers, the merge stage identifies and drains the fullest buffer, emitting a burst of records
all destined for the same partition.

flow to keep the pipeline full and maximize throughput. The
partitioner pulls and pushes records in 64 byte bursts (tuned to
match DRAM).

1. The serializer pulls bursts of records in from SBin, and uses
a simple finite state machine to pull each individual record
from the burst and feed them, one after another, into the
subsequent pipeline. As soon as one burst has been fed into
the pipe, the serializer is ready to receive the subsequent
burst.

2. The conveyor module is where the records are compared
against splitters. The conveyor accepts a stream of records
from the serializer into a deep pipeline with one stage per
splitter. At each stage, a record is compared to the corre-
sponding splitter and routed to the “less than” partition,
the “equality” partition, or to the next pipeline stage for
comparison with the next splitter. When a record is routed
to a partition, it is sent to the corresponding partition buffer.

3. As the partition buffers collect records destined for each
partition, the merge module monitors them, looking for full
bursts of records that it can send to a single partition. When
a burst is ready, merge drains a burst’s worth of records
serially, one record per cycle, bundling them into a single
burst and writing it to SBout .

The design uses deep pipelining to hide the latency of mul-
tiple splitter comparisons. We experimented with a tree struc-
ture for the conveyor, analogous to the binary search the soft-
ware implementation uses, but found that in hardware the lin-
ear conveyor architecture was preferable. When the pipeline
operates bubble-free, as it does in both cases, it processes one
record per cycle, regardless of topology. The only difference
in total cycle count between the linear and tree conveyors was
the overhead of filling and draining the pipeline at the start

and finish respectively. With large record counts, the differ-
ence in time required to fill and drain a k-stage pipeline versus
a log(k)-stage pipe in the tree version, is negligible. While
cycle counts were more or less the same between the two, the
linear design had a slightly shorter clock period, due to more
complex layout and routing requirements in the tree, resulting
in slightly better overall throughput.

This HARP unit is record order preserving. All records in
a partition appear in the same order they were found in the
input record stream. This is a useful property for other parts
of the database system and is a natural consequence of the
structure of HARP. There is only one route from input port
to each partition, and it is impossible for records to pass one
another on that route.

5. HARP System Evaluation

First, we evaluate the two principal pieces of the HARP frame-
work, the accelerator itself and the stream buffers, providing
a performance comparison with software and detailed cost
analysis. Then we evaluate the HARP design flexibility vs.
specificity by conducting various sensitivity studies.

5.1. Methodology

Accelerator implementation. We implemented HARP in
Bluespec System Verilog [3], a high-level hardware descrip-
tion language that is compiled down to the lower-level lan-
guage Verilog. Leveraging the parameterizability of Bluespec,
we evaluated 11 different points in the partitioner design space.
Accelerator synthesis and physical design. We synthesized
each of these designs using the Synopsys [48] Design Com-
piler with IBM’s 90nm design libraries followed by physical
design using the Synopsys IC Compiler. The post-place-and-

6

route critical path of each design is reported as logic delay
plus clock network delay, adhering to the industry standard of
reporting critical paths with a margin. We gave the synthesis
tools a target clock cycle of less than or equal to 5ns and re-
quested medium effort for area optimization. To compare with
the 32 nm Xeon core of the software experiments, HARP area
and power numbers are scaled using trend reports from the
ITRS roadmap [49]. Using α from ITRS, we apply a shrink-
ing factor of 1/α to each dimension of the design and 1/α2

