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ABSTRACT

Describable Visual Attributes for Face Images

Neeraj Kumar

We introduce the use of describable visual attributes for face images. Describable visual

attributes are labels that can be given to an image to describe its appearance. This thesis

focuses mostly on images of faces and the attributes used to describe them, although the

concepts also apply to other domains. Examples of face attributes include gender, age, jaw

shape, nose size, etc. The advantages of an attribute-based representation for vision tasks

are manifold: they can be composed to create descriptions at various levels of specificity;

they are generalizable, as they can be learned once and then applied to recognize new

objects or categories without any further training; and they are efficient, possibly requiring

exponentially fewer attributes (and training data) than explicitly naming each category. We

show how one can create and label large datasets of real-world images to train classifiers

which measure the presence, absence, or degree to which an attribute is expressed in images.

These classifiers can then automatically label new images.

We demonstrate the current effectiveness and explore the future potential of using at-

tributes for image search, automatic face replacement in images, and face verification, via

both human and computational experiments. To aid other researchers in studying these

problems, we introduce two new large face datasets, named FaceTracer and PubFig, with

labeled attributes and identities, respectively.

Finally, we also show the effectiveness of visual attributes in a completely different

domain: plant species identification. To this end, we have developed and publicly released

the Leafsnap system, which has been downloaded by almost half a million users. The mobile

phone application is a flexible electronic field guide with high-quality images of the tree

species in the Northeast US. It also gives user instant access to our automatic recognition

system, greatly simplifying the identification process.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

One of history’s most successful books was a five-volume pharmacopoeia titled De Ma-

teria Medica, written in the first century by the Greek botanist and physician Pedanius

Dioscorides. It is perhaps the earliest known field guide, with pictures and written descrip-

tions of nearly 600 plant species, showing how each could be found and identified, along

with their uses for medicinal purposes. This work would be the first in a line of botani-

cal texts, including the ninth century medieval agricultural and toxicological texts of Ibn

Washiyah, and the early eighteenth century Systema Naturae of Carl Linneaus, which laid

out the rules of modern taxonomy.

All of these works have in common an effort to teach the reader how to identify a plant

(or animal) by describable aspects of its visual appearance. Consider the description in the

caption of Fig.

1.1 where thirty words serve to carefully describe the maple tree, its bark,

and its leaf. This identification explicitly uses an intermediate representation of describable

visual attributes, e.g ., “5-lobed,” “as wide as long,” “sharp teeth,” “bark medium-gray,”

etc. It is possible to recognize such visual attributes independently and to use many of

them in combination to describe and identify species.

While the use of describable visual attributes for identification has been around since

antiquity, it has not been the focus of work by researchers in computer vision and related

disciplines. Most existing methods for recognition (e.g ., [

Sivic and Zisserman, 2003;

Nister

and Stewenius, 2006;

Nowak et al., 2006;

Dalal and Triggs, 2005]) work by extracting low-

level features in images, such as pixel values, gradient directions, histograms of oriented
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Figure 1.1:

Images of a maple tree, its bark, and a single maple leaf. Note how accurately they are

described by this 30-word description from the Manual of Vascular Plants of Northeastern United

States: “...tree to 40 m; bark medium-gray, becoming roughened with loose-edged plates; leaves flat,

about as wide as long,...5-lobed with rounded sinuses, the lobes usually bearing a few large sharp

teeth...” We use the concept of such describable attributes for performing search, replacement, and

identification of faces in images.

gradients [

Dalal and Triggs, 2005], SIFT [

Lowe, 2003], etc., which are then used to directly

train classifiers for identification or detection. Similarly for search and retrieval applications,

such low-level descriptors are often used directly to find similar images [

Sivic and Zisserman,

2003;

Nister and Stewenius, 2006].

In contrast, we use low-level image features to first learn intermediate representations,

in which images are labeled with an extensive list of descriptive visual attributes. For faces,

attributes can range from simple demographic information such as gender, age, or ethnicity;

to physical characteristics of a face such as nose size, mouth shape, or eyebrow thickness;

and even to environmental aspects such as lighting conditions, facial expression, or image

quality.

Although these attributes could clearly be useful in a variety of domains (such as ob-

ject recognition, species identification, architectural description, action recognition, etc.),

we focus on faces as they are perhaps the most common objects in images. Photos of

faces are everywhere: cell phones, personal photo collections, social networking sites, news

feeds, movies, license and passport databases, surveillance videos – the list goes on and
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on. Our own work has shown that there are on average 0.4 faces per image in the billions

of images posted to the Internet [

Kumar et al., 2008]. The recent success of methods for

reliably detecting faces in images [

Viola and Jones, 2001;

Huang et al., 2007a] has increased

the promise of face-related applications, and in this work we show that it is possible to

automatically and reliably estimate attributes for face images.

Why might one need an intermediate layer of attributes? What do they afford? Why

not train classifiers directly for the task at hand? Visual attributes – much like words –

are composable, offering tremendous flexibility and efficiency. Attributes can be combined

to produce descriptions at multiple levels, including object categories, objects, or even

instances of objects. For example, one can describe “white male” at the category level (a

set of people), or “white male brown-hair green-eyes scar-on-forehead” at the object level

(a specific person), or add “..., smiling lit-from-above seen-from-left” to the previous for an

instance of the object (a particular image of a person).

Moreover, attributes are generalizable; one can learn a set of attributes from large image

collections and then apply them in almost arbitrary combinations to novel images, objects,

or categories. This makes them an attractive solution to the “zero-shot learning” problem,

where one has to recognize an object or category that one has never seen before.

Better still, attributes are efficient: consider that k binary attributes may suffice to

identify 2k categories, clearly more efficient than naming each category individually. (Of

course, in practice, the potential benefits are limited by the problem domain, the type of

categories being considered, and the accuracy of learned classifiers.) In contrast to existing

labeling efforts such as ImageNet [

Deng et al., 2009] and LabelMe [

Russell et al., 2008]

that label large collections of images by category or object name, the use of attributes may

provide a significantly more compact way of describing objects. This would allow for the use

of much smaller labeled datasets to achieve comparable performance on recognition tasks.

Another advantage of attributes is that they can be used to relate objects in non-

hierarchical and possibly quite complex ways, unlike traditional mutually-exclusive hierar-

chies of objects, such as Caltech 256 [

Griffin et al., 2007] and ImageNet [

Deng et al., 2009].

This has important conseqeuences for most learning-based approaches to vision that require

several trainig instances per category to be learned. For many categories at the leaves of
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traditional hierarchies, such as a particular individual or a specific species of mushroom,

it might be infeasible to obtain a large amount of training data. This problem is often

exacerbated by the fact that for fine-scale categories with high intra-class variation, such

as different types of maples, the number of examples to reliably distinguish between classes

might be prohibitively high.

However, by describing the object using a collection of attributes, we can sidestep this

issue by using many disparate objects or categories, all of which share a particular attribute,

as training data. In addition, particularly for natural phenomena such as plants and animals,

different fine-scale categories might be most readily distinguished precisely on the basis of

a few attributes – making them particularly suitable for this task.

Perhaps most importantly, these attributes can be chosen to align with the domain-

appropriate vocabulary that people have developed over time for describing different types

of objects. For faces, this includes descriptions at the coarsest level (such as gender and

age) to more subtle aspects (such as expressions and shape of face parts) to highly face-

specific marks (such as moles and scars). One could use these attributes to search through

all the images in a large photo collection. For instance, a father might search his private

photo collection by typing “smiling blond girl outside with frowning older boy” to retrieve

all vacation photos of their two children. Or a law enforcement officer might use a witness’

description of a suspect – “white male, thirties, scar-on-forehead, blue-eyes.” to retrieve

matching photos from a database of felons. In the domain of plant species identification, a

science teacher in a park might photograph a leaf using a mobile phone application, then

type “with yellow-bark” to retrieve an exact match for the English Plane tree along with

species distribution in the world and a species map for all other such trees in the park.

In this thesis, we describe how to harness the power of attributes in the domain of faces.

In our approach, diagrammed in Fig.

1.2, an extensive vocabulary of visual attributes is used

to label a large dataset of images, which is then used to train classifiers that automatically

recognize the presence, absence, or degree to which these attributes are exhibited in new

images. The classifier outputs can then be used to search through large image collections,

perform automatic face replacement, identify faces, and they also seem promising for use

in many other tasks such as image exploration or automatic description-generation.
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Figure 1.2:

A diagram of our system architecture. We download images from various image sources

on the internet and label them with attributes to create labeled image datasets. We use these to train

attribute classifiers that can then be used for a variety of applications including search, replacement,

and verification by defining appropriate composition functions.

1.1 Creating Labeled Image Datasets (Chapter

3)

Two recent trends in internet services have made collecting and labeling image data dramat-

ically easier. The first, large internet photo-sharing sites such as flickr.com and picasa.com

are growing exponentially and host billions of public images, many with textual annota-

tions and comments. The second, efficient marketplaces for small amounts of labor such

as Amazon’s Mechanical Turk (MTurk) [

Amazon, 2011] make it possible to purchase small

amounts of web-based labeling effort at very low overhead.

We envision a new thrust for image collection and labeling of describable visual at-

tributes of objects. While several existing efforts in the computer vision community have

exploited services for collecting and labeling images (e.g ., ImageNet [

Deng et al., 2009] and

LabelMe [

Russell et al., 2008]), their focus has been on naming objects, images, and regions

of images using nouns – which is quite different from our visual attributes. One difference is

that attributes need not be binary – a person’s height or the transparency of a leaf are both

continuous attributes. Another critical difference is that visual attributes can be composed

more freely than names which generally exist in a tree structured hierarchy. A set of general

attributes can be combined in an exponential number of ways to describe many objects at

different levels of specificity. Attributes can therefore compactly provide a great deal of

information, both about object properties and their identity.
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Figure 1.3:

Attribute training architecture. Images are preprocessed using a domain-specific pre-

processor (for faces this includes face detection and affine alignment). Various low-level features are

then extracted from labeled images and use for an automatic feature selection process which finds

the best features to use for a given attribute. The output is an attribute estimator and an associated

set of low-level features used for this attribute.

1.2 Training Attribute Classifiers (Chapter

4)

We use feature selection to find an appropriate set of features for use in constructing the

attribute classifier. A schematic of our architecture is shown in Fig.

1.3. The key idea is to

leverage the many efficient and effective low-level features that have been developed by the

computer vision community, choosing amongst a large set of them to find the ones suited

for learning a particular attribute. Examples of low-level features include histograms of

orientation gradients, which have proven to be very useful in a number of leading vision

techniques including SIFT [

Lowe, 2003]; edge magnitudes and curvature measurements,

many of which form the backbone for various shape-based methods [

Belongie et al., 2002;

Ling and Jacobs, 2007]; and color moments, key components in many image retrieval algo-

rithms [

Flickner et al., 1995;

Cox et al., 2000].

Formally, the learning process for attribute classifier ai can be described as follows. A

detected face image X is first aligned to create input representation X ′. Then, a set of k

low-level feature vectors fj are extracted from the aligned image to form a feature set F(X):

F(X) =
{
f1(X ′), · · · , fk(X ′)

}
. (1.1)

For the given attribute, a feature selection algorithm chooses an appropriate set of features

Fi from this set. Due to the large number of possible features and attributes, it is necessary

to perform feature selection automatically and efficiently. We select features in an iterative

manner, such that an attribute classifier ai learned using the training set and the current
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(a) Yahoo image search results

(b) Attribute-based image search results

Figure 1.4:

Results for the query, “smiling asian men with glasses,” using (a) the Yahoo image

search engine (as of November 2010) and (b) our face search engine. Conventional image search

engines rely on text annotations, such as file metadata, manual labels, or surrounding text, which

are often incorrect, ambiguous, or missing. In contrast, we use attribute classifiers to automatically

label images with faces in them, and store these labels in a database. At search time, only this

database needs to be queried, and results are returned instantaneously. The attribute-based search

results are much more relevant to the query.

set of features has least error (subject to regularization to prevent over-fitting). The output

of this process is both the set of chosen features Fi and the learned attribute classifier ai.

We note that this procedure is not optimal; picking optimal features in a non-linear setting

is still an open problem in machine learning.

Measuring the attributes on a new image is then a matter of performing alignment,

extracting features Fi, and evaluating the attribute classifier. This process is highly paral-

lelizable, both by data (individual images) and by task (preprocessing, feature extraction,

classifier evaluation), leading to fast implementations that lend themselves to large-scale

and interactive applications, described next.

1.3 Face Search (Chapter

5)

The first application of describable visual attributes is image search. Currently deployed

image search engines such as Google Images and Flickr are mainly limited to searching for
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images based only on surrounding text and metadata such as links, file names, etc. This

is a significant limitation – the vast majority of images available online and in large photo

collections are not annotated in any meaningful way, rendering them effectively invisible

to these search engines. In contrast, attributes allow for searching through images even

without metadata, albeit only in domains for which we have trained attribute classifiers.

Attributes have the added advantage of being tuned for particular domains depending on

the vocabularies used. For example, botanists could use a plant search engine to find plant

species based on textual descriptions, or use the descriptions to augment example-based

queries. Or, home-buyers could use an image search engine to find houses built in a certain

style, or containing specified architectural features.

Looking concretely at the problem of face search, Fig.

1.4a show the results of the

query, “smiling asian men with glasses,” using a conventional image search engine (Yahoo

Image Search, as of November 2010). Yahoo’s reliance on text annotations causes it to

find some images that have no relevance to the query. In addition, many of the correct

results on Yahoo point to stock photography websites, which can afford to manually label

their images with keywords – but only because they have collections of a limited size, and

they label only the coarsest attributes. Clearly, this approach does not scale to the entire

internet.

In contrast, Fig.

1.4b shows the results for the same query using a search engine built

using our attribute outputs. These are computed by simply taking the product of the given

attribute values for all images in a database and returning the top-ranked images. The

difference in quality of search results is clearly visible – our system returns only the images

that match the query. Note that one could just as easily apply this to arbitrary images on

the web as to those shared in a social network such as Facebook or even a user’s personal

photo collection.

An exciting aspect of describable visual attributes is their direct meaning to users, unlike

many low-level features. This allows users to provide more effective feedback for improving

search ranking. Not only can a user specify re-ranking of results, but they can explicitly

tell us what attributes were important for their decision. This dovetails well with recent

work in machine learning on taking user preference into account when learning rankings
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(e.g ., [

Jin et al., 2008;

Zheng et al., 2008]). Also, recent work has begun to address ranking

for structured data [

Qin et al., 2008].

1.4 Face Replacement (Chapter

6)

While the size and availability of image collections online is leading to many exciting new

applications, such as the one just described, it is also creating new problems. One of the

most important of these is privacy. Online systems such as Google Street View

1 and

EveryScape

2 allow users to interactively navigate through panoramic images of public

places created using thousands of photographs. Many of the images contain people who

have not consented to be photographed, much less to have these photographs publicly

viewable. Identity protection by obfuscating the face regions in the acquired photographs

using blurring, pixelation, or simply covering them with black pixels is often undesirable

as it diminishes the visual appeal of the image. Furthermore, many of these methods are

currently applied manually, on an image-by-image basis. Since the number of images being

captured is growing rapidly, not to mention the explosion of videos being put on sites

such as youtube or justin.tv, any manual approach will soon be intractable. We believe

that an attractive solution to the privacy problem is to remove the identities of people

in photographs by automatically replacing their faces with ones from a collection of stock

images.

Automatic face replacement has other compelling applications as well. For example,

people commonly have large personal collections of photos on their computers. These

collections often contain many photos of the same person(s) taken with different expressions,

and under various poses and lighting conditions. One can use such collections to create

novel images by replacing faces in one image with more appealing faces of the same person

from other images. Finally, when taking group shots, the “burst” mode available in most

cameras can be used to capture several images at once. With an automatic face replacement

approach that was attribute-aware, one could then create a single composite image with,

1

http://maps.google.com/help/maps/streetview/

2

http://www.everyscape.com/
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(a) Original photographs (b) After automatic face replacement

Rank 1 Rank 2 Rank 3

Rank 1 Rank 2 Rank 3Rank 1 Rank 2 Rank 3

Figure 1.5:

We have developed a system that automatically replaces faces in an input image with

ones selected from a large collection of face images. Candidate replacements that match a variety

of attributes are chosen so that the replacement problem becomes much easier. In this example,

the faces of (a) two people are shown after (b) automatic replacement with the top three ranked

candidates. Our system for face replacement can be used for face de-identification, personalized face

replacement, and creating an appealing group photograph from a set of “burst” mode images.

for example, everyone smiling and with both eyes open.

