
Money for Nothing and Privacy for Free?

Swapneel Sheth, Tal Malkin, Gail Kaiser
Department of Computer Science, Columbia University, New York, NY 10027

{swapneel, tal, kaiser}@cs.columbia.edu

ABSTRACT
Privacy in the context of ubiquitous social computing sys-
tems has become a major concern for society at large. As
the number of online social computing systems that collect
user data grows, concerns with privacy are further exacer-
bated. Examples of such online systems include social net-
works, recommender systems, and so on. Approaches to
addressing these privacy concerns typically require substan-
tial extra computational resources, which might be benefi-
cial where privacy is concerned, but may have significant
negative impact with respect to Green Computing and sus-
tainability, another major societal concern. Spending more
computation time results in spending more energy and other
resources that make the software system less sustainable.
Ideally, what we would like are techniques for designing
software systems that address these privacy concerns but
which are also sustainable — systems where privacy could
be achieved “for free,” i.e., without having to spend extra
computational effort. In this paper, we describe how pri-
vacy can indeed be achieved for free — an accidental and
beneficial side effect of doing some existing computation —
in web applications and online systems that have access to
user data. We show the feasibility, sustainability, and util-
ity of our approach and what types of privacy threats it can
mitigate.

Categories and Subject Descriptors
K.4.1 [Computing Milieux]: Public Policy Issues—Pri-
vacy ; H.3.3 [Information Systems]: Information Search
and Retrieval—Information Filtering

General Terms
Algorithms, Human Factors

Keywords
Social Computing, Web 2.0, Correlation Privacy, Concept
Drift, Differential Privacy

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

1. INTRODUCTION
Today’s college students do not remember when social rec-

ommendations, such as those provided by Amazon, Netflix,
Last.fm, and StumbleUpon, were not commonplace. Pri-
vacy in the context of these social computing systems has
become a major concern for the society at large. A search
for the pair of terms “facebook” and “privacy” gives nearly
two billion hits on popular search engines. Recent feature
enhancements and policy changes in social networking and
recommender applications — as well as their increasingly
common use — have exacerbated this issue [11, 26, 30, 58].
There has been a lot of media attention on privacy — e.g.,
the AOL anonymity-breaking incident reported by the New
York Times [4]). Both users of the systems and even non-
users of the systems (e.g., friends, family, co-workers, etc.
mentioned or photographed by users) are growing more and
more concerned about their personal privacy [44].

Social computing systems, when treated in combination,
have created a threat that we call “Correlation Privacy.”
Narayanan and Shmatikov [40] demonstrated a relatively
straightforward method to breach privacy and identify in-
dividuals by correlating anonymized Netflix movie rating
data with public IMDb data. A similar de-anonymization
approach could potentially be applied to any combination
of such data-gathering systems, so how to safeguard again
these “attacks” is an important concern for the designers of
social computing systems. This is analogous to earlier work
addressing queries on census data but, at that time, there
were relatively few prospective attackers [1, 5].

There has been a lot of recent work on data anonymiza-
tion for privacy [2, 15, 24, 27, 34, 42, 48, 51]. However, data
anonymization alone may not be sufficient as Narayanan
and Shmatikov show. For more details on the related work
including de-anonymization approaches, please see Section
6. We need other techniques to deal with privacy concerns,
which may be used orthogonal to data anonymization.

In this paper, we propose an approach, which we call “Pri-
vacy for Free,” targeted towards online social systems. In
particular, we focus on systems that already have access
to user data such as purchase history, movie ratings, mu-
sic preferences, and friends and groups and that use com-
plex data mining techniques for providing additional social
benefits such as recommendations, top-n statistics, and so
on to their users. The problem we deal with is users who
have intentionally disclosed data on a public system, enter-
ing their data via web browsers onto some website server
that is known to make publicly available certain data-mined
community knowledge gleaned from aggregating that data

with other users — but the users don’t want their data to
be personally identifiable from the aggregate.

The main research question we try to answer here is — Is
there an approach that can be used with complex web appli-
cations and software systems, that will achieve privacy with-
out spending any extra resources on computational over-
head? We believe it is — our key insight is that we can
achieve privacy as an accidental and beneficial side effect of
doing already existing computation.

The already existing computation in our case is weigh-
ing user data in a certain way — weighing recent user data
exponentially more than older data to address the problem
of “concept drift” [54] — to increase the relevance of the
recommendations or data mining. This weighing is very
common and used in a lot of systems [18, 29, 32, 38]. Re-
cent work in the databases/cs theory communities on Dif-
ferential Privacy [20, 36] led to our insight that our already
existing computation for weighing user data is very similar
to one of the techniques for achieving differential privacy.
Intuitively, differential privacy ensures that a user’s partici-
pation (versus not participating) in a database doesn’t affect
his privacy significantly. We provide more detailed informa-
tion on Differential Privacy in Section 3. This resulted in the
formulation of our hypothesis — if we change the concept
drift computation so it matches the technique for achiev-
ing differential privacy (which would be a very minor and
straightforward code change as the two techniques are very
similar), would we get privacy as a beneficial side effect of
addressing a completely different problem?

We show that it is indeed possible to get privacy as a ben-
eficial side effect of addressing concept drift — thus, privacy
for free — and this is the main contribution of our paper.
Our approach can be used in certain social computing sys-
tems and web applications to achieve “privacy for free,” and
we show the feasibility, sustainability, and utility of using
this approach to building software systems. We also con-
tribute to the discussion in the privacy community about
how to define privacy and how to achieve it. Specifically,
we suggest a new direction for designing (differentially, or
otherwise) private algorithms and systems motivated by us-
ing the beneficial side-effects of doing some already existing
computation.