for classic scaling of power as described in [46]. The clock
frequencies of our designs are scaled more conservatively than
area/power following the technology trends reported by the
ITRS 90nm to 32nm.
Accelerator simulation. We count hardware cycles using
Bluespec’s cycle-accurate simulator, Bluesim. Each simula-
tion was performed using 1 million records. Because HARP
runs at a lower clock frequency than the system used for the
software experiments, we convert cycle counts into absolute
bandwidth (in GB/sec).
Baseline accelerator configuration. Each of the analyses in
the subsequent sections examines and extends a single baseline
HARP configuration. The baseline supports 16 byte records,
with 4 byte keys. It has 127 splitters for 255-way partitioning,
with 64 byte DRAM bursts (i.e., 4 records per burst). The
burst size was selected based on the memory characteristics,
rather than the record size.
Software area and power numbers. The per-processor core
area and power figures in the analyses that follow reflect our
estimates for the system we used. For area, we started with
Intel’s reported 684mm2 die for the E5620 [24]. The eight
cores account for roughly half of the die area, so we estimate
a single Xeon core to be one sixteenth of the die area or
42.75mm2. Similarly, Intel reports a peak thermal design
power (TDP) of 80 Watts for each die in this system. Assuming
power is roughly proportional to area, we calcuate each core
is responsible for roughly one sixteenth of the total, or 5 Watts
per core. Strictly speaking TDP is a peak power budget, and
actual power consumption is workload dependent. However,
because the range partitioning workload is compute-bound
and compute-intensive, it is likely running very close to peak
power consumption.

5.2. Comparison with Software-Only Partitioning

We compare the range partitioning throughput of the optimistic
software from Section 3 with the HARP-augmented version.
Figure 7 plots the throughput of three range partitioner imple-
mentations: single-threaded software, multi-threaded software,
and single HARP. The direct hardware implementation of an
algorithm outperforms the serial software equivalent by 7.8X -
9.0X. Here, the throughput difference between hardware and
single-threaded software is primarily attributable to the elimi-
nation of instruction fetch and control overhead and the deep
pipeline. In particular, the structure of the partitioning opera-
tion does not introduce hazards or bubbles into the pipeline,

Stream Buffers HARP Unit
Num. Area Power Area Power
Parts. mm2 % Xeon W % Xeon mm2 % Xeon W % Xeon

15 0.07 0.2% 0.063 1.3% 0.08 0.2% 0.005 0.1%
31 0.07 0.2% 0.079 1.6% 0.16 0.4% 0.007 0.1%
63 0.10 0.2% 0.078 1.6% 0.32 0.8% 0.008 0.2%
127 0.11 0.3% 0.085 1.7% 0.66 1.6% 0.015 0.3%
255 0.13 0.3% 0.100 2.0% 1.40 3.3% 0.029 0.6%
511 0.18 0.4% 0.233 4.7% 2.77 6.5% 0.056 1.1%

Table 3: Area and power overheads of stream buffers and
HARP units for various partitioning factors.

allowing it to operate in near-perfect fashion: always full, ac-
cepting and emitting one record per clock cycle. This theory is
borne out in practice where our empirical measurements indi-
cate average cycles per record ranging from 1.008 (for 15-way
partitioning) to 1.041 (for 511-way partitioning). As Figure 7
indicates, it requires 16 threads for the software implementa-
tion to match the throughput of the hardware implementation.
Moreover, augmenting all 8 cores with a HARP accelerator
would provide sufficient compute bandwidth to fully utilize
all DRAM pins.

The addition of the stream buffer and accelerator hardware
do increase the area and power of the core. Table 3 quantifies
the area and power overheads of the accelerator and stream
buffers relative to a single Xeon core. Comparatively, the
additional structures are very small, with the baseline design
point adding just 3.6% area and 2.6% power for both the
HARP and the SBs. From an energy perspective, the increased
power is overwhelmed by the improvement in throughput.
Figure 8 compares the partitioning energy per GB of data
of software (both serial and parallel) against HARP-based
alternatives. The data show a 7.7 - 9.0X improvement in single
threaded partitioning energy with HARP. If all eight cores are
augmented with HARP, running eight HARP-enhanced cores
(with one thread per core) is 5.7 - 6.43X more energy efficient
than running sixteen concurrent hyperthreads on those eight
cores.

In the following sections we provide a deeper characteriza-
tion and analysis of the properties of the HARP accelerator,
namely its sensitivity to workload, partition fanout, and data
sizes.

5.3. Throughput Under Input Skew

We evaluate HARP’s sensitivity to skew in the data, by gener-
ating synthetically unbalanced record sets, and measuring the
partitioner throughput (i.e., cycles/record) on each. We var-
ied the record distribution from optimal, where records were
uniformly distributed across all partitions, to pessimal, where
all records are sent to a single partition. Figure 9 shows the
gentle degradation in throughput as the heavy hitter partition
receives an increasingly large share of records.

