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Abstract—A number of computational imaging techniques
have been introduced to improve image quality by increasing
light throughput. These techniques use optical coding to measure
a stronger signal level. However, the performance of these
techniques is limited by the decoding step, which amplifies
noise. While it is well understood that optical coding can
increase performance at low light levels, little is known about the
quantitative performance advantage of computational imaging
in general settings. In this paper, we derive the performance
bounds for various computational imaging techniques. We then
discuss the implications of these bounds for several real-world
scenarios (illumination conditions, scene properties and sensor
noise characteristics). Our results show that computational imag-
ing techniques provide a significant performance advantage in a
surprisingly small set of real-world settings. These results can be
readily used by practitioners to design the most suitable imaging
systems given the application at hand.

I. INTRODUCTION

C
OMPUTATIONAL Imaging (CI) techniques use optical

coding followed by computational decoding. They can

be classified into two categories. The first category includes

techniques that provide a novel imaging functionality. For

example, light field cameras capture 4D light fields that

can be used to refocus or change perspective of images

via post-processing [48], [28], [33]. Catadioptric imaging

systems provide an immersive experience by capturing a wide-

angle/omnidirectional field of view of the scene [52], [3], [36].

Tomographic imaging techniques recover the appearance of a

3D volume from a sequence of 2D projections [47]. Depth

cameras capture scene structure using various approaches,

such as and stereo [29], defocus [37], [45], [30], and diffu-

sion [54]. These functionalities are impossible to achieve using

a conventional imaging system.

The focus of this paper is on the second category of CI

techniques, which are designed to improve performance in

terms of image quality. These techniques use optical coding

to increase light throughput and measure a stronger signal

level. Examples include extended depth-of-field (EDOF) imag-

ing [30], [48], [56], motion deblurring [38], [32], [11], 2D

imaging [44], [7], [4], [5], [46], spectroscopy [21], [20], color

imaging [2], [26], light field capture [48], [28], [33] and

illumination multiplexing [41], [42], [39]. For each of these

examples, there is a corresponding imaging technique that can

measure the desired signal directly without the need for any

computational decoding. For example, a shorter exposure can

be used to eliminate motion blur and a stopped down aperture

can be used to capture an EDOF image. Similarly, a pin-

hole mask can be used to acquire light-fields and narrow-

band spectral filters can be used (instead of a multiplexed
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Fig. 1. Performance of computational imaging for naturally occurring

lighting conditions. We show that CI techniques (solid curve) give a
negligible performance gain over conventional (impulse) imaging (dotted line)
if the illumination level is higher than that of a typical living room. This is an
example plot for spectral, light field, and illumination multiplexing systems
for the following scene and sensor characteristics: average scene reflectivity
is .5, exposure time is 20ms, aperture setting is F/2.1, pixel size is 1µm,
quantum efficiency is .5, and read noise standard deviation is 4e−. See Fig. 8
for similar performance plots for defocus and motion deblurring.

spectrometer) to capture multi-spectral images directly without

requiring any computational decoding.

We refer to this class of imaging methods - ones whose

performance we seek to improve by capturing more light - as

impulse imaging. The term impulse is meant to convey the

small amount of light captured by these methods. Impulse

imaging techniques do not require computational decoding

to recover the signal. Fig. 1 shows an example plot of

performance for CI techniques relative to impulse imaging.

Fig. 2 gives comparisons between some example CI techniques

and their impulse imaging counterparts. The goal of this paper

is to analyze the performance advantage of CI techniques with

respect to their impulse imaging counterparts. The paper has

two main contributions:

1) Theoretical performance bounds of computational imag-

ing. Implementing a CI technique involves an additional, often

significant, cost over a conventional imaging system. In order

to justify the extra cost, a practitioner may ask the question:

What is the performance advantage of a CI technique with

respect to the corresponding impulse camera? Moreover, since

CI techniques capture more light than impulse imaging, it may

appear that they must result in a higher signal-to-noise-ratio
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Fig. 2. Computational versus Impulse Imaging. (Left) All CI techniques discussed in this paper can be modeled using the linear image formation model
given by Eq. 1. This includes defocus deblurring, motion deblurring, light field multiplexing, and several techniques discussed in Section III. In order to
recover the desired image, these techniques require an additional decoding step, which amplifies noise. (Right) Impulse imaging techniques measure the signal
directly without requiring any decoding. A stopped down aperture can be used to avoid defocus blur, a shorter exposure can be used to avoid motion blur,
and a pin-hole mask can be placed near the sensor to directly measure the light field. The images in the figure are taken from [56], [38], [28].

(SNR). However, CI involves a computational decoding step

(see Fig. 2) which amplifies noise, thereby lowering the SNR.

