

Using Process Technology to Control and Coordinate Software Adaptation

Giuseppe Valetto
Telecom Italia Lab and Columbia University

Giuseppe.Valetto@tilab.com

Gail Kaiser
Columbia University

kaiser@cs.columbia.edu

Abstract

We have developed an infrastructure for end-to-end
run-time monitoring, behavior / performance analysis,
and dynamic adaptation of distributed software
applications. This feedback-loop infrastructure is
primarily targeted to pre-existing systems and thus
operates outside the application itself without making
assumptions about the target system’s internal
communication/computation mechanisms, implementation
language/framework, availability of source code, etc. This
paper assumes the existence of the monitoring and
analysis components, presented elsewhere, and focuses
on the mechanisms used to control and coordinate
possibly complex repairs/reconfigurations to the target
system. These mechanisms require lower-level actuators
or effectors somehow attached to the target system, so we
briefly sketch one such facility (elaborated elsewhere).
The core of the paper is the model, architecture, and
implementation of Workflakes, the decentralized process
engine we use to tailor, control, coordinate, respond to
contingencies, etc. regarding a cohort of such actuators.
We have validated our approach and the Workflakes
prototype in several case studies, related to different
application domains. Due to space restrictions we
concentrate primarily on one case study, elaborate with
some detais a second, and only sketch others.

1. Introduction

Distributed computing is becoming a commodity.
Users rely upon distributed systems for a number of value-
added services that pervade their everyday lives, such as
Web-based collaboration suites, electronic B2B and B2C,
on-demand multimedia content provisioning, ubiquitous
personal messaging, and many others, which are built on
top of a networking infrastructure as distributed systems,
often constructed by composition. The complexity of the
behavior and interrelationships of these “systems of
systems” becomes increasingly harder to analyze in
advance, and keep under control on the field. That
aggravates the critical problems of managing the

provisioning of the service and maintaining the intended
application-level, “soft” quality of service (QoS). In order
to resolve poor performance or failures, often service is
interrupted, the underlying application is taken down (at
least in part), and the spiral of software lifecycle iterates
back to the installation or deployment phase, and
sometimes even to earlier development phases.

While such a drastic response may be obligatory at
times, it is desirable when possible to resolve problems
with lesser impacts and costs – while the system is running
and without bringing it down. This comports the presence
of facilities for the dynamic adaptation of complex,
distributed software systems and services. By that term we
mean any automated and controlled set of actions aimed at
modifying, at runtime, the structure, behavior and/or
performance of a target software system, typically in
response to the occurrence and recognition of some
(adverse) conditions. Example may range from tuning
functioning parameters in order to optimize performance,
to architecture-wide interventions such as service
deployment or service migration.

The Dynamic adaptation theme is gaining attention as
an opportunity to address the ever-increasing complexity
of IT infrastructures and applications. For example, the
autonomic computing initiative announced by IBM [1], or
the Recovery Oriented Computing works at Berkeley and
Stanford [2] go in that direction. But it also constitutes a
challenge, since it can be seen as a form of automated
maintenance of “live” systems. As such, it tends to be
even more complex than conventional off-line
maintenance.

The hardwiring of self-adaptation provisions in the
application itself is still the most common approach to
dynamic adaptation, but that is feasible principally only
for “new” systems, or systems whose components are
under the control of the developers. Moreover, those
hardwired provisions tend to increase the overall
complexity of the system, in fact intensifying maintenance
difficulties, and are often developed custom, with little
reuse possible across applications or domains.

For these reasons, our research has focused on
solutions that remain orthogonal to the target system’s
main computation, control and communication,

constituting an externalized dynamic adaptation
infrastructure. This approach enables retrofitting with the
desired reconfiguration, self-healing, and self-
management capabilities also legacy systems and systems
built by composition with third-party components.

Our model for externalized dynamic adaptation is that
of a layered architecture, which comprises layers for data
collection, information analysis, decision / control, and
actuation. In-depth discussion of the overall infrastructure
model, and how its collection and analysis components
have been fulfilled within our Kinesthetics eXtreme (KX)
implementation can be found in [18] [23]. This paper
focuses instead on the decision and control role, and how
we have addressed it in KX with our Workflakes process-
based engine. Workflakes employs process technology to
coordinate the actuation layer, which is currently provided
via our worklets mobile agents effectors [5] [19]. A
preliminary paper [5] sketched the ideas at the basis of the
Workflakes project. This paper provides the first complete
presentation of the Workflakes model and architecture,
according to our recently completed operational
implementation.

KX and Workflakes have been evaluated in a number
of case studies. We present here in full detail one such
case study on an industrial Internet service with its most
recent results, which subsume and update a previous
report [26]. We also sum up other case studies in their
most interesting traits.

2. A model for externalized dynamic
adaptation

An externalized dynamic adaptation platform can be
seen at the highest level of abstraction as a feedback loop
that is superimposed onto existing distributed systems for
the purposes of continually monitoring and modifying
their configuration, activity and performance. Since the
feedback loop is handled outside of the target application,
it is possible to maintain a clear separation between the
reusable, common adaptation mechanisms and the target
system specifics.

