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Abstract 
 

We have developed an infrastructure for end-to-end 
run-time monitoring, behavior / performance analysis, 
and dynamic adaptation of distributed software 
applications. This feedback-loop infrastructure is 
primarily targeted to pre-existing systems and thus 
operates outside the application itself without making 
assumptions about the target system’s internal 
communication/computation mechanisms, implementation 
language/framework, availability of source code, etc. This 
paper assumes the existence of the monitoring and 
analysis components, presented elsewhere, and focuses 
on the mechanisms used to control and coordinate 
possibly complex repairs/reconfigurations to the target 
system.  These mechanisms require lower-level actuators 
or effectors somehow attached to the target system, so we 
briefly sketch one such facility (elaborated elsewhere). 
The core of the paper is the model, architecture, and 
implementation of Workflakes, the decentralized process 
engine we use to tailor, control, coordinate, respond to 
contingencies, etc. regarding a cohort of such actuators. 
We have validated our approach and the Workflakes 
prototype in several case studies, related to different 
application domains. Due to space restrictions we 
concentrate primarily on one case study, elaborate with 
some detais a second, and only sketch others. 
 

1. Introduction 
 

Distributed computing is becoming a commodity. 
Users rely upon distributed systems for a number of value-
added services that pervade their everyday lives, such as 
Web-based collaboration suites, electronic B2B and B2C, 
on-demand multimedia content provisioning, ubiquitous 
personal messaging, and many others, which are built on 
top of a networking infrastructure as distributed systems, 
often constructed by composition. The complexity of the 
behavior and interrelationships of these “systems of 
systems” becomes increasingly harder to analyze in 
advance, and keep under control on the field. That 
aggravates the critical problems of managing the 

provisioning of the service and maintaining the intended 
application-level, “soft” quality of service (QoS). In order 
to resolve poor performance or failures, often service is 
interrupted, the underlying application is taken down (at 
least in part), and the spiral of software lifecycle iterates 
back to the installation or deployment phase, and 
sometimes even to earlier development phases. 

While such a drastic response may be obligatory at 
times, it is desirable when possible to resolve problems 
with lesser impacts and costs – while the system is running 
and without bringing it down. This comports the presence 
of facilities for the dynamic adaptation of complex, 
distributed software systems and services. By that term we 
mean any automated and controlled set of actions aimed at 
modifying, at runtime, the structure, behavior and/or 
performance of a target software system, typically in 
response to the occurrence and recognition of some 
(adverse) conditions. Example may range from tuning 
functioning parameters in order to optimize performance, 
to architecture-wide interventions such as service 
deployment or service migration. 

The Dynamic adaptation theme is gaining attention as 
an opportunity to address the ever-increasing complexity 
of IT infrastructures and applications. For example, the 
autonomic computing initiative announced by IBM [1], or 
the Recovery Oriented Computing works at Berkeley and 
Stanford [2] go in that direction. But it also constitutes a 
challenge, since it can be seen as a form of automated 
maintenance of “live” systems. As such, it tends to be 
even more complex than conventional off-line 
maintenance. 

The hardwiring of self-adaptation provisions in the 
application itself is still the most common approach to 
dynamic adaptation, but that is feasible principally only 
for “new” systems, or systems whose components are 
under the control of the developers. Moreover, those 
hardwired provisions tend to increase the overall 
complexity of the system, in fact intensifying maintenance 
difficulties, and are often developed custom, with little 
reuse possible across applications or domains. 

For these reasons, our research has focused on 
solutions that remain orthogonal to the target system’s 
main computation, control and communication, 



constituting an externalized dynamic adaptation 
infrastructure. This approach enables retrofitting with the 
desired reconfiguration, self-healing, and self-
management capabilities also legacy systems and systems 
built by composition with third-party components. 