We analyze the performance of a variety of CI techniques

(e.g. EDOF imaging, motion deblurring and light-field cap-

ture), and derive a bound on their performance in terms

of SNR. We show that CI techniques provide a significant

performance advantage only if the average signal level is

significantly lower than the sensor read noise variance, which

happens rarely in real-world scenarios. We also study the role

of image priors on the decoding (CI) and denoising (impulse

imaging) steps. Our empirical results show that the use of

priors reduces the performance advantage of CI techniques

even further.

2) Practical guidelines for computational imaging. Based

on our performance bounds, we provide guidelines for when

to use CI given an imaging scenario. The scenarios are

defined in terms of the application (e.g., motion deblurring,

defocus deblurring), real-world lighting (e.g., moonlit night

or cloudy day, indoor or outdoor), scene properties (albedo,

object velocities, depth range) and sensor characteristics. We

derive the performance gains for several CI techniques for

a variety of scenarios. These results can be readily used by

practitioners to decide whether to use CI, and if so, to design

the imaging system.

A. Scope and Assumptions

Applicability: The results in this paper apply only to CI

techniques that have a corresponding impulse imaging tech-

nique providing the same functionality. For example, the

performance of EDOF techniques is compared with a stopped-

down aperture, motion deblurring is compared with imaging

using a small exposure and mask-based light field capture

techniques are compared with pin-hole masks (see Figure 2).

Performance metrics: We use image quality for evaluating

the performance of techniques with the same functionality.

The theoretical performance bounds are derived in terms of

the SNR metric. In addition, we provide empirical results for

several other perceptually motivated metrics [50], [49], [43].

Imaging and noise model: The analysis in this paper deals

with techniques which follow a linear imaging model. The

noise is assumed to be additive Gaussian (signal independent

and dependent), as discussed in Section II. We do not con-

sider techniques which require non-linear computations for

recovering the desired image, e.g. depth estimation for EDOF

imaging [22].
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B. Related Work

Harvit and Sloane analyzed optically coded image acquisi-

tion in the context of spectrometers [21]. They showed that in

the absence of photon noise, the optimal measurement scheme

corresponds to Hadamard matrices, and provides significant

performance advantage over impulse imaging. Ratner and

Schechner [39], [40] extended these results to derive optimal

measurement matrices in the presence of photon noise. Ihrke et

al. [26] analyzed the noise performance of different light field

cameras and color-filter array imagers. The performance gain

of multiplexing, as derived in these papers, depends on the

measurement matrices. The general conclusion of these works

was that CI techniques do not give a significant performance

advantage at high light levels. Our contribution is to derive

theoretical performance bounds for CI, which are independent

of the optics. The bounds give the maximum performance

for CI techniques as a function only of the signal level and

camera read noise. We apply our results to several CI systems

including EDOF imaging and motion deblurring, and provide

practical guidelines for designing imaging systems.

Recently, Hasinoff et al. [22] show that the performance of

any EDOF camera (conventional or computational) improves

if multiple shots are taken with different focus settings. In

a similar vein, Zhang et al. [53] compare the performance

of acquiring multiple images versus a single image, in the

context of motion deblurring and HDR imaging. These papers

do not consider single shot impulse imaging. Moreover, both

these papers require non-linear computations (depth estimation

for EDOF and motion estimation for motion deblurring). In

contrast, our focus is on linear imaging systems, and our goal

is to analyze the performance gain of a wide range of CI

techniques with respect to single shot impulse imaging.

II. IMAGE FORMATION MODEL

We consider CI techniques that can be expressed using a

linear image formation model (see Fig. 2):

g = Hf + η , (1)

where g is the vector of measurements of size N . f is the

vector of unknown signal values, which may represent spatial,

spectral, angular, or temporal information. H is the measure-

ment matrix. For CI techniques that take coded measurements

by masking (attenuating) light, the entries of H are between

0 and 1. For CI techniques that measure the signal without

masking light, either by moving the sensor during capture [23],

[34], using additional refractive elements [17] or moving the

camera [32] 1, the entries of H are not bounded. For impulse

imaging, H = I , and the camera measures the signal f directly.

Each element of the noise vector η is assumed to be

independently sampled from a zero mean Gaussian distribution

N (0, σ2). We consider an affine noise model where there

are two sources of noise, signal-independent read noise, and

1These techniques have an added benefit that they result in depth invariant
blur (for defocus deblurring) and motion invariant blur (for motion deblurring),
which makes the deblurring process significantly simpler.

signal-dependent photon noise 2. The photon noise can be ap-

proximated by a Gaussian with variance equal to the measured

signal level J (in photons). Let the variance of the read noise

be σ2
r . The total noise variance is:

σ2 = J + σ2
r , (2)

An estimate of the signal can be found as:

f∗ = H−1g (3)

The Mean-Squared Error (MSE) for the estimate f∗ is given

by [21]:

MSE =
σ2

N
Tr(H−tH−1) , (4)

where Tr() is the matrix trace operator.