Figure

1.5 shows example results of such a system for fully-automatic face replacement

in photographs. We first construct a large library of aligned faces, off-line, once, and which

can be efficiently accessed during face replacement. Given an input image (left column),

we detect all faces that are present, align them to the coordinate system used by our face

library, and select candidate face images from our face library that are similar to the input

face in terms of appearance, pose, and other attributes. We then adjust the pose, lighting,

and color of the candidate face images to match the appearance of those in the input image,

and seamlessly blend in the results. Finally, we rank the blended candidate replacements by

computing a match distance over the overlap region. (The top 3 ranked replacements are

shown in the remaining columns.) Our approach requires no 3D model, is fully automatic,
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and generates highly plausible results across a wide range of skin tones, lighting conditions,

and viewpoints. As in the search application, the library of faces used for replacement can

be chosen appropriately based on the desired application – privacy protection can use a

database of stock or synthetic faces, personal photo enhancement can rely on the user’s

own photo collection, and group shot replacement will, of course, use just the photos taken

in a burst.

1.5 Face Verification (Chapter

7)

Face verification is the problem of determining whether two faces are of the same individual.

It is the fundamental building block for most face recognition algorithms – systems which

identify individuals in an image – and is thus an extremely important problem. In security,

face recognition can be used to control access to sensitive locations (e.g ., secure areas of

airports). As another example, there is a need for automatic systems in passport applica-

tions to alert humans when a new photo does not appear to depict the same person as did

a previous one. In information retrieval, a high percentage of photos on the internet and in

personal collections contain faces. The identity and attributes of these faces are a crucial

element in their effective retrieval. Face recognition is also critical to building automatic

systems, such as household robots, that can interact smoothly with people.

What makes this problem difficult is the enormous variability in the manner in which

an individual’s face presents itself to a camera: not only might the pose differ, but so

might the expression and hairstyle. Making matters worse – at least for researchers in

biometrics – is that the illumination direction, camera type, focus, resolution, and image

compression are all almost certain to vary as well. These manifold differences in images of

the same person have confounded methods for automatic face recognition and verification,

often limiting the reliability of automatic algorithms to the domain of more controlled

settings with cooperative subjects [

Sim et al., 2002;

Blanz et al., 2002;

Phillips et al., 2006;

Gross et al., 2001;

Phillips et al., 2000;

Samaria and Harter, 1994;

Georghiades et al., 2001].

Despite great effort, state-of-the-art methods for identification perform poorly in natural

settings with varying pose, illumination, and expression, as evidenced by results on the LFW
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(a) Attributes for two images of the same person

(b) Attributes of two different people

Figure 1.6:

An attribute classifier can be trained to recognize the presence or absence of a de-

scribable visual attribute. The responses of several such attribute classifiers are shown for (a) two

images of the same person and (b) two images of different individuals. In (a), notice how most

attribute values are in strong agreement, despite the changes in pose, illumination, expression, and

image quality. Conversely, in (b), the values differ completely despite the similarity in these same

environmental aspects. We train a verification classifier on these outputs to perform face verifica-

tion, achieving 85.54% accuracy on the Labeled Faces in the Wild (LFW) benchmark [

Huang et al.,

2007c], comparable to the state-of-the-art.

dataset [

Nowak and Jurie, 2007;

Wolf et al., 2008;

Huang et al., 2007b;

Huang et al., 2008;

Huang et al., 2007c]. When one analyzes the failure cases for some of these algorithms, many

mistakes are found that seem avoidable: men being confused for women, young people for

old, asians for caucasians, etc. On the flip side, simple changes in pose, expression, or

lighting can cause two otherwise similar images of the same person to be misclassified by

an algorithm as different. So while this dataset remains difficult for automatic methods, it

is easy for humans: correct verification of identity in image pairs can be performed almost

without error [

Kumar et al., 2009].

We approach the unconstrained face verification problem with non-cooperative subjects

by comparing faces using our attribute and simile classifier outputs, instead of low-level fea-

tures directly. Fig.

1.6 shows the outputs of various attribute classifiers, for (a) two images
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(a)

(b)

Figure 1.7:

(a) A prototype of our electronic field guide running as an application for the iPhone

and on a Sony Vaio (photo courtesy of the New York Times). (b) Young naturalists using the tablet

version of our system at the 2007 BioBlitz, sponsored by the National Geographic Society.

of the same person and (b) images of two different people. Note that in (a), most attribute

values are in strong agreement, despite the changes in pose, illumination, and expression,

while in (b), the values are almost perfectly contrasting. By training a classifier that uses

the difference in these attribute values as inputs for face verification, we achieve close to

state-of-the-art performance on the Labeled Faces in the Wild (LFW) data set [

Huang et al.,

2007c], at 85.54% accuracy. Additionally, we shwo that combining with low-level techniques

pushes us past the state-of-the-art to 88.25%.

1.6 Plant Species Identification (Chapter

8)

Finally, leaving the domain of faces and coming back to our motivating example of plants,

we describe an automatic plant species identification system. Botanists in the field are

racing to capture the complexity of Earth’s flora before climate change and development

erase their living record. To greatly speed up the process of plant species identification,

collection, and monitoring, computational tools are desperately needed by botanists the

world over. Without such tools, a dichotomous key must be painfully navigated to search

the many branches and seemingly endless nodes of the taxonomic tree. The process of

identifying a single species using keys may take hours or days, even for specialists, and is

exceedingly difficult or impossible for amateurs.
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To bridge this gap, we have built and publicly released – in partnership with the Smith-

sonian Institution – the first hand-held botanical identification system, Leafsnap [

Agarwal et

al., 2006;

Belhumeur et al., 2008]. The system requires only that the user photograph a leaf

specimen, and then returns, within seconds, images of the top matching species, along with

supporting data such as textual descriptions and high-resolution type specimen images. By

using our system, a botanist in the field can now quickly search entire collections of plant

species – a process that previously took hours can now be done in seconds. There has been

intense public interest in Leafsnap – close to half a million people have downloaded the app

for the iPhone and iPad platforms. We have also received an extensive list of requests to

use the system by urban planners in local governments, educators throughout the U.S. and

abroad, not-for-profit institutions working on issues of biodiversity, and citizen scientists

eager to map and monitor the flora of their backyard or local park. Figure

1.7 shows (a) a

screenshot from the iPad version of the program and (b) young naturalists using an earlier

tablet prototype of our system at the 2007 BioBlitz.

Our current system works by comparing the overall shape of leaves and does a good

job at getting the new leaf’s species among the top five “hits” more than 90% of the time.

However, it often errs in ways that seem avoidable, just as we had previously seen face

identification systems err. A leaf may be correctly identified by the system as a Maple –

however, the system may be unsure of whether it is a Silver Maple or Sugar Maple, despite

the fact that the Silver Maple has a “highly-toothed” margin. Or a Balsam Poplar might

be confused for a Swamp Cottonwood, even though the leaf of the Swamp Cottonwood has

a “rounded-tip.” It is clear to us that there is considerable room and need for improvement

by augmenting our system with describable attributes. Furthermore, attributes of the bark,

flower, venation or fruit of the plant could be easily combined with attributes of the leaves to

better disambiguate similar species. This could perhaps even be done with a human-in-the-

loop if needed, an approach currently being taken in the bird identification system currently

being developed as part of the Visipedia project [

Branson et al., 2010;

Welinder et al., 2010;

Perona, 2010].

Finally, we conclude in Chapter

9 with some thoughts on the future of attributes in

computer vision.
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Chapter 2

Background

2.1 Attribute Classification

Prior research on attribute classification has focused mostly on gender and ethnicity clas-

sification. Early works [

Golomb et al., 1990;

Cottrell and Metcalfe, 1990] used neural net-

works to perform gender classification on small datasets. The Fisherfaces work [

Belhumeur

et al., 1996] showed that linear discriminant analysis could be used for simple attribute

classification such as glasses/no glasses. Later, Moghaddam and Yang [

Moghaddam and

Yang, 2002] used Support Vector Machines (SVMs) [

Cortes and Vapnik, 1995] trained on

small “face-prints” to classify the gender of a face, showing good results on the FERET

face database [

Phillips et al., 2000]. The works of Shakhnarovich et al . [

Shakhnarovich et

al., 2002] and Baluja and Rowley [

Baluja and Rowley, 2007] used Adaboost [

Freund and

Shapire, 1996] to select a linear combination of weak classifiers, allowing for almost real-

time classification of face attributes, with results in the latter case again demonstrated on

the FERET database. These methods differ in their choice of weak classifiers: the former

uses the Haar-like features of the Viola-Jones face detector [

Viola and Jones, 2001], while

the latter uses simple pixel comparison operators.

In computer vision, the use of attributes has recently been receiving much attention

from a number of different groups. The first paper to take a generalized approach to

attributes was by Ferrari and Zisserman [

Ferrari and Zisserman, 2007], which described a

probabalistic approach for learning simple attributes such as colors and stripes. This thesis
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builds on earlier works [

Bitouk et al., 2008;

Kumar et al., 2008;

Kumar et al., 2009], which

were among the first in the community to look at attributes for a variety of computer vision

tasks (albeit limited to faces). Other contemporaneous works that use attributes to describe

objects include [

Lampert et al., 2009], for animal categorization, and [

Farhadi et al., 2009],

for building general attribute predictors. However, the focus of all of these papers is quite

different. The latter [

Farhadi et al., 2009] explores how to train attribute classifiers in a very

general setting (such as for evaluation on the Pascal VOC challenge [

Everingham et al., ])

and the problems associated with, e.g ., correlations in training data. The former [

Lampert

et al., 2009], on the other hand, focuses on trying to distinguish animal species and transfer

labels across categories. In contrast to both of these approaches, which are trying to find

relations across different categories, we concentrate on finding relations between objects in

a single category: faces.

Faces have many advantages compared to generic object categories. There is a well-

established and consistent reference frame to use for aligning images; differentiating objects

is conceptually simple (e.g ., it’s unclear whether two cars of the same model should be

considered the same object or not, whereas no such difficulty exists for two faces); and

most attributes can be shared across all people (unlike, e.g ., “4-legged,” “gothic,” or “dual-

exhaust,” which are applicable to animals, architecture, and automobiles, respectively – but

not to each other). All of these benefits make it possible for us to train more reliable and

useful classifiers, and demonstrate results comparable to the state-of-the-art.

In psychology and neuroscience, there have been a number of works on face recognition

as done by humans. The work of Bruce et al . [

Bruce et al., 1999] addresses many aspects

of human recognition of faces in video and images, including results showing that people

are very robust to decreased resolution when recognizing familiar faces, and that the face

itself is more useful than the body or gait in such settings [

Burton et al., 1999]. In contrast,

Sinha and Poggio [

Sinha and Poggio, 1996] show an example where context dominates image

information in the face region itself. In later work, Sinha et al . [

Sinha et al., 2006] provide

a wide-ranging overview of results from psychology on face recognition, briefly covering the

work of Bruce et al . [

Bruce et al., 1999] and also discussing the effects of varying many

other imaging conditions.
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Exciting recent work [

Palatucci et al., 2009] considers explicitly training attribute clas-

sifiers for words, in order to decode fMRI measurements of brain activity while subjects

think about words. This work includes initial PAC-style bounds on attribute-based zero-

shot learning.

2.2 Content-Based Image Retrieval (CBIR)

Our search application can be viewed as a form of CBIR, where our content is limited to

images with faces. Interested readers can refer to the works of Rui et al . [

Rui et al., 1999],

Datta et al . [

Datta et al., 2005], and Lew et al . [

Lew et al., 2006] for recent surveys of this

field. Some landmark early works included the QBIC [

Flickner et al., 1995], PicHunter [

Cox

et al., 2000], and VisualSEEk [

Smith and Chang, 1996] systems. Most relevant to our work

is the “Photobook” system [

Pentland et al., 1996], which allows for similarity-based searches

of faces and objects using parametric eigenspaces. However, their goal is different from ours.

Whereas they try to find objects similar to a chosen one, we locate a set of images starting

only with simple text queries. Although we use vastly different classifiers and methods for

feature selection, their division of the face into functional parts such as the eyes, nose, etc.,

is echoed in our approach of training classifiers on functional face regions. While in this

paper we ignore existing text annotations for images, one could envision using describable

attributes in combination with such annotations for improved search performance, some-

what akin to the idea presented in the “Names and Faces” work [

Berg et al., 2004].

In the multimedia retrieval community, the use of attributes has become increasingly

popular under the term “high-level semantic concepts.” Early works explored the feasibility

of using concepts for retrieval, reranking, and query expansion, while later works have

focused more on how to scale the number of concepts to the thousands, and apply fusion

techniques to combine the outputs of multiple concept detectors or multiple modalities into

a consistent set of results [

Naphade and Smith, 2004;

Snoek et al., 2005;

Chang et al., 2005;

yong Neo et al., 2006;

Chang et al., 2006;

Naphade et al., 2006;

Snoek et al., 2007;

Chang

et al., 2007;

Jiang et al., 2008a;

Jiang et al., 2008b;

Jiang et al., 2009a;

Jiang et al., 2009b;

Kennedy and Chang, 2010]. Many of these works have been driven forward through the
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TRECVID and LSCOM [

Naphade et al., 2006;

Yanagawa et al., 2007] projects.

2.3 Face Replacement

While there exists a rich body of work on replacing parts of images with new image data,

the replacement of faces in images has received relatively little attention. To the best of

our knowledge, the work of [

Blanz et al., 2004] is the only published approach which allows

one to replace faces in photographs. They fit a morphable 3D model to both the input and

target face images by estimating shape, pose and the direction of the illumination. The 3D

face reconstructed from the input image is rendered using pose and illumination parameters

obtained from the target image. The major drawback of this approach is that it requires

manual initialization in order to obtain accurate alignment between the morphable model

and the faces in both the input and target images. Although this is acceptable for their

goal (virtual hairstyle try-on), our de-identification application absolutely requires that

there be no user intervention. A commercial system that also uses 3D models is currently

in development at XiD Technologies

1, but details regarding their technical approach, the

degree of automation, and the quality of their results are not known. (The estimation of 3D

face shape from a single image is an inherently under-constrained problem and by nature

difficult to fully automate.) In contrast, our approach allows us to automatically replace

faces across different pose and lighting conditions without resorting to 3D methods.

An unpublished work [

Malik, 2003] describes another 3D model-based approach for face

replacement. This work focuses on improved relighting and recoloring using histogram

matching and color blending. However, this system requires manual face alignment to the

3D model, and some post-processing is needed to improve the visual quality of the results.

Finally, [

Liu et al., 2001] addresses the related, but slightly different problem of transferring

expressions of faces between two images. This work introduces a relighting technique which

is similar to the one we use for our system, described in Chapter

6.

1

http://www.xidtech.com/
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2.3.1 Face De-Identification

The easiest and most well-known method for face de-identification is to distort the image

either through pixelation or blur [

Boyle et al., 2000], although the results in this case are

not as visually appealing. In [

Newton et al., 2005], a face de-identification algorithm is

introduced which minimizes the probability of automatic face recognition while preserving

details of the face. However, since this technique uses Principal Component Analysis to

compute averages of images, the replaced faces contain blurring and ghosting artifacts.

The work of [

Gross et al., 2006] improves the quality of de-identified faces using Active

Appearance Models [

Cootes et al., 2001] but still suffers from blurring artifacts. Moreover,

all of these face de-identification methods work only on faces in frontal pose, and produce

images inside a pre-defined face region without any guarantee that the de-identified face will

blend well with the rest of the original photograph. Our work differs in that we automatically

select faces which yield realistic final results for input faces in different poses, and we perform

critical appearance adjustments to create a seamless composite image.

2.3.2 Image Compositing

Some of the applications we describe can be addressed using image compositing approaches.

For example, the Photomontage framework [

Agarwala et al., 2004] allows a user to interac-

tively create a composite image by combining faces or face parts taken from several source

photographs. In [

Wang et al., 2007a], faces are replaced using gradient domain image blend-

ing. Another approach which uses a large image library as we do is [

Hays and Efros, 2007],

in which images can be “completed” using elements taken from similar scenes. These image

compositing methods are not specifically targeted to face images, however, and they require

user interaction to create plausible replacement results. In contrast, our algorithm focuses

on faces and can automatically generate a ranked set of replacement results (allowing users

to select among them, if desired).
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2.4 Face Verification

Early work in appearance-based face verification [

Kirby and Sirovich, 1990;

Turk and

Pentland, 1991] looked at the L2 distance between pairs of images in a lower dimensional

subspace obtained using Principal Components Analysis (PCA). This was extended and

improved upon by using linear discriminant analysis [

Belhumeur et al., 1996]. However,

these algorithms are mostly limited to images taken in highly controlled environments with

extremely cooperative subjects. It is well understood that variation in pose and expression

and, to a lesser extent, lighting cause significant difficulties for recognizing the identity of

a person [

Zhao et al., 2003]. Illumination changes can be mostly handled using a variety

of different approaches; the direction of the image gradient [

Chen et al., 2000b] and related

image features such as SIFT [

Lowe, 2003], the phase of Gabor jets [

Wiskott et al., 1997],

and gradient pyramids [

Ling et al., 2007] are all highly insensitive to lighting variation. The

CMU Pose, Illumination, and Expression (PIE) data set and follow-on results showed that

sometimes alignment, especially in 3D, can overcome the other difficulties [

Sim et al., 2002;

Blanz et al., 2002;

Castillo and Jacobs, 2007;

Gross et al., 2001;

Cootes et al., 2000].

