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Abstract

System reliability is a fundamental requirement of Cyber-Physical System, i.e., a system fea-
turing a tight combination of, and coordination between, the systems computational and physical
elements. Cyber-physical system includes systems ranging from the critical infrastructure such as
power grid and transportation system to the health and biomedical devices. An unreliable system
often leads to disruption of service, financial cost and even loss of human life. This thesis aims
to improve system reliability for cyber-physical systems that meet following criteria: processing
large amount of data; employing software as a system component; running online continuously;
having operator-in-the-loop because of human judgment and accountability requirement for safety
critical systems. The reason that I limit the system scope to this type of cyber-physical system is
that this type of cyber-physical systems are important and becoming more prevalent.

To improve system reliability for this type of cyber-physical systems, I propose a system
evaluation approach named automated online evaluation. It works in parallel with the cyber-
physical system to conduct automated evaluation at the multiple stages along the workflow of
the system continuously and provide operator-in-the-loop feedback on reliability improvement.
It is an approach whereby data from cyber-physical system is evaluated. For example, abnormal
input and output data can be detected and flagged through data quality analysis. As a result, alerts
can be sent to the operator-in-the-loop. The operator can then take actions and make changes to
the system based on the alerts in order to achieve minimal system downtime and higher system
reliability. To implement the proposed approach, I further propose a system architecture named
ARIS (Autonomic Reliability Improvement System).

One technique used by the approach is data quality analysis using computational intelligence
that applies computational intelligence in evaluating data quality in some automated and efficient
way to ensure data quality and make sure the running system to perform as expected reliably.
The computational intelligence is enabled by machine learning, data mining, statistical and prob-
abilistic analysis, and other intelligent techniques. In a cyber-physical system, the data collected
from the system, e.g., software bug reports, system status logs and error reports, are stored in
some databases. In my approach, these data are analyzed via data mining and other intelligent
techniques so that useful information on system reliability including erroneous data and abnormal
system state can be concluded. These reliability related information are directed to operators so
that proper actions can be taken, sometimes proactively based on the predictive results, to ensure
the proper and reliable execution of the system.

Another technique used by the approach is self-tuning that automatically self-manages and
self-configures the evaluation system to ensure it adapts itself based on the changes in the system
and feedback from the operator. The self-tuning adapts the evaluation system to ensure its proper
functioning, which leads to a more robust evaluation system and improved system reliability.

For feasibility study of the proposed approach, I first present NOVA (Neutral Online Visualization-
aided Autonomic) system, a data quality analysis system for improving system reliability for
power grid cyber-physical system. I then present a feasibility study on effectiveness of some
self-tuning techniques, including data classification, redundancy checking and trend detection.
The self-tuning leads to an adaptive evaluation system that works better under system changes
and operator feedback, which will lead to improved system reliability.

The contribution of the work is an automated online evaluation approach that is able to improve
system reliability for cyber-physical systems in the domain of interest as indicated above. It
enables online reliability assurance of the deployed systems that are not possible to perform robust
tests prior to actual deployment.
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1 Introduction
Cyber-Physical System (CPS) is a system featuring a tight combination of, and coordination between,
the system’s computational and physical elements [48]. “Applications of CPS arguably have the po-
tential to dwarf the 20-th century IT revolution. They include high confidence medical devices and
systems, assisted living, traffic control and safety, advanced automotive systems, process control,
energy conservation, environmental control, avionics, instrumentation, critical infrastructure con-
trol (electric power, water resources, and communications systems for example), distributed robotics
(telepresence, telemedicine), defense systems, manufacturing, and smart structures. It is easy to envi-
sion new capabilities, such as distributed micro power generation coupled into the power grid, where
timing precision and security issues loom large. Transportation systems could benefit considerably
from better embedded intelligence in automobiles, which could improve safety and efficiency. Net-
worked autonomous vehicles could dramatically enhance the effectiveness of our military and could
offer substantially more effective disaster recovery techniques. Networked building control systems
(such as HVAC and lighting) could significantly improve energy efficiency and demand variability,
reducing our dependence on fossil fuels and our greenhouse gas emissions [28].”

System reliability is a fundamental requirement of cyber-physical systems. An unreliable system
often leads to disruption of service, financial cost and even loss of human life [1]. More importantly,
cyber-physical system may not be deployed into some mission critical applications such as traffic
control, automotive safety and health care without improved reliability and predictability [28].

This thesis aims to improve system reliability for cyber-physical systems that meet following criteria:
processing large amount of data; employing software as a system component; running online contin-
uously; having operator-in-the-loop because of human judgment and accountability requirement for
safety critical systems. The reason that I limit the system scope to this type of cyber-physical system
is that this type of cyber-physical systems are important and becoming more prevalent [20]. Systems
that meet these criteria include power grid and energy system, highway transportation system, defense
system, factory automation, and cloud computing data center. These systems will not be operating in
a controlled environment, and must be robust to unexpected conditions and adaptable to subsystem
failures [20]. It is often not possible to perform robust tests on a cyber-physical system prior to actual
deployment because the physical devices are so expensive that they cannot be replicated in the testing
lab, at least not for large scale. Thus it is imperative to have an online quality assurance process to
continuously evaluate the live system in the field to ensure it is running reliably as expected.

To improve system reliability for cyber-physical systems in the domain of interest as indicated above,
I propose a system evaluation approach named automated online evaluation. It works in parallel with
the cyber-physical system to conduct automated evaluation at the multiple stages along the workflow
of the system continuously and provide operator-in-the-loop feedback on reliability improvement. It
is an approach whereby data from cyber-physical system is evaluated. For example, abnormal input
and output data can be detected and flagged through data quality analysis. As a result, alerts can be
sent to the operator-in-the-loop. The operator can then take actions and make changes to the system
based on the alerts in order to achieve minimal system downtime and higher system reliability. To
implement the proposed approach, I further propose a system architecture named ARIS (Autonomic
Reliability Improvement System).

One technique used by the approach is data quality analysis using computational intelligence that
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applies computational intelligence in evaluating data quality in some automated and efficient way to
ensure data quality and make sure the running system to perform as expected reliably. The computa-
tional intelligence is enabled by machine learning, data mining, statistical and probabilistic analysis,
and other intelligent techniques. In a cyber-physical system, the data collected from the system,
e.g., software bug reports, system status logs and error reports, are stored in some databases. In my
approach, these data are analyzed via data mining and other intelligent techniques so that useful infor-
mation on system reliability including erroneous data and abnormal system state can be concluded.
These reliability related information are directed to operators so that proper actions can be taken,
sometimes proactively based on the predictive results, to ensure the proper and reliable execution of
the system.