Performance Gain. In order to compute the performance

gain of a CI technique, we compare the signal-to-noise-

ratio (SNR) of the recovered signal with the signal captured

using impulse imaging (baseline). The SNR is defined as

SNR = J√
MSE

.

Denoting σ2
i as the noise variance for the impulse camera,

the MSE is just equal to the variance MSEi = σ2
i . Let σ2

c

be the noise variance for the measurement made with the CI

technique. The performance gain G is the ratio of the SNR

for the CI technique to the SNR of the impulse camera:

G =

√
MSEi

MSEc
(5)

=

√

N

Tr(H−tH−1)

σi

σc
. (6)

When the noise is signal independent (σi = σc), the matrix

that maximizes the gain for masking-based CI techniques is the

S-matrix [21]. However, when the noise is signal dependent,

the optimal measurement matrix, and hence the performance

gain, depend on the matrix light throughput C(H), which is

the sum of elements in each row of the measurement matrix 3

H , and is a measure of the amount of light captured if H
is used as the measurement matrix. For example, if H is the

identity matrix, C(H) = 1. On the other hand, if H is the

S-matrix, C(H) ≈ N
2

. Consequently, the S-matrix captures

significantly more light. In the remainder of the paper, we

drop the argument H from C(H) for brevity.

Optimal Measurement Matrices. The problem of identifying

optimal measurement matrices (that result in maximum gain)

for masking-based CI techniques was explored by Ratner et

al. [39], [40]. They found an analytic expression for the lower

bound of the trace term:

2We ignore the effect of dark current noise, which is typically negligible
when exposure times remain less than around one second.

3We consider matrices for which all the rows have the same sum.
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Tr(H−tH−1) ≥ N(CN − 2C + 1)

(N − C)C2
. (7)

Suppose the average signal level for the impulse camera is J ,

so that the total noise σ2
i = J+σ2

r . The CI technique captures

C times more light. Hence, the total noise is σ2
c = C J + σ2

r .

Substituting these and Eq. 7 in Eq. 6, we get an expression

for the maximum SNR gain G for matrices with a given light

throughput C:

G(C) ≤
√
√
√
√
√

(N − C)C2

CN − 2C + 1
︸ ︷︷ ︸

Decoding Term

J + σ2
r

C J + σ2
r

︸ ︷︷ ︸

Noise Term

. (8)

The right hand side of Eq. 8 consists of two competing

terms. As light throughput is increased, the noise dependent

term decreases while the decoding dependent term increases.

There is an optimal light throughput Cmax for which the SNR

gain achieves the maximum value of Gmax.

III. COMPUTATIONAL VERSUS IMPULSE IMAGING:

EXAMPLES

There are several CI techniques that follow the linear

imaging model of Eq. 1 and which have a corresponding

impulse camera. The following are a few examples.

Defocus Blur. Coded aperture masks have been used to deblur

defocused images [30], [48], [56], [55]. There are also several

techniques that extend depth of field (DOF) by producing

a depth-independent blur that can be inverted without the

need for depth estimation [10], [17], [35], [23], [34], [14],

[13], [19]. Assuming the blur kernel to be shift invariant, the

measurement matrix H is a circulant matrix, where each row

of the matrix encodes the defocus blur kernel. g is the captured

blurred image and f is the EDOF image. The corresponding

impulse imaging technique is to capture images with a stopped

down aperture (H is equal to the identity matrix I).

Motion Blur. Temporal shuttering has been used to remove

motion blur from images [38]. Methods have also been pro-

posed that create motion-invariant blur that can be removed

without prior knowledge of object speed [32], [11]. Similar

to EDOF imaging, the measurement matrix H is a circulant

matrix, where each row of the matrix encodes the motion blur

kernel. g is the captured blurred image and f is the blur-free

image. In contrast, impulse imaging avoids motion blur by

simply capturing images with a short exposure (H = I).

Multiplexed Light Fields. CI techniques for capturing light

fields include placing a transmissive mask either at the lens

aperture [33], or near the sensor [48], [28]. In this case also, the

measurement matrix H is block circulant. Each pixel measures

a linear combination of ray intensities (g) and the light field

(f ) must be recovered by demultiplexing the captured data. In

contrast, a light field camera can also be built by placing a

mask consisting of an array of pinholes near the sensor [25],

or by capturing a sequence of images with a shifting pinhole

in the aperture [33]. These techniques are the impulse imaging

counterparts of multiplexed light field capture.

