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Abstract—A high percentage of newly-constructed commercial
office buildings experience energy consumption that exceeds
specifications and system failures after being put into use.
This problem is even worse for older buildings. We present a
new approach, ‘predictive building energy optimization’, which
uses machine learning (ML) and automated online evaluation
of historical and real-time building data to improve efficiency
and reliability of building operations without requiring large
amounts of additional capital investment. OQur ML approach uses
a predictive model to generate accurate energy demand forecasts
and automated analyses that can guide optimization of building
operations. In parallel, an automated online evaluation system
monitors efficiency at multiple stages in the system workflow
and provides building operators with continuous feedback.

We implemented a prototype of this application in a large
commercial building in Manhattan. Our predictive machine
learning model applies Support Vector Regression (SVR) to the
building’s historical energy use and temperature and wet-bulb
humidity data from the building’s interior and exterior in order
to model performance for each day. This predictive model closely
approximates actual energy usage values, with some seasonal
and occupant-specific variability, and the dependence of the
data on day-of-the-week makes the model easily applicable to
different types of buildings with minimal adjustment. In parallel,
an automated online evaluator monitors the building’s internal
and external conditions, control actions and the results of those
actions. Intelligent real-time data quality analysis components
quickly detect anomalies and automatically transmit feedback to
building management, who can then take necessary preventive or
corrective actions. Our experiments show that this evaluator is
responsive and effective in further ensuring reliable and energy-
efficient operation of building systems.

Index Terms—green buildings, energy efficiency, prediction
methods, reliability, machine learning, support vector machines,
statistical analysis

I. INTRODUCTION

According to the U.S. Department of Energy (DOE), com-
mercial office buildings lead the industrial and transportation
sectors in total energy consumption [1]. Although new build-
ings are often designed with energy efficiency and system
reliability in mind, the use of energy-efficient materials and
advanced Building Management Systems (BMS) does not
always guarantee efficient and reliable building operation. A
high percentage of new buildings consume energy at levels
that exceed specifications and experience system failures after
being put into use [2]. This problem is even worse for

older buildings. We present here a new approach, applying
machine learning (ML) and automated online evaluation to
historical and real-time building Supervisory Control and Data
Acquisition (SCADA) data and other building information to
improve the efficiency and reliability of building systems with-
out requiring large amounts of additional capital investment.
We have developed a prototype of this application, which we
implemented in a large multi-tenant office building in New
York City.

Our ML approach, termed ‘predictive building energy opti-
mization’, uses a model to produce accurate building energy
demand forecasts as well as automated analyses that can aid
in the tuning of building systems and operations schedules.
It applies Support Vector Regression (SVR) on historical
energy use of the building, along with temperatures and wet-
bulb humidity data from the building’s interior and exterior,
to predict performance for each day. This does not require
knowledge of the building’s physical properties, such as size,
heating, ventilation, air conditioning (HVAC) or electrical
systems. It employs time-delay coordinates as a representation
of past data in order to create the feature vectors for Support
Vector Machine (SVM) training. Our experiments show that
the predictive model closely approximates the actual values of
energy usage with some seasonal and occupant-specific vari-
ability. The dependence of the data on day-of-the-week makes
the model easily applicable to different types of buildings with
minimal adjustments.

To ensure that the ML system works reliably 24x7, an
automated online evaluator monitors the building’s internal
and external conditions (e.g., temperature, humidity, electrical
load, peak load, fluctuating electricity pricing and building
work and maintenance schedules) control actions (e.g., ad-
justing lighting, turning on/off the AC/heat and shutting off
elevators) and the results of those actions. This evaluator
employs intelligent real-time data quality analysis compo-
nents to quickly detect anomalies, such as malfunctions of
digital thermostats that interfere with temperature reading
or introduce variances from normal HVAC set-points, and
sends feedback to building management, who can then take
appropriate preventive or corrective actions. Our experiments
show that this automated online evaluator is responsive and
effective in further ensuring that building systems continue to



run reliably and energy-efficiently.

In the following section, we provide background building
data. In section III, we describe the use of predictive building
energy optimization to improve energy efficiency. In section
IV, we describe automated online evaluation for improving
system reliability. In section V, we present the results of our
empirical study. We then compare some related work in section
VI before providing our concluding remarks in section VII.