The rest of the paper is organized as follows: Section
2 describes the motivation of our problem and why mak-
ing privacy sustainable is important. Section 3 provides
background information on Differential Privacy and Concept
Drift. Section 4 describes our “Privacy for Free” approach.
Section 5 presents our empirical evaluations to show the fea-
sibility, sustainability, and utility of our approach. In Sec-
tion 6, we describe the related work and finally, we end the
paper in Sections 7 and 8 with some discussion about our
results and our conclusions.

2. MOTIVATION
Green Computing (or Green IT) is“the study and practice

of designing, manufacturing, using, and disposing of com-
puters, servers, and associated subsystems [...] efficiently
and effectively with minimal or no impact on the environ-
ment” [39]. With our oil reserves projected to exhaust in
less than fifty years [52], and renewable energy sources still
providing only a small fraction [50], Green Computing here
and now is becoming more and more important and, indeed,
vital to our children and grandchildren.

An important research direction will be investigating how
to build greener and more sustainable social computing sys-
tems and web applications, in addition to the complemen-
tary algorithmic efficiency and systems perspective such as
resource allocation, platform virtualization, and power man-
agement pursued by other computer science subdisciplines
[37]. Ideally, from a sustainable software system point of
view, we want to build systems that solve real-world prob-
lems by spending very little (or no) extra computational
effort.

There has been a lot of recent work in the research com-
munity on data privacy [2, 15, 24, 27, 34,42,48,51]. This has
focused on anonymization techniques to hide sensitive data.
For example, Clause and Orso [15] propose techniques for
automated anonymization of field data for software testing;
Grechanik et al. [27] and Taneja et al. [48] propose using
k-anonymity [47] for privacy by selectively anonymizing cer-
tain attributes of a database for software testing. These
approaches require additional CPU resources to guarantee
privacy. Our work is orthogonal — we try to answer the
question as to whether it’s possible to get privacy without
requiring any additional CPU overhead.

This is our main motivation for this paper. We feel that
our “Privacy for Free” approach can result in social comput-
ing systems that are more sustainable and that have privacy
guarantees built in.

3. BACKGROUND
Here we provide some background information on Differ-

ential Privacy and Concept Drift.

3.1 Differential Privacy
In the 1970s, when research into statistical databases was

popular, Dalenius [17] proposed a desideratum for statistical
database privacy — access to a statistical database should
not enable someone to learn something about an individ-
ual that cannot be learned without access to the database.
While such a desideratum would be great for privacy, Dwork
et al. [20, 21] showed that this notion of absolute privacy is
impossible using a strong mathematical proof. The problem
with the desideratum is the presence of “Auxiliary Informa-
tion”. Auxiliary Information is similar to, and a generaliza-
tion of, the notion of Correlation Privacy mentioned earlier.

Dwork gives a nice example to explain how Auxiliary In-
formation can be a problem when privacy is concerned —
“Suppose one’s exact height were considered a highly sensi-
tive piece of information, and that revealing the exact height
of an individual were a privacy breach. Assume that the
database yields the average heights of women of different
nationalities. An adversary who has access to the statis-
tical database and the auxiliary information “Terry Gross
is two inches shorter than the average Lithuanian woman”
learns Terry Gross’ height, while anyone learning only the
auxiliary information, without access to the average heights,
learns relatively little.” An interesting observation made by
Dwork is that the above example for breach of privacy holds
regardless of whether Terry Gross’ information is part of the
database or not.

To combat Auxiliary Information, Dwork proposes a new
notion of privacy called Differential Privacy. Dwork’s paper
is a culmination of the work started earlier and described
in papers such as [9,19,23]. Intuitively, Differential Privacy
guarantees privacy by saying that if an individual partici-

pates in the database, there is no additional loss of privacy
(within a small factor) versus if he had not participated in
the database. Formally, Differential Privacy is defined as
follows: A Randomized function K gives ε-differential pri-
vacy if for all data sets D1 and D2 differing on at most one
element, and all S ⊆ Range(K),

Pr[K(D1) ∈ S] ≤ exp(ε)× Pr[K(D2) ∈ S] (1)

The notion of all data setsD1 andD2 captures the concept
of an individual’s information being present in the database
or not. If the above equation holds, it implies that if an indi-
vidual’s information is present in the database, the breach of
privacy will be almost the same if that individual’s informa-
tion was not present. Differential Privacy is now commonly
used in the database, cryptography, and cs theory commu-
nities [10,21,22,43].

We like the definition of Differential Privacy due to its
strong mathematical foundations, which can allow us to
prove/disprove things theoretically. From a software web ap-
plication developer’s point of view, they can tell their users
— “Look, our system is differentially private. So if you de-
cide to use our system and give it access to your data, you
are not losing any additional privacy (within a small factor)
versus if you did not use our system. In other words, the
probability of bad things happening to you (in terms of pri-
vacy) is roughly the same whether you use our system or
not.”

3.2 Achieving Differential Privacy
Dwork describes a way of achieving differential privacy by

adding random noise. In the Terry Gross height example
above, instead of giving the true average, the system would
output average±δ, where δ would be randomly chosen from a
mathematical distribution. Thus, the adversary wouldn’t be
able to find out the exact height of Terry Gross. Since then,
there have been many papers that have proposed different
mechanisms for achieving differential privacy [10,21,22,43].

A mechanism of note for achieving differential privacy was
proposed by McSherry and Talwar [36] called the “Expo-
nential Mechanism” (EM). The EM algorithm is as follows:
Given a set of inputs, and some scoring function that we are
trying to maximize, the algorithm chooses a particular input
to be included in the output with probability proportional
to the exponential raised to the score of the input using a
scoring function. Thus, inputs that have a high score from
the scoring function have an exponentially higher probabil-
ity of being included in the output than those inputs that
have a low score. McSherry and Talwar prove that this EM
algorithm is differentially private.