Furthermore, in order to be generally applicable in
diverse usage and technological contexts, the
infrastructure must be constructed with great attention to
its interoperability with a variety of adaptation targets.
That in turn can be achieved only via interoperability and
standardization of the interactions between the
infrastructure components, so that the numerous
technological options that can be used to implement
probes, gauges, controllers and effectors can be easily
accommodated by the model.

As a consequence, within the DASADA program [3],
under which we are conducting this research, a standard
model, the Common DASADA Infrastructure (CDI) [25]

has emerged, which organizes the design of the feedback
loop according to multiple layers, as shown in

Figure 1.
In the first place, the Collection layer gathers

information from the running target system, by
instrumenting it with minimally invasive probes that
report via a Probe Bus to the Interpretation layer. There,
information is mapped and evaluated by gauges, against
some models that characterize the target system, and
findings are reported to the Gauge Bus. At that point, the
Decision and Control layer analyzes the implications of
the gauge findings on the target system functioning and
performance and makes decisions on whether to carry out
some dynamic adaptation onto it. Adaptation actions
would be carried by effectors at the Actuation layer, under
the coordination of one or more controllers. Effectors
would actuate (i.e. reconfigure, tune or otherwise adapt)
individual components, as well as connectors and major
substructures of the system.

Figure 1: Dynamic adaptation infrastructure.
Notice that while this model is largely independent of

the running target, this is not to say that the specific
probes, gauges, controllers, effectors and the models that
govern them are themselves independent of the running
system. In fact, probes and effectors must often be
specialized to the implementation technology; gauges and
decision mechanisms must be specialized to the problem
logic and the environment.

Notice also how the layered design with makes easier
to separate the various kinds of functionality taking part in
the overall infrastructure (a similar separation of concerns
is advocated in other dynamic adaptation initiatives, such
as [30]). In CDI, much work has been devoted to the
development of standard probing [4], as well as a gauging
[20] APIs. Standards for the decision and control roles in
a dynamic adaptation platform are however less well
understood.

Sy
st

em
 M

od
el

s Interpretation

Collection

Actuation

Probes

Gauges

Controllers

Decision

Probe Bus

Gauge Bus

Effectors

Target
System

To close the loop, the infrastructure must also automate
decisions on the adaptation to be carried out, control the
adaptation as it occurs on the target system, and provide
adequate effectors to actuate that adaptation via
appropriate side effects on the target system. Workflakes
explores part of that problem space, in particular how to
express control and how to exert it on multiple effectors
taking part in the actuator layer.

3. The Workflakes approach

The output of gauges represents the input to a decision
process that determines whether/how the target system
must be adapted. In the simplest case, gauges may assert a
fact that already carries with it unequivocally defined
consequences. Other times, a variety of tools could be
exploited for decision support: for example, formal
architectural knowledge, coupled with constraint analysis
and architecture transformation tools, such as in [16] [22].

When a decision upon some adaptation is taken, a
single action will sometimes suffice to fulfill it. In most
cases, however, the decision will have to be mapped onto
several finer-grained activities, impacting various
implementation elements. In the latter case, a
sophisticated coordination mechanism is needed: some of
those activities may be conditional, or dependent on
others, or may fail, calling for contingency planning.

To address that complexity, Workflakes relies on
process-based coordination, and treats decisions as
triggers for an adaptation process. The process unfolds
according to a task decomposition strategy that in the end
generates, configures, activates sets of effectors, and
coordinates them towards actuating the desired side
effects onto the running target system. Effectors are thus
considered a first-class resource in Workflakes: they must
be explicitly described in the process and made available
to the Workflakes engine.

Notice that the impact of effectors can range from the
adjustment of a single operation parameter, to a method
call, to complex reconfigurations of the target
architecture, involving many components and connector at
once. Similarly, the technologies that can be used for
effectors may greatly vary, depending on their reach as
well as the nature of their target: they are often the most
target-dependent elements in our approach and are likely
to be handcrafted. Standardization of the interface
between the process engine and effectors is another
objective of the CDI work in the next future.

We have to date adopted mobile agents as our
effectors, since they operate by their very nature on the
target system form the outside, guaranteeing that new
forms of adaptation computations can be easily deployed
at any time onto the target with minimal disruption to
service operation. In particular, the current Workflakes

implementation is integrated with the worklets mobile
agent platform [19]: worklets are code-carrying agents
that are selected as effectors, configured and dispatched as
a side effect of process steps. Each worklet carries Java
mobile code snippets, named junctions, which are
deposited onto one or more target components, according
to a trajectory that can be programmed. Once deposited,
the execution of code in a junction is governed by its
encasing jacket, a construct that specifies conditional
execution, repetition, timing, priority, etc. The agent
transport facilities and execution environment are
provided by Worklet Virtual Machines (WVMs) residing
at all “stops” in a worklet trajectory.

Figure 2: Representation of a typical
Workflakes task processor.