II. BACKGROUND ON BUILDING DATA
A. Building Energy Data

Building energy use is measured by total electricity con-
sumption over a period of time, typically kilowatt-hours (kWh)
per month. The kilowatt-hour is most commonly known as
a billing unit for energy delivered to consumers by electric
utilities. The energy demand of a building is the rate of
energy consumption by the building; because energy use
fluctuates during the week due to tenant activities and building
operation schedule, energy demand is a more fine-grained
measure of building energy use than the aggregate kilowatt-
hours consumed during the whole period.

Large buildings commonly use Building Management Sys-
tems (BMS) to manage the interior environment and control
mechanical and electrical equipment such as ventilation, light-
ing, power systems, fire systems and security systems. BMS
provides a way to retrieve building energy-related data, such
as data readings from sub-meters and sensors.

B. Weather Data

Climate factors include temperature, humidity, pressure,
wind and cloud cover. In a highly condensed urban environ-
ment like New York City, different areas can have different
weather measurements. This is often called micro-weather.
The most commonly used weather data for New York City
are collected from a weather station located in Central Park,
because of its accuracy and stability. Historic hourly weather
data can be obtained from some public websites, such as
National Climatic Data Center [3] and Weather Underground
[4].

Relative humidity and dew point temperature are also im-
portant weather data for buildings. Relative humidity is the
ratio of the partial pressure of water vapor in the air to the
saturated vapor pressure of water under given temperature and
pressure conditions. Dew point is the temperature at which the
air can no longer hold all of its water vapor, such that some
of the water vapor must condense into water. The dew point is
always lower than (or equal to) the air temperature. If the air
temperature cools to the dew point, or if the dew point rises to
equal the air temperature, then dew begin to form. When the
dew point temperature equals the air temperature, the relative
humidity is 100%.

C. Power Grid Data

Power grid data from utilities include electrical load, peak
load, fluctuating electricity pricing during the day and power

failure warning. The power grid data from the utilities are often
communicated electronically via client web portal or email.

III. PREDICTIVE BUILDING ENERGY OPTIMIZATION

To improve the efficiency of building systems, we employed
a new ML-based approach called predictive building energy
optimization.
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Fig. 1. Predictive building energy optimization workflow.

As illustrated in Fig. 1, predictive building energy optimiza-
tion starts with data aggregation and preprocessing. External
data, such as weather and power grid data, are combined with
building energy data in the data aggregator, which passes
the aggregated data to the data preprocessor for cleaning,
formatting and normalization. The ML predictor uses historic
energy use data as training data to build a model, which is
then used to predict energy use in the present. This prediction
is then passed to the building management and business rule
engine. The business rule engine processes the aggregated
data and the ML prediction in order to generate a set of
recommended operation actions. The building management
(i.e., building operators or BMS or automatic control actuators)
can then take action on the building systems, such as adjusting
its HVAC schedule and set-points to achieve more efficient
building operation. The modified building data will then be
fed back to the data aggregator, thereby closing the loop.

A. Data Preprocessing

The data preprocessor receives various data streams from
the data aggregator and restructures them so that all the data
fit the format required by the ML predictor and business rule
engine. For the specific predictive modeling technique we use,
all the data need to be normalized to a value between O and
1 for equal weighting.

Energy Temperature Dew Point Pressure Wind Speed Humidity
Demand Temperature
Test Set ? 0.65 0.52 0.40 0.72 0.68
Training Set 0.65 0.63 0.50 0.38 0.75 0.71

Fig. 2. Sample training and test dataset.



As illustrated in Fig. 2, the training set is used to build
the predictive model (i.e., a function that can be used for
predicting unknown values). The test set includes data for
every column except energy demand, which needs to be
predicted. The training set is laid out in descending order,
such that one hour before prediction is top-most, two hours
before prediction is next, and so forth. Some data rows at
the bottom of the training set will lack ‘prior value’ data due
to the ordering system, and those rows are ignored. For any
given column, such as temperature, it is possible to expand it
such that multiple prior temperatures over a sequential series
of time-points become properties of the same data row. In this
way, we can construct a normalized dataset with time-delayed
coordinates for use by the ML predictor.