Another technique used by the approach is self-tuning that automatically self-manages and self-
configures the evaluation system to ensure it adapts itself based on the changes in the system and
feedback from the operator. The self-tuning adapts the evaluation system to ensure its proper func-
tioning, which leads to a more robust evaluation system and improved system reliability.

For feasibility study of the proposed approach, I first present NOVA (Neutral Online Visualization-
aided Autonomic) system for improving system reliability of power grid cyber-physical system. NOVA
is a data quality analysis system that is able to provide objective evaluation of the machine learning
and data mining software to ensure they are running as expected, the quality of the data input and
output, and the consequential benefits, i.e., physical system improvements, after the actions recom-
mended by the machine learning and data mining systems have been taken.

I then present a feasibility study on effectiveness of some self-tuning techniques, including data clas-
sification, automatic redundancy checking and trend detection. The self-tuning leads to an adaptive
evaluation system that works better under system changes and operator feedback, which will lead to
improved system reliability.

In the following section, I will give definitions of terms and problem statement, along with require-
ments of the prospect solution. In section 3, I will describe proposed automated online evaluation
approach and hypotheses. In section 4, I will describe proposed ARIS system architecture. In section
5, I will describe feasibility study, including section 5.1 NOVA system for data quality analysis and
section 5.2 self-tuning. Section 6 compares some related work, followed by my research plan and
schedule in Section 7. Section 8 lists some expected contributions. Section 9 is conclusion, followed
by future work in Section 10 and acknowledgements.
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2 Problem Statement

2.1 Definitions

This section formalizes some of the terms used throughout this proposal.

• Cyber-physical system (CPS) is a system featuring a tight combination of, and coordination
between, the system’s computational and physical elements [48]. The applicable domains of
cyber-physical system include critical infrastructure such as power grid and highway transporta-
tion system, health and biomedical system, energy and industrial automation system, automated
defense and combat system, and agricultural automation system [20].

• System reliability is the ability of a system or component to perform its required functions under
stated conditions for a specified period of time [48]. It includes all parts of the system, including
hardware, software, supporting infrastructure, operators and procedures. It is often reported as
a probability.

• Software reliability is the probability of failure-free software operation for a specified period of
time in a specified environment [3]. For cyber-physical system, software reliability is a part of
system reliability.

• Data quality is an assessment of data’s fitness to serve its purpose in a given context. Some
aspects of data quality include: accuracy, completeness, update status, relevance, consistency
across data sources, reliability, appropriate presentation, and accessibility [42].

• Software intelligence refers to a set of skills, technologies, applications and practices, used by
an organization, to acquire a better understanding of its software assets and software projects.
It offers software practitioners up-to-date and pertinent information to support their decision-
making processes during the different stages of the software development life cycle [21]. Data
quality analysis using computational intelligence has different goal and scope than the software
intelligence, although they may use some similar techniques such as data mining.

• Autonomic is a system characteristic that means being able to control its internal functions and
operations, being able to change its operation (i.e., its configuration, state and functions), and
being able to monitor (sense) its operational context as well as its internal state in order to be
able to assess if its current operation serves its purpose [48].

• Fault is an incorrect step, process, or data definition in a program [3]. It is a programming error
that leads to an erroneous result in some programs during execution. A software bug is the
common term used to describe a fault in a program that produces an incorrect or unexpected
result, or causes it to behave in unintended ways. Fault density is the number of software faults,
usually expressed as faults per thousand lines of code. It is a common software reliability
metric.

• Failure is the inability of a system or component to perform its required function within the
specified performance requirement [3]. Error is the difference between a computed, observed,
or measured value or condition and the true, specified, or theoretically correct value or condi-
tion.
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2.2 Problem Statement

It is difficult to make cyber-physical system reliable. First of all, it is difficult to make all parts of
the system, including hardware, software, supporting infrastructure, operators and procedures, work
together reliably, especially for those online systems that require continuous 24x7 uptime. Secondly,
cyber-physical systems deployed in the field have to run in the live environments, which are not
controlled and often unpredictable. Furthermore, for those cyber-physical systems that process large
amount of data on the fly, it is difficult to ensure the data quality reliably. The erroneous input data
and abnormal software results may cause system malfunction and service disruption.

This thesis aims to improve system reliability for cyber-physical systems that meet following criteria:

• Processing large amount of data

• Employing software as a system component

• Running online continuously

• Having operator-in-the-loop because of human judgment and accountability requirement for
safety critical systems

The reason that I limit the system scope to this type of cyber-physical system is that this kind of cyber-
physical systems are important and becoming more prevalent [20]. Systems that meet these criteria
include power grid and energy system, highway transportation system, defense system, factory au-
tomation, and cloud computing data center. A typical example is energy control systems, whereas the
sensors and actuators physically monitor and control the energy processes; the computer-based sys-
tems analyze and store data; and the communication networks interconnect the process and computer
systems [32]. Another example is defense systems that will be more attuned to their environments,
receiving and processing massive amounts of data, to determine courses of action [32]. This thesis is
limited to cyber-physical systems in these domains.

2.3 Requirements

A solution to this problem must meet the following requirements:

• The approach should be able to improve system reliability for cyber-physical systems.

• The system reliability improvement brought by the approach should be able to be measured and
verified quantitatively.

• The approach should make system reliability analysis and assurance more effective and effi-
cient.

• The approach should be able to ensure online system executing as expected reliably and deal
with erroneous data input and abnormal software results.

• The approach should be able to process large amount of available system data and derive useful
information from them intelligently for reliability analysis.

• The approach should be able to reduce manual work, thus reducing human labor cost.
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3 Proposed Approach and Hypotheses

3.1 Proposed Approach

To solve the problems mentioned above, I propose a system evaluation approach named automated
online evaluation that is able to improve reliability for cyber-physical systems in the domain of interest
as indicated above objectively, effectively, and efficiently. As illustrated in Figure 1, it works in
parallel with the cyber-physical system to conduct automated evaluation at the multiple stages along
the workflow of the system continuously and provide operator-in-the-loop feedback on reliability
improvement. It is an approach whereby data from cyber-physical system is evaluated. For example,
abnormal input and output data can be detected and flagged through data quality analysis. As a result,
alerts can be sent to the operator-in-the-loop. The operator can then take actions and make changes
to the system based on the alerts in order to achieve minimal system downtime and higher system
reliability. The self-tuning component automatically self-manage and self-configure the evaluation
system adaptively to ensure its proper functioning.