Consider the Terry Gross example from above and let’s
assume that the database has historical data going back 100
years. The average heights of people change over time so giv-
ing an average height over the 100 years is not very useful.
If the scoring function we use is to maximize the recency of
data, newer data elements will be chosen with exponentially
higher probability that older data elements to be included
in the average. Since we are doing this probabilistically,
the exponential probability weighing ensures that the exact
answer is not revealed and that differential privacy is main-
tained. This EM algorithm is one of the corner stones of our
“Privacy for Free” approach and we describe how it’s used
in the next section.

3.3 Concept Drift
People’s preferences change over time — things that I like

doing today may not be things I liked doing 10 years ago.
If data is being mined or recommendations being generated,
the age of the data needs to be accounted for. To address
this problem, the notion of Concept Drift was formed [54].
This problem needs to be addressed by any field that deals
with data spanning some time frame (from a few hours to
months and years). An example class of systems that need
to address the problem on Concept Drift is Recommender
Systems. Many recommender systems use Collaborative Fil-
tering (CF), i.e., recommending things to an individual by
looking at what other users similar to the individual like
[28,38,55]. CF algorithms typically look at the activities of
individuals from the past (movies watched, things bought,
etc.) and use this to derive recommendations. However,
people’s preferences change over time. For example, when
I am in college and taking a lot of classes, I might buy a
lot of textbooks from Amazon. When I graduate, I may not
need textbook recommendations. This is exactly the kind
of problem that Concept Drift tries to address.

Other example classes of systems that need to address this
problem are social software systems [6], systems for collabo-
ration and awareness [53], systems that mine online software
repositories [13], etc. For these kinds of systems, there is a
lot of old and recent data available and weighing certain
data differently might be essential.

3.4 Addressing Concept Drift
There have been many different solutions proposed to ad-

dress the problem of Concept Drift [31, 33, 54]. A partic-
ular solution of note is the Exponential Time Decay Algo-
rithm [16] (ETDA, henceforth). ETDA weighs things done
recently exponentially higher than things done in the past.
It gradually decays the weight of things done in the past so
that things done in the distant past do not affect the out-
come as much as things done recently, thus addressing the
problem on Concept Drift.

g(x) = exp(−l × x), for some l > 0 (2)

The non-increasing decay function using by ETDA is shown
in Equation (2). ETDA is very popular and used by a lot of
systems [18,29,32,38]. For the rest of the paper, we refer to
this as the CD (Concept Drift) algorithm.

Consider the Terry Gross example again and let’s assume
that the database has historical data going back 100 years.
As average heights change over time, the CD algorithm will
weigh newer data exponentially higher than older data re-
sulting in a weighted average height. This would reflect the
recent trends but also account for older data. The CD al-
gorithm is the another corner stone of our approach and we
build on it more in the next section.

4. PRIVACY FOR FREE
The EM algorithm can use a variety of scoring functions

— McSherry and Talwar show different scoring functions for
privacy preserving auctions [36]. In such scenarios, the EM
and CD algorithms are not similar. Using the timestamp
scoring function is what makes them similar to each other.
The CD algorithm uses exponential weighing over the data
while the EM algorithm chooses inputs with probability pro-
portional to the exponential of the scoring function.

public double getWeightedValue () {
double value = 0 ;
for (int i =0; i<array . l ength ; i++) {

double weight = Math . exp(− i) ;
va lue += weight ∗ array [i] ;

}
return value ;

}

Listing 1: Java code for the CD algorithm

public double getWeightedValue () {
double value = 0 ;
for (int i = 0 ; i < array . l ength ; i++) {

double weight = Math . exp(− i) ∗ 0 . 5 ;
double p r o b a b i l i t y = Math . random () ;
i f (p r o b a b i l i t y < weight) {

value = array [i] ;
return value ;

}
}
return value ;

}

Listing 2: Java code for the EM algorithm

Only if we choose the scoring function for the EM algo-
rithm to be the timestamp of the data, the two algorithms
becomes similar. The CD algorithm is deterministic and
weighs new data exponentially higher than older data; the
EM algorithm is probabilistic and chooses new data with an
exponentially higher probability than older data.

The Java code for the CD algorithm and the EM algorithm
using the timestamp scoring function are shown in Listings 1
and 2 respectively. In terms of running time complexity, the
CD algorithm is O(n). For EM (using the timestamps scor-
ing function), the worst case is also O(n). However, as we
use randomization, the expected running time is sublinear
— o(n).

This is the crux of our paper — if existing systems that al-
ready use the CD algorithm modify the code to use the EM
algorithm instead, they would, as an added benefit, get the
main advantage of the EM algorithm — differential privacy.
Further, this privacy would not require any extra computa-
tional overhead and thus, we would get privacy for free.

Since these two algorithms are very similar, it would re-
quire a very small and straightforward change to the code
to change from the CD algorithm to the EM algorithm. We
would need to replace the CD code with the EM code shown
above. This would be a one-time change and could be done
by adding a new library method for EM or done statically
via refactoring and could even be automated.

The important requirement for the differential privacy
guarantees to hold are that all the data access must be done
via the EM algorithm, which could be implemented as a
separate class or be part of a library or the data model, etc.

5. EVALUATION
Our approach requires implementing (or substituting an

existing implementation of the CD algorithm with) the EM

algorithm. To evaluate our approach, we implemented the
EM and CD algorithms and investigated the differences in
these. Our goal was to answer the following research ques-
tions:

RQ1: Feasibility—Does using our approach guarantee dif-
ferential privacy?

RQ2: Utility—Does using our approach affect the utility
of the system to give meaningful recommendations or
mine data?

RQ3: Sustainability—Can our approach be sustainable? Can
using our approach result in no additional computa-
tional resources for privacy?

With RQ1, we aim to prove the primary benefit of our ap-
proach — guaranteeing privacy. Our goal is to show that it
does indeed guarantee differential privacy making it suitable
to be used in a variety of social systems and web applica-
tions.