B. ML Predictive Modeling

Predictive analytics or predictive modeling deals with ex-
tracting information from data and using it to predict future
trends and behavior patterns. An SVM is a supervised learning
method for predictive modeling. It constructs a hyperplane
or set of hyperplanes in a high or infinite-dimensional space,
which can be used for classification, regression or other tasks
[5]. An SVR is a version of SVM for regression [6]. The
model produced by SVR depends only on a subset of the
training data, because the cost function for building the model
ignores any training data close to the model prediction.

A nonlinear kernel function allows the algorithm to fit
the maximum-margin hyperplane in a transformed feature
space. We selected a Gaussian radial basis function (RBF),
K(X;,X;), as the SVM kernel function:

K(X;, X;) = e~ (EIXi=X51D* (¢ > ).

The RBF kernel nonlinearly maps samples into a higher
dimensional space and, unlike the linear kernel, can handle the
case where the relationship between class labels and attributes
is nonlinear [7]. The nonlinear, dynamic nature of the influence
of weather and other data on energy demand in building
systems excludes the possibility of using a linear kernel.

In order to measure how well future outcomes are likely to
be predicted by the model, we used the coefficient of determi-
nation R2, which is used in the context of statistical models
whose main purpose is the prediction of future outcomes on
the basis of other related information. This statistical model
accounts for the proportion of variability in a dataset [8].
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where values y; are the observed values and values f; are the
modeled values or predicted values in the dataset. SS¢,, is
called the residual sum of squares and S'S;,; is called the total
sum of squares. The closer the RZ is to 1, the more accurate
the predicted values are and the better the predictive model is.

C. Business Rule Engine

The business rule engine receives aggregated data and ML
prediction output. It then applies the business knowledge that
supports rules, constraints, priority, mutual exclusion, precon-
ditions and other functions onto the data to derive executable
recommendations such as work schedule and preventive ac-
tions. The business rule engine consists of a BPM (Business
Process Management) component and a BRM (Business Rules
Management) component. Both components interact with each
other responding to events or executing business judgments
that are defined by business rules.

The set of business rules is initially defined and incremen-
tally improved by experienced building operators and property
managers. It includes both forwarding-chaining (e.g. IF some-
thing happens THEN do something) and backward-chaining
rules (e.g., IF I want to achieve this goal THEN something has
to happen). These collected rules can also serve as the learning
metrics for the more advanced adaptive stochastic controller
(ASC) driven by approximate dynamic programming (ADP)
to derive action or policy recommendations [9].

IV. AUTOMATED ONLINE EVALUATION

To ensure that the ML system works reliably 24x7, the
internal and external conditions, control actions, and the
results of those actions are evaluated using an automated
online evaluator. As illustrated in Fig. 3, the automated online
evaluation system receives data at multiple stages in the system
workflow. The evaluator employs intelligent real-time data
quality analysis components to quickly detect data anoma-
lies (e.g., malfunctions of digital thermostats that interfere
with temperature reading or introduce variances from normal
expected HVAC set-points) and gives feedback to building
management, who can then respond appropriately.
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Fig. 3. Automated online evaluation workflow.



A. Real-time Data Quality Analysis

1) Thresholds: The thresholds define the normal working
range of the specific data points. If the data reading exceeds the
thresholds at either the lower or upper bound, the data record
will be flagged as anomalous and a corresponding warning will
be communicated back to the building operator electronically.

2) Online Anomaly Detection Using Incremental Local
Outlier Factor (LOF) Algorithm: Anomaly detection finds
data instances that are unusual and do not fit any established
pattern. It concentrates on modeling normal behavior in order
to identify unusual data points. This system processes the
continuously updated data-streams to detect anomalies, using
an incremental LOF algorithm. This uses k-nearest neighbor
on each inserted data record to instantly compute LOF value,
which is the degree to which a data record represents an
outlier or an indicator of abnormality [10]. The LOF values
for existing data records can be updated on the fly if necessary.

3) Visualization: Visualization provides an easy way to
obtain additional verification of a data anomaly. This compo-
nent is also a useful communication channel to help building
management understand where issues are arising.