Multiplexing Color and Spectrum. Mask-based Hadamard

multiplexing is used for point [21] and imaging [20] spectrom-

eters. Here, H is the spectral mixing matrix, g is the vector

of multiplexed spectral samples and f is the vector of narrow-

band spectral samples (desired). The impulse imaging coun-

terpart is capturing narrow-band spectral samples [8]. Color

Filter Arrays (CFAs) that multiplex color have been proposed

to capture three color images with more light throughput than

RGB Bayer filters [2], [26] (impulse imaging).

Multiplexed Illumination. Measuring the appearance of a

scene under varying illumination is useful for scene relighting

and estimating depth. These measurements can be multiplexed

by measuring the appearance of a scene when illuminated by

linear combinations of light sources [42], [39], [40]. Here,

H is the measurement ensemble, g is the vector of acquired

(multiplexed) image intensities and f is the vector of intensi-

ties corresponding to only single sources. Here, the impulse

imaging counterpart is capturing images by turning on only

one light source at a time.

IV. OPTICS INDEPENDENT PERFORMANCE BOUNDS

In this section, we derive a performance bound for CI that is

independent of the signal size N and the measurement matrix

H (defined by the optics). As a result, this bound allows us

to analyze a wide range of CI techniques. In comparison, the

previous result (Eq. 8) gives the maximum SNR gain G for

coding matrices with a light throughput C and signal of size

N . We first derive an upper bound on the decoding term in

Eq. 8:

C2(N − C)

NC − 2C + 1
=

C2(N − C)

NC − C2 + C2 − 2C + 1

=
C2(N − C)

C(N − C) + (C − 1)2

≤ C2(N − C)

C(N − C)
≤ C. (9)

Next, we derive an upper bound on the noise term:

J + σ2
r

C J + σ2
r

=
1

C

C J + C σ2
r

C J + σ2
r

≤ 1

C

C J + σ2
r + C σ2

r

C J + σ2
r

≤ 1

C

(

1 +
C σ2

r

C J + σ2
r

)

≤ 1

C

(

1 +
σ2
r

J

)

(10)

By substituting the bounds in Eqs. 9 and 10 in Eq. 8, we get

the upper bound on the performance gain of masking-based

CI techniques:

G <

√

1 +
σ2
r

J
. (11)
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Fig. 3. Verification of the performance bound using simulations. (a) Performance for several defocus deblurring cameras [30], [48], [56], [23], [34]. (b)
Motion deblurring performance for the flutter shutter [38] and motion-invariant cameras [32]. (c) Performance for the sum-of-sinusoids [48] and MURA [28]
light field multiplexing cameras. All techniques perform at or below the performance bound given by Eq. 12. The plots in 3(c) are similar to those given by
Ihrke et al. [26]. However, our plots are different for higher signal levels because we reduce camera sensitivity to avoid saturation.

In Appendix A, we derive the performance bound for the CI

techniques discussed in this paper that do not mask light [10],

[17], [35], [23], [34], [14], [13], [19], [32], [11]:

G <

√

2

(

1 +
σ2
r

J

)

. (12)

Eqs. 11 and 12 are noteworthy because they provide the

maximum possible SNR gain for all CI techniques mentioned

in Section III.

Simulations to Verify the Bounds. In Fig. 3, we show the

simulated performance of several of the techniques discussed

in Section III. The SNR gain of each technique is calculated

using Eq. 6, and the result is plotted against the ratio of photon

to read noise variance (J/σ2
r ). Fig. 3(a) shows performance for

several previously proposed defocus deblurring cameras [30],

[48], [56], as well as the focal sweep camera [23], [34].

Fig. 3(b) shows motion deblurring performance for the flutter

shutter [38] and motion-invariant [32] cameras. For focal

sweep and motion-invariant techniques, the coding was opti-

mized for different signal levels. Fig. 3(c) shows performance

for the sum-of-sinusoids [48] and MURA [28] light field

multiplexing cameras. The masks for both light field cameras

were generated with a period of 11× 11 pixels. As expected,

all the techniques perform at or below the performance bound

given by Eq. 12.

Implication of the Bounds. The bounds in Eqs. 11 and 12

imply that the performance gain for computational imaging

is significant only when the average signal level J is con-

siderably smaller than the read noise variance σ2
r . The read

noise variance for currently available sensors ranges from less

than one grey level (on a scale of [0 − 255]) for high quality

DSLR cameras to approximately 5 grey levels for low-quality

machine-vision cameras [42]. Only a few real-world imaging

scenarios have signal strengths that are considerably smaller

than these read noise variance values.

V. ROLE OF IMAGE PRIORS

Thus far, we have not considered the role of image priors.