Unfortunately, in the setting of real-world images such as those in the “Labeled Faces in

the Wild” (LFW) benchmark data set [

Huang et al., 2007c] and similar data sets [

Berg et

al., 2004;

Everingham et al., 2006], 3D alignment is difficult and has not (yet) been success-

fully demonstrated. Various 2D alignment strategies have been applied to LFW – aligning

all faces [

Huang et al., 2007b] to each other, or aligning each pair of images to be considered

for verification [

Nowak and Jurie, 2007;

Ferencz et al., 2007;

Hua and Akbarzadeh, 2009].

Approaches that require alignment between each image pair are computationally expensive

(the latter of these [

Hua and Akbarzadeh, 2009] actually aligns images to a common co-

ordinate system, but then computes part-wise similarity between two faces, which requires

finding the minimum distance between the features from each part on one face to the best

location in the other). Our work does not require pairwise alignment. Neither do many

other recent methods on LFW [

Pinto et al., 2009;

Wolf et al., 2008;

Taigman et al., 2009;

Wolf et al., 2009], all of which use a large set of carefully designed local features. The

best-performing of these [

Wolf et al., 2009] ranks the similarity of each face in an input pair

to those in a “background set,” which is similar in spirit to our simile classifiers.
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[More recent LFW results]

Our low-level features are designed following a great deal of work in face recognition

(and the larger recognition community) which has identified gradient direction and local

descriptors around fiducial features as effective first steps toward dealing with illumina-

tion [

Chen et al., 2000a;

Pentland et al., 1994;

Ling et al., 2007;

Lowe, 2003;

Everingham et

al., 2006]. Gallagher and Chen [

Gallagher and Chen, 2008] use estimates of age and gender

to compute the likelihood of first names being associated with a particular face, but to our

knowledge, no previous work has used attributes as features for face verification.

2.5 Plant Species Identification

To our knowledge, no previous work looked at automatic identification for plants. Our

approach uses shape retrieval techniques to identify plants based on their contour, and uses

histograms of curvatures as the low-level features for training attributes on. We describe

previous work in both of these areas.

2.5.1 Shape Retrieval

Curvature has long been used as a basic feature for 2D shape retrieval, but most prior meth-

ods computed them using differential methods, which are more sensitive to noise. Unlike us,

previous methods either don’t use histograms [

Mokhtarian et al., 1996;

Manay et al., 2006;

Koenderink and van Doorn, 1992], or only consider curvatures at a single scale [

Manay et

al., 2006]. Recent methods for shape retrieval [

Yang et al., 2008;

Yang et al., 2009] are

mostly based on using the Inner Distance Shape Context (IDSC) [

Ling and Jacobs, 2007],

itself an extension of the Shape Context [

Belongie et al., 2002]. IDSC looks at a histogram

of distances and angles of contour points to a central point, following the inner-contour.

This allows it to handle (small) articulations where necessary, but computational issues

make recovering fine-scale details difficult. The latest methods build upon this feature,

either by generalizing it [

Ling et al., 2010] and/or going beyond pairwise matching to im-

prove results [

Ling et al., 2010;

Kontschieder et al., 2009]. In our work, we limit ourselves

to improving the features and using attribute classifiers. We leave the learning aspects for
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future work.

2.5.2 Curvature Features

Most relevant to our work is the development of integral measures for computing curvatures,

first proposed by Connolly in 1986 [

Connolly, 1986]. This work showed how to use the solid

angle subtended by an object on a sphere to get a measure of the curvature at a point, in

the domain of protein identification. In the vision community, integral measures were first

introduced by Manay et al . [

Manay et al., 2006]. They proposed three integral measures in

2D (of which we use two) and gave approximations for their relations to the curvature at a

point. While their target application was also 2D shape retrieval, the features they generated

were at a single scale and were direct vectorizations of curvature values along a contour.

This meant that they also had to solve the alignment problem when comparing images,

resulting in lower accuracy (particularly in the presence of articulation or segmentation

artifacts) and a much slower algorithm (exhaustively trying all alignments or using the

expensive Hausdorff distance). It’s also unclear how their method would be applied to

images with multiple detected contours.

Our use of histograms over scale is also similar, in spirit, to the multiresolution his-

tograms introduced by Hadjimetriou, et al . [

Hadjidemetriou et al., 2004]. Both approaches

use a one-parameter family of operations to generate different histograms, which can be

concatenated together to make a more discriminative feature. In our case, this parameter

is the scale, implemented in our integral measures by simply changing the radius of the

disk or sphere over which we integrate. This has the effect of ignoring perturbations much

smaller than the radius. In contrast, multiresolution histograms are obtained by repeat-

edly smoothing an image, thus incorporating some spatial information by averaging nearby

pixels.
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Chapter 3

Created Labeled Image Datasets

Two recent trends in internet services have made collecting and labeling image datasets

dramatically easier. First, large internet photo-sharing sites such as

flickr.com and

picasa.com are growing exponentially and host billions of public images, some with textual

annotations and comments. In addition, search engines such as Google Images allow search-

ing for images of particular people (albeit not perfectly). Second, efficient marketplaces for

online labor, such as Amazon’s Mechanical Turk (MTurk) [

Amazon, 2011], make it possible

to label thousands of images easily and with very low overhead. We exploit both of these

trends to create large datasets of real-world images with attribute and identity labels. (See

Fig.

3.1.)

3.1 Collecting Face Images

We use a variety of online sources for collecting face images, including search engines such

as Yahoo Images and photo-sharing websites such as

flickr.com. Depending on the type

of data needed, one can either search for particular people’s names (to build a dataset

labeled by identity) or for default image filenames assigned by digital cameras (to use for

labeling with attributes). The latter technique allows one to find images that are otherwise

not returned in most users’ queries, i.e., images which are effectively “invisible.” Relevant

metadata such as image and page URLs are stored in the EXIF tags of the downloaded

images.
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Figure 3.1:

Creating labeled image datasets. Our system downloads images from the internet.

These images span many sources of variability, including pose, illumination, expression, cameras,

and environment. Next, faces and fiducial points are detected using a commercial detector [

Omron,

2010] and stored in the Columbia Face Database. A subset of these faces are submitted to the

Amazon Mechanical Turk service, where they are labeled with attributes or identity, which are

used to create the FaceTracer and PubFig datasets, respectively. Both datasets have been publicly

released for non-commercial use.

Next, we apply the OKAO face detector [

Omron, 2010] to the downloaded images to

extract faces. This detector also returns the 3D pose angles of each face (yaw, pitch, and

roll), as well as the locations of six fiducial points: the corners of both eyes and the corners

of the mouth. These fiducial points are used to align faces to a canonical frontal pose

(center of Fig.

3.2), via an affine transformation computed using linear least squares on the

detected points and corresponding points defined on a template face. The points on the

template face only have to be defined once, after which they can be automatically used for

all future alignments. The alignment procedure takes advantage of the fact that all faces

have common structure – i.e., two eyes, a nose, a mouth, etc.– and that we have fiducial

point detections available from a face detector. The points for faces in different poses are

shown in Fig.

3.2.

The distribution of face sizes, as measured by the number of pixels in the cropped face

box returned from the detector, are shown in Fig.

3.3a. Note that although most faces are

fairly small, there are still a fair number of very large faces as well. Figs.

3.3b and

3.3c

show the distribution of yaw and pitch angles, respectively, of faces in our database. Due

to both the natural bias of people being photographed frontally and the bias induced by

the face detector used, both are centered around 0 degrees (frontal), but still contain main

faces out to around 20 degrees or more.

For automatic face replacement, we also assign each face into one of 15 pose bins using

its out-of-plane rotation angles. Since the current version of the OKAO detector is less
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Figure 3.2:

The six fiducial points (red) and the outline of the replacement regions (blue) for each

of the pose bins. For attribute classification, we align everything to the center bin (frontal view)

using an affine alignment. For face replacement, which is more sensitive to alignment artifacts, we

align to the closest pose bin. Note that these templates are all defined in 2D, and require no 3D

geometry.

reliable for extreme poses, we restricted ourselves to poses within ±25◦ in yaw and ±15◦ in

pitch. The pose bins, shown in Fig.

3.2, span intervals of 10◦ from -25◦ to 25◦ for the yaw

and from -15◦ to 15◦ for the pitch. Since face replacement is more sensitive than attribute

classification, we define a separate generic face oriented at the center of each pose bin. Since

all faces within a bin are guaranteed to have fairly similar poses, we introduce fewer artifacts

than 3D methods that attempt to reconstruct faces across very different poses. The bins

are shown in Fig.

3.2. Finally, we also add the mirror image of each face, so as to increase

the number of candidates in our library.

The 3.1 million aligned faces collected using this procedure comprise the Columbia Face

Database. Various statistics about this database are presented in Table

3.1. We make two
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(a) Distribution of face sizes

(b) Distribution of yaw angles

(c) Distribution of pitch angles

Figure 3.3:

(a) The distribution of face sizes in our database. The face size is measured as number

of pixels in the cropped face box returned from the face detector. Note that although most faces are

fairly small, there are still quite a few large faces as well. (b) and (c) show the distribution of yaw

and pitch angles, respectively, of faces in our database. Due to both the natural bias of people being

photographed frontally and the bias induced by the face detector used, both are centered around

frontal views, but still contain many faces out to around 20 degrees or more.

observations about this database. First, from the statistics of the randomly-named images,

it appears that a significant fraction of them contain faces (25.7%), and on average, each

image contains 0.5 faces. Thus, it is clear that faces are ubiquitous and an important case

to understand. Second, our collection of aligned faces is the largest such collection of which

we are aware. It is truly a “real-world” dataset, with completely uncontrolled lighting

and environments, taken using unknown cameras and in unknown imaging conditions, with

a wide range of image resolutions. In contrast, existing face datasets such as Yale Face

A&B [

Georghiades et al., 2001], CMU PIE [

Sim et al., 2002], and FERET [

Phillips et

al., 2000] are either much smaller in size and/or taken in highly controlled settings. Even

the more expansive FRGC version 2.0 dataset [

Phillips et al., 2005] has a limited number
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Image Source

# Images

Down-

loaded

# Images

With

Faces

% Images

With

Faces

Total #

Faces

Found

Average #

Faces

Found Per

Image

Randomly Downloaded 4,289,184 1,102,964 25.715 2,156,287 0.503

Celebrities 428,312 411,349 96.040 285,627 0.667

Person Names 17,748 7,086 39.926 10,086 0.568

Face-Related Words 13,028 5,837 44.804 14,424 1.107

Event-Related Words 1,658 997 60.133 1,335 0.805

Professions 148,782 75,105 50.480 79,992 0.538

Series 7,472 3,950 52.864 8,585 1.149

Camera Defaults 895,454 893,822 99.818 380,682 0.425

Miscellanous 417,823 403,233 96.508 194,057 0.464

Total 6,219,461 2,904,343 46.698 3,131,075 0.503

Table 3.1:

Image database statistics. We have collected what we believe to be the largest set of

aligned real-world face images (over 3.1 million so far). These faces have been extracted using a

commercial face detector [

Omron, 2010]. Notice that more than 45% of the downloaded images

contain faces, and on average, there is one face per two images.

of subjects, image acquisition locations, and all images were taken with the same camera

type. The most comparable dataset is LFW [

Huang et al., 2007c], itself derived from earlier

work [

Berg et al., 2004]. These images were collected from news sources, and exhibit many

of the same types of variation as the Columbia Face Dataset.

3.2 Collecting Attribute and Identity Labels

For labeling images in our Columbia Face Database, we use the Amazon Mechanical Turk

(MTurk) service [

Amazon, 2011]. On MTurk, “requesters” can submit jobs to be completed

by workers, optionally setting various quality controls such as confirmation of results by

multiple workers, filters on minimum worker experience, etc. The jobs we created typically

took between 30 seconds and a few minutes, and paid between $0.01 to $0.10. Jobs included

data cleanup, online research, and manual annotation, among many others. More details
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on using MTurk effectively can be found in Appendix

A.

We submitted 110, 000 attribute labeling jobs showing 30 images to 3 workers per job,

presenting a total of over 10 million images to users. The jobs asked workers to select face

images which exhibited a specified attribute. (A few manually-labeled images were shown

as examples.) Only labels where all 3 people agreed were used. From this raw data, we were

able to collect over 145, 000 triply-verified positive and 1, 950, 000 negative attribute labels,

respectively, for about $6, 000. Table

3.2 lists the attributes and the number of confirmed

positive and negative labels for each.

Although this approach is somewhat similar to other labeling efforts in the computer

vision community – such as ImageNet [

Deng et al., 2009] and LabelMe [

Russell et al.,

2008], which focus on naming objects, images, and regions of images using nouns – there

are several important differences. One is that attributes need not be binary or even discrete;

a person’s age or the thickness of their eyebrows are both continuous attributes. (However,

in this work we only consider discrete attributes, to simplify labeling.) Another critical

difference is that visual attributes can be composed more freely than names, which generally

exist in a tree-structured hierarchy. This allows for the use of a set of general attributes,

which can be combined in an exponential number of ways to describe many objects at

different levels of specificity. Attributes can therefore compactly provide a great deal of

information, both about object properties and their identity. Finally, for many objects,

it can be prohibitively expensive to obtain a large number of labeled training images of

a specific object or category. In contrast, the same attribute can be exhibited by many

otherwise-unrelated objects, making it easier to find more training images.

For gathering identity labels, we used the images downloaded from keyword searches

on people’s names as raw inputs, which were then filtered to create the final set. We

submitted MTurk jobs asking users to select only the face images of a given person (of

whom a few examples were shown). We also ran additional jobs pruning images for quality,

good alignment, and some conservative duplicate-removal.

From these attribute and identity labels and our face database, we have created two

publicly available face datasets, described next.
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3.2.1 FaceTracer Dataset

The FaceTracer dataset is a subset of the Columbia Face Database, and it includes attribute

labels. Each of the 15, 000 faces in the dataset has a variety of metadata and fiducial points

marked. The attributes labeled include demographic information such as age and race, facial

features like mustaches and hair color, and other attributes such as expression, environment,

etc. There are 5, 000 labels in all. FaceTracer can be used as simply a dataset of real-world

images with face detections and fiducials; or by researchers wanting to train their own

attribute classifiers; or for any other non-commercial purpose.

The dataset is publicly available as a set of face URLs and accompanying data at

http://faceserv.cs.columbia.edu/databases/facetracer/

3.2.2 PubFig Dataset

The PubFig dataset is a complement to the LFW dataset [

Huang et al., 2007c]. It consists of

58, 797 images of 200 public figures. The larger number of images per person (as compared to

LFW) allows one to construct subsets of the data across different poses, lighting conditions,

and expressions for further study. Figure

3.4c shows the variation present in all the images

of a single individual (Steve Martin). In addition, this dataset is well-suited for recognition

experiments.

PubFig is divided into a development set of 60 people (shown in Fig.

3.4a), on which we

trained our simile classifiers, and an evaluation set of 140 people (shown in Fig.

3.4b). The

evaluation set was used to create a face verification benchmark similar to that from LFW.