Operator-in-the-Loop Cyber-Physical System (CPS)

Automated Online Evaluation

External 

Data 

Input

Output

Data Quality Analysis

Self-Tuning

Figure 1: Proposed approach.
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One technique used by the approach is data quality analysis using computational intelligence that
applies computational intelligence in evaluating data quality in some automated and efficient way to
ensure data quality and make sure the running system to perform as expected reliably. The computa-
tional intelligence is enabled by machine learning, data mining, statistical and probabilistic analysis,
and other intelligent techniques. In a cyber-physical system, the data collected from the system,
e.g., software bug reports, system status logs and error reports, are stored in some databases. In my
approach, these data are analyzed via data mining and other intelligent techniques so that useful infor-
mation on system reliability including erroneous data and abnormal system state can be concluded.
These reliability related information are directed to operators so that proper actions can be taken,
sometimes proactively based on the predictive results, to ensure the proper and reliable execution of
the system.

Another technique used by the approach is self-tuning that automatically self-manages and self-
configures the evaluation system to ensure it adapts itself based on the changes in the system and
feedback from the operator. One example of the types of self-tuning is to self-configure the evalua-
tion system to adapt to the changes in the software models or thresholds, which may lead to different
expected values and ranges for the data.

The evaluation is online, which differs from many statically analyzed systems that often employ a
pre-deployment or postmortem evaluation and analysis. The evaluation is also autonomic because it
works in parallel with the cyber-physical system to automatically alert the operator when abnormal
events happen and it is able to self-tuning the evaluation system adaptively.

The approach does not aim to address software reliability, but it addresses software reliability through
evaluating the data used by the software.

3.2 Hypotheses

I will prove following hypotheses in my thesis work.

The foremost hypothesis is that the automated online evaluation empowered by data quality analysis
using computational intelligence can work effectively to improve system reliability for cyber-physical
systems in the domain of interest as indicated above. In order to prove this hypothesis, a prototype
system needs to be developed and deployed in some complex cyber-physical systems for measurement
of the system reliability improvement the approach brings to the system.

The second hypothesis is that the self-tuning can effectively self-manage and self-configure the eval-
uation system based on the changes in the system and feedback from the operator-in-the-loop to
improve system reliability.

The third hypothesis is that the approach should advance the state-of-the-art research in system relia-
bility for cyber-physical system not only in its novel architectural design and capability in improving
system reliability, but also in the new techniques developed and employed.

The fourth hypothesis is that the approach is efficient. It should not have large impact on the overall
system performance and only introduce minimal extra overhead to the cyber-physical system.
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4 Proposed Architecture
To implement the proposed approach, I propose a system named ARIS (Autonomic Reliability Im-
provement System). It works in parallel with the software running as a part of the cyber-physical
system and conducts automated and integrated evaluation at multiple stages along the workflow of
the system.

As illustrated in Figure 2, to evaluate the system, it uses three stages of data quality analysis (i.e., step
1, 2 and 3): first, evaluation of the input data; second, evaluation of the data output; third, evaluation
of the feedback from the cyber-physical system.

The input data evaluation checks to see if the input data meets the data quality specifications pre-
defined by the application developer and the system operator. Examples of data quality specification
include data existence, up-to-date, conforming to certain distribution, time-synchronization across
different sources, variation and pattern.

The output data evaluation checks the quality of the results of the application. For example, for a
machine learning-based prediction system, the quality of the data output relates to the accuracy or
confidence level of the prediction. For a non machine learning-based system, such as a building
energy management system, the quality of the data output relates to the optimal results that can be
used for subsequent actions, e.g., building energy use adjustment.

The evaluation of the feedback from the cyber-physical system checks the outcome brought to the
cyber-physical system by the prior steps. This evaluation is important to ensure that the data output
in fact leads to the desired system outcome.

As shown as step 4 in Figure 2, the evaluation results of the data quality analysis are eventually
directed to an user interface for system operators, who may take control or recovery actions when
abnormal and erroneous situation happens. These actions ensure the proper execution of the system
and lead to improved system reliability.

At step 5 and 6, as illustrated in Figure 2, the self-tuning component receives feedback from operator-
in-the-loop and changes in the system.

At step 7, as illustrated in Figure 2, the self-tuning component self-manages and self-configures the
evaluation system based on the feedback from the operator and the changes in the system. The self-
tuning adapts the evaluation system to ensure its proper functioning, which leads to a more robust
evaluation system and improved system reliability.

4.1 Use Case

To further illustrate the proposed architecture, I will describe an example use case engaging multiple
steps and actions using ARIS. A Building Management System (BMS) is a computer-based control
system installed in buildings that controls and monitors the building’s mechanical and electrical equip-
ment such as ventilation, lighting, power systems, fire systems, and security systems [48]. BMS is a
type of cyber-physical systems consisting of software and hardware. Among all the functions of the
BMS, the building energy control system is an important component that reads data feeds representing
internal and exogenous conditions (e.g., temperature, humidity, electricity load, peak load, fluctuat-
ing electricity pricing, and building work schedule) and take control actions (e.g., adjusting lighting,
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Figure 2: ARIS system architecture.
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turning on/off the AC, and shutting off partial elevators) accordingly. The building’s operators usually
have the ability to change or override control actions taken by the BMS to accommodate some special
situations such as severe weather condition or change in the building’s work schedule.

To ensure the building energy control system to work reliably 24x7, the input data, output data (i.e.,
control actions), and the result of the actions are to be evaluated using ARIS. In one example scenario,
a malfunction of the digital thermostat leads to a temperature reading to stay at previous reading level
and unchanged for a long time. The building energy control system has been designed to accept
any value within certain temperature range. It would not be able to handle this input data error, i.e.,
constant temperature. While, ARIS’s intelligent data quality analysis component can quickly detect
this type of input data error (i.e., step 1 in the Figure 2), and give feedback to operator (i.e., step 4 in
the Figure 2). After receiving the automated notification from ARIS, the building’s operator can then
take action accordingly.