With RQ2, we explore the utility of using our approach.
A “straw man” way to guarantee privacy for any recom-
mender/data mining system is to give a random answer ev-
ery time. This would not require any clever technical solu-
tions, but this would be very bad for the overall utility of the
system — the goal of most such systems is to provide rele-
vant information. There exists a tradeoff between accuracy
and privacy and we explore this here. We aim to show that,
using our technique, there is a small loss in accuracy and
that this loss in accuracy scales very well (roughly constant)
as the size of the system increases. Thus, if a small loss in
accuracy is acceptable, we can get privacy for free without
spending any additional computational resources.

With RQ3, we aim to show the sustainability benefits of
using our approach. We show that using our approach (and
the EM algorithm) requires less CPU time than the equiva-
lent CD algorithm. Not only do we not need any additional
computational resources, we should be able to reduce com-
putational needs by using our approach.

5.1 RQ1 — Feasibility
Our approach requires the use of the EM algorithm for

all access to the data. The EM algorithm that we require
is exactly the same as the one proposed by McSherry and
Talwar [36]. The algorithm they propose can work with
different scoring functions that weigh the data differently —
in our case, the scoring function we use is the timestamp
of the data. Our use of the EM algorithm in our approach
can thus be viewed as an instantiation of the general EM
algorithm. McSherry and Talwar show a theoretical proof
for the EM algorithm to be differentially private. We do
not repeat the proof here and we encourage the interested
reader to look at the paper (page 5 of [36]). As all data
access happens via the EM algorithm, our approach also
guarantees differential privacy.

5.2 Methodology
For RQ2 and RQ3, we carried out experiments to validate

our hypotheses. We use synthetic data as there are no ben-
efits of using real world data for our hypotheses. We create
an array of size n and randomly fill it with values from 0 to

Figure 1: RMS and NRMS Error vs Size of data set

n − 1. Each element has a timestamp associated with it to
simulate user activity — for the purpose of this experiment,
we assume that the timestamp is the array index. A lower
array index indicates that the item is newer. Thus, we want
to prefer items with a lower index in the output as these
items indicate things that are done recently.

Using the differential privacy EM algorithm [36], we choose
the scoring function to be maximized by returning a value
with as low an array index as possible. Thus, we choose ele-
ments from the array with probability based on their array
index.

In the experiments, we randomly generate the array and
compute the score using the CD and the EM algorithms.
We then plot the RMS and normalized RMS errors between
these two algorithms. The error is the difference in the score
returned by the CD and the EM algorithm. The CD algo-
rithm will give us the “true” score; the EM algorithm (as it
tries to preserve privacy) will give us a close approximation.
We discuss the results in the following subsections.

5.3 RQ2 — Utility
For the first set of experiments, we varied the size of the

array and plotted the RMS and normalized RMS errors be-
tween the CD and EM algorithms. The results are shown
in Figure 1. To smooth out the noise in the experimen-
tal results (as CD is a deterministic algorithm while EM
is a probabilistic one), we ran the experiment 1000 times
with each array size and took averages. The graph shows us
that as the size of the input array increases, the RMS error
increases linearly — this is expected as with larger array
sizes, the entries in the array have correspondingly larger
values (due to our methodology), resulting in linearly in-
creasing RMS error. Meanwhile, the normalized RMS error
is roughly constant.

This shows us the tradeoff between accuracy and privacy.
We observe that in these experiments, the loss of accuracy
is relatively small — the normalized RMS error is less than
0.4. Thus, irrespective of the data set size, switching to
the EM Algorithm (as required by our approach) from the
CD Algorithm will not worsen the accuracy of the algorithm
by more than the constant factor, and we have the added
benefit that the EM algorithm also guarantees differential
privacy. Whether the loss of accuracy is acceptable or not
(or a worthy price to pay for the free privacy) is subjec-
tive and we deliberately do not enter a philosophical debate
here (is accuracy of the system more “important” than user

Figure 2: RMS Error vs Number of Trials

privacy? who decides this? the user? the web application
developers?). Many papers in the database and theory com-
munities have explored the tradeoffs between privacy and
accuracy (e.g., [9,19,35,36]) — our key point in this section
is that yes, there is a loss of accuracy, but no worse than
accepted in [35]. A limitation of our approach is that if this
loss of accuracy is not acceptable for certain systems, our
approach will not work.

For our second set of experiments, we varied the number
of trials keeping the size of the array fixed to 1000. As the
value computed using the EM algorithm is probabilistic in
nature, we carry out multiple runs (called trials here) and
take the average value over all the trials to smooth out the
value. The graph plotting the RMS error vs the number of
trials is shown in Figure 2. This graph shows us that as the
number of trials increases, the RMS error reduces. Thus,
initially, even though there may be a bigger error between
the CD and EM algorithms, in the long run, the error will
be small (but not zero, as a zero error would imply returning
the accurate answer and thus, not preserving privacy).

With these set of experiments, we explored the utility of
our approach. For an existing system (that may already
use an algorithm similar to the CD one), a one-time change
would be required to add in the EM algorithm and retrofit
the system to our approach. This change is relatively straight-
forward and could even be automated. Making such a change,
albeit results in a small loss of accuracy, gives the huge bene-
fit of getting privacy for free without spending any additional
computational resources.

5.4 RQ3 — Sustainability
For RQ3, we want to show the sustainability of our ap-

proach. With the EM algorithm in place, what we ideally
want is that our system does not take any additional com-
putational resources. We decided to use the CPU processing
time to estimate the computational resources needed by the
two algorithms. We instrumented the CD and EM algo-
rithms and measured how long they took in the first set of
experiments in Section 5.3 above. The resultant graph is
shown in Figure 3. The graph shows us that for all data
sizes the EM algorithm took less CPU time than the CD
algorithm.