This degradation is due to the design of the merge module.
Recall that this stage identifies which partition has the most

7

Figure 7: A single HARP unit outperforms single threaded
software from 7.8X with 15 partitions to 9.0X with 511
partitions, matching the throughput of 16 threads.

Figure 8: HARP-augmented cores partition data using 5.7-
9.0X less energy than parallel or serial software.

records ready and drains them from that partition’s buffer to
send as a single burst back to memory. When the records
are distributed across partitions, the merge rarely drains the
same partition twice in a row. If B represents the number
of records per DRAM burst, draining two different partition
buffers back-to-back takes 2B cycles. However, when skew
increases, the frequency of back-to-back drains of the same
partition increases. A back-to-back drain of the same partition
requires an additional cycle, resulting in an average of B+1
cycles per burst rather than B. Thus, the throughput of the
merge module varies between 1

B cycles/record in the best case
to 1

B+1 in the worst case.
The baseline HARP design supports four records per burst

resulting in a 25% degradation in throughput between best-
and worst-case skew. This is very close to the degradation seen
experimentally in Figure 9, where throughput sinks from 3.7
GB/sec with no skew to 3 GB/sec in the worst-case. Note that
the worst-case is a function only of the number of records per
burst, and is bounded at B

B+1 % of peak. The more records per
burst (larger B), the milder the degradation will be. Note that

Figure 9: As the input data is increasingly skewed (i.e., unbal-
anced), the baseline accelerator’s throughput drops
by up to 19% due to increased occurrence of back-
to-back bursts to the same partition.

this tolerance is independent of a number of factors including
the number of splitters, the size of the keys, or the size of the
table being partitioned.

5.4. Sensitivity to Number of Splitters

Next we analyze how performance, power, and area of HARP
change with to the degree of partitioning. Specifically, we vary
the number of splitters, k ∈ {7,15,31,63,127,255}, spanning
15- to 511-way partitioning. We held the key and record widths
constant at the baseline values (4 and 16 bytes respectively)
and report throughput on a uniform random distribution of
records to partitions.

Figure 10 (top) shows the throughput of different HARP
sizes, each supporting a different number of splitters, k. While
the number of cycles per record held more or less steady
between 1.01 and 1.04 cycles per record, the the critical path
of the design grows approximately as k0.22, causing overall
compute bandwidth to decrease in inverse proportion to the
critical path.

Both the area and power consumption of the accelerator
grow linearly with k, illustrated in Figure 10 (middle) and Fig-
ure 10 (bottom) respectively. The number of partition buffers
between conveyor and merge, which account for roughly 50%
of the total partitioner area, grows linearly with the number
of partitions, which in turn grows linearly with the number
of splitters. Meanwhile, the wiring overhead grows slightly
super-linearly, due to the increasing number of wires that
must be routed. The rest of the combinational logic and other
registers and flip-flops scale in a slightly sub-linear fashion.
The cumulative result of all these trends is dominated by the
partition buffer growth, and thus overall area scales linearly.

Like area, power grows linearly in k. At each design point,
the dynamic (or switching) power is a constant 80% of the
total power with leakage accounting for the remainder. Under
classic technology scaling (i.e., > 23nm), power and area are
directly proportional, so these two linear trends in Figure 10
(middle) and Figure 10 (bottom) align with expectations.

In terms of absolute numbers, the baseline HARP config-

8

Figure 10: HARP throughput, area, and power for different
numbers of splitters, creating a family of small to
large HARP instances.

uration (k = 127) achieved a 4.26ns critical path, yielding a
design that runs at 235 MHz, delivering single-direction com-
pute bandwidth of 3.7 GB/sec. This is 9.3 times faster than
single-threaded software range-partitioner described in Sec-
tion 3. It consumes 1.4mm2 and 29.4mW , or 3.3% and 0.6%
of a single Xeon core respectively.

5.5. Sensitivity to Key Width

We now vary the max key width, kw, from the 4 byte baseline
to 8 and 16 bytes, the latter of which is the full record width.
The critical path increases with the key width, resulting in
a compute bandwidth degradation inversely proportional to
roughly (kw)0.23 as shown on the primary axis of Figure 11
(top). The increasing critical path is due to the comparators
in the conveyor module which increase in depth (i.e., levels
of gates) as the values being compared grow in width. In the
extreme case of 16 byte keys with no payload, the partitioner
is able to provide a compute bandwidth of 2.68 GB/sec. Fig-

Figure 11: HARP throughput, area, and power at different max-
imum key widths.

ure 11 (top) also plots area on the secondary axis, showing a
logarithmic relation between key width and area. While we
see modest area increases, on the whole partitioner area is not
especially sensitive to key size.