In another example scenario, the building’s operator gets notice from the management that requires
fully functioning building for a special one time only event during the coming weekend. The operator
then notifies the ARIS about the abrupt change (i.e., step 5 in the Figure 2). The self-tuning compo-
nent of the ARIS takes this signal and transforms it for adjusting the data quality analysis (i.e., step
7 and 6 in the Figure 2), thus avoiding possible false positive results of system warning due to the
abnormal energy use data during this specific weekend.
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5 Feasibility Study
In Section 5.1, I present a prototype of ARIS system that uses data quality analysis. In Section 5.2, I
present some findings on the effectiveness of a self-tuning evaluation system.

5.1 Data Quality Analysis

In the following subsections, I present a feasibility study on improving power grid cyber-physical
system reliability using data quality analysis. First, I will describe some background information on
power grid and its system reliability. Then I will describe the NOVA system, a prototype implemen-
tation of ARIS system, followed by experimental results and analysis.

5.1.1 Power Grid as a Cyber-Physical System

As a type of critical infrastructure, power grid, i.e., the electricity distribution and transmission sys-
tem, is a typical continuously running cyber-physical system that processes large amount of data, uses
software as a system component, and has operator-in-the-loop. In the past few years, power grid has
been transitioning to smart grid, which is an automated electric power system that monitors and con-
trols grid activities, ensuring the two-way flow of electricity and information between power plants
and consumers—and all points in between [14]. Without the smart grid, many emerging clean energy
technologies such as electric vehicles and solar, wind or cogeneration power cannot be adopted on a
large scale [2].

5.1.2 System Reliability for Power Grid

It is a critical challenge to ensure power grid reliability. In fact, the power grid has become less
reliable and more outage-prone in the past years. According to two data sets, one from the U.S.
Department of Energy and the other one from the North American Electric Reliability Corp., the
number of power outages greater than 100 Megawatts or affecting more than 50,000 customers in the
U.S. almost doubled every five years in the past fifteen years, resulting in about $49 billion outage
costs per year [1].

One of the main causes of the power grid failure is electrical component failure. The smart grid of
the future will have to operate efficiently to satisfy the increasing capacity demand, and should use
the current legacy grid as much as possible to keep costs lower. The legacy grid often contains old
and unreliable electrical components. The electrical component failures may even lead to catastrophic
cascading system failures. In 2004, the U.S.-Canada Power System Outage Task Force released their
final report on the 2003 U.S. Northeast blackout placing the main cause of the blackout on some
strained high-voltage power lines in Ohio that later went out of service, which led to the cascading
effect that ultimately forced the shutdown of more than 100 power plants [15].

To tackle this electrical component failure problem, researchers at Columbia University have collab-
orated with the Consolidated Edison of New York, the main power utility provider of New York City,
and developed several machine learning and data mining systems to rank some types of electrical
components such as feeders, i.e., transmission lines with radial circuit of intermediate voltage, by
their susceptibility to impending failure. The rankings can then be used for planning of fieldwork
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aimed at preventive maintenance, where the components should be proactively inspected and/or re-
paired in order of their estimated susceptibility to failure [37, 36, 19]. The preventive maintenance
improves power grid system reliability.

MartaRank [6, 29] and ODDS [19] are two online machine learning and data mining-based feeder-
ranking systems for preventive maintenance. MartaRank employs Support Vector Machines (SVM),
RankBoost, Martingale Boosting and an ensemble-based wrapper. The ODDS ranking system uses
ranked lists obtained from a linear SVM.

5.1.3 NOVA System for Improving Power Grid System Reliability

To improve power grid system reliability, it requires objective evaluation of the machine learning and
data mining software to ensure they are running as expected, the quality of the data input and output,
and the consequential benefits, i.e., physical system improvements, after the actions recommended by
the machine learning and data mining systems have been taken. For this purpose, I have developed
NOVA (Neutral Online Visualization-aided Autonomic) system, a prototype ARIS system for data
quality analysis, that is able to provide such an evaluation objectively, effectively, and efficiently
[52, 53]. Note that NOVA is not self-tuning.

NOVA conducts an automated and integrated evaluation at multiple stages along the workflow of the
cyber-physical system. There are three steps provided through a unified user interface, as illustrated
in Figure 3: first, evaluation of the input data; second, evaluation of the machine learning and data
mining output; third, evaluation of the system’s performance improvement. The results from Step 1,
2 and 3 are eventually directed to a centralized software dashboard for operator-in-the-loop to take
actions. When abnormal results trigger pre-defined thresholds at any step, warning messages are
dispatched automatically. I implemented NOVA in evaluating MartaRank and ODDS feeder-ranking
systems and analyzed the experimental results.

In the following subsections, I will describe the details of each evaluation stage and demonstrate
useful summarization charts for each step.

5.1.3.1 Evaluation of Input Data Quality

In order for a system to perform as expected, the input data sets have to meet the pre-defined qual-
ity specifications. The evaluation process first uses data constraints and checks to see whether the
required data exist and are up to date. Then the evaluation process conducts some more fine-grained
checks, for example by using a sparkline graph, which is a type of information graphic characterized
by its small size and high data density [43]. These checks would help researchers to correlate the
changes in the input data sets with the variations of machine learning and data mining results, so that
further study may be done to improve machine learning and data mining accuracy, thus leading to
better rankings/actions and improved system reliability. As illustrated in Figure 4, in the sparkline
time series graph, for the one-day period preceding an actual outage, among ten feeder attributes—
maximum scaled voltage, number of joints, number of cables, peak load, etc.— being plotted, some
attributes show varied patterns (e.g., Attribute 1, 2, 5, 6, 7, and 10), while others are constant (e.g.,
Attribute 3, 4, 8, and 9). These patterns may be used to improve machine learning and data mining
results. For example, it may be possible that the constant attributes can be avoided so that only varied
attributes are used as input data, which simplifies and improves the processing of the machine learning
and data mining.
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Figure 3: NOVA system design and workflow.

Figure 4: Sparkline graph for attributes data.
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5.1.3.2 Evaluation of Output Data Quality

The output is a ranked list of components ordered by their susceptibility to failures. To evaluate
the output data quality, I use Receiver Operator Characteristic (ROC) curves, and accompanying rank
statistics such as the Area Under the Curve (AUC). The AUC is equal to the probability that a classifier
will rank a randomly chosen positive instance higher than a randomly chosen negative one [7, 12]. It
is in the range of [0, 1], where an AUC of 0.5 represents a random ordering, and an AUC of close to
1.0 represents better ranking with the positive examples (i.e., correctly predicted examples) at the top
and the negative ones at the bottom. Figure 5 illustrates one typical ROC curve for a feeder-ranking
with AUC equals 0.768. The description for each data point (e.g., 17M96 (511)) stands for feeder
name (e.g., 17M96) and its ranking (e.g., 511). When the AUC is bad, i.e. close to 0.5, the operator is
informed that the output results are close to randomness so that the operator can use alternate factors
for decision-making accordingly.