All the data (with URLs to images) and evaluation benchmarks from PubFig are pub-

licly available for non-commercial use at

http://faceserv.cs.columbia.edu/databases/

pubfig/, which also includes information on pose, expression and illumination for the eval-

uation set, and the outputs of our attribute classifiers on all images in both the development

and evaluation sets.
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(a) PubFig Development set (60 individuals)

(b) PubFig Evaluation set (140 individuals)

(c) All 170 images of Steve Martin

Figure 3.4:

The PubFig dataset consists of 58, 797 images of 200 public figures – celebrities and

politicians – partitioned into (a) a development set of 60 individuals and (b) an evaluation set of

140 individuals. Below each thumbnail is shown the number of photos of that person. There is no

overlap in either identity or image between the development set and any dataset that we evaluate on,

including Labeled Faces in the Wild [

Huang et al., 2007c]. The immense variability in appearance

captured by PubFig can be seen in (c), which shows all 170 images of Steve Martin.
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Attribute Labels Attribute Labels Attribute Labels

5 o’ Clock Shadow 866 Indian 915 Pale Skin 966

Arched Eyebrows 996 Indoor 1,233 Photo of Face Photo 202

Asian 1,959 Male 2,365 Pointy Nose 1,030

Athletic Shot 192 Middle Aged 1,074 Posed Photo 1,060

Attractive Man 1,000 Mouth Closed 1,190 Receding Hairline 993

Attractive Woman 946 Mouth Obstruction 160 Redhead 980

Baby 980 Mouth Slightly Open 1,160 Rosy Cheeks 990

Bags Under Eyes 995 Mouth Wide Open 991 Round Eyes 1,128

Bald 901 Mustache 982 Round Face 1,092

Bangs 1,066 Narrow Eyes 1,209 Round Jaw 1,193

Big Lips 1,027 No 5 o’ Clock Shadow 1,391 Senior 950

Big Nose 1,013 No Bags Under Eyes 1,098 Sharp 1,376

Black 744 No Bangs 1,420 Shiny Skin 982

Black Hair 1,303 No Beard 1,438 Sideburns 880

Black and White 934 No Cleft Chin 1,543 Small Nose 1,047

Blocked Forehead 1,187 No Crow’s Feet 1,153 Smiling 1,376

Blond Hair 1,064 No Double Chin 1,437 Soft Lighting 985

Blue Eyes 1,052 No Eyewear 2,794 Square Face 1,021

Blurry 1,192 No Heavy Makeup 1,393 Square Jaw 789

Brown Eyes 1,025 No Mouth Obstruction 1,120 Straight Eyebrows 994

Brown Hair 1,018 No Mustache 2,653 Straight Hair 1,245

Bushy Eyebrows 939 No Necklace 443 Nose-Mouth Lines 798

Casual Photo 1,078 No Nose-Mouth Lines 1,010 Sunglasses 983

Child 1,134 No Sideburns 1,142 Teeth Not Visible 1,156

Chubby 1,006 Not Athletic Shot 1,474 Teeth Visible 1,390

Color Photo 1,438 Not Flushed Face 1,134 Thin 1,248

Crow’s Feet 954 Not High Cheekbones 1,018 Thin Eyebrows 1,096

Curly Hair 890 Not Pale Skin 1,148 Thin Lips 1,002

Double Chin 904 Not Photo of Face Photo 1,013 Unattractive Man 993

Eyeglasses 1,132 Not Receding Hairline 1,271 Unattractive Woman 1,093

Eyes Closed 995 Not Rosy Cheeks 1,147 Visible Forehead 1,421

Eyes Open 2,297 Not Shiny Skin 1,140 Wavy Hair 931

Female 2,465 Not Wearing Earrings 1,064 Wearing Earrings 1,062

Flash 1,053 Not Wearing Eye Shadow 660 Wearing Eye Shadow 187

Flushed Face 998 Not Wearing Hat 2,781 Wearing Hat 1,044

Frowning 965 Not Wearing Lipstick 1,390 Wearing Lipstick 962

Full Beard 697 Not Wearing Necklace 1,120 Wearing Necklace 1,030

Goatee 763 Not Wearing Necktie 979 Wearing Necktie 1,030

Gray Hair 960 Not Wrinkled Skin 1,037 White 2,541

Harsh Lighting 989 Obstructed Forehead 1,154 Wide Nose 1,025

Heavy Makeup 1,107 Outdoor 1,064 Wrinkled Skin 206

High Cheekbones 995 Oval Face 1,104 Youth 1,543

Table 3.2:

We have collected over 145, 000 triply-verified positive attribute labels for many attributes

and hundreds of thousands of images using Mechanical Turk [

Amazon, 2011].
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Chapter 4

Training Attribute Classifiers

Given a particular describable visual attribute – say “gender” for a face, or “serrated” for

a leaf – how can one train an estimator for the attribute? Let us address this problem

by first formalizing our notion of attributes. As stated in the previous section, attributes

can be thought of as functions ai that map instances X to real values ai. Evaluating the

function can be thought of as measuring the attribute. Large positive values of ai indicate

the presence or strength of the ith attribute, while negative values indicate its absence.

Consider the attribute “gender.” If images X1 and X2 are of males and image Y is of a

female, we would like our gender function ag to map these input images onto the real line

with males assigned positive values and females negative values. Notice that images X1 and

X2 could differ in many respects – lighting, pose, age, expression, and other attributes – and

yet the gender estimator should still mark them as male. We would like these estimators

to measure the degree of the attribute as well. For instance, if X1 were an image of Clint

Eastwood and X2 were an image of Orlando Bloom, we would want ag(X1) > ag(X2).

Similarly, the estimator for a different attribute – age, for example – should give reliable

results despite changes in gender.

Similes are another class of describable visual traits, which describe the similarity of a

face region between two different individuals. For example, we could say a person has “eyes

like Penelope Cruz’s” or a “mouth like Angelina Jolie’s.” We can formalize these two simile

functions as scruzeyes and sjoliemouth
; someone who shared Cruz’s eyes but not Jolie’s mouth

would thus have a positive value for the former and a negative value for the latter.
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We pose the problem of learning an attribute or simile classifier as one of supervised

learning: fitting a function ai to a set of labeled training data. If the training labels are ±1,

this can be seen as fitting a classification function; real-valued labels imply regression; and

if only ordering constraints are given, it becomes a problem of learning ranking functions.

In all cases, regularization is important because the inputs (low-level image features) are

very high-dimensional with complex variation, and there is always limited training data.

This regularization could be biased by the distribution of features actually observed, which

can be acquired from both labeled and unlabeled data. In this work, we consider mainly

binary classifiers.

To be useful, we will need several attribute classifiers (tens or hundreds). Thus, it

becomes infeasible to manually gather the necessary data, label the training examples,

design an appropriate set of relevant low-level features to use for classification, or train the

final classifier. Rather, everything must be automated.

4.1 Low-Level Features

As described in the previous chapter, face images are first aligned using an affine transfor-

mation. A set of k low-level feature extractors fj are applied to an aligned input image I

to form a feature set F(I):

F(I) = {f1(I), · · · , fk(I)} . (4.1)

We describe each extractor fj in terms of four choices: the region of the face to extract

features from, the type of pixel data to use, the kind of normalization to apply to the data,

and finally, the level of aggregation to use.

Our complete set of regions are shown in Fig.

4.1. The regions correspond to functional

parts of a face, such as the nose, mouth, etc., similar to those defined in the work on

modular eigenspaces [

Pentland et al., 1994]. Regions are defined manually in the affine-

aligned coordinate system. This only has to be done once, after which all aligned faces can

use the same region definitions. Our coarse division of the face allows us to take advantage

of the common geometry shared by faces, while allowing for differences between individual

faces as well as robustness to small errors in alignment. Prior to feature extraction, we
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(a) face

(b) eyebrows

(c) eyes

(d) nose

(e) cheeks

(f) mouth

(g) chin

(h) hair

(i) hair 2

(j) hair 3

(k) side hair

(l) forehead

(m) mustache

(n) neck

Figure 4.1:

The face regions used for automatic feature selection are shown here on an affine-aligned

face image. There is (a) one region for the whole face, and (b-n) other regions corresponding to

functional parts of the face, such as the mouth, eyes, nose, etc. Regions are large enough to contain

the face part across changes in pose, small errors in alignment, and differences between individuals.

The regions are manually defined, once, in the affine-aligned coordinate system, and can then be

used automatically for all aligned input faces.

Pixel Value Types Normalizations Aggregation

RGB None None

HSV Mean Normalization Histogram

Image Intensity Energy Normalization Mean/Variance

Edge Magnitude

Edge Orientation

Table 4.1:

Feature type options. A complete feature type is constructed by first converting the

pixels in a given region (see Fig.

4.1) to one of the pixel value types from the first column, then

applying one of the normalizations from the second column, and finally aggregating these values into

the output feature vector using one of the options from the last column.
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mask out the background to avoid contaminating the classifiers. We also use the detected

yaw angles of the face to first flip images so that they always face left. This small tweak

makes the classifier’s job slightly easier, as the “good” side of the face is always on the same

half of the image.

From each region, one can extract different types of information, as categorized in

Table

4.1. The types of pixel data to extract include various color spaces (RGB, HSV) as well

as edge magnitudes and orientations. To remove lighting effects and better generalize across

a limited number of training images, one can optionally normalize these extracted values.

One method for normalization is mean normalization, x̂ = x
µ , which removes illumination

gains. Another option is energy normalization, x̂ = x−µ
σ , which removes gains as well

as offsets. (In these equations, x refers to the input value, µ and σ are the mean and

standard deviation of all the x values within the region, and x̂ refers to the normalized

output value.) Finally, one can aggregate normalized values over the region rather than

simply concatenating them. This can be as simple as using only the mean and variance, or

include more information by computing a histogram of values over the region. A complete

feature type is created by choosing a region from Fig.

4.1 and one entry from each column

of Table

4.1. (Of course, not all possible combinations are valid; e.g ., it doesn’t make sense

to normalize hues.)

4.2 Feature Selection and Classifier Training

In creating a classifier for a particular attribute, we could simply extract all types of low-level

features from the whole face, and let a classifier figure out which are important for the task

and which are not. This, however, puts too great a burden on the classifier, confusing it with

non-discriminative features. Instead, we design a selection procedure which automatically

chooses the best features from a rich set of feature options. The chosen features are used

to train the final attribute or simile classifier.

Our feature selection uses an iterative greedy approach. In each iteration, we train

several individual classifiers on the current set of features in the output set, concatenated

with a single region-feature combination. Each classifier’s performance is evaluated using



CHAPTER 4. TRAINING ATTRIBUTE CLASSIFIERS 36

Figure 4.2:

Training data for the attribute classifiers consists of face images that match the given

attribute label (positive examples) and those that don’t (negative examples). Shown here are a few

of the training images used for four different attributes. Final classifier accuracies for all 73 attributes

are shown in Table

4.2.

cross-validation. The features used in the classifier with the highest cross-validation accu-

racy are added to the output set. We continue adding features until the accuracy stops

improving, up to a maximum of 6 low-level features. For computational reasons, we drop

the lowest-scoring 70% of features at each round, but always keeping at least 10 features.

Our classifiers are Support Vector Machines (SVMs) [

Cortes and Vapnik, 1995] with

RBF kernels, trained using libsvm [

Chang and Lin, 2001]. For each classifier, we use between

500 to 2000 positive and negative examples each, and perform a grid search over the C and

γ parameters for the SVM. The entire process is fully automatic, and takes a few hours

of computation time per attribute trained, using a small grid of roughly 10 Intel Xeon

processors, running at 3.0 Ghz each. (Some example timings: “gender” took about 29
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(a)

(b)

(c)

(d)

Figure 4.3:

Illustrations of automatically-selected region and feature types for (a) gender, (b) smiling,

(c) environment, and (d) hair color. Each face image is surrounded by depictions of the top-ranked

feature combinations for the given attribute. Notice how each classifier uses different regions and

feature types of the face.

hours of total machine-hours, while “sideburns” took about 9.) We note that our procedure

is by no means optimal; picking optimal features for non-linear classifiers is still an open

problem in machine learning. Nevertheless, we obtain excellent results in practice.

Using the Columbia Face Database and the learning procedure just described, we have

trained a total of 73 attribute classifiers. Their cross-validation accuracies are shown in

Table

4.2, and typically range from 80% to 90% (random performance would be 50% for

each attribute). Analysis of the chosen features indicate that all regions and feature types

are useful (to varying extents), suggesting the importance of performing feature selection.

In Fig.

4.3, we visually illustrate the top feature combinations chosen for the gender,

smiling, environment, and hair color attributes. This figure shows the ability of our feature

selection approach to identify the relevant regions and feature types for each attribute.
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Attribute Acc. Attribute Acc.

Gender 85.8% Nose Size 86.5%

Asian 93.8% Nose Shape 87.0%

Caucasian 91.5% Nose-Mouth Lines 93.2%

African American 94.6% Mustache 92.5%

Indian 91.9% Mouth Closed 90.0%

Baby 93.0% Mouth Open 84.6%

Child 80.3% Mouth Wide Open 89.0%

Youth 87.7% Lip Thickness 82.4%

Middle-Aged 84.9% Wearing Lipstick 86.7%

Senior 92.0% Teeth Visible 91.2%

Black Hair 90.8% 5 o’clock Shadow 89.3%

Blond Hair 88.4% Beard 88.7%

Brown Hair 74.9% Goatee 80.4%

Gray Hair 89.9% Double Chin 81.0%

Bald 90.4% Jaw Shape 66.1%

Wearing Hat 89.1% Chubby Face 81.2%

Curly Hair 70.1% Oval Face 73.3%

Wavy Hair 66.6% Square Face 78.6%

Straight Hair 78.4% Round Face 75.5%

Receding Hairline 86.8% Heavy Makeup 89.0%

Bangs 91.5% Shiny Skin 84.2%

Visible Forehead 89.3% Pale Skin 89.4%

Obscured Forehead 77.0% Flushed Face 88.8%

Blocked Forehead 81.2% Smiling 95.9%

Eyebrow Thickness 94.6% Frowning 95.3%

Eyebrow Shape 79.7% Wearing Necktie 83.7%

Eye Shape 89.7% Wearing Necklace 67.3%

Eyes Open 92.3% Blurry Image 93.4%

Eye Color 86.8% Harsh Lighting 77.0%

No Eyewear 93.3% Flash Lighting 73.4%

Eyeglasses 92.4% Soft Lighting 68.5%

Sunglasses 96.5% Environment 85.3%

Bags Under Eyes 85.4% Color Photo 97.9%

Wearing Earrings 77.6% Posed Photo 71.9%

Sideburns 72.3% Attractive Man 74.2%

High Cheekbones 86.1% Attractive Woman 82.6%

Rosy Cheeks 86.2%

Table 4.2:

We present accuracies of the 73 attribute classifiers trained using the procedure described

in this chapter. Example training images for the attributes in bold are shown in Fig.

4.2.
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Figure 4.4:

Each simile classifier is trained using several images of a specific reference person as the

positive data, limited to a small face region such as the eyes, nose, or mouth, and the corresponding

regions from images of other people as the negative data. We show here three positive and three

negative examples each, for four regions on two of the reference people used to train these classifiers.

4.2.1 Training Simile Classifiers

Simile classifiers measure the similarity of part of a person’s face to the same part on a set

of reference people. We use the 60 individuals from the development set of PubFig as the

reference people. Figure

4.4 shows examples of regions selected from two reference people in

the training data. For each reference person in the training set, several simile classifiers are

trained for each face region (one per feature type), yielding a large set of total classifiers.

For each reference person, we train support vector machines to distinguish a region

(e.g ., eyebrows, eyes, nose, mouth) on their face from the same region on other faces.

We manually choose eight regions and six feature types from the set of possible features

described in Table

4.1 and train classifiers for each reference person/region/feature type

combination, without feature selection, yielding 2, 880 total simile classifiers. Each simile

classifier is an RBF SVM, trained using at most 600 positive samples of a reference person
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Error Rates

Classification Method Gender Smiling

Attribute Classifiers 8.62% 4.67%

Pixel comp. feats. [

Baluja and Rowley, 2007] 13.13% 7.41%

Haar-like feats. [

Shakhnarovich et al., 2002] 12.88% 6.40%

Full-face SVM [

Moghaddam and Yang, 2002] 9.52% 13.54%

Table 4.3:

Comparison of attribute classification accuracy for “gender” and “smiling” attributes.

Our fully-automatic feature selection and training procedure learns better classifiers than prior state-

of-the-art methods for both attributes. (For this comparison, classifiers were trained and evaluated

using only near-frontal faces.)

and at most 10 times as many negative samples, randomly chosen from images of other

people in the training set.

We emphasize two points. First, the individuals chosen as reference people do not appear

in LFW or other benchmarks on which we produce results. Second, we train simile classifiers

to recognize similarity to part of a reference person’s face in many images, not similarity to

a single image. The use of face parts increases the number of classifiers, but makes each one

easier to learn, while the use of several input images allows for much better generalizability.