V. EMPIRICAL STUDY
A. Implementation

We implemented a prototype application of our predictive
building energy optimization approach at 345 Park Avenue, a
634 ft (193 m) tall skyscraper in midtown Manhattan, New
York City. Designed by Emery Roth & Sons and completed
in 1969, the building has 44 floors and more than 2 million
square feet of tenant space. Rudin Management, one of the
largest private real estate companies in New York City, is the
building owner and property manager. Approximately 5,000
people work in the building, and there are about 1,000 visitors
to the building daily. The building’s regular hours are 7:00 AM
to 7:00 PM Monday through Friday, and 8:00 AM to 1:00 PM
on Saturdays. The estimated energy cost of running the HVAC
system of 345 Park for an hour amounts to approximately
$2,000 to $2,500 in 2011. The building uses electricity, steam
and natural gas supplied by Con Edison, the main utilities
company in New York City, for heating and cooling in the
building. Management has installed a state-of-the-art energy
monitoring system, which provides an archived data log of
energy demand that can be used for predictive building energy
optimization.

B. Results of Predictive Building Energy Optimization

A more detailed empirical study of our data can be found in
our technical report [11]. In order to identify the SVR param-
eters (i.e., C' and ~y values), and number of time delays that
yield the most accurate and efficient model, we used a step-
wise search method. The step-wise method works by running
regressions using values of different orders of magnitude for a
specific parameter, calculating the R? value to assess accuracy,
then evaluating on finer scales until the appropriate value is
established. We used the same method variable selection of C,

~ and time delay values, where the test file incorporating real
values as classifiers in order to compare the model’s accuracy
at predicting for those values. First we evaluated the C' value
at 1, 10, 100 and 500, and then at 200, 300, 400. We evaluated
~v at 1, 0.1, 0.01, 0.001 and 0.0001. We evaluated the number
of time delays at 24, 48, 96, 144, 192, 240, 288 and 336; these
are all multiples of 24 to ensure that we did not disrupt daily
cyclicity.

Based on the results of the R2 statistical tests, the best
combination of variables for a February regression would be to
use one year of energy data. For May, the best combination of
variables would be two years of energy and temperature. While
these statistical tests proved the accuracy of these models, we
opted to use two years of energy, temperature and humidity
for all regressions. The reason for this is that response of the
HVAC to weather is very dynamic. In studying the physical
HVAC plant at 345 Park Avenue, the operations management
indicated that they employ the next day’s heat index in order
to determine their heating and cooling load for the day. Heat
index is determined based on a combination of temperature
and humidity in an attempt to estimate how the air temperature
feels to humans. We therefore decided that it was important to
include those variables in the creation of our model. A model
using fewer variables produces smooth, highly cyclical curves,
while the addition of more variables creates curves with more
noise and statistically poorer fits. However, the inclusion of
more variables allows the model to adapt more dynamically to
changes in weather that occur within a single day or week, and
it aids the model in predicting minimal and maximal energy
demand values.

Figures 4 and 5 show regression results of SVR prediction
versus actual energy demand for two different five-month
datasets at different times of the year. The spring graph is
closer to the actual energy consumption of the building, with
an R? value of about 0.95, while the winter graph is less
accurate, with an R? of about 0.71. We hypothesize the
reason for the less accurate winter regression is that the SVR
predictive model may need additional features in its dataset in
order to better handle low winter temperature values, which
cause increased energy demand for heating.
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C. Results of Automated Online Evaluation

Our experiments showed that the automated online evaluator
is responsive and effective in ensuring that building systems
continue to run reliably and energy-efficiently. We identified
more than 10 suspicious data anomalies among 2480 building
data-points obtained over a two-month period (December 2011
to January 2012) and investigated the related sensor or SCADA
data sources. Fig. 6 and Fig. 7 show the dynamic real-time
visualization charts with selectable data-points. Fig. 6 also
shows the building system shutdown during New Year’s Eve
and the subsequent reactivation after the holiday. If not for
the holiday, this kind of dip would have been detected as
anomalous behavior and a warning would be triggered and sent
to building management from the automated online evaluator.
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VI. RELATED WORK

Some prior research has been done to predict and analyze
the energy demand of buildings. Dong et al. used SVM
to predict building energy consumption in a tropical region
[7]. However, our application of SVR is different from their
approach in architecture and applied domains. The DOE-
2 model, created by the U.S. Department of Energy, uses
physical aspects of the building such as construction materials
to predict its energy needs [12]. Our approach, on the other
hand, makes exclusive use of operational building data to
model building energy demand. A sensor data-based building
information measurement and actuation profile for building
data management was discussed in [13]. The building infor-
mation collected from sensors can serve as input to our ML
predictor and automated online evaluator.