Priors can be used to improve image quality, both for com-

putational and impulse imaging [30], [56]. The improvement

depends on the type of priors and image coding used. In

addition, our analysis thus far used MSE as the quality metric

for images because it makes the derivation of performance

bounds tractable. However, a number of metrics have been

introduced which measure the perceived image quality [50],

[43], [49], [18]. In this section we analyze the effect of various

priors and metrics on performance.

Image Priors. We can think of the estimate f∗ given in Section

II as the Maximum Likelihood (ML) estimate of the following

optimization problem:

f∗ML = argmax
f

P (f |g) (13)

= argmin
f

||f −Hg||2, (14)

where P (f |g) is the probability of the unknown image f given

the measurement g, which is Gaussian due to the properties

of the measurement noise vector η. If we have knowledge

of the probability distribution of our unknown image P (f),
then we can improve performance by finding the Maximum

A Posteriori (MAP) estimate:

f∗MAP = argmax
f

P (g|f)P (f) (15)

= argmin
f

||f −Hg||2 + λ log(P (f)), (16)

where the constant λ determines how much significance to

attach to the prior. The image prior can essentially be thought

of as a way to coerce the optimization problem to produce

more probable estimates of the unknown image. In this section,

we consider three image priors. Firstly, we consider a Gaussian

prior on the distribution of gradients in the image [30], [22]

of the form :
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log(PGauss(f)) = −||∇f ||22, (17)

where ∇ is the first order finite difference matrix, which

calculates a discrete approximation to the gradient operator.

In this case, because the prior is Gaussian, the MAP estimate

can be calculated directly as:

f∗MAP = (∇t∇+HtH)−1Htg. (18)

(19)

We also consider the Total Variation (TV) prior [6], [9]

which has the form:

log(PTV (f)) = −||∇f ||1. (20)

In this case, there is no direct way to calculate the MAP

estimate, and an iterative algorithm must be used. We use

the TwIST algorithm [6] to solve Eqn. 16 and find a MAP

estimate.

Lastly, we consider a prior that assumes neighboring patches

of pixels can be written as linear combinations of one another.

While it is difficult to write a single expression for this prior,

its possible to calculate a MAP estimate numerically. We use

the BM3D algorithm [15].

Image Quality Metrics. In Section II, we establish MSE

as the metric for evaluating images. We now extend this

formalization to more general metrics. We can define a general

form for any similarity metric S(f , f∗) that measures how

close our estimate f∗ is to the actual image f . The MSE metric

can then be defined as

SMSE(f , f∗) =
1

||f − f∗||2
2

. (21)

The interpretation here is that the smaller the MSE, the more

similar the estimate f∗ relative to the true image f . The

performance gain for any metric can then be written as

G =

√

Sc(f , f∗)

Si(f , f∗)
, (22)

where Sc is the metric applied to the computational camera,

and Si is the metric applied to the corresponding impulse

camera. For the MSE metric, the definition remains the same

as the expression given in Eq. 6. However, with this general

definition in place, we are now free to use other metrics to

evaluate performance. Note that because we have defined SNR

gain in terms of a similarity metric instead of an error metric,

the term for the computational camera appears in the numer-

ator instead of the denominator. In addition to MSE, we use

the following image quality metrics to measure performance:

Structural Similarity (SSIM)[50], Visual Information Fidelity

(VIF)[43], and Universal Quality Index (UQI)[49]. We use the

MeTriX MuX Visual Quality Assessment package to calculate

performance using these metrics [18].

Simulations. Fig. 4 shows the simulated performance of focal

sweep and flutter shutter cameras. Since the performance of

reconstruction algorithms can be image depend, we report

the performance averaged over a large dataset of images. For

this simulation, we use the Caltech 101 image database of

9140 different images [27]. For each image, we simulate the

performance under ten different photon to read noise ratios

(J/σ2
r ). Moving from left to right columns, performance is

shown for the MSE, SSIM, VIF, and UQI metrics. The top

row shows performance for the focal sweep camera, and the

bottom row shows performance for the flutter shutter camera.

For each plot, the performance gain G is plotted on a log

scale. Thus, a value of zero corresponds to a performance

gain of G = 1, meaning that both computational and impulse

imaging have the same performance (dotted line). The black

line corresponds to the performance bound expressed by Eqn.

12. The magenta lines correspond to performance gain using

direct linear inversion (i.e. estimating the image using Eqn. 3).

The red, green, and blue curves correspond to reconstructions

using Gaussian, TV, and BM3D priors, respectively.

There are two interesting observations to be made from

these plots. First, in most of the cases, image priors boost

the performance of impulse imaging more than computa-

tional imaging. As a result, the performance advantage of

CI techniques over impulse imaging is reduced even further,

especially at low light levels. Thus, the performance bound

expressed by Eqn. 12 is the tightest when no prior is used.