Our model for externalized dynamic adaptation is that 
of a layered architecture, which comprises layers for data 
collection, information analysis, decision / control, and 
actuation. In-depth discussion of the overall infrastructure 
model, and how its collection and analysis components 
have been fulfilled within our Kinesthetics eXtreme (KX) 
implementation can be found in [18] [23]. This paper 
focuses instead on the decision and control role, and how 
we have addressed it in KX with our Workflakes process-
based engine. Workflakes employs process technology to 
coordinate the actuation layer, which is currently provided 
via our worklets mobile agents effectors [5] [19]. A 
preliminary paper [5] sketched the ideas at the basis of the 
Workflakes project. This paper provides the first complete 
presentation of the Workflakes model and architecture, 
according to our recently completed operational 
implementation. 

KX and Workflakes have been evaluated in a number 
of case studies. We present here in full detail one such 
case study on an industrial Internet service with its most 
recent results, which subsume and update a previous 
report [26]. We also sum up other case studies in their 
most interesting traits. 
 
2. A model for externalized dynamic 
adaptation 
 

An externalized dynamic adaptation platform can be 
seen at the highest level of abstraction as a feedback loop 
that is superimposed onto existing distributed systems for 
the purposes of continually monitoring and modifying 
their configuration, activity and performance. Since the 
feedback loop is handled outside of the target application, 
it is possible to maintain a clear separation between the 
reusable, common adaptation mechanisms and the target 
system specifics. 

Furthermore, in order to be generally applicable in 
diverse usage and technological contexts, the 
infrastructure must be constructed with great attention to 
its interoperability with a variety of adaptation targets. 
That in turn can be achieved only via interoperability and 
standardization of the interactions between the 
infrastructure components, so that the numerous 
technological options that can be used to implement 
probes, gauges, controllers and effectors can be easily 
accommodated by the model. 

As a consequence, within the DASADA program [3], 
under which we are conducting this research, a standard 
model, the Common DASADA Infrastructure (CDI) [25] 

has emerged, which organizes the design of the feedback 
loop according to multiple layers, as shown in  

Figure 1. 
In the first place, the Collection layer gathers 

information from the running target system, by 
instrumenting it with minimally invasive probes that 
report via a Probe Bus to the Interpretation layer. There, 
information is mapped and evaluated by gauges, against 
some models that characterize the target system, and 
findings are reported to the Gauge Bus. At that point, the 
Decision and Control layer analyzes the implications of 
the gauge findings on the target system functioning and 
performance and makes decisions on whether to carry out 
some dynamic adaptation onto it. Adaptation actions 
would be carried by effectors at the Actuation layer, under 
the coordination of one or more controllers. Effectors 
would actuate (i.e. reconfigure, tune or otherwise adapt) 
individual components, as well as connectors and major 
substructures of the system. 

 

Figure 1: Dynamic adaptation infrastructure. 
Notice that while this model is largely independent of 

the running target, this is not to say that the specific 
probes, gauges, controllers, effectors and the models that 
govern them are themselves independent of the running 
system. In fact, probes and effectors must often be 
specialized to the implementation technology; gauges and 
decision mechanisms must be specialized to the problem 
logic and the environment. 

Notice also how the layered design with makes easier 
to separate the various kinds of functionality taking part in 
the overall infrastructure (a similar separation of concerns 
is advocated in other dynamic adaptation initiatives, such 
as [30]). In CDI, much work has been devoted to the 
development of standard probing [4], as well as a gauging 
[20] APIs. Standards for the decision and control roles in 
a dynamic adaptation platform are however less well 
understood. 
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To close the loop, the infrastructure must also automate 
decisions on the adaptation to be carried out, control the 
adaptation as it occurs on the target system, and provide 
adequate effectors to actuate that adaptation via 
appropriate side effects on the target system. Workflakes 
explores part of that problem space, in particular how to 
express control and how to exert it on multiple effectors 
taking part in the actuator layer. 

 
3. The Workflakes approach 
 

The output of gauges represents the input to a decision 
process that determines whether/how the target system 
must be adapted. In the simplest case, gauges may assert a 
fact that already carries with it unequivocally defined 
consequences. Other times, a variety of tools could be 
exploited for decision support: for example, formal 
architectural knowledge, coupled with constraint analysis 
and architecture transformation tools, such as in [16] [22]. 