VII. CONCLUSION

This paper presents a new approach using ML and auto-
mated online evaluation of historical and real-time building
data to improve efficiency and reliability of building sys-
tems without requiring large amounts of additional capital
investment. The ML component generates a predictive model
of building energy demand forecasts and applies automated
analyses to aid in the tuning of building systems and operations
schedules. The automated online evaluation works in parallel
with the ML and existing BMS to conduct continuous evalua-
tions at multiple stages in the system workflow, and provides
building operators with continuous feedback that can be used
to improve reliability and performance. Our experiments show
that this SVR model is accurate in predicting energy demand
and that the automated online evaluation is effective and
responsive.

ACKNOWLEDGMENT

Wu and Kaiser are members of the Programming Systems
Laboratory, funded in part by NSF CNS-0717544, CNS-
0627473 and CNS-0426623, and NIH 2 U54 CA121852-06.
Wu, Boulanger, and Anderson are members of the Energy
Research Group in the Center for Computational Learning
Systems at Columbia University, supported in part by General
Electric, FedEx, Consolidated Edison, and Rudin Management
Company.

REFERENCES

[1] U.S. Department of Energy,
energy: Building technologies
www.eere.energy.gov/buildings/.

[2] U.S. Energy Information Administration, “Annual energy review 2010,”
October 2011.

“Energy efficiency & renewable
program,” 2012, available at

[3] National Oceanic and  Atmospheric =~ Administration, “Na-
tional climate data center,”  2012. [Online].  Available:
http://www.ncdc.noaa.gov/oa/ncde.html

[4] Weather Underground, “Weather underground,” 2012. [Online].

Available: http://www.wunderground.com/

[51 V. N. Vapnik, The nature of statistical learning theory. New York:
Springer-Verlag, 1995.

[6] H. Drucker, C.J. C. Burges, L. Kaufman, A. J. Smola, and V. N. Vapnik,
“Support vector regression machines,” Advances in Neural Information
Processing Systems 9, NIPS 1996, pp. 155-161, 1997.



[7] B. Dong, C. Cao, and S. E. Lee, “Applying support vector machines
to predict building energy consumption in tropical region,” Energy and
Buildings, vol. 37, 2005.

[8] R. G. D. Steel and J. H. Torrie, Principles and Procedures of Statistics.
McGraw-Hill, 1960.

[9] R. N. Anderson, A. Boulanger, W. B. Powell, and W. Scott, “Adaptive

stochastic control for the smart grid,” Proceedings of the IEEE, vol. 99,

no. 6, pp. 1098-1115, June 2011.

D. Pokrajac, A. Lazarevic, and L. J. Latecki, “Incremental local outlier

detection for data streams,” in In Proceedings of IEEE Symposium on

Computational Intelligence and Data Mining, 2007, pp. 504-515.

D. Solomon, R. Winter, A. Boulanger, R. Anderson, and L. Wu,

“Forecasting energy demand in large commercial buildings using support

vector machine regression,” Department of Computer Science, Columbia

University, Tech. Rep. CUCS-040-11, September 2011.

Simulation Research Group, Lawrence Berkeley National Laboratory,

University of California, Overview of DOE-2.2. University of Califor-

nia, June 1998.

S. Dawson-Haggerty, X. Jiang, G. Tolle, J. Ortiz, and D. Culler, “sMAP

a simple measurement and actuation profile for physical information,”

in Proceedings of the 8th ACM Conference on Embedded Networked

Sensor Systems (SenSys’10), November 2010.

[10]

[11]

(12]

[13]

Leon Wu (M’07) is a PhD candidate at the Department of Computer Science
and a Senior Research Associate at the Center for Computational Learning
Systems of Columbia University. He received his MS and MPhil in Computer
Science from Columbia University and BSc in Physics from Sun Yat-sen
University.