Figure 11 (middle) shows an area for these three design
points, providing several insights. First, the area of the par-
tition buffers remains constant as key width changes. The
relative proportion of key to payload has no effect on their
overall size. Second, comparator area scales logarithmically
with the width of the comparator (i.e. a 32-bit comparator in
the kw = 4 design will have 5 levels of gates while a 128-bit
comparator in the kw = 16 design will have 8 levels gates).
Third, the area consumed by other registers grows slightly
with key width. This area includes both the pipeline registers
which do not vary with key width, and the splitter registers
which grow linearly with key width. Fourth, as the key width
grows, the payload decreases, resulting in reduced overall
wiring overhead.

9

Figure 12: HARP throughput, area, and power at different max-
imum record widths.

Finally, Figure 11 (bottom) shows how sensitive HARP
power is to key width. As before, dynamic power dominates
at 80% of total power. Leakage power increases only slightly
while dynamic power increases more rapidly but not nearly as
sensitive to key width as opposed to number of splitters.

5.6. Sensitivity to Record Width

As we found in the key width sensitivity analysis, many aspects
of the HARP design were more sensitive to record width than
key width. So, we now vary the record width, rw, for rw ∈
{4,8,16,32}, while keeping all other aspects of the baseline
configuration.

We first observe, in Figure 12 (top), that the compute band-
width of the partitioner doubles as the record width doubles.
The reason is that the rate of which records are processed
held steady (at about 1.01 cycles per record) and the record
width doubled, doubling the total bandwidth. While the criti-
cal paths of the designs had a slight effect on bandwidth, the

record width trend dominated. In contrast, partitioner area
stayed mostly constant as rw increased.

Breaking down the total area into five categories as shown in
Figure 12 (middle), we make the following two observations.
First, partition buffers got smaller as rw got bigger. As burst
size was constant throughout, this result shows that the depth
of the buffer costs more in area than the width of the buffer,
i.e., an 8-entry, 16-bit wide queue requires more space than a 4-
entry, 32-bit wide queue. This is a result of the per-entry state
required to maintain the queue. Second, as we saw before,
comparator area is a function of key width, and thus it is
now more or less constant as record size changes. Finally,
Figure 12 (bottom) shows similar power trends to key width:
power grows linearly, with dynamic power accounting for 80%
of the total, and leakage power is proportional to area (here,
roughly constant).

In closing, we summarize these sensitivity studies as fol-
lows. HARP’s partitioning throughput is most sensitive to
record width growing linearly in direct proportion, while area
and power are most sensitive to the number of splitters, also
growing linearly in direct proportion.

6. Related Work

6.1. Streaming Computation

The last decade has seen substantial interest in software-based
streaming computation with the development of new paral-
lel languages [6, 16, 7] and middleware support focused on
portability and interoperability [10, 26, 38, 12, 11].

The hardware support for streaming has been substantially
more limited. The vast majority of streaming architectures,
such as Cell’s SPE [14], RSVP [9], or Piperench [15] are
decoupled from the processing core and are highly tailored
to media processing. The designs that most closely resemble
HARP microarchitecturally are DySER [18] and ReMAP [50].
DySER incorporates a dynamically specializable datapath into
the core. Both DySER and HARP can be viewed as specialized
functional units, and are sized accordingly (a couple percent
of a core area). While one might be able to program DySER to
partition data, its full interconnect between functional units is
overkill for partitioning’s predicatble data flow. ReMAP [50]
has a very different goal, integrating reconfigurable fabric,
called Specialized Programmable Logic (or SPL), to support
fine-grained inter-core communication and computation.

6.2. Vector ISAs

Nearly all modern processors include vector ISAs, exemplified
by x86’s MMX and SSE, Visual Instruction Set (VIS) for
UltraSPARC, or AltiVec on PowerPC. These ISAs include
vector loads and stores, instructions which load 128- or 256-bit
datawords into registers for SIMD vector operation. Different
opcodes allow the programmer to specify whether the data
should or should not be cached (e.g., non-temporal loads).