When a decision upon some adaptation is taken, a 
single action will sometimes suffice to fulfill it. In most 
cases, however, the decision will have to be mapped onto 
several finer-grained activities, impacting various 
implementation elements. In the latter case, a 
sophisticated coordination mechanism is needed: some of 
those activities may be conditional, or dependent on 
others, or may fail, calling for contingency planning. 

To address that complexity, Workflakes relies on 
process-based coordination, and treats decisions as 
triggers for an adaptation process. The process unfolds 
according to a task decomposition strategy that in the end 
generates, configures, activates sets of effectors, and 
coordinates them towards actuating the desired side 
effects onto the running target system. Effectors are thus 
considered a first-class resource in Workflakes: they must 
be explicitly described in the process and made available 
to the Workflakes engine. 

Notice that the impact of effectors can range from the 
adjustment of a single operation parameter, to a method 
call, to complex reconfigurations of the target 
architecture, involving many components and connector at 
once. Similarly, the technologies that can be used for 
effectors may greatly vary, depending on their reach as 
well as the nature of their target: they are often the most 
target-dependent elements in our approach and are likely 
to be handcrafted. Standardization of the interface 
between the process engine and effectors is another 
objective of the CDI work in the next future. 

We have to date adopted mobile agents as our 
effectors, since they operate by their very nature on the 
target system form the outside, guaranteeing that new 
forms of adaptation computations can be easily deployed 
at any time onto the target with minimal disruption to 
service operation. In particular, the current Workflakes 

implementation is integrated with the worklets mobile 
agent platform [19]: worklets are code-carrying agents 
that are selected as effectors, configured and dispatched as 
a side effect of process steps. Each worklet carries Java 
mobile code snippets, named junctions, which are 
deposited onto one or more target components, according 
to a trajectory that can be programmed. Once deposited, 
the execution of code in a junction is governed by its 
encasing jacket, a construct that specifies conditional 
execution, repetition, timing, priority, etc. The agent 
transport facilities and execution environment are 
provided by Worklet Virtual Machines (WVMs) residing 
at all “stops” in a worklet trajectory. 

Figure 2: Representation of a typical 
Workflakes task processor. 

The Workflakes process runtime engine in its current 
implementation relies on a specialization of the Cougaar 
open–source system [24]. Cougaar decentralized task 
processors (or clusters) provide us with a number of 
largely autonomous controllers (as per  

Figure 1) for the enactment of the dynamic adaptation 
process. Each cluster is further specified as a set of 
Cougaar plugins. Plugins allow to customize the 
functionality of task processors by inserting components 
that implement a particular logic or a specific capability. 
As shown in Figure 2, a typical Workflakes task processor 
includes several Logic Data Model (LDM) plugins to 
import and convert KX gauge events in terms of process 
facts, maintain internal knowledge about the target system 
and its state, and access a repository of worklet junctions 
effectors; an Expander plugin to load process definitions 
and spell them out as hierarchical decompositions of 
tasks; an Allocator plugin to map tasks to junctions and to 
target components as needed; an Executor plugin that 
handles the instantiation and shipment of effectors. 
In Workflakes, task processors and plugins are 
specifically constructed to operate with worklets, in two 
fundamental ways. First, worklet originate from WVMs 
incorporated within the task processors, and deposit 
junctions onto the target components to be adapted. One 
of the major responsibilities of the process is therefore to 
decide what effectors junctions need to be dispatched, for 
a given dynamic adaptation task. That is why the 
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repository of junction descriptions, is an essential 
component, since effectors must be treated as first-class 
process resources. 
Furthermore, Workflakes uses worklets also to 
dynamically load process definitions onto task processors, 
either with a pull or a push modality. In Workflakes, 
plugins are initially idle and devoid of any hardcoded 
logic related to any particular process; for that reason, we 
call them shell plugins. The set of shell plugins launched 
within a cluster at start time is therefore merely indicative 
of the kinds of service and functionality that the cluster is 
meant to offer within the overall Workflakes engine. Shell 
plugins can be activated at any time via the injection of 
specific process definition junctions. Those junctions 
dynamically deploy process fragments to the most 
convenient task processor for execution. Only after such 
deployment, shell plugins acquire a definite behavior, and 
start taking part in the enactment of the process. Such 
process delivery may for example be used in the pull 
modality to incrementally retrieve process fragments when 
requested to handle certain adaptations, or in the push 
modality for on-the-fly process evolution across a 
distributed Workflakes installation. 
 