4.3 Comparisons to Prior Work

While we have designed our classifier architecture to be flexible enough to handle a large

variety of attributes, it is important to ensure that we have not sacrificed accuracy in the

process. We therefore compare our approach to three previous state-of-the-art methods for

attribute classification: full-face SVMs using brightness normalized pixel values [

Moghad-

dam and Yang, 2002], Adaboost using Haar-like features [

Shakhnarovich et al., 2002], and

Adaboost using pixel comparison features [

Baluja and Rowley, 2007]. Since these works

have mostly focused on gender classification, we use that attribute as the first testing cri-

teria. In addition, we also test performance on the “smiling” attribute – which we expect

to be localizable to a small region of the face: the mouth.

Results are shown in Table

4.3. Our method performs the best in all cases (in some



CHAPTER 4. TRAINING ATTRIBUTE CLASSIFIERS 41

cases significantly so). This highlights the power of doing feature selection; in particular,

we see that the full-face SVM method, while performing reasonably well on gender, did

much worse on a localized attribute like smiling. Note that for the purposes of this test, we

limited training and evaluation images to mostly frontal faces.
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Chapter 5

Face Search

With the ubiquity of face images on the internet and in people’s private collections, new

tools are needed for searching and exploring these ever-increasing image datasets and video

streams. The possible applications for image search are almost endless, even when limited

to images of faces. As just a few examples: A researcher for ABC World News might

search a video archive for all clips of President Nixon “laughing.” A mother might browse

her personal photo collection for a holiday card photo, limiting the search by typing “kids

eyes-open smiling.” Also, one could augment attribute searches with images. For example,

a law enforcement officer might upload an image of a suspect and search for images of him

with no beard and glasses.

The ability of current search engines to find images based on facial appearance is limited

to images with text annotations. Yet, there are many problems with annotation-based

search of images: the manual labeling of images is time-consuming; the annotations are

often incorrect or misleading, as they may refer to other content on a webpage; and finally,

the vast majority of images are simply not annotated. As mentioned in the introductory

chapter, Fig.

1.4 shows the results of the query, “smiling asian men with glasses,” using both

a conventional image search engine and an attribute-based one. The conventional search

engine’s reliance on text annotations results in it finding images that have no relevance to

the query. In contrast, our prototype FaceTracer system handles this same query much

better – returning only relevant results.

The FaceTracer engine uses simple text-based queries as inputs, since these are both
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familiar and accessible to most internet users, and correspond well to describable visual

attributes. Search queries are mapped onto attribute labels using a dictionary of terms.

Users can see the list of attributes supported by the system on the search page, allowing

them to construct searches without having to guess what kinds of queries are allowed. This

approach is simple, flexible, and yields excellent results in practice. Furthermore, it is easy

to add new phrases and attributes to the dictionary, or maintain separate dictionaries for

searches in different languages.

5.1 Details

Like much of the work in content-based image retrieval, the power of our approach comes

from automatically labeling images off-line on the basis of a large number of attributes. At

search time, only these labels need to be queried, resulting in almost instantaneous searches.

Furthermore, it is easy to add new images and face attributes to our search engine, allowing

for future scalability. Defining new attributes and manually labeling faces to match those

attributes can also be done collaboratively by a community of users.

The search problem is simple to state: a user enters one or more query terms, and

the system returns results ranked by relevance. An input query Q, consisting of text pro-

vided by the user, is parsed using a language parser p(Q). This parser takes the text

and converts it into a set of weighted attributes. For example, the query “male” might

translate to the attribute set {male = 1}, whereas a query “boy” might translate to

{male = 1, child = 1}. This simple representation also allows for easy handling of nega-

tions, i.e., “not smiling” could map to {smiling = −1}. For our initial prototype, we used

a simple regular expression-based parser, which was a lookup table from various regular

expressions to sets of weighted attributes.

Once we’ve obtained a set of attributes Aj with corresponding weights wj , we use a

search composition function C to compute the final results. The purpose of this function is

to take the weighted attributes and return a score si for each face image Ii. We then show

users the highest-scored faces. The simplest function C is the weighted product:

si =
∏
j

wjAj(Ii) (5.1)
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The scores Aj(Ii) could be taken to be the distance to the classifier decision boundary

(since we use SVMs as our classifier), but this distance could mean different things for

different attributes. We thus first normalize the outputs by fitting a Gaussian to the outputs

of each classifier, using a held-out set of both positive and negative examples. This allows

for much better rankings when multiplying several attribute values together, ensuring that

the images with high confidences for all attributes are shown first.

At the end of this chapter, we describe some ongoing work on a more robust composition

function C.

5.2 Results

Example queries on our search engine are shown in Figs.

5.1 and

5.2. The returned results

are all highly relevant. Fig.

5.1d additionally demonstrates two other interesting things.

First, it was run on a personalized dataset of images from a single user, showing that this

method can be applied to specialized image collections as well as general ones. Incorporating

our search engine into photo management tools would enable users to quickly locate sets

of images and then perform bulk operations on them (e.g., edit, email, or delete). (Since

current tools depend on manual annotation of images, they are significantly more time-

consuming to use.) Another advantage of our attribute-based search on personal collections

is that with a limited number of people, simple queries can often find images of a particular

person, without requiring any form of face recognition.

Second, it shows that we can learn useful things about an image using just the appear-

ance of the faces within it – in this case determining whether the image was taken indoors

or outdoors.

5.3 Discussion

As we continue to grow and improve our system, we would also like to address some of our

current limitations. First of all, any improvements in our attribute classification pipeline

will, of course, directly carry-over here to improve the results. A particular aspect to

highlight is the reduction of bias in the classifiers. Sometimes, due to the correlation of
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(a) “young blonde women”

(b) “older men with mustances”

(c) “dark-haired people with sunglasses”

(d) “children outside”

Figure 5.1:

The results of various queries are shown in (a)-(c) using our attribute-based FaceTracer

search engine. Note how relevant all the results are. (More results can be seen in Fig.

5.2.) The

bottom-right panel (d) shows the results of the query “children outside,” applied to a single user’s

personal photos. One could integrate our attribute-based search system into an image organization

program such as Picasa or iPhoto to allow users access to such cabilities for their own photos. Finally,

note that the results in (d) were correctly classified as being “outside” using only the cropped face

images, showing that faces often contain enough information to describe properties of the image not

directly related to faces.
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(a) “adults outside”

(b) “asian babies”

(c) “men with dark hair”

(d) “kids indoors not smiling”

(e) “middle-aged white men”

(f) “smiling asian men w/glasses”

Figure 5.2:

More FaceTracer search results.
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some attributes (e.g ., women tend to have thinner eyebrows), the training data can be

severely biased – much more so than the inherent correlation – because labelers will pick

the “easy” solution of simply labeling only males with thick eyebrows and only females

with thin eyebrows. The “eyebrow thickness” classifier then becomes merely a “gender”

classifier, thus throwing off results. By enforcing a good mix of genders in the training

data, or being more explicit in the instructions, this bias can be reduced. See Appendix

A

for more details.

As far as the actual search system, both the language parser p(Q) and the composition

function C can be greatly improved. The former can take advantage of the many advances in

natural language processing to allow for more natural and/or complex queries, for example

with various conjunctions and disjunctions. It could also be extended to other languages,

to facilitate non-english queries.

The second issue, the composition function, we have already begun to look at. Viewing

the composition of multiple attributes as a fusion problem, we have taken advantage of

recent work on robust fusion [

Scheirer et al., 2010] to output more reliable ranking scores.

This method fits a Weibull distribution to the outputs of each classifier and then uses that

to predict when individual attribute values are less reliable, resulting in a new normalization

procedure that is more robust.

Another exciting direction to pursue is more fully exploring the space of faces by allowing

for users to find “similar” images on the basis of some criteria – other attribute values, or

low-level similarity, or some proxy for identity. If one thinks of faces contained within a

hypercube where each dimension represents an attribute, then the search system we have

described thus far lets users jump to any edge of this cube. But to explore inside it, we

would need some other sort of mechanism, among the most natural of which would be some

kind of similarity search.

This idea of similarity search plays a crucial role in the following chapter, which describes

an automatic method for face replacement.
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Chapter 6

Face Replacement

As a counterpoint to the search application described in the previous chapter, there are many

cases where images online are too easily available, with huge privacy implications. Online

systems such as Google Street View and EveryScape allow users to interactively navigate

through panoramic images of public places created using thousands of photographs. Many

of the images contain people who have not consented to be photographed, much less to have

these photographs publicly viewable. Identity protection by obfuscating the face regions

in the acquired photographs using blurring, pixelation, or simply covering them with black

pixels is often undesirable as it diminishes the visual appeal of the image. Furthermore,

many of these methods are currently applied manually, on an image-by-image basis (perhaps

if someone complains). Since the number of images being captured is growing rapidly, any

manual approach will soon be intractable. We believe that an attractive solution to the

privacy problem is to remove the identities of people in photographs by automatically

replacing their faces with ones from a collection of stock or synthetic images.

Automatic face replacement has other compelling applications as well. For example,

people commonly have large personal collections of photos on their computers. These

collections often contain many photos of the same person(s) taken with different expressions,

and under various poses and lighting conditions. One can use such collections to create novel

images by replacing faces in one image with more appealing faces of the same person from

other images. For group shots, the “burst” mode available in most cameras can be used

to take several images at a time. With an automatic face replacement approach, one could
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Figure 6.1:

The main steps of our automatic face replacement algorithm. Given an input face that

needs to be replaced, we first search the face library for faces that have similar attributes as the

input face. Next, we adjust the color and lighting of the selected faces to match those of the input

face. Finally, we rank the replacement candidates using a boundary metric. Given the large and

diverse nature of our face library, the top ranked candidates almost always correspond to highly

realistic face replacements.

create a single composite image with, for example, everyone smiling and with both eyes

open.

In this chapter, we present a complete system for fully-automatic face replacement in

photographs. (Figure

1.1 shows example results.) As described in Chapter

4, we have built

a large library of face images which can be used for de-identification. Each face within the

library is cropped from its original image, labeled with yaw and pitch pose angles estimated

by the face detector, binned into one of several pose bins, and then aligned to a coordinate

system common to all images in the chosen pose bin. This library can be used for our

generic face replacement and de-identication applications. For the personalized replacement

application mentioned previously, we can build smaller, non-generic face libraries from the

users’ personal photo collections.

The basic steps of our replacement approach are shown in Figure

6.1. When our

system is supplied with an input image containing a face to be replaced, it performs face

detection to extract the face, estimates the pose, and aligns the face to the appropriate

pose bin-specific coordinate system. The system then looks into the face library to select

possible candidate faces to use for replacement. Note that only candidate faces within the

same pose bin of the library are considered; this ensures that replacement faces will be
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relatively similar in pose, thus allowing the system to use simple 2D image-compositing

instead of 3D model-based approaches which require precise alignment. In addition, the

system requires that the selected candidate faces are similar to the input face in image

quality, color, lighting, and the boundary of the replacement region. These candidate faces

can also optionally be further pruned using attribute classification outputs to ensure, e.g .,

that gender, age, and ethnicities are preserved. Once possible candidate faces have been

selected, the system transforms the color and lighting of these candidate faces to match

those of the input face and blends the results into the input photograph. As a final step,

to weed out inferior replacements, the system ranks the resulting images according to how

well the adjusted candidate replacement face fits the surrounding region in the original

photograph and chooses the highest ranked replacement.

A key contribution of our work is that it enables automatic replacement of faces across

different pose, lighting, facial expression, image resolution, image blur, and skin tone – all

without using 3D reconstruction techniques or manual assistance. We demonstrate how our

approach can be applied to large-scale face de-identification, as well as a number of im-

age manipulation tasks such as face swapping and creating composite group photographs.

Without automation, it would be very difficult (or even impossible) to tackle these appli-

cations, setting our work in a different class from previous non-automatic approaches such

as [

Blanz et al., 2004]. We also present results of a user study which shows that people are

almost equally likely to classify real face images and our replaced face images as being real.

6.1 Appearance-Based Selection

When given an aligned input face to replace, the first step in our approach is to select can-

didate faces from our library which yield plausible replacements. In addition to the various

attributes already mentioned in previous chapters, we define a number of new attributes

that allow for more detailed measurements of the similarity of face appearances. In this

section, we describe these attributes and the corresponding match criteria used to select

candidate replacement faces from the library.
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6.1.1 Pose, Resolution, and Image Blur

In order to produce a perceptually realistic replacement image, the poses of the input and

replacement faces must be quite similar – more similar even than would be guaranteed by

belonging to the same pose bin. This is because, while an in-plane rotation between the

two faces can be compensated using the alignment procedure described in Chapter

4, large

out-of-plane rotations, which are given by the yaw and pitch angles, are hard to adjust

using image-based approaches. Therefore, we select faces from the library whose yaw and

pitch angles differ by no more than 3◦ from the yaw and pitch of the original face.

It is also important to ensure that replacement faces have similar resolutions and blur

properties. Significant differences in either attribute would cause a noticeable mismatch

between the inside and outside regions of replaced faces. We define the resolution of facial

images using the distance between the centers of the eyes. Since higher resolution images

can always be downsampled, we only have to define a lower bound on the resolution of

candidate faces. Therefore, we select faces from the library whose eye distance is at least

80% of the eye distance of the face to be replaced.

While there exists extensive work on estimating blur in images [

Kundur and Hatzinakos,

1996;

Fergus et al., 2006], we use a simple heuristic metric to measure the similarity of the

degree of blur in two images. This blur distance compares the histograms of the image

gradient magnitude in the eye region. First, we normalize the grayscale intensity in the eye

region for each of the aligned facial images to zero mean and unit variance. Second, we

compute histograms h(1) and h(2) of the gradient magnitude in the normalized eye regions.

Since high values of the gradient magnitude are usually associated with sharp edges, the

higher-index bins of the histograms are more indicative of the blur amount. Therefore, we

multiply the histograms by a weighting function which uses the square of the histogram

bin index, n: h̃(i)(n) = n2h(i)(n), i = 1, 2. Finally, we compute the blur distance as the

Histogram Intersection Distance (HID) [

Rubner et al., 2000] between the two weighted

histograms, h̃(1) and h̃(2), as follows: dB = HID(h̃(1), h̃(2)). Only images with a weighted

distance in the top 50% are kept as candidates.
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6.1.2 Attributes

For many applications, it is essential to maintain certain attributes after the replacement,

e.g ., gender, age, ethnicity. While the color and lighting adjustment steps described later

can handle changes in these attributes, to some degree, the resulting images might still look

unrealistic, often falling into the so-called “uncanny valley.” Therefore, we can optionally

filter by any of our attributes described in previous chapters.

6.1.3 Color and Lighting

The appearance of a face in a photograph is greatly affected by the incident illumination

in the scene and the skin color of the face. If we attempt to replace a face with another

face which was captured under significantly different illumination or with a large difference

in skin color, the replacement result would appear perceptually incorrect. Although our

recoloring and relighting algorithm, presented in Sec.

6.2.1, allows us to adjust for small

differences in color and lighting between the two faces, drastic variations of illumination in

terms of shadows and dynamic range are much harder to handle. Instead, we take advantage

of the fact that our library should already contain faces captured under illuminations similar

to that of the face to be replaced, and with similar skin color. For example, frontal flash

images are especially common in our library, and thus our relighting technique can easily

handle such cases, given that we find suitable frontal flash candidate faces. Our approach

is to estimate the lighting and average color within the replacement region for each of the

aligned faces in the library and, given an input face, to select faces whose lighting and color

are fairly similar to the input face.

Since we only have a single image of a face, illumination in the scene cannot be accurately

recovered using traditional techniques that measure or control the lighting [

Debevec, 1998;

Debevec et al., 2000]. Instead, we use a face relighting method similar to the ones used in

[

Wen et al., 2003] and [

Wang et al., 2007b]. We represent the face shape as a cylinder-like

“average face shape,” aligned to the coordinate system of the corresponding pose bin. We

use a simple orthographic projection to define the mapping from the surface to the face.

Furthermore, we assume that faces are Lambertian, and the image intensity Ic(x, y) of the

face replacement region in each of the RGB color channels can be approximated as Ĩc(x, y)
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(c) Face replacements for different stages of the pipeline

(a) Original photograph (b) Top ranked faces

Rank 2Rank 2Rank 1Rank 1

Rank 3Rank 3 Rank 4Rank 4

Adjustment Selection Adjustment Ranking 

Alignment 

Resolution 
Lighting 

Color 
Blur 

Seam  
Signature 

Recolor 
Relight 

Boundary 
Metric 

     

     

     

     
 

Rank 1Rank 1

Rank 2Rank 2

Rank 3Rank 3

Rank 4Rank 4

Figure 6.2:

(a) An original photograph, (b) the faces for the top ranked replacements and (c) face

replacement results after each step in our algorithm (as illustrated in Fig.