The Workflakes process runtime engine in its current
implementation relies on a specialization of the Cougaar
open–source system [24]. Cougaar decentralized task
processors (or clusters) provide us with a number of
largely autonomous controllers (as per

Figure 1) for the enactment of the dynamic adaptation
process. Each cluster is further specified as a set of
Cougaar plugins. Plugins allow to customize the
functionality of task processors by inserting components
that implement a particular logic or a specific capability.
As shown in Figure 2, a typical Workflakes task processor
includes several Logic Data Model (LDM) plugins to
import and convert KX gauge events in terms of process
facts, maintain internal knowledge about the target system
and its state, and access a repository of worklet junctions
effectors; an Expander plugin to load process definitions
and spell them out as hierarchical decompositions of
tasks; an Allocator plugin to map tasks to junctions and to
target components as needed; an Executor plugin that
handles the instantiation and shipment of effectors.
In Workflakes, task processors and plugins are
specifically constructed to operate with worklets, in two
fundamental ways. First, worklet originate from WVMs
incorporated within the task processors, and deposit
junctions onto the target components to be adapted. One
of the major responsibilities of the process is therefore to
decide what effectors junctions need to be dispatched, for
a given dynamic adaptation task. That is why the

Blackboard

Expander Plugin

Executor Plugin

LDM Plugins

Allocator Plugin

WVM

Gauge events

Architectural
Knowledge

Junction
repository

BlackboardBlackboard

Expander PluginExpander Plugin

Executor Plugin

LDM Plugins

Allocator Plugin

WVM

Gauge events

Architectural
Knowledge

Junction
repository

repository of junction descriptions, is an essential
component, since effectors must be treated as first-class
process resources.
Furthermore, Workflakes uses worklets also to
dynamically load process definitions onto task processors,
either with a pull or a push modality. In Workflakes,
plugins are initially idle and devoid of any hardcoded
logic related to any particular process; for that reason, we
call them shell plugins. The set of shell plugins launched
within a cluster at start time is therefore merely indicative
of the kinds of service and functionality that the cluster is
meant to offer within the overall Workflakes engine. Shell
plugins can be activated at any time via the injection of
specific process definition junctions. Those junctions
dynamically deploy process fragments to the most
convenient task processor for execution. Only after such
deployment, shell plugins acquire a definite behavior, and
start taking part in the enactment of the process. Such
process delivery may for example be used in the pull
modality to incrementally retrieve process fragments when
requested to handle certain adaptations, or in the push
modality for on-the-fly process evolution across a
distributed Workflakes installation.

4. Evaluation

A number of case studies have been carried out to
experiment with and validate the externalized
infrastructure approach to dynamic adaptation we have
discussed, as embodied by KX and Workflakes
specifically. Case studies to date include such varied
application domains as active networking, B2C
marketplaces, Internet-wide information systems and
multi-channel instant messaging.

4.1. Case study: a mass-market Internet service

Figure 3 represents the architecture of a multi-channel
instant messaging (IM) service for personal
communication we have been experimenting with. That
J2EE-based service is currently offered on a 24/7/365
basis to thousands of users through a variety of channels,
such as the Web, PC-based Internet chat, Short Message
Service (SMS), WAP, etc.

The service runtime environment consists of a typical
three-tiered server farm: a load balancer (an IBM
commercial software) provides a common front end to all
end users and redirects all client traffic to several replicas
of the IM components, which are installed and operate on
a set of middle tier hosts.

The various replicas of the IM server all share a
relational database and a common runtime state
repository, which make up the back end tier, and allow
replicas to operate in an undifferentiated way as a

collective service. Some of the IM servers are wrapped
within Web application running on J2EE application
servers (BEA Weblogic), other may provide additional
facilities, which handle access to the service through
specific channels, such as SMS or WAP, and interoperate
with third-party components and resources, e.g., gateways
to the cell phone communication network.

Figure 3: The IM service architecture.

We have organized the case study according to several

iterations. Each iteration tries to fulfill a larger set of
adaptation requirements originating from the service
provisioning organization, and elicited from the
application development and maintenance team. At the
same time it extends the reach of the dynamic adaptation
platform to a larger subset of the IM service components.

We have now completed two iterations. In the first
iteration, we applied dynamic adaptation only to “bare”
IM servers, and we addressed principally relatively
coarse-grained adaptations. In the second iteration, we
have encompassed the application servers and the residing
Web applications as dynamic adaptation targets, and
addressed finer-grained adaptations. In the next iteration,
we plan to cover the SMS component, which has in this
meanwhile become a critical channel for the service
traffic, with its specific reliability and availability issues.

Up to now, the case study has addressed two main
goals: enhancing the QoS perceived by end users, and
facilitating service management by the staff in charge of
supporting such a complex distributed application.

With respect to QoS, requirements focused on
resolving existing load and availability problems by
automating service scalability and (in the second iteration)
reconfiguring promptly and opportunely service
parameters related to serving client requests efficiently.
As for service management, requirements focused on the
automated deployment, bootstrapping and configuration

Mobile
NTW

Mobile
NTW

Clientsbrowserbrowser

Load Balancing

SMS-C

IM

Server

WAP Gateway
Web Appl.

IM

Server
Web Appl.

IM

Server
SMS Gateway

IM

Server
SMS Gateway

IM

Server

R-DBMS

Server
Farm

Web Appl.

IM

Server
Web Appl.

IM

Server

PC Client

Shared state

PC Client

Web Appl.