10

The SIMD vector extensions outlined above were univer-
sally introduced to target media applications on streaming
video and image data. The available operations treat the data
as vectors and focus largly on arithmetic and shuffling opera-
tions on the vector values. Many programmers have retrofitted
and vectorized other types of programs, notably text pars-
ing [5, 31] and regular expression matching [44] and database
kernels [52, 17, 30]. Our experiments in Section 3 using a
state of the art SIMD range partitioning [45] indicate that
vector-based traversal improves throughput but fails to fully
saturate DRAM bandwidth.

These efforts demonstrate moderate speedups, at the cost
of substantial programmer effort. One recent study of regular
expression matching compared different strategies for acceler-
ation [44]. The study concluded that SIMD software was the
best option, due to the fast data and control transfers between
the scalar CPU and the vector unit. The other approaches
(including memory bus and network attached accelerators)
suffered due to communication overheads. In short, SIMD
won not because it was particular fast computationally, but
because it was fast to invoke. This study in part influenced our
choice to couple the HARP accelerator with a processing core.

6.3. Database Machines

Database machines were developed by the database commu-
nity in the early 1980s as specialized hardware for database
workloads. These efforts largely failed, primarily because
commodity CPUs were improving so rapidly at the time, and
hardware design was slow and expensive [4]. While hard-
ware design remains quite costly, high computing require-
ments of data-intensive workloads, limited single-threaded
performance gains, increases in specialized hardware, aggres-
sive efficiency targets, and the data deluge have spurred us
and others to revisit this approach. While FPGAs have been
successfully used to accelerate a number of data intensive
algorithms [34, 51, 35], they are power-hungry compared to
custom logic and it remains unclear how to approach program-
ming and integrating them.

6.4. Memory Scheduling

Despite the relative scarcity of memory bandwidth, there is
ample evidence both in this paper and elsewhere that work-
loads do not fully utilize the available resource. One recent
study suggests that data bus utilization would double, LLC
miss penalties would halve, and overall performance would
increase by 75% if memory controllers were to operate at
their peak throughput [25]. This observation and others about
the performance criticality of memory controller through-
put [37] have inspired substantial research in memory schedul-
ing [20, 32, 21, 42, 53, 41, 47, 25, 13, 36, 29]. Improvements
in memory controllers have the advantage of being applicable
across all workloads, but important throughput bound work-
loads, such as partitioning, are not limited by the memory
controller and thus will not see significant benefit from those

efforts.

7. Conclusions

We proposed a database processing streaming framework and
a database processing element accelerator architecture that pro-
vide seamless execution in modern computer systems and ex-
ceptional throughput and power efficiency advantages. These
benefits are necessary to address the ever increasing demands
of big data processing. This proposed framwork can be utilized
for other database processing accelerators such as specialized
aggregators, joiners, sorters, and so on, setting forth a flexible
yet modular data-centric acceleration framework.

We presented the design and implementation of HARP, a
hardware accelerated range partitioner. HARP is able to pro-
vide a compute bandwidth of at least 9.3 times a very efficient
software algorithm running on a state-of-the-art Xeon core,
with just 3.6% of the area and 2.6% of the power. Process-
ing data with accelerators such as HARP can alleviate serial
performance bottlenecks in the application and can free up
resources on the server to do other useful work, getting us one
step closer to closing the dark silicon gap in designing a more
efficient computer system.

References
[1] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood, “DBMSs

on a modern processor: Where does time go?” in Proceedings of the
International Conference on Very Large Data Bases (VLDB), 1999.

[2] S. Blanas, Y. Li, and J. M. Patel, “Design and evaluation of main
memory hash join algorithms for multi-core CPUs,” in Proceedings
of the International Conference on Management of Data (SIGMOD),
2011.

[3] Bluespec, Inc., “Bluespec Core Technology.” [Online]. Available:
http://www.bluespec.com

[4] H. Boral and D. J. DeWitt, “Database machines: an idea whose time
has passed?” in Proceedings of the Second International Workshop on
Database Machines, 1983.