Not only does the EM algorithm not require any addi-
tional computational resources, it actually reduces the ex-
isting computation. Thus, changing to our approach will
make the software system even more sustainable.

Figure 3: CPU Time (in msec) vs Size of data set

5.5 Threats to Validity
The notion of Differential Privacy may not relate to the

user-centric view of Privacy as users might think it “strange”
that the system assumes that bad things can happen anyway
— the guarantee it gives is just regarding whether the user
data is part of the system or not. While that is true, we feel
that differential privacy has many compelling arguments in
its favor — the biggest, for us, is not having to decide what
data is sensitive and what is not. The differential privacy
algorithms treat all data as sensitive making it easier not to
leak data by accident. One would, therefore, not have to
deal with the subjective nature of deciding what’s sensitive.
We also feel that the guarantee might actually make it even
more compelling for the user. From their point of view —
“if bad things are going to happen anyway, it’s not going to
hurt me much more if I participate.. so there’s no harm in
participating.”

We used synthetic data in our evaluations rather than
real-world data. For the research questions that we had —
feasibility, utility, sustainability — synthetic data was suf-
ficient. For Feasibility (RQ1), we use the theoretical proof
from [36] so don’t need data. For Utility (RQ2) and Sustain-
ability (RQ3), we care only about the comparisons between
the CD and the EM (and not the actual numbers in the ex-
periments), so synthetic data — which was easier to work
with — suffices. We would, however, need real data if we
were doing, e.g., surveys and our research question was if
people thought the new system gave similar usability.

Finally, this work doesn’t help in scenarios of non-temporal
data access. We used the IMDB/Netflix examples earlier in
the paper to make the general problem familiar to the reader;
we address a special case of the problem where timestamps
are available. In the differential privacy area, it’s proven
that for any method that has any utility, there exists side
information that will break privacy on individual records.
With differential privacy approaches such as the EM algo-
rithm, the guarantees that exist for each individual are that
participating in the database will not add to the risks that
are already there.

6. RELATED WORK
Privacy has become an increasingly important topic for

the community at large. A lot of different research commu-
nities are looking at the impact of privacy and techniques for
improving privacy for users. Some examples of these com-

munities are sociologists, computer scientists, HCI, etc. We
discuss some of the relevant related work next.

Fang and LeFevre [25] proposed an automated technique
for configuring a user’s privacy settings in online social net-
working sites. Paul et al. [41] present using a color coding
scheme for making privacy settings more usable. Squiccia-
rini, Shehab, and Paci [46] propose a game-theoretic ap-
proach for collaborative sharing and control of images in a
social network. Toubiana et al. [49] present a system that
automatically applies users’ privacy settings for photo tag-
ging. All these papers propose new techniques that are tar-
geted to making privacy settings “better” (i.e., more usable,
more visible) from a user’s perspective. Our approach, on
the other hand, targets the internal algorithms such as rec-
ommendations used by these systems.

There have been some recent papers on data privacy and
software testing. Clause and Orso [15] propose techniques
for the automated anonymization of field data for software
testing. They extend the work done by Castro et al. [14]
using novel concepts of path condition relaxation and break-
able input conditions resulting in improving the effectiveness
of input anonymization. Our work is orthogonal to the pa-
pers on input anonymization. The problem they address
is — how can users anonymize sensitive information before
sending it to the teams or companies that build the soft-
ware? The problem we address is — how can systems that
already have access to user data (such as purchase history,
movie preferences, and so on) be engineered so that they
don’t leak sensitive information while doing data mining on
the data? Further, the aim of our approach is to provide pri-
vacy “for free,” i.e., without spending extra computational
resources on privacy. The input anonymization approaches
require spending extra computation (between 2.5 minutes
to 9 minutes) as they address a different problem. We be-
lieve that the our approach can be combined with the in-
put anonymization approach if needed. If users are worried
about developers at the company finding out sensitive infor-
mation, input anonymization is essential. If, however, they
are worried about accidental data leakage through the data
mining of their information, using the “Privacy for Free” ap-
proach may be more suitable. This would also make the
software system more sustainable as we don’t spend any
computation doing the anonymization of the inputs.

Taneja et al. [48] and Grechanik et al. [27] propose us-
ing k-anonymity [47] for privacy by selectively anonymizing
certain attributes of a database for software testing. Their
papers propose novel approaches using static analysis for se-
lecting which attributes to anonymize so that test coverage
remains high. Similar to above, our approach is orthogo-
nal as we focus on an approach that will prevent accidental
leakage of sensitive information via data mining or similar
techniques. Further, these approaches using k-anonymity
also require significant additional computational resources
and thus, may not be sustainable when energy resources are
scarce.

The testing problem above is concerned with internal data
that users keep on their own computers and do not want to
disclose outside their own computer (or put into a server
and the testing is on that server software, but the data was
understood to be specific to that user and never aggregated
with other users). The problem we deal with instead is users
who have intentionally disclosed data on a public system, en-
tering their data via web browsers onto some website server

that is known to make publicly available certain data-mined
community knowledge gleaned from aggregating that data
with other users — but the users don’t want their data to
be personally identifiable from the aggregate.

Finally, work on input anonymization and k-anonymization
both focus on software testing whereas our approach focuses
on an approach for building privacy preserving systems or
re-engineering existing software systems with minimal code
changes (since only the parts affected need to be changed)
with a specific goal — to make privacy sustainable and not
require additional resources.

There has also been a lot of work related to data anonymiza-
tion and building accurate data models for statistical use
(e.g., [2, 24, 34, 42, 51]). These techniques aim to preserve
certain properties of the data (e.g., statistical properties
like average) so they can be useful in data mining while
trying to preserve privacy of individual records. Similar to
these, there are has also been work on anonymizing social
networks [8] and anonymizing user profiles for personalized
web search [57] The broad approaches include aggregating
data to a higher level of granularity or adding noise and ran-
dom perturbations. As we are interested in sustainable ways
of achieving privacy, these approaches are not applicable as
they typically require (a lot of) extra computational effort.