IM

Server
Web Appl.

IM

Server

of the various service components, as well as continuous
monitoring of those components and their interactions,
and (in the second iteration) support for “hot” service
staging via automated rollout of new versions and patches.

All of those requirements are captured and addressed
within a dynamic adaptation process that is automated by
Workflakes and whose side effects on the implemented
system are caused by worklets. This process requires –
among the logic and data loaded at startup onto the
Workflakes engine –explicit knowledge about the service
architecture and the server farm runtime environment.
That knowledge is currently codified in a proprietary way.

At startup, Workflakes is given a configuration of
service components that must be instantiated. The
configuration must include at least one “normal” IM
server and any number of Web-based IM servers.
Workflakes selects some hosts in the server farm for this
initial deployment and sends worklets to them. Those
worklets execute bootstrapping code for the IM
components and configure them with all the necessary
parameters (such as the JDBC connection handle to the
DBMS, the port numbers for connections by clients and
other IM servers, etc.). Notice that not only the
configuration information, but also the executable code of
the IM server is deployed and loaded on demand from a
code repository made available to the incoming worklet,
taking advantage of a code-pulling feature of the worklets
agent platform. (This approach is also followed in
Software Dock [7]).

Depending on the type of the components, the
deployment sub-process may change. For example, a
normal IM server can be instantiated and configured by a
single worklet in one step. Web-based IM servers are
notably more complex to start-up and configure, since that
requires first of all the spawning of a new instance of the
application server, then the instantiation and
parameterization of the residing Web application with
respect to the hosting application server, and finally its
configuration and activation as an IM component.

When the worklets starts up an IM server, probes are
simultaneously activated to track its instantiation and
initialization. When the instantiation is successful, the
process must dispatch other worklets onto the load
balancer of the server farm, to instruct it to accept traffic
for the IM service and route it to the right host address
and port for the new server. In the event of an
unsuccessful initialization, instead, the likely cause is
inferred by the gauge layer of the dynamic adaptation
platform and reported to a dashboard GUI, as well as to
the process. Depending on the cause of that contingency,
Workflakes may react in different ways: for example, it
may decide to try to bootstrap an IM server on the same
machine again, or on another available one, or it could
skip that portion of the configuration, or even abort the
whole process.

More in general, contingencies like that can be
discriminated as internal or external to the process.
Internal contingencies are well-known conditions that can
occur in the target system and which should be provided
for by specific branches of the adaptation process.
External contingencies correspond either to unexpected or
“new” target system conditions, or to faults within the
dynamic adaptation loop (e.g. a communication failure
between effectors and the target system components to be
adapted). For those contingencies, the adaptation process
should provide generic remedy strategies that are used as
exceptional courses of actions, when “all else fails” or
when the process needs to go back to a “safe state”.

Following the initial bootstrapping phase, and after the
intended service configuration is in place, Workflakes
takes a reactive role, while the probing and gauging layers
of the platform start monitoring and analyzing the
dynamics of service usage. Certain probes and gauges are
activated, such as logging in and out of the servers,
exceptions raised, service latency, number of service
requests queued by the Web applications, etc. In this case
study, we are particularly concerned with load and
responsiveness. Each IM server has an associated load
threshold, which is expressed in terms of the number of
concurrently active clients in relationship with the
memory resources of the host. When that threshold is
passed, Workflakes reacts trying to scale the service up. It
selects some unused machine that is still available in the
server farm, and repeats the server bootstrapping process
fragment on that machine, providing a new server replica
for handling the extra load, and thus achieving enhanced
reliability and performance of the overall service.

For Web IM components, we are also able to reach a
finer level of adaptation, exploiting the management
capabilities built in the BEA Weblogic application server
via Java Management eXtensions (JMX - see
http://java.sun.com/products/JavaManagement), which we
have integrated during the second iteration within the
probing and effectors layers of our platform. Therefore,
Workflakes can decide to intervene also in response to
variations in the size of the queue of pending requests, and
manipulate the details of the threading model of the Web
IM application. That optimizes the degree of parallelism
in processing client requests, and improves
responsiveness.

In the second iteration, we have also experimented with
staging and service evolution scenarios, aiming at
complete automation and minimal service disruption. It
turned out that a service evolution campaign can be
supported by Workflakes with relatively minor changes to
the service bootstrapping process described above. The
process must include tasks that gradually withdraw from
the load balancer old server instances (thus disallowing
new traffic to be assigned to them), and shut them down
when traffic is absent or minimal, while another process

fragment simultaneously and coordinately starts up,
registers on the load balancer, and makes available to
users other server instances with the new code release.

4.2 Results and lessons learned

We have been able to derive some quantitative results
referring to the levels of automated support provided by
the KX to the maintenance and management activities
carried out onto the IM service on the field. Employing
KX and Workflakes in the case studies has shown higher
levels of automation, flexibility and reliability to the
management of the target service and its QoS, with
respect to previous labour-intensive practices. We also
provide observations about the development work
necessary to implement the case study (on top of the
platform implementation offered by KX). The most
significant quantitative results are:
• Reduced effort for the deployment and configuration

of an IM service on the field. Current manual
procedures (using Unix shell scripts and assuming
DBMS and application servers pre-installed in the
server farm) can take ½ to 1 person-day, with locally
present experts. With KX, that is reduced to 1-2
minutes from a remote location.