4. Evaluation 
 
A number of case studies have been carried out to 
experiment with and validate the externalized 
infrastructure approach to dynamic adaptation we have 
discussed, as embodied by KX and Workflakes 
specifically. Case studies to date include such varied 
application domains as active networking, B2C 
marketplaces, Internet-wide information systems and 
multi-channel instant messaging. 
 
4.1. Case study: a mass-market Internet service 
 

Figure 3 represents the architecture of a multi-channel 
instant messaging (IM) service for personal 
communication we have been experimenting with. That 
J2EE-based service is currently offered on a 24/7/365 
basis to thousands of users through a variety of channels, 
such as the Web, PC-based Internet chat, Short Message 
Service (SMS), WAP, etc. 

The service runtime environment consists of a typical 
three-tiered server farm: a load balancer (an IBM 
commercial software) provides a common front end to all 
end users and redirects all client traffic to several replicas 
of the IM components, which are installed and operate on 
a set of middle tier hosts. 

The various replicas of the IM server all share a 
relational database and a common runtime state 
repository, which make up the back end tier, and allow 
replicas to operate in an undifferentiated way as a 

collective service. Some of the IM servers are wrapped 
within Web application running on J2EE application 
servers (BEA Weblogic), other may provide additional 
facilities, which handle access to the service through 
specific channels, such as SMS or WAP, and interoperate 
with third-party components and resources, e.g., gateways 
to the cell phone communication network. 

 

Figure 3: The IM service architecture. 
 
We have organized the case study according to several 

iterations. Each iteration tries to fulfill a larger set of 
adaptation requirements originating from the service 
provisioning organization, and elicited from the 
application development and maintenance team. At the 
same time it extends the reach of the dynamic adaptation 
platform to a larger subset of the IM service components. 

We have now completed two iterations. In the first 
iteration, we applied dynamic adaptation only to “bare” 
IM servers, and we addressed principally relatively 
coarse-grained adaptations. In the second iteration, we 
have encompassed the application servers and the residing 
Web applications as dynamic adaptation targets, and 
addressed finer-grained adaptations. In the next iteration, 
we plan to cover the SMS component, which has in this 
meanwhile become a critical channel for the service 
traffic, with its specific reliability and availability issues. 

Up to now, the case study has addressed two main 
goals: enhancing the QoS perceived by end users, and 
facilitating service management by the staff in charge of 
supporting such a complex distributed application.  

With respect to QoS, requirements focused on 
resolving existing load and availability problems by 
automating service scalability and (in the second iteration) 
reconfiguring promptly and opportunely service 
parameters related to serving client requests efficiently. 
As for service management, requirements focused on the 
automated deployment, bootstrapping and configuration 
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of the various service components, as well as continuous 
monitoring of those components and their interactions, 
and (in the second iteration) support for “hot” service 
staging via automated rollout of new versions and patches.  

All of those requirements are captured and addressed 
within a dynamic adaptation process that is automated by 
Workflakes and whose side effects on the implemented 
system are caused by worklets. This process requires – 
among the logic and data loaded at startup onto the 
Workflakes engine –explicit knowledge about the service 
architecture and the server farm runtime environment. 
That knowledge is currently codified in a proprietary way. 

At startup, Workflakes is given a configuration of 
service components that must be instantiated. The 
configuration must include at least one “normal” IM 
server and any number of Web-based IM servers. 
Workflakes selects some hosts in the server farm for this 
initial deployment and sends worklets to them. Those 
worklets execute bootstrapping code for the IM 
components and configure them with all the necessary 
parameters (such as the JDBC connection handle to the 
DBMS, the port numbers for connections by clients and 
other IM servers, etc.). Notice that not only the 
configuration information, but also the executable code of 
the IM server is deployed and loaded on demand from a 
code repository made available to the incoming worklet, 
taking advantage of a code-pulling feature of the worklets 
agent platform. (This approach is also followed in 
Software Dock [7]).  