[5] R. D. Cameron and D. Lin, “Architectural support for SWAR text pro-
cessing with parallel bit streams: the inductive doubling principle,” in
Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2009.

[6] S. Chakraborty and L. Thiele, “A new task model for streaming applica-
tions and its schedulability analysis,” in Proceedings of the Conference
on Design, Automation and Test in Europe (DATE), 2005.

[7] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: an object-oriented
approach to non-uniform cluster computing,” in Proceedings of the An-
nual Conference on Object-Oriented Programing, Systems, Languages,
and Applications (OOPSLA), 2005.

[8] J. Cieslewicz and K. A. Ross, “Data partitioning on chip multiproces-
sors,” in Proceedings of the International Workshop on Data Manage-
ment on New Hardware (DaMoN), 2008.

[9] S. Ciricescu, R. Essick, B. Lucas, P. May, K. Moat, J. Norris,
M. Schuette, and A. Saidi, “The reconfigurable streaming vector pro-
cessor (RSVPTM),” in Proceedings of the Annual International Sym-
posium on Microarchitecture (MICRO), 2003.

[10] B. F. Cooper and K. Schwan, “Distributed stream management us-
ing utility-driven self-adaptive middleware,” in Proceedings of the
International Conference on Automatic Computing, 2005.

[11] M. Duller and G. Alonso, “A lightweight and extensible platform for
processing personal information at global scale,” Journal of Internet
Services and Applications, vol. 1, no. 3, pp. 165–181, Dec. 2010.

[12] M. Duller, J. S. Rellermeyer, G. Alonso, and N. Tatbul, “Virtualizing
stream processing,” in Proceedings of International Conference on
Middleware, 2011.

11

http://www.bluespec.com

[13] E. Ebrahimi, R. Miftakhutdinov, C. Fallin, C. J. Lee, J. A. Joao,
O. Mutlu, and Y. N. Patt, “Parallel application memory scheduling,” in
Proceedings of the Annual International Symposium on Microarchitec-
ture (MICRO), 2011.

[14] B. Flachs, S. Asano, S. Dhong, P. Hotstee, G. Gervais, R. Kim, T. Le,
P. Liu, J. Leenstra, J. Liberty, B. Michael, H. Oh, S. Mueller, O. Taka-
hashi, A. Hatakeyama, Y. Watanabe, and N. Yano, “A streaming pro-
cessing unit for a CELL processor,” in Proceedings of the International
Solid-State Circuits Conference (ISSCC), 2005.

[15] S. C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. R.
Taylor, and R. Laufer, “PipeRench: a co/processor for streaming multi-
media acceleration,” in Proceedings of the International Symposium
on Computer Architecture (ISCA), 1999.

[16] M. I. Gordon, W. Thies, and S. Amarasinghe, “Exploiting coarse-
grained task, data, and pipeline parallelism in stream programs,” in
Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2006.

[17] N. K. Govindaraju and D. Manocha, “Efficient relational database
management using graphics processors,” in Proceedings of the Interna-
tional Workshop on Data Management on New Hardware (DaMoN),
2005.

[18] V. Govindaraju, C.-H. Ho, and K. Sankaralingam, “Dynamically spe-
cialized datapaths for energy efficient computing,” in Proceedings of
the Symposium on High Performance Computer Architecture (HPCA),
2011.

[19] G. Graefe and P.-A. Larson, “B-tree indexes and CPU caches,” in
Proceedings of the International Conference on Data Engineering,
2001.

[20] S. I. Hong, S. A. McKee, M. H. Salinas, R. H. Klenke, J. H. Aylor, and
W. A. Wulf, “Access order and effective bandwidth for streams on a
direct Rambus memory,” in Proceedings of the Symposium on High
Performance Computer Architecture (HPCA), 1999.

[21] I. Hur and C. Lin, “Adaptive history-based memory schedulers,” in Pro-
ceedings of the Annual International Symposium on Microarchitecture
(MICRO), 2004.