While there has been a lot of interest (and research) in
data anonymization, we would like to reiterate that only
data anonymization might not be enough. Narayanan and
Shmatikov [40] demonstrate a relatively straightforward way
of breaking the anonymity of data. They show how it is pos-
sible to correlate public IMDb data with private anonymized
Netflix movie rating data resulting in the potential identifi-
cation of the anonymized individuals. Backstrom et al. [3]
also describe a series of attacks for de-anonymizing social
networks that have been anonymized to be made available
to the public. They describe two categories of attacks —
active attacks where an evil adversary targets an arbitrary
set of users and passive attacks where existing users try to
discover their location in the network and thereby cause de-
anonymization. Their results show that, with high probabil-
ity and modest computational requirements, de-anonymization
is possible for a real world social network (in their case, Live-
Journal [12]). Finally, Zheleva and Getoor [56] show it’s
possible to infer private profiles of users on social networks
based on their groups and friends.

7. DISCUSSION
The crux of this paper, and the novel idea, is that it is

possible to combine two existing approaches to increase the
degree of privacy in social computing systems, under certain
conditions. This poses an interesting open problem — Are
there other algorithms that we currently use for solving some
problem that also accidentally provide privacy or some other
added benefit?

A lot of research in the Theory and Cryptography com-
munity on Differential Privacy has focused on Mechanism
Design [10, 21, 22, 43]. Mechanism Design is the process of
coming up with new mechanisms that are differentially pri-
vate and solve certain problems in domains such as machine
learning and statistics. The previous sections hint at an in-
teresting avenue of future research — Mechanism Discovery.
We discovered how the CD algorithm as a side effect may
provide differential privacy for free. It might be fruitful to
look at currently used algorithms in varying domains and

see if they too, as a side effect, provide differential privacy.
This might lead to the discovery of generalized mechanisms
for differential privacy that can be used in other domains,
which have not yet been proposed or discovered by The-
ory and Cryptography researchers. Mechanism Discovery
might act as a great complement to the Mechanism Design
research.

In order for Mechanism Discovery to be successful, a greater
emphasis must be placed on Multidisciplinary research. Even
though there is some research in recommender system pri-
vacy [7, 45], most of the papers do not use a formal and
precise definition of privacy. Our community could benefit
a lot from the precise and formal use of differential privacy.
Similarly, most of the Theory and Cryptography commu-
nity may not be aware of the privacy research done by our,
or other, communities. There might be a lot of interesting
discoveries of mechanisms suitable for differential privacy.
The only way any of this can be achieved is by a greater
emphasis on Multidisciplinary research using areas such as
systems, theory, cryptography, web, and databases.

8. CONCLUSION
As social computing systems that collect users’ data pro-

liferate, privacy has and will continue to become a major
concern for the society at large. The main research ques-
tion that we wanted to answer is — Is there an approach
that can be used with a certain web applications and soft-
ware systems, that will achieve privacy without spending
any extra resources on computational overhead? Our “Pri-
vacy for Free” approach can achieve privacy as an accidental
and beneficial side effect of addressing concept drift. The
results of our evaluations show the feasibility, utility, and in
particular, the sustainability of our approach as it does not
require any additional computational resources to guarantee
privacy.

9. ACKNOWLEDGMENTS
Sheth and Kaiser are members of the Programming Sys-

tems Laboratory is funded in part by NSF CCF-1161079,
NSF CNS-0905246, and NIH U54 CA121852. Malkin is a
member of the Crypto Lab, funded in part by NSF 0831094
and 0347839 and DHS N66001-09-C-0080.

10. REFERENCES
[1] N. R. Adam and J. C. Worthmann. Security-control

methods for statistical databases: a comparative
study. ACM Comput. Surv., 21(4):515–556, 1989.

[2] D. Agrawal and C. C. Aggarwal. On the design and
quantification of privacy preserving data mining
algorithms. In PODS ’01: Proceedings of the twentieth
ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pages 247–255, New
York, NY, USA, 2001. ACM.

[3] L. Backstrom, C. Dwork, and J. Kleinberg. Wherefore
art thou r3579x?: anonymized social networks, hidden
patterns, and structural steganography. In WWW ’07:
Proceedings of the 16th international conference on
World Wide Web, pages 181–190, New York, NY,
USA, 2007. ACM.

[4] M. Barbaro, T. Zeller, and S. Hansell. A face is
exposed for AOL searcher no. 4417749. New York
Times, 9, 2006.

[5] L. L. Beck. A security mechanism for statistical
database. ACM Trans. Database Syst., 5(3):316–3338,
1980.

[6] A. Begel, K. Y. Phang, and T. Zimmermann.
Codebook: discovering and exploiting relationships in
software repositories. In ICSE ’10: Proceedings of the
32nd ACM/IEEE International Conference on
Software Engineering, pages 125–134, New York, NY,
USA, 2010. ACM.

[7] S. Berkovsky, Y. Eytani, T. Kuflik, and F. Ricci.
Enhancing privacy and preserving accuracy of a
distributed collaborative filtering. In RecSys ’07: Proc.
of the 2007 ACM conf. on Recommender systems,
pages 9–16, 2007.

[8] S. Bhagat, G. Cormode, B. Krishnamurthy, and
D. Srivastava. Privacy in dynamic social networks. In
Proceedings of the 19th international conference on
World wide web, WWW ’10, pages 1059–1060, New
York, NY, USA, 2010. ACM.

[9] A. Blum, C. Dwork, F. McSherry, and K. Nissim.
Practical privacy: the sulq framework. In PODS ’05:
Proceedings of the twenty-fourth ACM
SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 128–138, New York, NY,
USA, 2005. ACM.