Depending on the type of the components, the 
deployment sub-process may change. For example, a 
normal IM server can be instantiated and configured by a 
single worklet in one step. Web-based IM servers are 
notably more complex to start-up and configure, since that 
requires first of all the spawning of a new instance of the 
application server, then the instantiation and 
parameterization of the residing Web application with 
respect to the hosting application server, and finally its 
configuration and activation as an IM component.  

When the worklets starts up an IM server, probes are 
simultaneously activated to track its instantiation and 
initialization. When the instantiation is successful, the 
process must dispatch other worklets onto the load 
balancer of the server farm, to instruct it to accept traffic 
for the IM service and route it to the right host address 
and port for the new server. In the event of an 
unsuccessful initialization, instead, the likely cause is 
inferred by the gauge layer of the dynamic adaptation 
platform and reported to a dashboard GUI, as well as to 
the process. Depending on the cause of that contingency, 
Workflakes may react in different ways: for example, it 
may decide to try to bootstrap an IM server on the same 
machine again, or on another available one, or it could 
skip that portion of the configuration, or even abort the 
whole process. 

More in general, contingencies like that can be 
discriminated as internal or external to the process. 
Internal contingencies are well-known conditions that can 
occur in the target system and which should be provided 
for by specific branches of the adaptation process. 
External contingencies correspond either to unexpected or 
“new” target system conditions, or to faults within the 
dynamic adaptation loop (e.g. a communication failure 
between effectors and the target system components to be 
adapted). For those contingencies, the adaptation process 
should provide generic remedy strategies that are used as 
exceptional courses of actions, when “all else fails” or 
when the process needs to go back to a “safe state”. 

Following the initial bootstrapping phase, and after the 
intended service configuration is in place, Workflakes 
takes a reactive role, while the probing and gauging layers 
of the platform start monitoring and analyzing the 
dynamics of service usage. Certain probes and gauges are 
activated, such as logging in and out of the servers, 
exceptions raised, service latency, number of service 
requests queued by the Web applications, etc. In this case 
study, we are particularly concerned with load and 
responsiveness. Each IM server has an associated load 
threshold, which is expressed in terms of the number of 
concurrently active clients in relationship with the 
memory resources of the host. When that threshold is 
passed, Workflakes reacts trying to scale the service up. It 
selects some unused machine that is still available in the 
server farm, and repeats the server bootstrapping process 
fragment on that machine, providing a new server replica 
for handling the extra load, and thus achieving enhanced 
reliability and performance of the overall service.  

For Web IM components, we are also able to reach a 
finer level of adaptation, exploiting the management 
capabilities built in the BEA Weblogic application server 
via Java Management eXtensions (JMX - see 
http://java.sun.com/products/JavaManagement), which we 
have integrated during the second iteration within the 
probing and effectors layers of our platform. Therefore, 
Workflakes can decide to intervene also in response to 
variations in the size of the queue of pending requests, and 
manipulate the details of the threading model of the Web 
IM application. That optimizes the degree of parallelism 
in processing client requests, and improves 
responsiveness.  

In the second iteration, we have also experimented with 
staging and service evolution scenarios, aiming at 
complete automation and minimal service disruption. It 
turned out that a service evolution campaign can be 
supported by Workflakes with relatively minor changes to 
the service bootstrapping process described above. The 
process must include tasks that gradually withdraw from 
the load balancer old server instances (thus disallowing 
new traffic to be assigned to them), and shut them down 
when traffic is absent or minimal, while another process 



fragment simultaneously and coordinately starts up, 
registers on the load balancer, and makes available to 
users other server instances with the new code release. 
 