6.1). Each column shows

the results that would be obtained if we were to not perform any of the subsequent steps (other

than blending). Thus, the first column shows replacement results matching only the pose of the two

faces, without any kind of selection or appearance adjustment. The subsequent columns show the

results after adding basic selection, seam-signature filtering, appearance adjustments, and ranking,

respectively. The results get better in each column. Note that since there is no notion of order prior

to the last column, we show randomly selected replacements.
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using a linear combination of 9 spherical harmonics [

Ramamoorthi and Hanrahan, 2001;

Basri and Jacobs, 2003]:

Ĩc(x, y) = ρc

9∑
k=1

ac,kHk(n(x, y)), c ∈ {R,G,B}, (6.1)

where n(x, y) is the surface normal at the image location (x, y), ρc are the constant albedos

for each of the three color channels (which represent the average color within the replacement

region), the coefficients ac,k describe the illumination conditions, andHk(n) are the spherical

harmonic images.

Since the spherical harmonics Hk(n) do not form an orthonormal basis in the replace-

ment region, we cannot use the l2 distance between the coefficients ac,k as a similarity

measure of the lighting between two faces. Instead, we create an orthonormal basis ψk(x, y)

by applying the Gram-Schmidt orthonormalization to the harmonic basis Hk(n). The ap-

proximate image intensity Ĩc(x, y) can thus be expanded using this orthonormal basis as

Ĩc(x, y) = ρc

9∑
k=1

βc,kψk(x, y), c ∈ {R,G,B}. (6.2)

We estimate the 3 albedos ρc and the 27 illumination coefficients βc,k by minimizing the sum

of squared differences (SSD) between the right-hand side of Equation

6.2 and the aligned

face image Ic(x, y) within the replacement region.

We convert the RGB albedos to the HSV color space and use the l∞ metric to compare

the average color within the replacement regions of the input face image I(1) and the re-

placement candidate I(2). Only those candidates whose hue and saturation are within 5%

and brightness within 10% of the input image are kept. To compare the illuminations, we

define the lighting distance dL as the l2 distance between corresponding lighting coefficients

(and keep only the top 50%):

dL(I(1), I(2)) =

 ∑
c∈{R,G,B}

9∑
k=1

(
β

(1)
c,k − β

(2)
c,k

)2

1/2

. (6.3)

The second column of figure

6.2c shows replacement results after selection based on

resolution, blur, color, and lighting. Notice that the results are, in general, much better

than those in the previous column (without pruning based on attributes).
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6.1.4 Seam Signature

Although our selection process so far has already removed many unsuitable candidates

for replacement, another important criteria to match is the appearance of the face along

the boundary of the replacement region. Differences across this boundary (e.g., caused by

facial hair, eyebrows, and hair covering the forehead) can produce visible artifacts in the

final output, even after image blending. To avoid these problems, we introduce a simple

filter which uses a “signature” of the seam along the replacement boundary. We first resize

each aligned image in the replacement library to 256x256 pixels and then define the seam

to be a strip containing all pixels inside the replacement region within a 6 pixel radius of its

boundary. We create the seam signature by unfolding the seam into a rectangular image, and

normalize it so that the average intensity is the same for all faces in the library. This seam

signature provides an efficient representation of the texture along the replacement mask

boundary. To reduce the dependence of the seam signatures on lighting, we compare the

seam signatures using the L2 distance of the absolute value of the gradient in the direction

along the seam. To avoid penalizing gradual changes in appearance, we use a distance of 0

for all pixels within 8% of each other, only using the L2 distance for pixels which differ by

more than this amount. The better quality of replacement results in the third column of

figure

6.2c shows that this criteria is important for filtering faces with significant differences

along the boundary of the replacement region.

6.1.5 Searching the Library

Selecting candidate faces from the library using the various appearance attributes intro-

duced in this section is a nearest neighbor search problem. This can be computationally

intensive due to the high dimensionality of the blur, illumination and seam signature fea-

tures. To speed things up, we use a sequential selection approach. Given a query face,

we first execute a fast SQL query to select faces whose pose, resolution and average colors

(given by the albedo ρc, c ∈ {H,S, V }) are close to those of the input face. This step allows

us to reduce the number of potential candidate replacements from 33,000 to just a few

thousand faces. Next, we further prune the list of candidates using the blur distance dB

and, subsequently, the lighting distance dL. Finally, we select the top 50 candidate faces
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which match the seam signature of the input face. By running these steps in increasing

order of complexity, our C++ implementation of the appearance-based selection algorithm

requires less than a second to generate a list of candidate replacements for an input face

image.

6.2 Appearance Adjustment and Ranking

6.2.1 Color and Lighting Adjustment

While our selection algorithm described thus far is essential for finding candidate images to

replace an input face with, it is not sufficient for creating realistic results – we must adjust

the lighting and color properties of the candidates to match those of the input image. This

is true even with very large face libraries because the chance of finding another image with

exactly the same lighting (with matching pose and other attributes) is extremely small. For

applications with smaller libraries, such as personalized replacement, the problem is even

more acute.

The first step in the adjustment is to use the quotient image formulation [

Liu et al., 2001;

Wen et al., 2003] to apply the lighting of the input image I(1) to the replacement candidate

image I(2), within the replacement region. Using Equation

6.2, we can write the approximate

image intensities for each of these images as

Ĩ(1,2)
c (x, y) = ρ(1,2)

c

9∑
k=1

β
(1,2)
c,k ψk(x, y), c ∈ {R,G,B}. (6.4)

To obtain our relit replacement Î(2), we simply multiply the replacement candidate image

by the ratio of the approximate images:

Î(2)
c = I(2)

c

(
Ĩ

(1)
c

Ĩ
(2)
c

)
, c ∈ {R,G,B}. (6.5)

Note that since Ĩ(1)
c and Ĩ

(2)
c each capture only low-frequency lighting and color informa-

tion, their ratio varies smoothly. Thus, the high-frequency content (e.g., highlights) of the

replacement image is preserved during this relighting process. Furthermore, our color and

lighting selection step (described in section

6.1.3) insures that the two face images are suf-

ficiently similar in appearance that this ratio does not cause severe overflows or underflows
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(a) Input

(b) Candidate

(c) Without adjustment

(d) After recoloring

Figure 6.3:

Color and lighting adjustment. We replace (a) the face in the input photograph with

(b) the candidate face selected from the library. Replacement results are shown in (c) without and

(d) with recoloring and relighting. Notice the significantly improved realism in the final result.

in the output. Finally, to match appearances even more closely, we transform the relit

candidate image so that its RGB histogram matches that of the original input image within

the replacement region.

Figure

6.3 shows the importance of our adjustment algorithm. Using the input image

in Fig.

6.3a and the replacement candidate in Fig.

6.3b, we would obtain the result shown

in Fig.

6.3c if we simply blended in the candidate face without performing appearance

transformation. Note that even though the faces in this example have somewhat similar skin

colors, the replacement result looks noticeably incorrect without adjustment. In contrast,

the final replacement with adjustment, shown in Fig.

6.3d, looks highly realistic.

6.2.2 Replacement

The replacement step is simple. Since the input and candidate faces are aligned, we copy

over the pixels in the corresponding replacement regions, outlined in blue in figure

3.2,

from the candidate face to the input face. To ensure that the result is seamless, we apply

feathering over a small number of pixels along the region boundary. Since this replacement

result is in the coordinate system used for alignment, it is then transformed back to the

coordinate system of the original face image. Examples of replacements created after just

this alignment step – without selection and adjustment – are shown in the first column of
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figure

6.2c.

6.2.3 Boundary Ranking

To pick the best replacement results from our list of candidates, we rank the candidate

replacements using a metric measuring their perceptual similarity to the input image along

the boundary of the replacement region. This metric measures the difference between the

original input and the candidate replacement to find mismatches in alignment of facial

appearance (such as eyebrows), as well as occlusions and drastic lighting changes. The

width of this strip is equal to 11% of the distance between the eyes (located inward from

the region boundary), and this same strip is used for the final feathering operation. The

ranking is computed using L2 distance in CIE LAB space between the candidate replacement

strip and the input strip. The last column of figure

6.2c shows the highest ranked results

for the input face shown in figure

6.2a. The original candidate faces are shown in figure

6.2b. One can see that these results look better than the ones shown in the previous column

(without ranking).

6.3 Results

Figure

6.4 shows several examples of the results obtained using our system. Each example

shows, in order from left to right, the input face image, a candidate face, and the replace-

ment result. Note the realism of the results, despite differences in pose, lighting and facial

appearance. Figures

6.4c and d show examples of face replacement across different ages

and genders, just to show how well the compositing works. Note that for most real-world

applications, we would enforce consistency in these attributes and prevent such candidates

from being used for replacement.

We now describe several applications of our system.

6.3.1 Face De-Identification

To preserve privacy in online collections of photos, one can use our system to automatically

replace each face in an input image with the top-ranked candidate taken from a collection
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(b)

(c)

(d)

(a)

Figure 6.4:

Face replacement results. Each row contains (from left to right) the original photograph,

a candidate face selected from the library, and the replacement result produced automatically us-

ing our algorithm. The age and gender mismatches in (c) and (d) could be avoided by enforcing

consistency across those attributes (which we disabled for these results).
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(a)

(b)

Figure 6.5:

Face De-Identification and Switching. (a) Result of automatically replacing the input

faces (top) with the top-ranked candidate from the face library to obtain the de-identified results

(bottom). No user intervention was used to produce this result. (b) Result of switching the two

input faces (left) with each other to obtain the de-identified output (right). Note that it is difficult

to recognize either face in the switched result.
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Figure 6.6:

Personalized Replacement. The face of Jim Carrey (from Man on the Moon, courtesy

of Universal Pictures, c©1999 Universal Pictures) in the input image (left panel) is replaced using

the candidate outlined in red (top panel) to create the replacement result (right panel). The list of

candidates is automatically generated to match the input face.

of stock photographs. Figure

6.5a shows an example of such a replacement. We stress the

fact that no user interaction was required to produce this result.

6.3.2 Switching Faces

As a special case of face de-identification (or for use as a special effect), we can limit the

system to use candidates only within the same image, resulting in the switching of faces.

Figure

6.5b shows the result of switching Elvis Presley and Richard Nixon’s faces. Notice

that neither face in the result can be readily identified as either Elvis or Nixon. (Here, we

first flipped each face before replacement, so that the poses matched better.)

6.3.3 Personalized Face Replacement

With a personalized library of images, one can use our system to create novel images by

replacing faces in one photograph with a more appealing one from another photo. This

library can be created in a variety of ways, e.g., by using face recognition, keyword-based
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Figure 6.7:

Burst Mode Replacement. From a set of images taken using the “burst” mode of a

camera (left panel), a composite image is created in which everyone is smiling and has their eyes

open (right panel). The candidate faces for each child are constrained by the relative positions of the

faces in all images, and thus no face recognition is required. While in this case the best replacement

face for each child was selected manually (outlined in blue), blink and smile detection could be

applied to select them automatically.

search, or manual labeling. figure

6.6 shows our web-based application for personalized

replacement, in which we have replaced Jim Carrey’s face in the original photograph (left

panel) using the candidate highlighted in red (top panel). As the user clicks on the face

(right panel), the replacement result for each successive candidate is shown. The list of

candidates can be sorted automatically using the boundary ranking described in Section

6.2.3 to allow the user to quickly see the most compatible matches.

6.3.4 Composite Group Photographs

When taking group photographs, it is often difficult to get a “perfect” picture – where,

for example, everyone is smiling, with eyes open, and looking at the camera. By taking

several photos using the “burst” mode of a camera, we can construct a composite image

in which everyone has the desired appearance. Since the relative position of faces does not

change significantly during a burst mode shot, we limit the candidates to those with similar

position in all images (thus avoiding the need for face recognition). By using the outputs of

“smiling” and “blinking” attribute classifiers, we can automatically select the best face to

use for each person, resulting in single-click creation of the final image. Figure

6.7 shows our

implementation of this application for creating a pleasing composite image of three children
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Figure 6.8:

Results of the User Study. Users were presented with 50 images, half real and half fake.

Users were asked to mark each image as “real,” “fake,” or “not sure.” The first set of bars shows

how the users labeled images that were actually real. The second set shows how users labeled images

created by our system. Notice that users marked fake images as real almost as frequently as they

marked real ones as real (58% vs. 75%). See text for details.

from a set of six input images. We see that the result, unlike each of the input images, has

all of the children smiling and with eyes open.

6.3.5 User Study

The evaluation of face replacement results has so far been qualitative. To obtain quantitative

results, we performed a formal user study, testing people’s ability to distinguish between

real images of faces and those generated by our system. For this evaluation, we showed

users 50 images containing faces and asked them to classify them as “real,” “fake,” or “not

sure,” within a time limit of 5 seconds (roughly the time one would normally spend looking

at a face). Exactly half of the images were real.

Across a total of 12 people tested, we found that 58% of our replaced face images

were misidentified as real. In comparison, only 75% of real images were correctly marked

real (full results are presented in figure

6.8). These percentages were computed as 1 −
# marked fake

total number of images/2 . Note that a vote of “not sure” or no vote within the time limit was

counted as real because it suggests that a user could not definitively mark an image as

fake. (Forcing users to make a decision regarding the authenticity of the image raises their

sensitivity to minor appearance effects they would not normally notice.) These numbers
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show the high quality of our results – users could not easily differentiate between real face

images and those created by our system, and often incorrectly marked real images as fake.

6.4 Discussion

We have created a comprehensive system for automatically replacing faces in photographs.

Given an input image, we extract and align faces to a common coordinate system, search

for similar faces from a library of candidates, match the appearance of the candidate faces

using a photometric adjustment, blend the results into the input image, and finally rank

the results. This entire process takes about 1 second using our C++ implementation. We

note that our system is better suited for applications where the replacement face used is

not specified by the user, but is allowed to be chosen (or at least narrowed) from a set of

candidates. This is indeed the case with our target applications.

While we achieve very realistic results for a large variety of images, there are several

limitations to our current system. These can be divided into two types: Those due to the face

detector that our system depends upon, and those due to the replacement algorithm itself.

Missed face detections, incorrect pose information, or misaligned fiducial point locations are

all examples of problems caused by the face detector. Since the rest of the system depends

on the accuracy of the detector outputs, we obtain worse results if there are any errors in

them.

Figure

6.9 shows several examples of limitations of our algorithm itself. In each case, we

show the input and candidate faces on top, the replacement result in the middle, and a de-

tailed inset highlighting the problem area on the bottom. figure

6.9a shows that differences

in face appearance, such as due to eyeglasses, can cause visual artifacts in replacement. Of

course, by using the attribute outputs, we can easily prevent such errors. More difficult to

fix is the kind of error shown in Figure

6.9b, which shows our sensitivity to occlusions, where

no faces could be found in the library with a similar occlusion. Figure

6.9c shows prob-

lems as we try to replace faces in extreme poses – the face starts getting blended into the

background. Finally, figure

6.9d shows a failure case for our relighting algorithm, where we

forced a replacement between two faces with very different lighting. Our lighting selection
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step (bypassed here) would normally prevent such replacements.

In future work, we hope to remedy these issues in various ways. First, face detectors

are expected to improve with time and our system will naturally benefit from this. On

the algorithm side of things, our biggest limitation currently is the use of statically defined

masks for each pose bin. Using dynamically-chosen optimal masks (e.g., as in [

Avidan and

Shamir, 2007;

Efros and Freeman, 2001]) would help tremendously. These masks could also

be defined hierarchically, to perform replacement on only parts of the face, thus avoiding

problems with occlusions and extreme pose. Finally, using a more advanced composit-

ing algorithm, such as Poisson blending [

Pérez et al., 2003], could result in more realistic

outputs.
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Figure 6.9:

Limitations. Input and replacement candidate faces are shown on the top, replacement

results in the middle, and a detailed inset of the problem area on the bottom. The lack of eyeglasses

in (a) and the occluding finger in (b) cause visual artifacts in the results. In (c), the extreme pose

of the face results in it being blended into the background. These problems could be solved by

dynamically selecting optimal replacement regions. (d) shows a relighting failure case, caused by

forcing a replacement between images with very different lighting (skipping our lighting selection

step).
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Chapter 7

Face Verification

There is enormous variability in the manner in which the same face presents itself to a

camera: not only might the pose differ, but so might the expression and hairstyle. Making

matters worse – at least for researchers in computer vision – is that the illumination direc-

tion, camera type, focus, resolution, and image compression are all almost certain to differ

as well. These manifold differences in images of the same person have confounded methods

for automatic face recognition and verification, often limiting the reliability of automatic

algorithms to the domain of more controlled settings with cooperative subjects [

Sim et

al., 2002;

Blanz et al., 2002;

Phillips et al., 2006;

Gross et al., 2001;

Phillips et al., 2000;

Samaria and Harter, 1994;

Georghiades et al., 2001].