Figure 5: ROC Curve.

The ranking systems generate new models continuously, so the evaluation is presented as a time
series of AUC values as shown in Figure 6. The black series in the figure shows the AUC time series
of ODDS and the gray series shows the ones for MartaRank, both for the time period from May 2010
to November 2010. Our experiments show that MartaRank and ODDS feeder-ranking systems have
comparable overall performance according to the AUC. The better the AUC results, the more accurate
the component rankings are, which leads to better preventive maintenance results in improving system
reliability.

5.1.3.3 Evaluation of Reliability Improvement of the System

After the machine learning and data mining outputs ranking results, the feeders ranked with highest
susceptibility to failure are usually treated with a higher priority. The final stage of the evaluation is to
validate that the recommended actions are in fact leading to the expected power system improvement,
i.e., fewer outages and longer time between failures. For a longer time, a log(cumulative outages)
versus log(time) chart is useful for seeing the changes in the time interval between failures. This
graphical analysis is also called a Duane plot, which is a log-log plot of the cumulative number
of failures versus time [16], shown in Figure 7. The changing slope of the regression lines of the
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Figure 6: AUC cyclicity graph.

cumulative outages shows the improved rate of outages. If the failure rate had not changed, this
log-log plot would show a straight line.

Figure 7: Cumulative outages versus time log-log chart.

To summarize the above key steps of the NOVA system as described above, Table 1 lists the evaluation
targets and main techniques (e.g., methods, metrics, charts) used at each evaluation stage.

5.1.4 Case Study

NOVA system has been implemented in evaluating two feeder-ranking systems in New York City’s
power grid since 2007. Some of its newer features were added from 2007 to 2010. New York City has
over two thousand feeders. One experimental result I concluded from the evaluation using NOVA
is the increasing MTBF (Mean Time Between Failures), i.e., lower failure rate and better system
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Step Evaluation target Methods, metrics, charts
1 Input data Sparkline graph, data checks and con-

straints
2 Machine learning and data

mining results
ROC curve, AUC time series

3 Physical system improve-
ments

Duane plot, MTBF, failure rate, linear
regression

Unified user interface Dashboard, charts, triggers, warning
messages, alert emails

Table 1: Summary of techniques used in evaluation.

reliability, for most networks. Mean Time Between Failures (MTBF) is the predicted elapsed time
between inherent failures of a system during operation [24]. Figure 8 illustrates MTBF time series
for all the feeders in a specific network for the period from 2002 to 2009 and the linear regression.
On average, the MTBF for feeders in this network are improving over time. The MTBF improvement
after deployment of NOVA in 2007 was better than pre-deployment period, as the black regression
line shown in the graph.

Figure 8: MTBF versus time and linear regression.

Figure 9 illustrates the MTBF differences between year 2009 and year 2002 for each network. The
bars with values above zero indicate MTBF improvements. The majority of the networks saw signifi-
cant increase of MTBF. More than ten percent of the approximately 2000 feeders in the city have been
serviced or replaced according to their rankings. The preventive maintenance of these highly ranked
error-prone feeders improved power grid system reliability.
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Figure 9: MTBF difference for each network.

Year Number of Feeder Failures
2005 1612
2006 1547
2007 1431
2008 1239
2009 1009

Table 2: Number of feeder failures in the city.

Table 2 lists the total number of feeder failures in the city from year 2005 to year 2009. The decreasing
number of feeder failures shows fewer outages of the power network.

In summary, it appears that the NOVA system contributes to the system reliability improvement of
the cyber-physical system, i.e., New York City’s power grid, based on MTBF and number of feeder
failures metrics.

5.2 Self-Tuning Evaluation System

The evaluation system should be able to adapt itself to the changes in the system and feedback from
the operator in a live cyber-physical system through self-tuning. Now I will explain a feasibility study
on self-tuning evaluation system.

5.2.1 Introduction

Self-tuning can be used to improve the automated online evaluation. One example is how to make
the evaluation system automatically adapt to the anomaly of input data, such as the seasonality of the
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temperature data. The self-tuning process is important to make sure the evaluation system can learn
from the system changes or operator’s feedback and self-manage the evaluation system.

5.2.2 Approach

A prototype approach to achieve self-tuning employs data classification, redundancy checking, and
trend detection techniques. The data classification helps to determine or predict some unknown data
based on historic data. The redundancy checking helps to determine if the data instance is a duplicate
of some prior data. The trend detection helps to find the trend pattern for the data set. These techniques
help to make self-tuning possible, which in turn self-manages the evaluation system to improve system
reliability. The following subsections will describe the details for each of the techniques.

5.2.2.1 Data Classification

In a live system, the input data sometimes may have missing values. To determine or predict these un-
known data based on historic data helps automated online evaluation to work more accurately, which
leads to better evaluation. The data classification can be solved as a supervised learning problem. By
training a classification model on existing data, the missing values can be predicted. Support Vector
Machines (SVM) can be used as the classifier [44, 10].

5.2.2.2 Redundancy Checking

Redundant data often leads to duplicate processing and even skewed or abnormal results. It is helpful
for self-tuning to effectively detect the data redundancy so that proper adjustment to evaluation system
can be done accordingly, which leads to improved system reliability. For redundancy checking, I
represent dataset in a vector space model (i.e., term vector model), an algebraic model for representing
text documents as vectors of identifiers, such as index terms [38]. I measure the similarity between
two data instances based on Cosine similarity, i.e., the Cosine of the angle between the two vectors
that represent these two data instances, as shown in the following formula:

DistanceCOS(a, b) =

∑
i ai × bi√∑

i a
2
i ×

√∑
i b

2
i

,

where a and b represent two vectors. Its result equals 1 when the angle between two vectors is 0 (i.e.,
two vectors are pointing in the same direction), and its result is less than 1 otherwise.

In addition to Cosine similarity, I rank all prior data instances based on their relevance to the new
instance using probability distribution. Kullback-Leibler (i.e., KL) divergence [11, 30] is an effective
relevance metric that assumes each data instance in a high dimensional feature space is character-
ized by a probability distribution. KL divergence measures the dissimilarity between two probability
distributions, as shown in the following formula:

DKL(a||b) =
∑
t∈V

P (t|Ma)log
P (t|Ma)

P (t|Mb)
,

where Ma and Mb represent the probability distributions for vector a and b respectively. V is the
vocabulary of all terms and t is a term in V . KL divergence measures how bad the probability distri-
bution Ma is at modeling Mb.