The second observation is that the bound derived using

linear inversion and the MSE metric (black curve) appears

to be an upper bound for performance across all metrics

and priors. This is surprising because it is well known that

MSE does not accurately measure perceived image quality.

Nonetheless, the upper bound expressed by Eqn. 12 does

appear to provide a consistent upper bound on performance

regardless of the image quality metric used.

VI. WHEN TO USE COMPUTATIONAL IMAGING

Eqs. 11 and 12 provide performance bounds for CI tech-

niques in terms of the sensor read noise σr and the average

signal level J of the impulse image. In order to determine

when CI is advantageous, we have derived an expression for

the signal level J in terms of the scene and sensor dependent

parameters (see Appendix B for a derivation):

J = 1015 (F/#)−2 t Isrc R
︸ ︷︷ ︸

Scene
Dependent

q∆2

︸︷︷︸

Sensor
Dependent

, (23)

where F/# is the ratio of focal length to aperture size of the

lens, t is the exposure time, Isrc is the incident illuminance

given in lux, R is the average reflectivity of the scene, q is

the quantum efficiency of the sensor, and ∆ is the pixel size

in meters. In Fig. 5, we give values of J corresponding to

several commonly encountered lighting conditions.

Scene Dependent Parameters. For defocus deblurring sys-

tems, the F/# of the camera depends on the depth range

of the scene. A larger depth range will require the impulse
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Fig. 4. Simulated performance for a focal sweep (top row) and flutter shutter (bottom row) cameras using various priors and metrics. (a)(e)
Performance using the Mean-Squared Error metric. (b)(f) Performance using the Structural Similarity Metric. (c)(g) Performance using the Visual Information
Fidelity Metric. (d)(h) Performance using the Universal Quality Index metric. Several reconstruction techniques are applied, including Linear inversion
(magenta), Gaussian prior on derivatives (red), Total Variation prior (green), and BM3D prior (blue). The SNR gain is always less than the bound given by
Eq. 12, regardless of the prior or metric used.

camera to stop down to smaller apertures to reduce defocus

blur to within one pixel. Similarly, for motion deblurring

systems, the exposure time t depends on the range of scene

velocities. Higher velocities will require the impulse camera

to have a small exposure to reduce motion blur to within one

pixel. Finally, the signal level is directly proportional to the

illumination brightness Isrc and the object albedo R.

Sensor Dependent Parameters. Different sensors have differ-

ent quantum efficiencies and pixel sizes. Quantum efficiency

for commercially available sensors is quite high, usually

greater than q > .5. For today’s sensors, the size of pixels ∆
has a wide range, from 1 micron for small cell phone sensors

to nearly 10 microns for large format sensors.

A. Rule of Thumb

When using one of today’s commercial grade image sensors,

computational imaging will only yield significant performance

benefits when the illuminance is less than 125 lux (typical

living room lighting).

For EDOF imaging and motion deblurring, this implies that

when the illuminance is high (more than typical living room

lighting), it is better to capture the impulse image without any

blur (using a small aperture and exposure, respectively). Simi-

larly, for light field and spectral acquisition, if the illuminance

is high, it is better to capture the light field and the spectral

samples directly without multiplexing (using pin-hole masks

and narrow-band filters, respectively).

(lux)Isrc

3,849

4
10

Sunny
Day

384.9

3
10

Cloudy
Day

1

Full
moon

Twilight

3.85

10

Indoor
Lighting
Indoor

38.49

2
10

.39

Quarter
moon

Starry 
night

-4
7 x 10

-3
4 x 10

10
-2-3

2 x 10

J -(e  )

Fig. 5. Relating lighting levels to average photon counts. The top row
shows typical illuminance values in lux [51]. The bottom row shows the
photon counts calculated using Eq. 23 assuming an average reflectivity of R =
.5, quantum efficiency of q = .5, and exposure time of t = 1/50 seconds,
aperture setting of F/2.1, and pixel size of ∆ = 1µm .

We support this rule of thumb with several example scenar-

ios. Each scenario consists of an application, lighting condition

(e.g., moonlit night or cloudy day, indoor or outdoor) and

scene properties (albedo, speed, range of object velocities).

In all our examples, we assume an average reflectivity of

R = 0.5, quantum efficiency of q = 0.5, and read noise of

σr = 4e−, which is typical for today’s DSLR sensors [12].

Motion Deblurring. For this case, we used a pixel size of

∆ = 5µm, aperture setting of F/20 and the impulse camera

exposure time t = 1

50
s. For flutter shutter camera, we use

the 52 digit long sequence given in [38]. We simulated the

effect of photon and read noise, and decoded the captured

image using Eq. 3. In Fig. 6, we show the simulated images.