[10] A. Blum, K. Ligett, and A. Roth. A learning theory
approach to non-interactive database privacy. In
STOC ’08: Proceedings of the 40th annual ACM
symposium on Theory of computing, pages 609–618,
New York, NY, USA, 2008. ACM.

[11] B. Bosker. Facebook CEO ‘Doesn’t Believe In
Privacy’. http://www.huffingtonpost.com/2010/04/
29/zuckerberg-privacy-stance_n_556679.html,
April 2010.

[12] Brad Fitzpatrick. LiveJournal.
http://www.livejournal.com/, 1999.

[13] G. Canfora, L. Cerulo, M. Cimitile, and M. Di Penta.
Social interactions around cross-system bug fixings:
the case of freebsd and openbsd. In Proceeding of the
8th working conference on Mining software
repositories, MSR ’11, pages 143–152, New York, NY,
USA, 2011. ACM.

[14] M. Castro, M. Costa, and J.-P. Martin. Better bug
reporting with better privacy. In Proceedings of the
13th international conference on Architectural support
for programming languages and operating systems,
ASPLOS XIII, pages 319–328, New York, NY, USA,
2008. ACM.

[15] J. Clause and A. Orso. Camouflage: automated
anonymization of field data. In Proceeding of the 33rd
international conference on Software engineering,
ICSE ’11, pages 21–30, New York, NY, USA, 2011.
ACM.

[16] E. Cohen and M. Strauss. Maintaining time-decaying
stream aggregates. In Proc. of the 22nd ACM
SIGMOD-SIGACT-SIGART symposium on principles
of database systems (PODS), pages 223–233, 2003.

[17] T. Dalenius. Towards a methodology for statistical
disclosure control. Statistik Tidskrift, 15:429–444,
1977.

[18] Y. Ding and X. Li. Time weight collaborative filtering.
In CIKM ’05: Proceedings of the 14th ACM

international conference on Information and
knowledge management, pages 485–492, New York,
NY, USA, 2005. ACM.

[19] I. Dinur and K. Nissim. Revealing information while
preserving privacy. In PODS ’03: Proceedings of the
twenty-second ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages
202–210, New York, NY, USA, 2003. ACM.

[20] C. Dwork. Differential privacy. IN ICALP, 2:1–12,
2006.

[21] C. Dwork, F. McSherry, K. Nissim, and A. Smith.
Calibrating noise to sensitivity in private data
analysis. Theory of Cryptography, pages 265–284, 2006.

[22] C. Dwork, M. Naor, O. Reingold, G. N. Rothblum,
and S. Vadhan. On the complexity of differentially
private data release: efficient algorithms and hardness
results. In STOC ’09: Proceedings of the 41st annual
ACM symposium on Theory of computing, pages
381–390, New York, NY, USA, 2009. ACM.

[23] C. Dwork and K. Nissim. Privacy-preserving
datamining on vertically partitioned databases.
Lecture Notes in Computer Science, pages 528–544,
2004.

[24] A. Evfimievski, J. Gehrke, and R. Srikant. Limiting
privacy breaches in privacy preserving data mining. In
PODS ’03: Proceedings of the twenty-second ACM
SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 211–222, New York, NY,
USA, 2003. ACM.

[25] L. Fang and K. LeFevre. Privacy wizards for social
networking sites. In Proceedings of the 19th
international conference on World wide web, WWW
’10, pages 351–360, New York, NY, USA, 2010. ACM.

[26] D. Fletcher. How Facebook Is Redefining Privacy.
http://www.time.com/time/business/article/0,

8599,1990582.html, May 2010.

[27] M. Grechanik, C. Csallner, C. Fu, and Q. Xie. Is data
privacy always good for software testing? Software
Reliability Engineering, International Symposium on,
0:368–377, 2010.

[28] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and
J. T. Riedl. Evaluating collaborative filtering
recommender systems. ACM Trans. Inf. Syst.,
22:5–53, January 2004.

[29] F. Heylighen and J. Bollen. Hebbian algorithms for a
digital library recommendation system. Parallel
Processing Workshops, International Conference on,
0:439, 2002.

[30] S. Johnson. Web Privacy: In Praise of Oversharing.
http://www.time.com/time/business/article/0,

8599,1990586.html, May 2010.

[31] R. Klinkenberg. Learning drifting concepts: Example
selection vs. example weighting. Intell. Data Anal.,
8(3):281–300, 2004.

[32] Y. Koren. Collaborative filtering with temporal
dynamics. Commun. ACM, 53(4):89–97, 2010.

[33] I. Koychev and I. Schwab. Adaptation to drifting
user’s interests. In Proceedings of ECML2000
Workshop: Machine Learning in New Information
Age, pages 39–46. Citeseer, 2000.

[34] N. Lathia, S. Hailes, and L. Capra. Private distributed

http://www.huffingtonpost.com/2010/04/29/zuckerberg-privacy-stance_n_556679.html
http://www.huffingtonpost.com/2010/04/29/zuckerberg-privacy-stance_n_556679.html
http://www.livejournal.com/
http://www.time.com/time/business/article/0,8599,1990582.html
http://www.time.com/time/business/article/0,8599,1990582.html
http://www.time.com/time/business/article/0,8599,1990586.html
http://www.time.com/time/business/article/0,8599,1990586.html

collaborative filtering using estimated concordance
measures. In RecSys ’07: Proceedings of the 2007
ACM conference on Recommender systems, pages 1–8,
New York, NY, USA, 2007. ACM.

[35] F. McSherry and I. Mironov. Differentially private
recommender systems: building privacy into the net.
In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and
data mining, KDD ’09, pages 627–636, New York, NY,
USA, 2009. ACM.