17



5.2.2.3 Trend Detection

To detect data trend is important for self-tuning to adjust the evaluation system effectively, which
leads to improved system reliability. For example, the change of the data trend curve may indicate
overall system state change, which requires self-tuning to act on the evaluation system. One way to
model the trend pattern is using Weibull distribution [35], which provides the basis for trend detection
and analysis. First, historic data is used to fit the Weibull function and derive the λ and k parameters.
Then for any given time t, the number of instances that may happen during that t-th time period can
be estimated using the Weibull’s density function f(t). Similarly, the instantaneous incidence rate can
be estimated using the hazard function h(t). Other semiparametric approach may be used to provide
similar estimation [54].

5.2.3 Evaluation

I evaluated the effectiveness of these techniques through a prototype system implemented using Java,
Weka [49] and MATLAB [18]. I experimented the system on a bug report dataset of Apache Tomcat
[34, 55]. The dataset contains 1525 data instances with two product versions (i.e., Tomcat 3 and
Tomcat 7), 16 different operating systems, and 16 functional software components.

Data Classification

In data classification experiments, I train classification model on 80% of the data and do blind-test
on the remaining 20% of the data. Table 3 lists the classification results for the Tomcat version. The
accuracy of the classification on testing instances is 99.02%. This means the product version in this
case can be determined by the classification highly accurately.

Table 3: Classification results of products
TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.991 0.014 0.996 0.991 0.993 0.989 tomcat 3
0.986 0.009 0.973 0.986 0.98 0.989 tomcat 7
0.99 0.012 0.99 0.99 0.99 0.989 Weighted Avg.

Redundancy Checking

For redundancy checking, I first transform the historic training data instances and the testing data
instance to vectors using the vector space model. After the csv and kld value for each training instance
are calculated, all the training instances are then sorted in an descending order based on the csv value
and in an ascending order based on the kld value. The data instances at the top of the ranked lists
are the most similar ones to the testing instance. Table 4 lists some sample results for a given data
instance #393. From the results, the instance #393 is highly likely to be a duplicate of some data
instances because there exists historic data instances with csv ≥ 0.9 and kld ≤ 2.0 (i.e., #330 and
#296).

Table 4: Similarity ranking results
bug id csv kld
330 0.928 1.940
296 0.917 0.816
228 0.717 9.868

Trend Analysis
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For trend analysis, I first aggregate the historic data to compute a vector of the time (i-th week) and
the number of data instances whose first reporting date falls in the i-th week. Then a result vector
returns the 95% confidence intervals for the estimates of the parameters of the Weibull distribution
given the historic vector data. The two-element row vector estimates the Weibull parameter λ and
k. The first row of the 2-by-2 matrix contains the lower bounds of the confidence intervals for the
parameters, and the second row contains the upper bounds of the confidence intervals.

Table 5: Weibull parameter estimates
Software λ λlow λhigh k klow khigh
Tomcat 3 0.3885 0.2280 0.6621 0.2241 0.2041 0.2461

Figure 10: Weibull fit for Tomcat 3

Table 5 shows the estimates of the Weibull parameters for Apache Tomcat 3. The value of k is less
than 1, which indicates that the incidence rate decreases over time. The related curve fit is illustrated
in Figure 10. The starting time, (i.e., the 0 on the x-axis) is the week of August 25, 2000. The curve
fit shows that the Weibull distribution closely resembles the actual data incidence trend.

In summary, my experiments show that the self-tuning techniques described above, including data
classification, automatic redundancy checking and trend detection, are effective. The proposed ARIS
system can employ these techniques to perform self-tuning. This self-tuning will lead to an adaptive
evaluation system that works better under system changes and operator feedback, which will lead to
improved system reliability. An example that these self-tuning techniques can lead to better automated
online evaluation for cyber-physical systems is their application in a smart building energy manage-
ment system. The data classification can be used to predict temperature and electricity load based on
historic data; the redundancy checking can be used to simplify duplicate readings from smart sensors;
and trend detection can be used to model the daily energy usage pattern and the seasonal energy usage
shift. These self-tuning techniques would help the automated online evaluation to work better, which
leads to the improved system reliability of the cyber-physical system.
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6 Related Work

6.1 Cyber-Physical System Reliability

Reliability has been recognized as a critical requirement for cyber-physical systems. In Lee’s paper
“Cyber Physical Systems: Design Challenges”, he pointed out that the expectation of reliability in
cyber-physical system will only increase, and cyber-physical system will not be deployed into some
mission critical applications as traffic control, automotive safety, and health care without improved re-
liability and predictability [28]. CPS steering group stated in its executive summary that architectures
and tools are needed in order to build reliable and resilient cyber-physical systems [20]. The report
also described software reliability affects the overall system reliability because replicated software
can cause systematic failures that are not common in purely physical systems and todays computer
systems do not allow us to distribute computer-based control in ways that preserve reliability.

For cyber-physical transportation systems, Clarke et al. proposed some demanding challenges of ap-
plying formal analysis technique on autonomous transportation control for cars, trains, and aircraft.
Their paper listed scalable analysis with respect to complexity and dimensionality, large-scale verifi-
cation architectures, dynamic networks, probabilistic effects in cyber-physical transportation as some
of the main challenges [9]. Our approach does not use formal analysis technique and does not have
the scalability limitation due to state-space exploration.

For reliability of electric power grid systems, Singh et al. concluded that the current techniques
for power system reliability are insufficient because they focused mainly on the current carrying
part of the power grid with some work done in the inclusion of protection systems. The paper also
pointed out that the literature on the reliability of the cyber part is practically non-existent and the
analysis of the power system as a cyber-physical system appears to be a challenging task because
of the dimensionality and complexity issues [40]. Faza et al. described the use of software fault
injection combined with physical failures in identifying integrated cyber-physical failure scenarios
for the Smart Grid [13].

For architectural design of reliable cyber-physical system, Sha et al. proposed a hybrid approach
that combines fault-tolerant architectures with formal verification to support the design of safe and
robust cyber-physical systems [39]. La et al. proposed a service-based cyber-physical system based
on service-oriented architecture (SOA) and mobile Internet device to achieve dynamic composition,
dynamic adaptation, and high confidence [26]. Our approach does not aim to design a cyber-physical
system; instead, I try to use some new techniques to ensure the reliability of cyber-physical system.
One real-world constraint is that many cyber-physical systems such as power grid have expansive
infrastructure already built and these legacy systems are often too hard and expensive to replace. Im-
proving reliability of these systems entails working with the software, hardware and physical devices
that have already been deployed.