[22] IBM, “DB2 Partitioning Features.” [Online]. Avail-
able: http://www.ibm.com/developerworks/data/library/techarticle/
dm-0608mcinerney/

[23] ——, “IBM What is big data? Bringing big data to enterprise.”
[Online]. Available: http://www-01.ibm.com/software/data/bigdata/

[24] Intel Corporation, “Intel R© Xeon R© Processor E5620.”
[Online]. Available: http://ark.intel.com/products/47925/
Intel-Xeon-Processor-E5620-(12M-Cache-2_40-GHz-5_
86-GTs-Intel-QPI)

[25] E. Ipek, O. Mutlu, J. F. Martínez, and R. Caruana, “Self-optimizing
memory controllers: A reinforcement learning approach,” in Proceed-
ings of the International Symposium on Computer Architecture (ISCA),
2008.

[26] N. Jain, L. Amini, H. Andrade, R. King, Y. Park, P. Selo, and C. Venka-
tramani, “Design, implementation, and evaluation of the linear road
bnchmark on the stream processing core,” in Proceedings of the Inter-
national Conference on Management of Data (SIGMOD), 2006.

[27] N. P. Jouppi, “Improvind direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers,” in
Proceedings of the International Symposium on Computer Architecture
(ISCA), 1990.

[28] C. Kim, E. Sedlar, J. Chhugani, T. Kaldewey, A. D. Nguyen, A. D.
Blas, V. W. Lee, N. Satish, and P. Dubey, “Sort vs. hash revisited: Fast
join implementation on modern multi-core CPUs,” Proceedings of the
VLDB Endowment (PVLDB), vol. 2, no. 2, pp. 1378–1389, 2009.

[29] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter, “Thread
cluster memory scheduling: Exploiting differences in memory access
behavior,” in Proceedings of the Annual International Symposium on
Microarchitecture (MICRO), 2010.

[30] J. Krueger, C. Kim, M. Grund, N. Satish, D. Schwalb, J. Chhugani,
H. Plattner, P. Dubey, and A. Zeier, “Fast updates on read-optimized
databases using multi-core CPUs,” Proceedings of the VLDB Endow-
ment (PVLDB), vol. 5, no. 1, pp. 61–72, Sep. 2011.

[31] D. Lin, N. Medforth, K. S. Herdy, A. Shriraman, and R. Cameron,
“Parabix: Boosting the efficiency of text processing on commodity
processors,” in Proceedings of the Symposium on High Performance
Computer Architecture (HPCA), 2012.

[32] S. A. McKee, W. A. Wulf, J. H. Aylor, M. H. Salinas, R. H. Klenke, S. I.
Hong, and D. A. B. Weikle, “Dynamic access ordering for streamed
computations,” IEEE Transactions on Computers, vol. 49, no. 11, pp.
1255–1271, Nov. 2000.

[33] Microsoft, “Microsoft SQL Server 2012.” [Online]. Available:
http://technet.microsoft.com/en-us/sqlserver/ff898410

[34] C. Mohan, “Impact of recent hardware and software trends on high per-
formance transaction processing and analytics,” in Proceedings of the
TPC Technology Conference on Performance Evaluation, Measurement
and Characterization of Complex Systems (TPCTC), 2011.

[35] R. Müller and J. Teubner, “FPGAs: a new point in the database design
space,” in Proceedings of the International Conference on Extending
Database Technology (EDBT), 2010.

[36] S. Muralidhara, L. Subramanian, O. Mutlu, M. Kandemir, and T. Mosci-
broda, “Reducing memory interference in multicore systems via
application-aware memory channel partitioning,” in Proceedings of
the Annual International Symposium on Microarchitecture (MICRO),
2011.

[37] C. Natarajan, B. Christenson, and F. Briggs, “A study of performance
impact of memory controller features in multi-processor server envi-
ronment,” in Proceedings of Workshop on Memory Performance Issues
(WMPI), 2004.

[38] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed
stream computing platform,” in International Conference on Data
Mining Workshops (ICDMW), 2010.

[39] Oracle, “Oracle Database 11g: Partitioning.” [Online].
Available: http://www.oracle.com/technetwork/database/options/
partitioning/index.html

[40] S. Palacharla and R. E. Kessler, “Evaluating stream buffers as a sec-
ondary cache replacement,” in Proceedings of the International Sym-
posium on Computer Architecture (ISCA), 1994.

[41] N. Rafique, W.-T. Lim, and M. Thottethodi, “Effective Management
of DRAM Bandwidth in Multicore Processors,” in Proceedings of the
International Conference on Parallel Architectures and Compilation
Techniques (PACT), 2007.