• Reduced monitoring and maintenance effort
necessary to ensure the health of the running service.
A sysadmin was previously needed on-site 24/7/365,
with a secondary support team of experts available on
call. KX completely automates the monitoring of a set
of major service parameters, as well as the counter-
measures for a set of well-known critical conditions.

• Reduced reaction times and improved reliability: for
example, KX recognizes the passing of the IM load
threshold in 1-2 seconds and takes approximately 40
seconds to put in place an additional server replica,
Previously, there was no direct overload detection:
the sysadmin in charge was supposed to check the
number of concurrent users from the logs and to
manually start up an additional server when
necessary. That was error-prone and could endanger
service availability, in case resource shortage would
crash overloaded servers.

• Manageable coding complexity: KX probes, gauges,
effectors junctions are derived from generic code
instrumentation templates that are then customized
with of situational logic. This results in rather
compact code: 15 Java code lines for probes on
average, usually less than 100 for effectors. In total,
the code written for the case study was slightly above
2000 lines of Java and XML code

Finally, other lessons we have learnt include the following
qualitative considerations:

• Impact on service development: We carried out the
whole case study positioning ourselves past the end of
the development phase of the project life cycle and
just prior to the deployment phase. We hence treated
the target service as a complete legacy, although a
legacy for which all the specifications, software
artifacts and accumulated project knowledge
happened to be available to us. Notice that also a
different kind of legacy takes part in the case study:
the application server and the load balancer are
commercial software products, by BEA and IBM,
which however provide sufficient APIs for carrying
out our probing and actuation. Within those
limitations, we were able to satisfy all the
requirements of the case study.

• Relationship with architectural model: the amount of
effort to analyze the target system and its behavior for
dynamic adaptation purposes constituted the largest
portion of the overall effort. Furthermore, a
substantial portion of the software we wrote is
intended to capture architectural information,
relationships and inferences and represent them to
Workflakes and KX. That suggests a strong
dependency of dynamic adaptation on the ability to
capture, describe and expose in an abstract and
machine-readable way the knowledge about the target
architecture, which has motivated us to explore
integration with formal ADLs in follow-up research.

• Integrated automated management: here is where the
benefit of a full-fledged process engine becomes most
evident. Traditional application management is
concerned with reporting warnings, alarms and other
information to some knowledgeable human operator
who can recognize situations as they occur, and take
actions if needed. The amount of guidance and
automation on part of the management platform is
very limited. Our approach offers instead a high level
of guidance, coordination and automation to enforce
what is a complex but many times largely repeatable
and codifiable process.

4.3. Other case studies

Internet-wide Information Systems: the subject was
ISI’s Geoworlds [28], a strongly decentralized and
componentized integrated Geographical Information and
Digital Library system, in use for intelligence analysis at
US Pacific Command (PACOM). Forms of dynamic
adaptation applied to Geoworlds have varied from service
parameter modification, to component repair, to global
reconfigurations, such as service migration.

One particularly interesting trait in this case study was
that – in part building on the lessons learnt in the IM case
study – we experimented integrating architectural models

and tools exploiting formal ADLs within the dynamic
adaptation loop. Some of the gauges would report
architecturally significant events to the ABLE tool set
[16], which allowed us to take dynamic adaptation
decisions starting from an architectural knowledge of the
target system. That knowledge is captured in a set of
descriptions in the Acme ADL, and ABLE is able to
decide upon and express adaptations as sets of changes to
the architectural model. To be effected at the
implementation level, transformation directives would
hence be passed to Workflakes, to trigger reconfiguration
processes on the deployed Geoworlds system, in accord
with the architectural transformation requested. ABLE and
Workflakes could therefore nicely complement each
other.

This juxtaposition of the architecture- and
implementation levels – although preliminary - showed
potential to offer means to clearly and rigorously express,
reason about, validate and audit the characteristics and the
effects of the modifications caused by dynamic
adaptation. A difficulty we encountered and that was only
partially resolved in the case study was a disconnection
between the architectural model and the implementation
environment; as a consequence, we have observed that it
is necessary to have bindings (such as those of [21])
between components and connectors in the architectural
model and the runtime entities that reify the architecture
on the field. Such bindings can greatly simplify the
integration of ADL-based tools at all layers of our
dynamic adaptation infrastructure.

Web Services marketplace: the subject was the
validation of the performance and the offer of an
electronic marketplace, which interfaces with a number of
service provider components implemented as Web
Services [27]. The dynamic adaptation platform would
keep under control the basic functioning parameters of
participating Web Services (such as availability,
responsiveness, transaction completion ratio, etc.),
analyze their accumulated performance, and use this
information to adapt the behavior of the mediator
components of the marketplace, in particular the
mechanisms used in selecting service providers for
composing service offers to the customers’ satisfaction.