Security for cyber-physical systems has also been an important research topic in the past years. [45]
described some vulnerabilities and countermeasures for sensor network, a type of cyber-physical
system. [46] gave a general overview on wireless sensor network security: obstacles, requirements,
attacks, and defenses. An unreliable system certainly may pose more security vulnerabilities that can
be exploited by malicious attackers. “A system can’t be reliable if it’s not secure, and to some degree,
if it’s not reliable, at least in a security context, it can’t be secure, either [5].” While, the focus of this
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thesis is not to target potential security issues and defend the possible malicious attack, instead I try
to improve system reliability for the cyber-physical system so that the system can run properly with
or without security attack.

6.2 Automated Online Evaluation

For NOVA system, I have given examples each of the three steps of online evaluation, using NYC
power grid data. Depending on specific data and operational goals, there may be many ways to per-
form one of the three evaluations; the key point is that all of these three types of evaluation must be
present. In machine learning and data mining, only the second type of evaluation is typically consid-
ered (step 2), and even that evaluation is mainly considered in static settings (without the element of
time).

Langley’s seminal paper “Machine Learning as an Experimental Science” made empirical study an
indispensable aspect of machine learning research [27]. Since that time, many challenges in exper-
imental machine learning have been identified. For instance, a more recent survey of Japkowicz
reviewed shortcomings in current evaluation methods [23]. Through using NOVA on the New York
City power grid, I have also been able to identify new challenges (e.g., the AUC cyclicity challenge).
In machine learning, the goal is often to optimize the criteria used for evaluation. NOVA suggests
a much more ambitious set of evaluations than what are usually performed in machine learning and
data mining experiments, potentially leading to a much broader way to consider and design machine
learning systems, and hopefully leading to improvements in power grid operations.

Murphy et al. have done research on verification of machine learning programs from software testing
perspective [31]. Our approach does not verify the internal correctness of the machine learning and
data mining component. NOVA treats the machine learning and data mining process as a black-box
module and conducts evaluation according to its external specifications. This leaves the quality assur-
ance of the machine learning and data mining software module to the machine learning researchers
and software developers or testers.

6.3 Data Quality Analysis Techniques

Data mining finds its increased adoption and application in software engineering in recent years. [21]
described the concept of software intelligence and the future of mining software engineering data.
[56] presented a general overview of data mining for software engineering and described an example
of duplicate bug detection using vector space-based similarity. [47] also described an approach to
detect duplicate bug reports using both natural language and execution information. Our redundancy
checking engine uses both probability distribution-based KL divergence and vector space-based Co-
sine similarity ranking, instead of only vector space-based similarity. Furthermore, our approach
provides a similarity ranking list that can be used for search, instead of only Yes and No on duplica-
tion check. [17] presented text mining of bug reports to identify security issues. Their work aims to
identify security problems such as buffer overflow through mining the bug reports. Their purpose and
techniques are different from our approach.
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6.4 Self-Tuning and Autonomic Computing

Some prior research has been done on self-tuning. Sullivan demonstrated in his Ph.D. thesis that
probabilistic reasoning and decision-making techniques can be used as the foundation of an effec-
tive, automated approach to software tuning [41]. Self-tuning is an aspect of autonomic computing,
which is an approach to self-managed computing systems with a minimum of human interference [22]
and refers to the self-managing characteristics of distributed computing resources, adapting to unpre-
dictable changes whilst hiding intrinsic complexity to operators and users [48]. Kaiser et al. have
retrofitted autonomic computing onto legacy systems, externally, without any need to understand or
modify the code, and in many cases even when it is impossible to recompile [25, 33].
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7 Research Plan and Schedule

7.1 Development Tasks

The main development task is to develop ARIS system [52, 53] based on the NOVA system described
in 5.1 and the self-tuning techniques described in 5.2. NOVA has been proved to be effective and
useful in evaluating online machine learning and data mining systems used in New York City’s power
grid. Although it is a good example of automated online evaluation approach, it was custom designed
to evaluate a specific type of software, i.e., machine learning software, used in cyber-physical system,
i.e., power grid. Based on the work on NOVA system and the self-tuning techniques, I will further
explore a general-purpose ARIS system for automated online evaluation, and use it to improve system
reliability for cyber-physical system.

7.2 Experiments and Methodology

The experiments of ARIS system will be conducted not only in a lab environment, but also in some
real-world cyber-physical systems. Some quality assurance measurements and metrics I will use to
quantitatively measure the system reliability improvement include:

• Mean Time Between Failures (MTBF) is the predicted elapsed time between inherent failures of
a system during operation [24].

• Availability is the measurement of the fraction of time system is really available for use. It takes
repair and restart times into account and is relevant for non-stop continuously running systems.

• Rate of Fault Occurrence reflects failure rate in the system. It is useful when system has to
process a large number of similar requests that are relatively frequent.

• Probability of Failure on Demand is the probability system will fail when a service request is
made. It is useful when requests are made on an intermittent or infrequent basis.

• Power-On Hours (POH) is the length of time (in hours), which electrical power is applied to a
device.

7.2.1 Controlled Experiment

The controlled experiments will be based on lab or benchmark environment. The experimental data
will be the data that are available to general public via Internet download and the supporting software
for the environment will be the ones that are commonly used. These controlled experiments are
important for proving the hypotheses. They are to prove first, second and third hypotheses described
in 3.2. The initial experiments in the lab are good for initial proof-of-concept prior to real-world
deployment and experiments.

In the controlled experiment, the input and output data anomaly can be simulated using fault injection,
a software testing technique for improving the coverage of a test by introducing faults to test code
paths [4, 8, 51, 50]. Some data randomization can be used to simulate uncontrolled data in the real-
world environment. The effect of the output results on the cyber-physical system can be simulated,
possibly using some emulator that can represent the physical part of the cyber-physical system.
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In any experiment, two independent cyber-physical systems will be used in parallel: one with the
ARIS implemented and the other one without ARIS. Both systems will be supplied faulty input data.
And then measurement and validation will be done to compare both systems’ reliability to see if they
can continue reliable execution without problem. The faulty conditions in output data and physical
system effect will also be simulated for evaluating the system reliability of the two cyber-physical
systems.