[36] F. McSherry and K. Talwar. Mechanism design via
differential privacy. In FOCS ’07: Proceedings of the
48th Annual IEEE Symposium on Foundations of
Computer Science, pages 94–103, Washington, DC,
USA, 2007. IEEE Computer Society.

[37] Microsoft. Green Computing, volume 18. The
Architecture Journal, 2008.

[38] C. Murphy, S. Sheth, G. Kaiser, and L. Wilcox.
genSpace: Exploring Social Networking Metaphors for
Knowledge Sharing and Scientific Collaborative Work.
In 1st Intl. Workshop on Social Software Engg. and
Applications, pages 29–36, September 2008.

[39] S. Murugesan. Harnessing green it: Principles and
practices. IT Professional, 10(1):24 –33, jan.-feb. 2008.

[40] A. Narayanan and V. Shmatikov. How to break
anonymity of the netflix prize dataset. CoRR,
abs/cs/0610105, 2006.

[41] T. Paul, M. Stopczynski, D. Puscher, M. Volkamer,
and T. Strufe. C4ps: colors for privacy settings. In
Proceedings of the 21st international conference
companion on World Wide Web, WWW ’12
Companion, pages 585–586, New York, NY, USA,
2012. ACM.

[42] H. Polat and W. Du. Privacy-preserving collaborative
filtering using randomized perturbation techniques. In
Data Mining, 2003. ICDM 2003. Third IEEE
International Conference on, pages 625–628, Nov.
2003.

[43] A. Roth and T. Roughgarden. Interactive privacy via
the median mechanism. In STOC ’10: Proceedings of
the 42nd ACM symposium on Theory of computing,
pages 765–774, New York, NY, USA, 2010. ACM.

[44] M. Shiels. Germany officials launch legal action
against Facebook. http:
//news.bbc.co.uk/2/hi/technology/8798906.stm,
July 2010.

[45] R. Shokri, P. Pedarsani, G. Theodorakopoulos, and
J.-P. Hubaux. Preserving privacy in collaborative
filtering through distributed aggregation of offline
profiles. In RecSys ’09: Proceedings of the third ACM
conference on Recommender systems, pages 157–164,
New York, NY, USA, 2009. ACM.

[46] A. C. Squicciarini, M. Shehab, and F. Paci. Collective
privacy management in social networks. In Proceedings

of the 18th international conference on World wide
web, WWW ’09, pages 521–530, New York, NY, USA,
2009. ACM.

[47] L. Sweeney. k-anonymity: a model for protecting
privacy. Int. J. Uncertain. Fuzziness Knowl.-Based
Syst., 10(5):557–570, 2002.

[48] K. Taneja, M. Grechanik, R. Ghani, and T. Xie.
Testing software in age of data privacy: a balancing

act. In Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on
Foundations of software engineering, SIGSOFT/FSE
’11, pages 201–211, New York, NY, USA, 2011. ACM.

[49] V. Toubiana, V. Verdot, B. Christophe, and
M. Boussard. Photo-tape: user privacy preferences in
photo tagging. In Proceedings of the 21st international
conference companion on World Wide Web, WWW
’12 Companion, pages 617–618, New York, NY, USA,
2012. ACM.

[50] U.S. Energy Information Administration.
International Energy Outlook 2010 - Highlights. http:
//www.eia.doe.gov/oiaf/ieo/highlights.html,
May 2010.

[51] V. S. Verykios, E. Bertino, I. N. Fovino, L. P.
Provenza, Y. Saygin, and Y. Theodoridis.
State-of-the-art in privacy preserving data mining.
SIGMOD Rec., 33(1):50–57, 2004.

[52] J. Vidal. The end of oil is closer than you think.
http://www.guardian.co.uk/science/2005/apr/21/

oilandpetrol.news, April 2005.

[53] J. Whitehead. Collaboration in software engineering:
A roadmap. In 2007 Future of Software Engineering,
FOSE ’07, pages 214–225, Washington, DC, USA,
2007. IEEE Computer Society.

[54] G. Widmer and M. Kubat. Learning in the presence of
concept drift and hidden contexts. Machine Learning,
23(1):69–101, 1996.

[55] J. Zhang and P. Pu. A recursive prediction algorithm
for collaborative filtering recommender systems. In
RecSys ’07: Proc. of the 2007 ACM conference on
Recommender systems, pages 57–64, 2007.

[56] E. Zheleva and L. Getoor. To join or not to join: the
illusion of privacy in social networks with mixed public
and private user profiles. In Proceedings of the 18th
international conference on World wide web, WWW
’09, pages 531–540, New York, NY, USA, 2009. ACM.

[57] Y. Zhu, L. Xiong, and C. Verdery. Anonymizing user
profiles for personalized web search. In Proceedings of
the 19th international conference on World wide web,
WWW ’10, pages 1225–1226, New York, NY, USA,
2010. ACM.

[58] M. Zuckerberg. Making Control Simple. http:
//blog.facebook.com/blog.php?post=391922327130,
May 2010.

http://news.bbc.co.uk/2/hi/technology/8798906.stm
http://news.bbc.co.uk/2/hi/technology/8798906.stm
http://www.eia.doe.gov/oiaf/ieo/highlights.html
http://www.eia.doe.gov/oiaf/ieo/highlights.html
http://www.guardian.co.uk/science/2005/apr/21/oilandpetrol.news
http://www.guardian.co.uk/science/2005/apr/21/oilandpetrol.news
http://blog.facebook.com/blog.php?post=391922327130
http://blog.facebook.com/blog.php?post=391922327130

	Introduction
	Motivation
	Background
	Differential Privacy
	Achieving Differential Privacy
	Concept Drift
	Addressing Concept Drift

	Privacy for Free
	Evaluation
	RQ1 — Feasibility
	Methodology
	RQ2 — Utility
	RQ3 — Sustainability
	Threats to Validity

	Related Work
	Discussion
	Conclusion
	Acknowledgments
	References