Active networking: the subject was the dynamic
adaptation of active network elements, in particular active
firewalls that can be reconfigured on the fly in response to
network conditions, the kind of traffic they receive, users’
profiles, etc. [29] The case study used Workflakes in
conjunction with different implementations of the probing,
gauging and effectors layers. Workflakes would replace
the code installed within active firewall nodes, in response
to an analysis of the network packets arriving at the
firewalls and of their filtering performance and criteria.

The dynamic adaptation process also included provisions
for the validation of installed firewall configurations
through their on-line testing.

5. Related work

Given the focus of the paper and space limitations, we
only discuss here Workflakes in relation to other works
that propose to exploit process technology to control the
behavior and performance of a running application, rather
than comparing KX or even the externalized infrastructure
model to the many other approaches addressing the
problem space of dynamic adaptation in whole or in part.

However, we notice that it is the externalized stance
that most strongly characterizes Workflakes. Often, in
fact, automated solutions to software coordination and
control, present structural dependencies with respect to
the subjects of their coordination.

Some of those solutions can be seen as an evolution of
built-in fault tolerance code. For example, [15] proposes a
rule-based inference engine for decision support in
application-level QoS assurance, including a coordination
entity guiding a set of computational actuators. However,
the coordinator and actuators must both be embedded with
each target component. That makes more difficult to
define system-wide adaptations and limits the adaptations
that can be carried out without re-building the target.

Another classic approach is that of an environment or
middleware with native dynamic adaptation capabilities.
Generic (i.e. non necessarily process-based) examples of
dynamic adaptation middleware include, Conic [14],
Polylith [12], 2K / dynamicTao [13] and many others;
they all offer a set of dynamic adaptation primitives as a
premium for applications built with and operating on top
of themselves. Also many of the works that use process
technology for SW control and coordination adopt in fact
a middleware-like approach, by exerting the coordination
“from the inside”, that is, on the target’s own
computations.

For example, [10] introduces Containment Units, as
modular process-based lexical constructs for defining how
distributed applications may handle self-repair and self-
reconfiguration. Containment Units define a hierarchy of
processes that predicate on constraints and faults, and take
action to handle faults within the defined constraints. The
enactment of Containment Units is under the
responsibility of a process engine that is integral to the
system being adapted, and proceeds by directing changes
on the target components, which need to be process-aware
to some degree.

PIE [8] is another example of a process-based
middleware, which supports federations of components.
PIE adds a control layer on top of a range of inter-
component communication facilities. The control layer

implements process guidance via handlers that react to
and manipulate the communications exchanged by the
components in a federation. Dynamic adaptation is thus
limited to the reconfiguration of the service architectural
connectors and is carried out by plugging in appropriate
handlers, as directed by the process, intrudes in the normal
course of computation of the target.

TCCS [9] has considerable similarities with
Workflakes, since it employs its process engine to direct
the work of effectors agents, to carry out the dynamic
adaptation tasks. However, TCCS is the epitome of the
middleware approach, since it is in charge of all
interactions between the service components, even normal
operations; that is, the target services simply do not exist
independently from its process and agent-based
framework.

With every dynamic adaptation middleware, all service
components would need to be assembled from the start
according to the middleware and its primitives. This not
only poses a considerable barrier with respect to legacy
software, but also introduces a very strong dependency
between actors and subjects of dynamic adaptation.
Furthermore, the spectrum and granularity of possible
adaptations is effectively restricted by the set of primitives
made available by the middleware. A similar observation
applies also to those works that exploit the characteristics
of established computing frameworks to facilitate certain
aspects of dynamic adaptation, such as BARK [11], which
is limited to the EJB component model.

In contrast to all of the above, Workflakes remains
independent from any underlying computing framework
and quite general with respect to the reach, granularity and
kinds of dynamic adaptation that it can exert, since the
target is fully disjoint from the dynamic adaptation engine.

The most similar approach (that we know of) may be
that of Willow [17]. Willow proposes an architecture for
the survivability of distributed applications, analogous to
our vision of a superimposed feedback loop. In particular,
Willow can implement reactive as well as proactive
dynamic adaptation policies, which are driven by codified
architectural knowledge, and enacted via a process-based
mechanism built upon the previous Software Dock (re-
)deployment engine [7]. It appears, however, that Willow
restricts itself to coarse-grained reconfigurations, such as
replacing, adding and removing entire components,
perhaps even composite sub-structures, from the target
application, while presuming conventional embedded
approaches for more local and refined adaptations.

6. Contributions and forecast

Workflakes is part of a multi-institution consortium
effort concerned with instrumenting, measuring and
controlling pre-existing distributed software systems. We

describe/reference elsewhere our own/others’ approaches
to instrumenting and measuring, and note that the
consortium is developing “standard” interfaces for these
components to communicate with each other as well as
with the control component. Workflakes is the first sample
control component that has been developed within the
consortium, acting as a “proof of concept”. The
consortium plans to later develop standard interfaces for
such control components, including possibly adopting a
common process language, as well as implementing and
experimenting with other controller examples.

Workflakes has adequately demonstrated the software
adaptation controller concept in the case studies covered
here. In particular, the customer for the IM service study
will make the final decision on going into production use
only two days after the deadline for this paper submission.
While the instrumentation and measurement facilities by
themselves may reduce the previously manual feedback
loop from days or weeks to hours, Workflakes has shown
that an automated controller can further reduce the
consequently determined software adaptations from hours
to minutes and seconds. Of course, not all adaptations can
be fully automated, so our continuing research will try to
better characterize those that can vs. cannot.