For controlled experiments on the internal functions of the ARIS (i.e., data quality analysis using
computational intelligence and self-tuning, as shown in Figure 2), the ARIS is compared with some
alternate methods. For example, to evaluate input data quality in terms of data range and distribution,
ARIS can be compared with the rule-based system to see which one can produce better analysis
results. This type of comparative studies may also show the advancement of the state of the art
research by the proposed approach.

7.2.2 Real-World Experiment

Another important set of experiments will be conducted in some real-world environments where un-
predictable conditions may happen. This requirement is important and necessary in supporting the
proposed approach workable because cyber-physical systems will not be operating in a controlled en-
vironment, and must be robust to unexpected conditions and adaptable to subsystem failures [20]. The
real-world experiments can provide a more realistic evaluation and analysis of the new techniques and
the approach on their effectiveness and efficiency in improving system reliability for cyber-physical
systems. The real-world experiments are to support the fourth efficiency hypothesis described in 3.2.

For the real-world experiments, I will deploy and experiment the prototype systems into two major
cyber-physical systems: electric power grid and building energy control system.

• Electric power grid is a type of critical infrastructure, which is migrating to smart grid with
more and more computing and communication components. I will apply the new ARIS system
on some power grid systems to prove that the proposed approach can in fact improve system
reliability for cyber-physical systems and it does not incur too much extra cost.

• Building energy control system is another important type of cyber-physical systems that are
becoming increasingly smart and complex. The building energy control systems normally col-
lect and use sensor and other utilities usage data with the help of Building Management System
(BMS) software. I will try to deploy and experiment the new ARIS system on some smart
building cyber-physical systems and prove the proposal techniques and approach are effective
and efficiency in improving system reliability.

24



7.3 Schedule

Table 6 shows my plan for completion of the research.

Completion Date Work Status
Sep. 2009 Conduct literature review on concurrency testing completed
Nov. 2009 Conduct studies on common concurrency bug patterns completed
Jan. 2010 Conduct literature review on mutation testing completed
Feb. 2010 Conduct feasibility study on second-order concurrency mutants completed
Mar. 2010 Complete implementation and demo of BUGGEN completed
Apr. 2010 Complete CS tech report on concurrency mutation operators deposited
May. 2010 Write and submit BUGGEN paper to ISSRE rejected
Aug. 2010 Conduct literature review on evaluation of machine learning completed
Sep. 2010 Determine scope of NOVA system development completed
Oct. 2010 Co-author TPAMI paper “ML in New York City Power Grid” accepted
Nov. 2010 Research and experiment on statistical reliability estimation completed
Dec. 2010 Complete NOVA implementation and empirical study completed
Jan. 2011 Write and submit NOVA paper to AAAI rejected
Feb. 2011 Write and submit paper on reliability estimation paper to IEEE accepted
Feb. 2011 Conduct feasibility study and experiments on BUGMINER completed
Mar. 2011 Rewrite and submit BUGGEN paper to SEKE accepted
Mar. 2011 Write and submit BUGMINER paper to SEKE accepted
Apr. 2011 Rewrite and submit NOVA paper to ICML workshop accepted
May. 2011 Write and submit extended NOVA paper to KDD workshop accepted
May. 2011 Write thesis proposal draft completed
Jun. 2011 Revise thesis proposal and prepare for presentation completed
Jul. 2011 Revise thesis proposal and present the proposal completed
Aug. 2011 Revise and complete thesis proposal
Aug. 2011 Extend data quality analysis techniques
Sep. 2011 Research and develop ARIS system
Sep. 2011 Write and submit comprehensive paper to appropriate conference
Oct. 2011 Further development and experiment of ARIS system
Oct. 2011 Write and submit additional paper to appropriate conference
Nov. 2011 Implementation of new techniques on real-world systems
Dec. 2011 Present the recent research progress
Jan. 2012 Write and submit empirical study paper to appropriate conference
Feb. 2011 Demonstrate applicability to other domains
Mar. 2012 Extend evaluation techniques for large-scale real-world systems
Mar. 2012 Write and submit paper to appropriate venue
Apr. 2012 Write thesis
May. 2012 Write thesis
June. 2012 Write thesis
July. 2012 Complete thesis and schedule thesis defense
Aug. 2012 Defend thesis

* bold fonts indicate paper or tech report submission

Table 6: Plan for completion of research
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8 Expected Contributions
The expected contributions are listed as follows:

• A system evaluation approach named automated online evaluation that is able to improve system
reliability for cyber-physical systems in the domain of interest as described in Section 2. The
approach employs data quality analysis and self-tuning. It enables online reliability assurance
of the deployed systems that are not possible to perform robust tests prior to actual deployment
because of physical and cost constraints.

• A prototype implementation of the approach, i.e., ARIS system, and experimental demonstra-
tion of the approach using ARIS in some controlled experiments as well as some real-world
environment.

• A new technique of data quality analysis using computational intelligence and its application in
this type of evaluation system for cyber-physical system.

• A new demonstration of applying self-tuning in this type of evaluation system for cyber-physical
system.

• A preliminary study on applicability of the approach on other domains in order to show that the
approach can be potentially adapted and extended for use in improving system reliability for
much broader range of large-scale real-world online cyber-physical systems.
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9 Conclusion
In this proposal, I presented a system evaluation approach named automated online evaluation that em-
ploys data quality analysis using computational intelligence and self-tuning techniques for improving
system reliability for cyber-physical systems that meet following criteria: processing large amount
of data; employing software as a system component; running online continuously; having operator-
in-the-loop. I then presented ARIS system architecture for implementation of such an approach. I
further described some feasibility studies: first, a date quality analysis system named NOVA that is
able to evaluate online machine learning and data mining applied in power grid cyber-physical sys-
tem to improve system reliability; second, a feasibility study on the effectiveness of some self-tuning
techniques, including data classification, redundancy checking and trend detection. I further laid out
my research and development plan, and described experiments of the proposed approach for proving
the stated hypotheses.
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10 Future Work
One potential future work is to extend and apply automated online evaluation, data quality analysis
using computational intelligence, and self-tuning techniques onto other complex systems such as
cloud computing systems to validate the approach’s applicability and effectiveness.

Another potential future work is to further offload the work by human system operators, thus closing
the feedback loop, and employ some automated software processes or robots that can take actions as
human operators on the cyber-physical systems. In this way, the whole cyber-physical system can be
fully autonomic with self-managing and self-configuring.
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