4.2 Results and lessons learned 
 

We have been able to derive some quantitative results 
referring to the levels of automated support provided by 
the KX to the maintenance and management activities 
carried out onto the IM service on the field. Employing 
KX and Workflakes in the case studies has shown higher 
levels of automation, flexibility and reliability to the 
management of the target service and its QoS, with 
respect to previous labour-intensive practices. We also 
provide observations about the development work 
necessary to implement the case study (on top of the 
platform implementation offered by KX). The most 
significant quantitative results are:  
• Reduced effort for the deployment and configuration 

of an IM service on the field. Current manual 
procedures (using Unix shell scripts and assuming 
DBMS and application servers pre-installed in the 
server farm) can take ½ to 1 person-day, with locally 
present experts. With KX, that is reduced to 1-2 
minutes from a remote location. 

• Reduced monitoring and maintenance effort 
necessary to ensure the health of the running service. 
A sysadmin was previously needed on-site 24/7/365, 
with a secondary support team of experts available on 
call. KX completely automates the monitoring of a set 
of major service parameters, as well as the counter-
measures for a set of well-known critical conditions. 

• Reduced reaction times and improved reliability: for 
example, KX recognizes the passing of the IM load 
threshold in 1-2 seconds and takes approximately 40 
seconds to put in place an additional server replica, 
Previously, there was no direct overload detection: 
the sysadmin in charge was supposed to check the 
number of concurrent users from the logs and to 
manually start up an additional server when 
necessary. That was error-prone and could endanger 
service availability, in case resource shortage would 
crash overloaded servers. 

• Manageable coding complexity: KX probes, gauges, 
effectors junctions are derived from generic code 
instrumentation templates that are then customized 
with of situational logic. This results in rather 
compact code: 15 Java code lines for probes on 
average, usually less than 100 for effectors. In total, 
the code written for the case study was slightly above 
2000 lines of Java and XML code 

Finally, other lessons we have learnt include the following 
qualitative considerations: 

• Impact on service development: We carried out the 
whole case study positioning ourselves past the end of 
the development phase of the project life cycle and 
just prior to the deployment phase. We hence treated 
the target service as a complete legacy, although a 
legacy for which all the specifications, software 
artifacts and accumulated project knowledge 
happened to be available to us. Notice that also a 
different kind of legacy takes part in the case study: 
the application server and the load balancer are 
commercial software products, by BEA and IBM, 
which however provide sufficient APIs for carrying 
out our probing and actuation. Within those 
limitations, we were able to satisfy all the 
requirements of the case study. 

• Relationship with architectural model: the amount of 
effort to analyze the target system and its behavior for 
dynamic adaptation purposes constituted the largest 
portion of the overall effort. Furthermore, a 
substantial portion of the software we wrote is 
intended to capture architectural information, 
relationships and inferences and represent them to 
Workflakes and KX. That suggests a strong 
dependency of dynamic adaptation on the ability to 
capture, describe and expose in an abstract and 
machine-readable way the knowledge about the target 
architecture, which has motivated us to explore 
integration with formal ADLs in follow-up research. 

• Integrated automated management: here is where the 
benefit of a full-fledged process engine becomes most 
evident. Traditional application management is 
concerned with reporting warnings, alarms and other 
information to some knowledgeable human operator 
who can recognize situations as they occur, and take 
actions if needed. The amount of guidance and 
automation on part of the management platform is 
very limited. Our approach offers instead a high level 
of guidance, coordination and automation to enforce 
what is a complex but many times largely repeatable 
and codifiable process. 

 
4.3. Other case studies 
 
Internet-wide Information Systems: the subject was 
ISI’s Geoworlds [28], a strongly decentralized and 
componentized integrated Geographical Information and 
Digital Library system, in use for intelligence analysis at 
US Pacific Command (PACOM). Forms of dynamic 
adaptation applied to Geoworlds have varied from service 
parameter modification, to component repair, to global 
reconfigurations, such as service migration. 