The flutter shutter performance is lower than that of impulse
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Fig. 6. Simulated performance for the flutter shutter camera. The parameters for the simulation are given in Section VI-A. The top row shows an image
blurred by the flutter sequence given in [38]. The second row shows the results after linear deblurring. The third row shows the results from the impulse
camera (shorter exposure). The fourth row shows the results after deblurring the images in the first row with the BM3D algorithm [15]. The last row shows
the results for denoising the images in the third row with the BM3D algorithm. Gaussian distributed read noise and Poisson distributed photon noise is added
to each image. The illumination Isrc increases from left to right. The flutter shutter camera has higher SNR when Isrc < 100 lux.

imaging when the illuminance is greater than 100 lux.

In Fig. 8(a), we show a contour plot of the SNR gain bound 4

versus the illuminance (Isrc) and the exposure time of the

impulse camera (t). Note that the bound is independent of the

particular flutter sequence and the exposure time of the flutter

camera. As the maximum object speed increases, the exposure

time of the impulse camera must be reduced to avoid motion

blur. We can observe that CI never gives an SNR gain greater

than 2 when the illuminance is greater than 83 lux.

EDOF Imaging. For this case, we used a pixel size of

∆ = 5µm, the camera exposure time t = 1

50
s and the impulse

aperture setting of F/20. The aperture setting for the focal

4Although the SNR bound is derived assuming no priors and MSE metric,
we have observed empirically that it bounds the performance of CI techniques
irrespective of the prior and the image quality metric (see Section V).

sweep camera was set to F/1. In Fig. 7, we show simulated

images. The figure shows captured (coded), decoded, and

impulse images with read noise and varying amounts of photon

noise added. Images are decoded using Eq. 3. The performance

of focal sweep is always greater than impulse imaging (i.e.

stopping down the camera), but the increase in performance

is negligible when the illuminance is greater than 100 lux.

In Fig. 8(b), we show a contour plot of the SNR gain

bound (independent of the focal sweep aperture setting) versus

the illuminance and the F/# of the impulse camera. As the

scene depth increases, F/# of the impulse camera must also

increase to avoid defocus blur. As we can notice, CI does not

give an SNR gain greater than 2 when the illumination is more

than 125 lux.

Spectral and Light Field Acquisition. In this example, we
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Fig. 7. Simulated performance for the focal sweep camera. The parameters for the simulation are given in Section VI-A. The top row shows an image
blurred by a focal sweep PSF. The second row shows the results after linear deblurring. The third row shows the results from the impulse camera (stopped
down aperture). The fourth row shows the results after deblurring the images in the first row with the BM3D algorithm [15]. The last row shows the results
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becomes negligible when Isrc > 100 lux.

consider the performance of spectral and light field cameras.

We use an exposure time of t = 1/50 seconds, pixel size of

∆ = 1µm, and an aperture setting of F/2.1. In Fig. 1 we

plot the SNR gain bound against illuminance. In this case the

illuminance must be less than 18 lux in order for CI to give

an SNR gain greater than 2.

VII. DISCUSSION

The Role of Sensor Quality. High quality sensors are

carefully engineered to have low read noise, albeit with an

added cost. In applications where low quality (high read

noise) sensors are used, CI can enhance performance even

when illuminance is greater than 125 lux. In these situations,

however, the additional cost required to implement coding

should be weighed against the cost of improving performance

by simply switching to a high-quality sensor.

Effects of Diffraction: Defocus blur is a purely geometrical

phenomenon that depends only on object depth, aperture size,

and the focal length of the lens. However, lenses also exhibit

some amount of blur due to the diffraction of light from

the aperture. While defocus blur is directly proportional to

aperture size, diffractive blur is inversely proportional to the

aperture size. Therefore, any attempt to remove one type of

blur will increase the other.

For the impulse camera, when diffraction blur size is larger

than a pixel, the only option for removing blur is to use an

EDOF technique. This is a particularly important problem

when considering cameras with small pixel sizes. In this case,
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Fig. 8. Performance of motion and defocus deblurring. The average signal level is calculated using Eq. 23 with the parameters outlined in Section VI-A.
(a) Contour plot of the SNR gain bound versus the illuminance and the exposure time of the impulse camera. (b) Contour plot of the SNR gain bound versus
the illuminance and the F/# of the impulse camera. For both motion and defocus deblurring, the SNR gain is always negligible when the illuminance is
greater than 125 lux (typical indoor lighting).

EDOF techniques provide a functionality which cannot be

achieved using impulse imaging.