Recently, there has been significant work [

Nowak and Jurie, 2007;

Wolf et al., 2008;

Huang et al., 2007b;

Huang et al., 2008;

Huang et al., 2007c] on the face verification problem

– “are these two faces of the same person?” – using the “Labeled Faces in the Wild” (LFW)

data set [

Huang et al., 2007c]. This data set is remarkable in its variability, exhibiting all of

the differences mentioned above. Not surprisingly, LFW has proven difficult for automatic

face verification methods [

Nowak and Jurie, 2007;

Wolf et al., 2008;

Huang et al., 2007b;

Huang et al., 2008;

Huang et al., 2007c]. When one analyzes the failure cases for some of the

existing algorithms, many mistakes are found that would seem to be avoidable: men being

confused for women, young people for old, asians for caucasians, etc. On the other hand,

small changes in pose, expression, or lighting can cause two otherwise similar images of the

same person to be mis-classified by an algorithm as different. Based on this observation,
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we hypothesized that our attribute and simile classifiers (together: traits) could avoid such

mistakes.

7.1 Training a Verification Classifier

We want to create a verification function v such that v(I1, I2) is positive when the face

images I1 and I2 show the same person and negative otherwise. We define this function as

a particular type of composition function C which uses the trait vectors A(I), constructed

by concatenating the result of n different attribute and/or simile classifiers:

v(I1, I2) ≡ C (A(I1),A(I2)) (7.1)

Let xi = Ai(I1) and yi = Ai(I2) be the outputs of the ith trait classifier for each face

(1 ≤ i ≤ n). We would like to combine these values in such a way that our verification

classifier C can make sense of the data. To build C, let us make some observations about

the particular form of our classifiers:

1. Values xi and yi will be similar if the images are of the same individual, and different

otherwise.

2. Classifier values are raw outputs of binary classifiers, where the objective function is

trying to separate examples around 0. Thus, the signs of values will be important.

Ideally, we would like to create contrasting outputs when the two inputs are of the same

individual vs. when they are of different individuals. From observation (1), we see that

using the absolute difference |xi − yi| will yield values close to 0 when the two faces are

of the same individual, and large values otherwise. From observation (2), we see that the

product xiyi will be a useful quantity, as it will be positive when both inputs have the same

sign, and negative when they differ. Putting both terms together yields the tuple ti:

ti = 〈|xi − yi|, xiyi〉 (7.2)

The concatenation of these tuples for all n attribute/simile classifier outputs forms the
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input to the verification classifier C:

v(I1, I2) ≡ C(〈t1, . . . , tn〉)

(7.3)

≡ C(|x1 − y1|, x1y1, . . . , |xn − yn|, xn, yn)

(7.4)

Training C requires pairs of positive examples (two images of the same person) and

negative examples (images of two different people). For the classification function, we use

an SVM with an RBF kernel for C, trained using libsvm [

Chang and Lin, 2001] with the

default parameters of C = 1 and γ = 1/ndims, where ndims is the dimensionality of

〈p1, . . . , pn〉.

7.2 Experiments

We perform face verification experiments on the Labeled Faces in the Wild (LFW) bench-

mark [

Huang et al., 2007c] and also on our PubFig benchmark. For each computational

experiment, a set of pairs of face images is presented for training, and a second set of pairs

is presented for testing. In all experiments, not only are the images in the training and

test sets disjoint, but there is also no overlap in the individuals used in the two sets. In

addition, the individuals and images used to train the attribute and simile classifiers are

disjoint from the testing sets.

7.2.1 Attribute Classifier Results on LFW

The LFW dataset consists of 13, 233 images of 5, 749 people, gathered from news photos,

and organized into 2 “views”:

1. A development set of 2, 200 pairs for training and 1, 000 pairs for testing, on which to

build models and choose features; and

2. A 10-fold cross-validation set of 6, 000 pairs, on which to evaluate final performance.

We used View 1 for high-level model selection (e.g ., representation for the final clas-

sifier C) and evaluated our performance on each of the folds in View 2 using the “image
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(a) “Same” pairs

(b) “Different” pairs

Figure 7.1:

Randomly chosen (a) “same” and (b) “different” pairs from the Labeled Faces in the

Wild (LFW) benchmark [

Huang et al., 2007c]. Note the difficulty of this dataset, with extensive

variation in view, illumination, expression, image quality, age, etc.

restricted configureation,” as described in the LFW paper [

Huang et al., 2007c]. Some

sample verification pairs from LFW are shown in Fig.

7.1.

A verification classifier C is trained using nine folds from View 2 of LFW and then

evaluated on the remaining fold, cycling through all ten folds. Receiver Operating Char-

acteristic (ROC) curves are obtained by saving the classifier outputs for each test pair in

all ten folds and then sliding a threshold over all output values to obtain different false

positive/detection rates. An overall accuracy is obtained by using only the signs of the

outputs (e.g ., thresholding at 0) and counting the number of errors in classification. The

standard error is computed as described in the LFW paper [

Huang et al., 2007c].

Fig.

7.2 shows results on LFW for our attribute classifiers (red line), simile classifiers

(blue line), a hybrid of the two (green line), and attributes + stereo (black line) along with

several previous methods (dotted lines) [

Nguyen and Bai, 2010;

Wolf et al., 2009;

Taigman

et al., 2009;

Wolf et al., 2008;

Pinto et al., 2009;

Huang et al., 2008;

Nowak and Jurie, 2007;

Turk and Pentland, 1991]. The accuracies for each of our methods are 85.25% ± 0.60%,
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(a) LFW results, linear scale

(b) LFW results, log scale

Figure 7.2:

Face verification performance on LFW of our attribute classifiers, simile classifiers, a

hybrid of the two, and attributes + stereo are shown in solid red, blue, green, and black, respectively,

on (a) linear and (b) log-scales. Dashed lines are existing methods. Our highest accuracy is 88.25%,

which is beats the current state-of-the-art accuracy of 88.00% [

Nguyen and Bai, 2010]. Notice that

similes perform better at low false positive rates, attributes better at high detection rates, and the

hybrid and stereo combinations better throughout.

84.72%± 0.41%, 85.54%± 0.35%, and 88.25%, respectively.

1

Our highest accuracy of 88.25% is higher than the 88.00% accuracy of the current

state-of-the-art method [

Nguyen and Bai, 2010] on LFW. This method uses our attributes

combined with pixel-matching costs obtained using the stereo-matching method of Castillo

and Jacobs [

2007]. This method treats a verification pair as a stereo pair (explicitly assuming

non-rigidity). It then uses standard stereo-matching methods to get costs between the faces

for each scanline, and uses the sum of the costs as a measure of how similar the two faces are.

This combination performs best overall because the two components (attributes and stereo

matching) complement each other. When two faces match in most attributes, the attributes

alone would be unable to make the fine-scale distinctions necessary to disambiguate faces,

1

Our face detector was unable to detect one or more faces in 53 of the 6, 000 total pairs. For these, we

assumed average performance.
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but this is where the stereo method excels. In contrast, when faces are quite different, the

stereo method by itself might be unable to handle the large variations in appearance and

expression and thus this regime is more suited to the attributes.

The small bump in performance from combining the attribute and simile classifiers in

the hybrid method suggests that while they contain much of the same kind of information,

there are still some interesting differences. This can be better seen in Fig.

7.2b, where

similes do better in the low-false-positive regime, but attributes do better in the high-

detection-rate regime. One way to think about why this hybrid can do better than either

attributes or similes alone is via an example. For instance, it is possible for two people of

different genders to have eyes like Salma Hayek’s and noses like Meryl Streep’s. So, while

the simile classifier might confuse these, the attribute classifier would not. Conversely, two

dark-haired women with big lips might have very similar attribute values, but one might

look more like Angelina Jolie and the other more like Salma Hayek. In this case, the simile

classifiers would be able to disambiguate the two individuals.

7.2.2 Human Attribute Labels on LFW

Although our methods already achieve close to the current best performance on LFW, it is

interesting to consider how well attribute classifiers could potentially do. There are several

reasons to believe that our results are only first steps towards this ultimate goal:

• We have currently trained 73 attribute classifiers. Adding more attributes, include

fine-scale ones such as the presence and location of highly discriminative facial features

including moles, scars, and tattoos, should improve performance

2. Also, our classifiers

are not perfect, and so there is room for improvement in their accuracies, which should

carry over to verification performance as well.

• Of the 73 attributes, many are not discriminative for verification. For example, facial

expression, scene illumination, and image quality are all unlikely to aid in verification.

2

We ran a preliminary evaluation on the usefulness of these fine-scale features and found that they are

not as useful on LFW due to the low quality of images. However, there are many operational scenarios

where datasets will be of much higher quality, thus making these attributes more relevant in those cases.
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Figure 7.3:

Comparison of face verification performance on LFW using human attribute labels

(blue line) vs. automatically-computed classifier outputs (red line). Verification using human labels

consistently outperforms that using classifier outputs. With 18 attributes, human attribute labels

reach 91.86% accuracy, compared to only 81.57% using classifier outputs. Training better attribute

classifiers (or regressors) could thus greatly improve verification performance.

There is also a severe imbalance in LFW of many basic attributes such as gender and

age, which reduces the expected benefit of using these attributes for verification.

• The attribute functions were trained as binary classifiers rather than as continuous

regressors. While we use the distance to the separation-boundary as a measure of

degree of the attribute, using regression may improve results.

With the hope of exploring what might be possible given better attribute classifiers, we

performed an experiment in which our automatic attribute labeling process was replaced

by human labels, keeping the verification process identical. MTurk workers were asked

to label attributes for all faces in the LFW View 2 benchmark set. We averaged seven

user-responses per image to obtain smoothed estimates of the attribute values.

Fig.

7.3 shows a comparison of face verification performance on LFW using either these

human attribute labels (blue line) or our automatically-computed classifier outputs (red

line), for increasing numbers of attributes. In both cases, the labels are fed to the verification

classifier C and training proceeds identically, as described earlier. The set of attributes used

for each corresponding point on the graphs were chosen manually (and were identical for
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both). Verification results using the human attribute labels reach 91.86% accuracy with

18 attributes, significantly outperforming our computed labels at 81.57% for the same 18

attributes. Moreover, the increase in accuracies from computational to human labels is

actually increasing with more attributes, suggesting that adding more attributes could

further improve accuracies.

7.2.3 Human Verification on LFW

The high accuracies obtained in the previous section lead to a natural question: How well

do people perform on the verification task itself? While many algorithms for automatic face

verification have been designed and evaluated on LFW, there are no published results about

how well people perform on this benchmark. To this end, we conducted several experiments

on human verification.

We followed the procedure of O’Toole et al . [

2007] to obtain this data, using Amazon

Mechanical Turk. MTurk users were shown pairs of faces from the LFW View 2 benchmark

set and asked to mark whether the images showed the same person or not. This was done

on a scale of −1 to +1, where the sign of the score was their decision, and the magnitude

was their confidence in their response. The responses of 10 different users were averaged per

face pair to get a score for that pair. (Thus, for the 6, 000 image pairs in LFW, we gathered

60, 000 data points from users for each of the three tests described below, for a total of

240, 000 user inputs.) An ROC curve was created by sliding the confidence threshold from

−1 to +1, counting scores less than the threshold as “different” and those above as “same.”

Results are shown in Fig.

7.4. Using the original LFW images (red curve), people have

99.20% accuracy – essentially perfect

3. We then made the task tougher by cropping the

images, leaving only the face visible (including at least the eyes, nose and mouth, and

possibly parts of the hair, ears, and neck). This experiment measures how much people are

helped by the context (sports shot, interview, press conference, etc.), background (some

images of individuals were taken with the same background), and hair (although sometimes

3

We submitted a similar job which also asked the users if they recognized either person in each pair,

and averaging the responses of only the unrecognized pairs yielded almost exactly the same performance,

suggesting that this is an accurate verification (as opposed to recognition result.
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Figure 7.4:

Face verification performance on LFW by humans is almost perfect (99.20%) when

people are shown the original images (red line). Showing a tighter cropped version of the images

(blue line) drops their accuracy to 97.53%, due to the lack of available context. The green line shows

that even with an inverse crop, i.e., when only the context is shown, humans still perform quite well,

at 94.27%. This highlights the strong context cues available on the LFW dataset.

it is partially visible). The results (blue curve) show that performance drops to 97.53% – a

tripling of the error rate.

To confirm that the region outside of the face is indeed helping people with identification,

we ran a third experiment where the mask was inverted, i.e., we blacked out the face but

showed the remaining part of the image. Surprisingly, people still achieve 94.27% accuracy,

as shown by the green line in Fig.

7.4. These results reinforce the results of Sinha et

al . [

Sinha et al., 2006], that context and hair are powerful cues for face recognition. It also

perhaps points to a bias in LFW – many news photos tend to be taken at the same event,

making the face recognition task easier.
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Figure 7.5:

Face verification results on the PubFig evaluation benchmark using our attribute clas-

sifiers. Our accuracy is 78.65% on this benchmark, which consists of 20, 000 face pairs partitioned

into 10 folds for cross-validation. Our lower performance on this experiment as compared to LFW

suggests that it is a more challenging dataset.

7.2.4 Attribute Classifier Results on PubFig

The PubFig dataset, being much deeper (more images per person) and gathered from more

varied sources, should ameliorate this issue. We test this hypothesis using an evaluation

benchmark similar to LFW’s. Face verification is performed on 20, 000 pairs of images of

140 people, divided into 10 cross-validation folds with mutually disjoint sets of 14 people

each. These people are separate from the 60 people in the development set of PubFig, which

were used for training the simile classifiers. The performance of our attribute classifiers on

this benchmark is shown in Fig.

7.5, and it is indeed much lower than on LFW, with an

accuracy of 78.65%.

7.3 Discussion

We have presented and evaluated two approaches for face verification using traits computed

on face images – based on describable attributes and our novel simile classifiers. This

is the first time such attributes have been applied to face verification. Both approaches
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result in error rates significantly lower (14.75% to 14.46%) than the state-of-the-art for face

verification on the LFW data set. Furthermore, this is achieved using only the face region

of images (without the background or context). This is important because our experiments

measuring human performance show that people perform suprisingly well (94.27%) at this

task even if the central portion of the face is artificially occluded. However, humans perform

quite well (97.53%) when shown only a tight crop of the face, leaving a great deal of room

for improvement in the performance of algorithms for face verification in the unconstrained

setting.

One somewhat surprising result was that using all attributes almost always outperforms

any subset of them – even though many of the attributes should not be related to the identity

of the person. There are several reasons for this. One is that machine learning algorithms in

general perform better given more input features (e.g ., overfitting). But more encouragingly,

our intuition is that many non-identity-related attributes are still useful for making a final

verification decision. For example, knowing that one image is blurry while the other is not

lets the classifier perhaps put less emphasis on finer-scale attributes that might not be as

reliably detected (this is possible due to our use of RBF-kernel classifiers; linear classifiers

might not be able to take advantage of such combinations). Finally, another possibility is

that within a particular dataset, some of these attributes are actually discriminative. For

example, it could be that certain individuals are always photographed smiling, or outdoors,

or with mouth open, and so these attributes are useful for identification.

Another interesting result (not described above) is an experiment where we thresholded

the attribute outputs and measured verification performance. We wanted to see how much

the exact value of the attribute classifier outputs matters to verification performance, as

opposed to just a signed boolean value. This resulted in an accuracy drop of about 5%,

suggesting that a true binary classifier (i.e., without using the distance-to-the-margin trick

that we do) would not be as effective.

Despite our best efforts, our estimators will not perfectly measure all attributes all the

time, especially in challenging imaging conditions. Therefore, we could ask humans to look

at misclassified pairs of images and suggest new attributes for discrimination. We can then

train estimators for these new attributes, and learn a better verification classifier V . With
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this dynamic feedback loop, the system would be able to improve itself over time, targeting

exactly the cases with which it has the most trouble. A similar approach was implemented

in recent work for attributes in the general case [

Parikh and Grauman, 2011], showing

exactly this expected behavior.

The verification framework is well suited for cases where we have only a few images per

class – a test image can be identified by verifying it against all training images, and picking

the class of the best match. However when we have many training examples per class,

using attributes also opens up the possibility of learning which attributes are important for

each class. For example, some individuals consistently display extreme values for certain

attributes, and one can thus place more weight on these attributes for reliable identification,

e.g ., Woody Allen’s glasses and receding hairline, Angelina Jolie’s large lips and eyes, or

Groucho Marx’s eyebrows and mustache.