[42] S. Rixner, “Memory controller optimizations for web servers,” in Pro-
ceedings of the Annual International Symposium on Microarchitecture
(MICRO), 2004.

[43] K. A. Ross and J. Cieslewicz, “Optimal splitters for database partition-
ing with size bounds,” in Proceedings of the International Conference
on Database Theory (ICDT), 2009, pp. 98–110.

[44] V. Salapura, T. Karkhanis, P. Nagpurkar, and J. Moreira, “Accelerating
business analytics applications,” in Proceedings of the Symposium on
High Performance Computer Architecture (HPCA), 2012.

[45] B. Schlegel, R. Gemulla, and W. Lehner, “k-ary search on modern
processors,” in Proceedings of the International Workshop on Data
Management on New Hardware (DaMoN), 2009.

[46] O. Shacham, O. Azizi, M. Wachs, W. Qadeer, Z. Asgar, K. Kelley, J. P.
Stevenson, A. Solomatnikov, A. Firoozshahian, B. Lee, S. Richard-
son, and M. Horowitz, “Rethinking digital design: Why design must
change,” IEEE Micro, vol. 30, no. 6, pp. 9–24, NovDec 2010.

[47] J. Shao and B. Davis, “A burst scheduling access reordering mecha-
nism,” 2007.

[48] Synopsys, Inc., “90nm Generic Library for IC Design, Design
Compiler, IC Compiler.” [Online]. Available: http://www.synopsys.
com

[49] The International Techonology Roadmap for Semiconductors,
“ITRS executive summary,” Tech. Rep., 2009. [Online]. Available:
http://www.itrs.com

[50] M. A. Watkins and D. H. Albonesi, “ReMAP: A reconfigurable hetero-
geneous multicore architecture,” in Proceedings of the Annual Interna-
tional Symposium on Microarchitecture (MICRO), 2010.

[51] L. Woods, J. Teubner, and G. Alonso, “Complex event detection at wire
speed with FPGAs,” Proceedings of the VLDB Endowment (PVLDB),
vol. 3, no. 1, pp. 660–669, 2010.

[52] J. Zhou and K. A. Ross, “Implementing database operations using
SIMD instructions,” in Proceedings of the International Conference on
Management of Data (SIGMOD), 2002.

[53] Z. Zhu and Z. Zhang, “A performance comparison of DRAM memory
system optimizations for smt processors,” in Proceedings of the Sym-
posium on High Performance Computer Architecture (HPCA), 2005.

12

http://www.ibm.com/developerworks/data/library/techarticle/dm-0608mcinerney/
http://www.ibm.com/developerworks/data/library/techarticle/dm-0608mcinerney/
http://www-01.ibm.com/software/data/bigdata/
http://ark.intel.com/products/47925/Intel-Xeon-Processor-E5620-(12M-Cache-2_40-GHz-5_86-GTs-Intel-QPI)
http://ark.intel.com/products/47925/Intel-Xeon-Processor-E5620-(12M-Cache-2_40-GHz-5_86-GTs-Intel-QPI)
http://ark.intel.com/products/47925/Intel-Xeon-Processor-E5620-(12M-Cache-2_40-GHz-5_86-GTs-Intel-QPI)
http://technet.microsoft.com/en-us/sqlserver/ff898410
http://www.oracle.com/technetwork/database/options/partitioning/index.html
http://www.oracle.com/technetwork/database/options/partitioning/index.html
http://www.synopsys.com
http://www.synopsys.com
http://www.itrs.com

	Introduction
	Background and Motivation
	Software Range Partitioning Analysis
	Methodology
	Single Core Software Partitioning
	Parallel Scaling

	Hardware Accelerated Range Partitioning Architecture
	System Architecture
	HARP Instructions
	The HARP Microarchitecture

	HARP System Evaluation
	Methodology
	Comparison with Software-Only Partitioning
	Throughput Under Input Skew
	Sensitivity to Number of Splitters
	Sensitivity to Key Width
	Sensitivity to Record Width

	Related Work
	Streaming Computation
	Vector ISAs
	Database Machines
	Memory Scheduling

	Conclusions