One particularly interesting trait in this case study was 
that – in part building on the lessons learnt in the IM case 
study – we experimented integrating architectural models 



and tools exploiting formal ADLs within the dynamic 
adaptation loop. Some of the gauges would report 
architecturally significant events to the ABLE tool set 
[16], which allowed us to take dynamic adaptation 
decisions starting from an architectural knowledge of the 
target system. That knowledge is captured in a set of 
descriptions in the Acme ADL, and ABLE is able to 
decide upon and express adaptations as sets of changes to 
the architectural model. To be effected at the 
implementation level, transformation directives would 
hence be passed to Workflakes, to trigger reconfiguration 
processes on the deployed Geoworlds system, in accord 
with the architectural transformation requested. ABLE and 
Workflakes could therefore nicely complement each 
other. 

This juxtaposition of the architecture- and 
implementation levels – although preliminary - showed 
potential to offer means to clearly and rigorously express, 
reason about, validate and audit the characteristics and the 
effects of the modifications caused by dynamic 
adaptation. A difficulty we encountered and that was only 
partially resolved in the case study was a disconnection 
between the architectural model and the implementation 
environment; as a consequence, we have observed that it 
is necessary to have bindings (such as those of [21]) 
between components and connectors in the architectural 
model and the runtime entities that reify the architecture 
on the field. Such bindings can greatly simplify the 
integration of ADL-based tools at all layers of our 
dynamic adaptation infrastructure. 
 
Web Services marketplace: the subject was the 
validation of the performance and the offer of an 
electronic marketplace, which interfaces with a number of 
service provider components implemented as Web 
Services [27]. The dynamic adaptation platform would 
keep under control the basic functioning parameters of 
participating Web Services (such as availability, 
responsiveness, transaction completion ratio, etc.), 
analyze their accumulated performance, and use this 
information to adapt the behavior of the mediator 
components of the marketplace, in particular the 
mechanisms used in selecting service providers for 
composing service offers to the customers’ satisfaction. 
 
Active networking: the subject was the dynamic 
adaptation of active network elements, in particular active 
firewalls that can be reconfigured on the fly in response to 
network conditions, the kind of traffic they receive, users’ 
profiles, etc. [29] The case study used Workflakes in 
conjunction with different implementations of the probing, 
gauging and effectors layers. Workflakes would replace 
the code installed within active firewall nodes, in response 
to an analysis of the network packets arriving at the 
firewalls and of their filtering performance and criteria. 

The dynamic adaptation process also included provisions 
for the validation of installed firewall configurations 
through their on-line testing. 
 
5. Related work 
 

Given the focus of the paper and space limitations, we 
only discuss here Workflakes in relation to other works 
that propose to exploit process technology to control the 
behavior and performance of a running application, rather 
than comparing KX or even the externalized infrastructure 
model to the many other approaches addressing the 
problem space of dynamic adaptation in whole or in part. 

However, we notice that it is the externalized stance 
that most strongly characterizes Workflakes. Often, in 
fact, automated solutions to software coordination and 
control, present structural dependencies with respect to 
the subjects of their coordination. 

Some of those solutions can be seen as an evolution of 
built-in fault tolerance code. For example, [15] proposes a 
rule-based inference engine for decision support in 
application-level QoS assurance, including a coordination 
entity guiding a set of computational actuators. However, 
the coordinator and actuators must both be embedded with 
each target component. That makes more difficult to 
define system-wide adaptations and limits the adaptations 
that can be carried out without re-building the target. 

Another classic approach is that of an environment or 
middleware with native dynamic adaptation capabilities. 
Generic (i.e. non necessarily process-based) examples of 
dynamic adaptation middleware include, Conic [14], 
Polylith [12], 2K / dynamicTao [13] and many others; 
they all offer a set of dynamic adaptation primitives as a 
premium for applications built with and operating on top 
of themselves. Also many of the works that use process 
technology for SW control and coordination adopt in fact 
a middleware-like approach, by exerting the coordination 
“from the inside”, that is, on the target’s own 
computations. 

For example, [10] introduces Containment Units, as 
modular process-based lexical constructs for defining how 
distributed applications may handle self-repair and self-
reconfiguration. Containment Units define a hierarchy of 
processes that predicate on constraints and faults, and take 
action to handle faults within the defined constraints. The 
enactment of Containment Units is under the 
responsibility of a process engine that is integral to the 
system being adapted, and proceeds by directing changes 
on the target components, which need to be process-aware 
to some degree. 