The immediate next step is to more fully integrate
Workflakes with feedback-loop applications involving
architecture-based modeling and analysis, leading to
selection/construction of architecture-based repair
strategies (e.g., [31] [16]). Other near-future work
includes integration with the Little-JIL process language
[6], as well as continuation of the GeoWorlds case study
and (hopefully) soon application of our work to other real-
world systems representing other domains, such as
command and control.

7. Acknowledgements

We would like to thank Gaurav Kc for his ongoing
development of worklets, Lee Osterweil and Nathan
Combs for the frequent discussions and suggestions about
Workflakes, George Heineman for help with techniques
for KX and Worklets, Bob Balzer, David Garlan, Bradley
Schmerl, David Wells and David Wile for their insights
on the general infrastructure model and APIs
standardization, Pier Giorgio Bosco, Mario Costamagna,
Matteo Demichelis, Elio Paschetta and Roberto Squarotti
at TILAB for their contribution on applicability and the
IM service case study, the other members of the
Programming Systems Lab for their work on KX. The
consortium referred to in the paper currently consists of
BBN, CMU, Columbia, OBJS, Teknowledge, University
of Colorado, UMass, and WPI. PSL is funded in part by
Defense Advanced Research Project Agency under
DARPA Order K503 monitored by Air Force Research

Laboratory F30602-00-2-0611, by National Science
Foundation CCR-9970790 and EIA-0071954, and by
Microsoft Research. The work at TILAB is funded in part
by EURESCOM project P-1108 (Olives).

8. References

[1] IBM Research, “Autonomic Computing Manifesto”
http://researchweb.watson.ibm.com/autonomic/manif
esto/autonomic_computing.pdf

[2] ,. A. Patterson, A. Brown, P. Broadwell, G. Candea,
M. Chen, J. Cutler, P. Enriquez, A. Fox, E. Kiciman,
M. Merzbacher, D. Oppenheimer, N. Sastry, W.
Tetzlaff, J. Traupman, and N. Treuhaft. “Recovery-
Oriented Computing (ROC): Motivation, Definition,
Techniques, and Case Studies”. UC Berkeley
Computer Science Technical Report UCB//CSD-02-
1175, March 15, 2002.

[3] J. Salasin, “Dynamic Assembly for System

Adaptability, Dependability, and Assurance
(DASADA)”,
http://www.darpa.mil/ito/research/dasada/.

[4] Balzer, B., “Probe Run-Time Infrastructure”,

http://www.schafercorp-
ballston.com/dasada/2001WinterPI/ProbeRun-
TimeInfrastructureDesign.ppt

[5] G. Valetto, G. Kaiser, and G.S. Kc, “A Mobile Agent

Approach to Process-based Dynamic Adaptation of
Complex Software Systems”, in 8th European
Workshop on Software Process Technology, June
2001. http://www.psl.cs.columbia.edu/ftp/psl/CUCS-
001-01.pdf.

[6] A.G. Cass, B. Staudt Lerner, E.K. McCall, L. J.

Osterweil, S.M. Sutton, Jr., and A. Wise, “Little-
JIL/Juliette: A Process Definition Language and
Interpreter”, in 22nd International Conference on
Software Engineering, June 2000.

[7] R.S. Hall, D. Heimbigner, and A.L. Wolf, “A

Cooperative Approach to Support Software
Deployment Using the Software Dock”, in 21st
International Conference on Software Engineering,
May 1999.

[8] G. Cugola., P.Y. Cunin, S. Dami, J. Estublier, A.

Fuggetta, F. Pacull, M. Riviere, and H. Verjus,
“Support for Software Federations: The Pie
Platform,” in 7th European Workshop on Software
Process Technology, February 2000.

[9] S.K Shirvastava, L. Bellissard, D. Feliot, M.

Herrmann, N. De Palma, and S.M. Wheater, “A
Workflow and Agent based Platform for Service
Provisioning”, in 4th IEEE/OMG International

Enterprise Distributed Object Computing
Conference, September 2000

[10] J.M. Cobleigh, L.J. Osterweil, A. Wise, and B. Staudt

Lerner, “Containment Units: A Hierarchically
Composable Architecture for Adaptive Systems”, in
the 10th International Symposium on the
Foundations of Software Engineering (FSE 10),
Charleston, SC, November 2002. To appear.

[11] M.J. Rutherford, K. Anderson, A. Carzaniga, D.

Heimbigner, and A.L. Wolf, “Reconfiguration in the
Enterprise JavaBean Component Model”, in
IFIP/ACM Working Conference on Component
Deployment, June 2002.

[12] C.R. Hofmeister, and J.M. Purtilo, “Dynamic

Reconfiguration in Distributed Systems: Adapting
Software Modules for Replacement”, in 13th
International Conference on Distributed Computing
Systems, May 1993.