Task-Specific Imaging: Our aim in this paper is to analyze

the performance of CI insofar as the final goal is to capture

high quality images. If a further task is to be performed on

the captured images (e.g., tracking, face recognition, intrusion

detection), reconstruction algorithms can benefit from task-

specific priors (as opposed to priors based on natural image

statistics). Moreover, in this case, the performance should be

evaluated in terms of task-specific metrics. While such task-

specific priors and image quality metrics are beyond the scope

of this paper, we believe they form an interesting direction for

future research.

APPENDIX A

CODING FOR INVARIANCE

For shift-invariant systems, the image formation of Eq. 1

can be described in the Fourier domain as

G(ωx, ωy) = H(ωx, ωy)F (ωx, ωy) + Ψ(ωx, ωy), (24)

where ωx, ωy are continuous valued spatial frequencies given

in units of 1/pixels, F is the focused image, H is the optical

transfer function (OTF) of the camera, Ψ is the noise, and G
is the captured image. An estimate of the focused image can

be found as

F ∗(ωx, ωy) =
G(ωx, ωy)

H(ωx, ωy)
, (25)

and the expected MSE can be written as

MSE = E
[
||F ∗(ωx, ωy)− F (ωx, ωy)||2

]
(26)

= σ2

∫ 1/2

−1/2

∫ 1/2

−1/2

1

‖H(ωx, ωy)‖2
dωxdωy, (27)

where E denotes expectation w.r.t. the noise Ψ.

Motion Invariant Blur. Let Sm be the maximum speed of

objects in the scene measured in pixels/sec. An impulse

camera will remove motion blur by setting the exposure time

T so that the maximum blur size is equal to one pixel and

SmT = 1. Cho et al. [11] derived an upper bound on the

best possible motion-invariant MTF that can be achieved for

2D motion 5:

‖Hm(ωx)‖2 ≤ C

2SmT
√

ω2
x + ω2

y

. (28)

Substituting Eq. 28 into Eq. 27 gives a lower bound on the

MSE for any motion-invariant camera:

MSEm ≥ σ2
m

(√
2 + asinh(1)

)

3C
≥ σ2

m

2C
. (29)

Substituting Eq. 29 into Eq. 5 results in the bound expressed

by Eq. 12.

Defocus Invariant Blur. In the same way that motion blur

depends on the speed Sm, defocus blur depends on the defocus

parameter Sd. Following the notation in Levin et al. [31],

Sd = 2 dmax−dmin

dmax+dmin

, where dmax and dmin are the maximum

and minimum depths of objects in the scene, respectively.

An impulse camera will remove defocus blur by reducing the

aperture width A (measured in pixels) so that the maximum

defocus blur size is equal to one pixel and SdA = 1.

Baek [1] showed that the focal sweep camera is nearly

optimal at simultaneously maximizing transfer efficiency and

minimizing depth-invariance. Thus, the performance of focal

sweep will closely approximate the best possible performance

of any technique that produces depth-invariant blur. Levin et

al. derived an approximate expression for the focal sweep

MTF [31] 6

5The bound derived by Cho et al. assumes Hm(0, 0) = T . We assume
Hm(0, 0) = C. Both conditions give the same SNR gain.

6The derivation by Levin et al. assumes Hfs(0, 0) = A2. We assume
Hfs(0, 0) = C. Both conditions give the same SNR gain.
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‖Hfs(ωx, ωy)‖2 ≈ Cmax(ω2
x, ω

2
y)

A2S2
d

(30)

Substituting Eq. 30 into Eq. 27 gives a lower bound on the

MSE for any depth-invariant camera:

MSEd ≥ σ2
m

2C
. (31)

Substituting Eq. 31 into Eq. 5 results in the bound expressed

by Eq. 12.

APPENDIX B

LIGHTING CONDITIONS

For a Lambertian scene with average reflectance R that is

lit by a source with illuminance Isrc (given in units of lux),

the average illuminance falling on the detector (also in units

of lux) is [24]

Idet =
1

4

1

F/#2
EsrcR. (32)

Given a quantum efficiency q, an exposure time of

t seconds, and a pixel size of ∆meters, the average energy

in joules collected by a pixel is [16]

E = K
1

4

1

F/#2
IsrcRq∆2t, (33)

where K = 1/680watts/lumen is the conversion factor

between photometric and radiometric units when the detector

spectral response is matched to the photopic spectral response

of the standard human observer. The energy in joules of a

single photon is given by ~c/λ, where ~ is Planck’s constant,

and c is the speed of light. The average number of photons

collected by a pixel is then

J = K
λ

4~c

1

F/#2
IsrcRq∆2 t. (34)

Assuming a mean wavelength of λ = .55µm, the average

number of photons becomes

J = 1015
1

F/#2
IsrcRq∆2 t. (35)
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