PIE [8] is another example of a process-based 
middleware, which supports federations of components. 
PIE adds a control layer on top of a range of inter-
component communication facilities. The control layer 



implements process guidance via handlers that react to 
and manipulate the communications exchanged by the 
components in a federation. Dynamic adaptation is thus 
limited to the reconfiguration of the service architectural 
connectors and is carried out by plugging in appropriate 
handlers, as directed by the process, intrudes in the normal 
course of computation of the target. 

TCCS [9] has considerable similarities with 
Workflakes, since it employs its process engine to direct 
the work of effectors agents, to carry out the dynamic 
adaptation tasks. However, TCCS is the epitome of the 
middleware approach, since it is in charge of all 
interactions between the service components, even normal 
operations; that is, the target services simply do not exist 
independently from its process and agent-based 
framework. 

With every dynamic adaptation middleware, all service 
components would need to be assembled from the start 
according to the middleware and its primitives. This not 
only poses a considerable barrier with respect to legacy 
software, but also introduces a very strong dependency 
between actors and subjects of dynamic adaptation. 
Furthermore, the spectrum and granularity of possible 
adaptations is effectively restricted by the set of primitives 
made available by the middleware. A similar observation 
applies also to those works that exploit the characteristics 
of established computing frameworks to facilitate certain 
aspects of dynamic adaptation, such as BARK [11], which 
is limited to the EJB component model. 

In contrast to all of the above, Workflakes remains 
independent from any underlying computing framework 
and quite general with respect to the reach, granularity and 
kinds of dynamic adaptation that it can exert, since the 
target is fully disjoint from the dynamic adaptation engine. 

The most similar approach (that we know of) may be 
that of Willow [17]. Willow proposes an architecture for 
the survivability of distributed applications, analogous to 
our vision of a superimposed feedback loop. In particular, 
Willow can implement reactive as well as proactive 
dynamic adaptation policies, which are driven by codified 
architectural knowledge, and enacted via a process-based 
mechanism built upon the previous Software Dock (re-
)deployment engine [7]. It appears, however, that Willow 
restricts itself to coarse-grained reconfigurations, such as 
replacing, adding and removing entire components, 
perhaps even composite sub-structures, from the target 
application, while presuming conventional embedded 
approaches for more local and refined adaptations. 
 
6. Contributions and forecast 
 

Workflakes is part of a multi-institution consortium 
effort concerned with instrumenting, measuring and 
controlling pre-existing distributed software systems. We 

describe/reference elsewhere our own/others’ approaches 
to instrumenting and measuring, and note that the 
consortium is developing “standard” interfaces for these 
components to communicate with each other as well as 
with the control component. Workflakes is the first sample 
control component that has been developed within the 
consortium, acting as a “proof of concept”. The 
consortium plans to later develop standard interfaces for 
such control components, including possibly adopting a 
common process language, as well as implementing and 
experimenting with other controller examples. 

Workflakes has adequately demonstrated the software 
adaptation controller concept in the case studies covered 
here. In particular, the customer for the IM service study 
will make the final decision on going into production use 
only two days after the deadline for this paper submission. 
While the instrumentation and measurement facilities by 
themselves may reduce the previously manual feedback 
loop from days or weeks to hours, Workflakes has shown 
that an automated controller can further reduce the 
consequently determined software adaptations from hours 
to minutes and seconds. Of course, not all adaptations can 
be fully automated, so our continuing research will try to 
better characterize those that can vs. cannot. 

The immediate next step is to more fully integrate 
Workflakes with feedback-loop applications involving 
architecture-based modeling and analysis, leading to 
selection/construction of architecture-based repair 
strategies (e.g., [31] [16]). Other near-future work 
includes integration with the Little-JIL process language 
[6], as well as continuation of the GeoWorlds case study 
and (hopefully) soon application of our work to other real-
world systems representing other domains, such as 
command and control. 
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