[13] F. Kon, R. Campbell, M.D. Mickunas, K. Nahrstedt,

and F.J. Ballesteros. “2K, A Distributed Operating
System for Dynamic Heterogeneous Environments”,
in 9th IEEE International Symposium on High
Performance Distributed Computing, August 2000.

[14] J. Magee, J. Kramer, and M. Sloman. “Constructing

Distributed Systems in Conic”, IEEE Transactions
on Software Engineering, 15(6):663--675, June
1989.

[15] H. Lutfiyya, G. Molenkamp, M. Katchabaw, and M.

Bauer, “Issues in Managing Soft QoS Requirements
in Distributed Systems Using a Policy-Based
Framework”, in 3rd IEEE International Workshop on
Policies for Distributed Systems and Networks,
January 2001.

[16] B. Schmerl, and D. Garlan, “Exploiting Architectural

Design Knowledge to Support Self-repairing
Systems”, in 14th International Conference on
Software Engineering and Knowledge Engineering,
July 2002.

[17] J.Knight, D. Heimbigner, A. Wolf, A. Carzaniga, J.

Hill, and P. Devanbum, “The Willow Survivability
Architecture”, in 4th Information Survivability
Workshop (ISW-2001), Vancouver, B.C.,18-20
March 2002.

[18] P.N. Gross, S. Gupta, G. E. Kaiser, G.S. Kc, and J.J.

Parekh, “An Active Events Model for Systems
Monitoring”, in Working Conference on Complex
and Dynamic Systems Architecture, December 2001.
http://www.psl.cs.columbia.edu/ftp/psl/CUCS-011-
01.pdf.

[19] G. Kaiser, A. Stone, and S. Dossick, “A Mobile

Agent Approach to Lightweight Process Workflow,”

http://researchweb.watson.ibm.com/autonomic/manifesto/autonomic_computing.pdf
http://researchweb.watson.ibm.com/autonomic/manifesto/autonomic_computing.pdf

in International Process Technology Workshop,
September 1999.
 http://www.psl.cs.columbia.edu/ftp/psl/CUCS-021-
99.pdf.

[20] D. Garlan, B. Schmerl, and J. Chang, “Using Gauges

for Architecture-Based Monitoring and Adaptation”,
in Working Conference on Complex and Dynamic
Systems Architecture, December 2001.

[21] E.M. Dashofy, A. van der Hoek, and R.N. Taylor,

“An Infrastructure for the Rapid Development of
XML-based Architecture Description Languages”, in
the 24th International Conference on Software
Engineering, May 2002.

[22] P. Oreizy, M.M. Gorlick, R.N. Taylor, D.

Heimbinger, G. Johnson, N. Medvidovic, A. Quilici,
D.S. Rosenblum, and A.L. Wolf, “An Architecture-
Based Approach to Self-Adaptive Software”, IEEE
Intelligent Systems 14(3):54-62, May/June 1999.

[23] G. Kaiser, P. Gross, G. Kc, J. Parekh, and G. Valetto,

“An Approach to Autonomizing Legacy Systems”, in
Workshop on Self-Healing, Adaptive and Self-
MANaged Systems (SHAMAN 2002), June 2002.

[24] Cougaar Home Page, “Welcome to the Cognitive

Agent Architecture (Cougaar) Open Source
Website”. http://www.cougaar.org.

[25] Gail Kaiser, “Autonomizing Legacy Systems”,

invited talk at the Almaden Institute Symposium on
Autonomic Computing, April 10-12 2002
http://www.almaden.ibm.com/institute/pdf/KaiserGai
l.pdf

[26] Giuseppe Valetto, and Gail Kaiser, “A Case Study in

Software Adaptation”, Columbia University
Department of Computer Science, TR # CUCS-019-
02, July 2002.

[27] A. Rocha, G. Valetto, E. Paschetta, and S. Heikkinen,

“Continuous On-Line Validation of Web Services”,
in International Conference on Electronic Publishing
(ELPUB 2002), November 6-8, 2002. To appear.

[28] M. Coutinho, R. Neches, A. Bugacov, V. Kumar, K.

Yao, I. Ko, R. Eleish, and S. Abhinka, “GeoWorlds:
A Geographically Based Information System for
Situation Understanding and Management”, in 1st
International Workshop on TeleGeoProcessing
(TeleGeo 99), Lyon, France, May 6-7, 1999.

[29] P. Deussen, G. Valetto, G. Din, T. Kivimaki, S.

Heikkinen, and A. Rocha, “Continuous On-Line
Validation for Optimized Service Management” in
EURESCOM Summit 2002, Hiedelberg, Germnany,
October 21-24, 2002. To appear.

[30] E. Kasten, P. K. McKinley, S. Sadjadi, and R.

Stirewalt, “Separating introspection and intercession
in metamorphic distributed systems”, in IEEE
Workshop on Aspect-Oriented Programming for
Distributed Computing, July 2002.

[31] Carnegie Mellon University, “Acme Web, The Acme

Architectural Description Language”. http://www-
2.cs.cmu.edu/~acme/.

http://www.cougaar.org/
http://www.almaden.ibm.com/institute/pdf/KaiserGail.pdf
http://www.almaden.ibm.com/institute/pdf/KaiserGail.pdf
http://www-2/
http://www-2/