Gail Kaiser (M’85-SM’90) is a Professor of Computer Science and the
Director of the Programming Systems Laboratory in the Computer Science
Department at Columbia University. She was named an NSF Presidential
Young Investigator in Software Engineering and Software Systems in 1988,
and she has published over 150 refereed papers in a range of software areas.
Her research interests include software testing, collaborative work, computer
and network security, parallel and distributed systems, self-managing systems,
Web technologies, information management, and software development envi-
ronments and tools. She has consulted or worked summers for courseware
authoring, software process and networking startups, several defense contrac-
tors, the Software Engineering Institute, Bell Labs, IBM, Siemens, Sun and
Telcordia. Her lab has been funded by NSF, NIH, DARPA, ONR, NASA, NYS
Science & Technology Foundation, and numerous companies. Prof. Kaiser
served on the editorial board of IEEE Internet Computing for many years,
was a founding associate editor of ACM Transactions on Software Engineering
and Methodology, chaired an ACM SIGSOFT Symposium on Foundations of
Software Engineering, vice chaired three of the IEEE International Conference
on Distributed Computing Systems, and serves frequently on conference
program committees. She also served on the Committee of Examiners for the
Educational Testing Service’s Computer Science Advanced Test (the GRE CS
test) for three years, and has chaired her department’s doctoral program since
1997. Prof. Kaiser received her PhD and MS from CMU and her ScB from
MIT.

David Solomon is an undergraduate student at the Department of Earth and
Environmental Sciences at Columbia College.

Rebecca Winter is an undergraduate student at the Department of Earth and
Environmental Engineering at Columbia University Fu Foundation School of
Engineering and Applied Science.

Albert Boulanger received a B.S. in physics at the University of Florida,
Gainesville, Florida USA in 1979 and a M.S. in computer science at the
University of Illinois, Urbana-Champaign, Illinois USA in 1984. He is a co-
founder of CALM Energy, Inc. and a member of the board at the not-for-profit
environmental and social organization World Team Now and founding member
of World-Team Building, LLC. He is a Senior Staff Associate at Columbia
University’s Center for Computational Learning Systems, and before that, at
the Lamont-Doherty Earth Observatory. For the past 12 years at Columbia,
Albert has been involved in far reaching energy research and development
in oil and gas and electricity He is currently a member of a team of 15
scientists and graduate students in Computer Sciences at Columbia who are
jointly developing with Con Edison and others the next generation Smart Grid
for intelligent control of the electric grid of New York City. He held the CTO
position of vPatch Technologies, Inc., a startup company commercializing a
computational approach to efficient production of oil from reservoirs based
on time-lapse 4D seismic technologies. Prior to coming to Lamont, Albert
spent twelve years doing contract R&D at Bolt, Beranek, and Newman (now
Raytheon BBN Technologies). His specialties are complex systems integration
and intelligent computational reasoning that interacts with humans within
large-scale systems.

Roger Anderson (M’09) has been at Columbia University for 35 years, where
he is a Senior Scholar at the Center for Computational Learning Systems in the
Fu School of Engineering and Applied Sciences (SEAS). Roger is Principal
Investigator of a team of 15 scientists and graduate students in Computer
Sciences at Columbia who are jointly developing the next generation Smart
Grid for intelligent control of the electric grid of New York City with Con
Edison and others in New York City. Previously at the Lamont-Doherty Earth
Observatory of Columbia, Roger founded the Borehole Research, Global
Basins, 4D Seismic, Reservoir Simulation, Portfolio Management, and Energy
Research Groups. Roger also teaches Planet Earth, a science requirement
course in the core curriculum at Columbia College from his position in
the Department of Earth and Environmental Sciences. He co-founded the
Alternative Energy program at the School of International and Public Affairs
at Columbia, and is a director of the Urban Utility Center at the Polytechnic
Institute of New York University. Roger received his Ph.D. from the Scripps
Institution of Oceanography, University of California at San Diego. He is
the inventor of 16 Patents, and has written 3 books, & more than 200 peer-
reviewed scientific papers.