These reliably distinctive attributes suggest investigating approaches that can adapt

to intra-class and inter-class variation, either by learning a global rescaling as in Fisher

Linear Discriminants [

Fisher, 1936], Kernelized Fisher Discriminants [

Yang et al., 2005],

or locally as in [

Frome et al., 2007] or a non-linear SVM. We plan to explore all of these,

especially considering methods that can adapt to the dependencies that may be present

between attributes.

Finally, it is worth expanding the notion of face recognition to person recognition –

i.e., using cues other than just the face itself. In still images, this could include body

shape, clothing (or typical clothing styles), background, context, etc. Of course, many of

these aspects of personal appearance can change from image to image. However, there are

many scenarios where they might be reasonably constant. For example, when organizing a

personal photo collection, EXIF tags on images can be used to group them into sets taken

in the same session.

Moving to video, many more possibilities open up. While the simplest thing to do would

be to compute attributes on each frame individually and then combine them at a later stage

using some sort of classifier, more sophisticated approaches could yield even better results.
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Chapter 8

Plant Species Identification

We finally come full-circle back to our motivation for attributes: plant species identification.

As we described in the introductory chapter, the use of attributes has been around since

antiquity for this task. Unfortunately, the attribute classification process for plants is

currently time-consuming, brittle, and frustrating for most people. Users must manually

traverse a decision tree in a printed field guide to make an identification. This process

is fraught with possible errors due to individual variations in the particular plant one is

looking at, mistakes in the user’s interpretation of the attributes, ambiguous descriptions

of characteristics, and the lack of detail in the diagrammatic illustrations typically shown

in field guides (as opposed to high-quality photographs).

To bring this process into the modern era, we have adapted our automatic attribute

classification framework to build Leafsnap, an electronic field guide, which runs as an ap-

plication on mobile devices such as the iPhone and iPad. Leafsnap currently contains

high-quality photographs and descriptions of all the vascular tree species of the northeast

United States (around 200 or so). This already represents a huge step-up from a traditional

field guide: as a software application, operations such as browsing, sorting, and searching

are trivial. With complete coverage of all aspects of each plant – the leaf, flower, fruit,

petiole, bark, etc.– users can quickly compare a specimen with the provided photographs

to see if it looks like the same species.

We can then take this application to the next level by giving users access to an automatic

identification system. This is done by letting users take photos of leaves, which are then sent
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to our server. On the server, we segment the leaf from the background, compute low-level

features on the segmented leaf, compute high-level attributes on these features, and finally

perform identification, returning the top-ranked species back to the user. Of course, since

this process is not perfect, the final identification must be done by the user – but the task

is now much easier.

The benefits of Leafsnap to the end-user are obvious and significant: they now have

available at their fingertips access to a field guide with high-quality, attractive photos, ad-

vanced search capabilities, and automatic recognition of all plant species in their area. The

app also includes compelling games that help train users in learning to recognize and dis-

tinguish different plant species on the basis of their leaves, fruits, or flowers. The whole

package also makes a much better introduction to botany and taxonomy for children. Exist-

ing, printed field guides, while adequate for recognition by adults and those with experience

in classification, are often too difficult for children to use. Perhaps even more importantly,

they are not very inviting to kids, and the diagramatic images of plants they contain are

neither compelling nor life-like.

Our work also has potential impact on both professional botanists and enthusiasts. The

international biodiversity community has expressed a particularly enthusiastic response to

our current system. Even though the device is still in prototype form, field botanists

have recognized its potential for addressing the current taxonomic impediment to fast and

accurate species identification. For example, at a recent professional meeting of tropical

biologists in Mexico, our collaborators demonstrated our system at a poster session with

hundreds of presentations and were overwhelmed with requests to build similar systems for

field sites in Brazil, Costa Rica, Mexico, and Panama.

Given a new image, the recognition process consists of:

1. Classifying whether the image is of a leaf, to decide if it is worth processing further.

This is done using a leaf/non-leaf attribute classifier which uses the Gist feature [

Oliva

and Torralba, 2001] on the image.

2. Segmenting the image to obtain a binary image separating the leaf from the back-

ground. This is currently implemented using an Expectation-Maximization frame-
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work, estimating foreground and background color distributions in the HSV col-

orspace.

3. Extracting features from the binarized image for compactly and discriminatively rep-

resenting the shape of the leaf. We use histograms of curvature over scale as the

feature representation, robustly and efficiently implemented using integral measures

of curvature.

4. Optionally, computing attributes on either these low-level features, or the input image

directly to aid in recognition.

5. Comparing the features and attributes to those from a labeled database of leaf images

and returning the species with the closest matches. Due to the discriminative power

of the features and the size of our labeled dataset, we currently use a simple nearest

neighbor approach with the L1-norm.

This whole process is completed in under 5 seconds, and can be trivially parallelized

across many machines.

8.1 Curvature Histograms over Scale

Curvature is a fundamental property of shape and has thus attracted much attention from

the vision community. However, when dealing with images on discrete pixel grids, the

elegant mathematical definitions of curvature are tricky to implement in a stable manner.

Typically, curvatures are computed using differential techniques, which amplify noise, are

sensitive to the orientation and scale of captured images, and are difficult to define at

multiple scales.

Instead, we can use integral measures to compute functions of the curvature at a bound-

ary point [

Manay et al., 2006;

Pottmann et al., 2009]. One such measure in 2D is the

intersected portion of a disk centered at a contour point and the inside of the contour. For

straight, concave, and convex boundaries, the fraction of the disk intersected will be =, <,

or > 0.5, respectively. Furthermore, this representation lends itself naturally to a notion of

scale: the radius of the disk. Perturbations much smaller than the disk radius are ignored.
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Thus, a serrated boundary will show large, alternating curvatures at a fine scale, but a

smooth line at a coarse scale.

There are many advantages to using such integral measures instead of their differential

counterparts: they are easy and fast to compute for images on discrete grids; small dis-

cretization errors and noise disappear at larger scales; complex topology poses no problem;

and there exist straightforward analogues in 3D [

Pottmann et al., 2009].

Given this robust method for computing curvatures, what representation should we use

for our low-level features? One simple representation we could use is the concatenation of

curvature values along the contour of the object, into a single feature vector. But several

things can go wrong with this approach: different contours will have different lengths,

making them difficult to compare; contours must be aligned to have the same starting

point, otherwise they will not match; minor changes in topology or orientation can cause

huge changes in the feature vector; and there is no straightforward way to handle multiple

contours.

Instead, we compute histograms of the curvature values at each scale, and concatenate

these histograms together to form the Histogram of Curvatures over Scale (HoCS) feature.

Histograms have the benefit of being compact, simple to represent, not requiring alignment,

fast to compare using metrics such as L1, and being widely used for a variety of tasks in

computer vision and other areas.

The benefits of the HoCS feature are demonstrated in Fig.

8.1, which shows segmented

images of four different leaf species, and curvature histograms for each shape computed at

two different scales – coarse (large radius) on top, and fine (small radius) on bottom. The

pair of images in each row share the same general shape, but the images on the left have a

smooth boundary, and the ones on the right have a serrated boundary. Thus, the histograms

of coarse-scale values for each row are similar, while for each column, the histograms of fine-

scale values are similar. By using both histograms together, we can distinguish each of

these shapes from each other. (Our actual HoCS features use several more scales – 31.)
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Figure 8.1:

For these leaves of four different species, we show histograms of curvature at two different

scales (coarse on top, fine on bottom). Notice that in each row, the two leaves share the same coarse

shape (5-lobed or 2-lobed) and hence the top histograms match. Similarly, in each column, the fine-

scale curvatures are similar (smooth or serrated) and hence the bottom histograms match. Taking

both histograms together, none of the leaves match each other, despite their similar appearance at

one scale. We adapt this idea for leaf identification by robustly computing histograms of curvature

over many scales as our low-level features.

8.1.1 Computing Curvatures

All integral measures are computed by placing a disk of radius r at the point where we wish

to measure curvature. The different types of measures are:

1. 2D Area Measure: The fraction of the disk’s area inside the contour (see Fig.

8.2a)

2. 2D Arclength Measure: The fraction of the disk’s perimeter inside the contour

(see Fig.

8.2b)

While these definitions are simple to state, there are several issues one must keep in mind

in order to get accurate measurements. For scale invariance in 2D, we first resize all images

to a common area before extracting curvatures. To ensure consistency in results, we use

fixed-size disks (spheres) to perform calculations. To remove problems caused by “holes”
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(a) Area Measure

(b) Arclength Measure

Figure 8.2:

(a) The 2D area measure is the fraction of the circle’s area contained inside the object

(shown in pink). (b) The 2D arclength measure is the fraction of the circle’s perimeter contained

inside the object (shown in red). In both cases, the notion of scale is determined by the radius r of

the circle. 3D measures can be defined analogously.

in the shape, we completely fill-in the contours prior to resizing and curvature extraction.

To prevent histogramming artifacts, we use bilinear interpolation to do soft-binning of

curvature values.

The simplicity of these measures also makes several speed optimizations possible:

1. [2D Arclength Measure]: We only look for intersections at least r contour points

away from the central point.

2. [2D Arclength Measure]: We precompute all disk intersection points and do O(1)

lookups at runtime.

3. [2D Area Measure]: The change in intersected area from one contour point to the

next can be computed by simply checking the crescent-shaped boundaries of the circle

in the direction of the shift. Since the change in position is limited to 4 or 8 different

translations (depending on the connectedness of the contour points) and our set of

radii are fixed, we precompute these coordinates, resulting in approximately 2πr pixels
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Figure 8.3:

From (a) the original contour, we extract (b) the curvature image, which shows curvatures

for each contour point along the x-axis and at different scales along the y-axis. (c) By taking

histograms along each row, we create the Histograms of Curvature over Scale HoCS feature.

to check for each contour point – an order of magnitude improvement over a naive

4r2 check.

8.1.2 Histogram of Curvatures over Scale (HoCS) features

From a given contour, we can extract a curvature image as shown in Fig.

8.3, using one of

the integral measures defined in the previous section. Each row in this image represents

curvature values at a given scale; each column represents curvatures at all scales for a given

contour point. Note that different images – even of the same shape – could have different

contour lengths, and the alignment between them (the starting position from which to

compare curvature values) is unknown. Thus, we cannot simply compare these curvature

images directly. Even if we do an exhaustive search for a good alignment (as done by

Manay, et al . [

Manay et al., 2006]), articulation and discretization artifacts can cause serious

problems in matching. However, by taking histograms of curvatures, we largely sidestep

these issues.

As shown in Fig.

8.3, we compute histograms of curvature values at each scale (i.e.,

from each row of the curvature image) and then concatenate these histograms to form the
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HoCS feature. This feature is insensitive to alignment, discretization artifacts and small

articulations, and yet is quite discriminative, as demonstrated in Fig.

8.1.

8.2 Attributes

There are two stages in the identification process at which we would like to apply attributes:

1. Before segmentation, and

2. After low-level feature extraction.

Item (1) is to reduce the number of computations and also to perhaps tune the seg-

mentation/feature extraction steps on the basis of the computed attributes. Item (2) is to

construct additional inputs to use during the classification step, or for changing the style of

classification function used.

For the pre-segmentation attribute classifiers, we use the Gist feature [

Oliva and Tor-

ralba, 2001] computed on the image as the low-level feature, and Support Vector Machines

(SVMs) with an RBF kernel as the classification function. To ensure that the Gist values

are scale-invariant, we resize the input input image to 320x240 (rotating it by 90◦ if it has

the wrong aspect ratio). We use the libsvm [

Chang and Lin, 2001] implementation of SVMs.

For the post-feature extraction attribute classifiers, we use all the HoCS features computed

as inputs, and again use SVMs with RBF kernels as the classification function.

8.3 Experiments

Retrieval is done on segmented images, where contours are extracted and processed into

curvature histograms. Feature dimensionalities are 31 scales × 33 bins per scale = 1023

values for histograms of the area and arclength measures (each). Histograms are compared

using the L1 metric.

We evaluate on a dataset of real-world images used for plant species identification.

This dataset consists of 4, 162 “clean” lab images of pressed leaves, taken with a high-

quality camera, and 876 field images taken with different mobile devices. The field images,

unlike the lab ones, contain varying amounts of blur and were photographed with different
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(a) Leaf Images and Segmentations

(b) Performance Plot

Figure 8.4:

(a) Leaf images and their segmentations. (b) Performance plot showing the percentage

of queries with given match species index, which is defined as 1 plus the number of incorrect species

with higher ranks than the first correctly matched species.

viewpoints and illumination, all of which affect the segmentation results. Examples of lab

and field images, and their segmentations, are shown in Fig.

8.4a.

The experiment we perform is leave-one-image-out species identification, using the field

images as queries. The goal is to have the lowest possible species match index for each

query, which is matched against all other images (4,162 lab images + 875 remaining field

images). The species match index is defined as 1 plus the number of incorrect species rated

more similar to the query than the first correct match. So if a query image of class A has

results of classes B, C, C, B, B, A (in that order), then the species index is 1 + 2 = 3.

We use our HoCS feature, computed using both the area and arclength measures, with

simple L1 comparisons. A plot of recognition rates as a function of species match index

across all queries is shown in Fig.

8.4b. Performance for IDSC [

Ling and Jacobs, 2007] is

shown as the dotted blue line, and for our curvature histogram features as the solid red

line. 96.8% of queries have a species match index of 5 or lower with our method, which is

substantially better than IDSC’s 85.14%. This vast improvement highlights the effectiveness

of our approach for shape retrieval on real-world images.

8.4 Leafsnap System

We have implemented our Leafsnap system as a back-end server that accepts recognition

requests and various front-end apps for different devices that send requests. Currently, we

have front-ends for the iPhone and iPad devices, with work on Android devices in progress.
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Statistic Value

Downloads 500,000

Users Attempted Recognition 173,265

Uploads 402,384

Valid Leaf Uploads 246,379

% Valid Leaves 61.2%

Labeled Leaves 18,390

Table 8.1:

Various statistics about our Leafsnap system.

The iPhone app was launched on May 2, 2011, and the iPad app three weeks later. We

received extensive press coverage from all major news outlets, including print newspapers

(The New York Times and the Washington Post), wire services (the Associated Press and

Reuters), magazines (Science), online blogs (Wired and Techcrunch), and many other press

sources throughout the world. Together, the apps have been downloaded almost half a

million times, and roughly one-third of the downloaders have actually tried submitting a

leaf for recognition. Over 400, 000 images have been uploaded, of which about 60% are

valid leaf images (i.e., they passed our leaf/non-leaf classifier). These and other statistics

are compiled in Table

8.4.

The server is currently a single Intel Xeon machine with 2 quad-core processors running

at 2.33 Ghz each, and 4 GB of RAM. Aside from high-resolution versions of the Finding

Species images, which are served via Amazon’s “Simple Storage Service (S3),” all other

operations are handled by our server.

The iPhone and iPad apps are quite similar apart from the visual layout of screens,

which are optimized for each device’s screen real-estate. The major differences between the

versions are:

• The iPhone version includes some games for learning to identify the different species.

• The iPad version includes a “nearby species” tab which allows users to see which

species have been collected and labeled close to their current location.

A “tour” of the iPhone app is shown in Fig.

8.5. In order from left-to-right, top-to-
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(a) Home

(b) Browse

(c) Search

(d) Detail

(e) Snap It!

(f) Snap It! Results

(g) Verification 1

(h) Verification 2

(i) Verification 3

(j) Label

(k) Collection

(l) Map

Figure 8.5:

Tour of the iPhone version of Leafsnap. See text for details.
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bottom: (a) the home screen, with a randomly-chosen image cycling every few seconds and

access to the games, (b) the browse screen, with a sortable and searchable list of all the

species contained in the guide, (c) the search functionality for finding particular species by

scientific or common name, (d) the detail view for a particular species, showing the different

images available for viewing, (e) the Snap It! screen, for when the user wants to perform

automatic identification, (f) the returned identification results, in sorted order, (g-i) the

manual verification stage as the user explores the images and textual descriptions of one of

the results to confirm it as the right match, (j) labeling the right match, (k) showing the

addition of that leaf to the user’s collection for future reference, and (l) a map view showing

where that leaf was collected.

8.5 Discussion

We have shown how to apply the concept of attribute classifiers to a domain other than faces

– plant identification. At a low-level, we have shown how to efficiently compute curvature

histograms at multiple scales on segmented leaf images. The power of these features comes

from the careful computation of curvatures on discrete domains using integral measures,

which produces reliable curvature values. By using histograms, we avoid the need for

alignment and can handle small differences in shapes. These features are then used both

directly for recognition, and also as inputs to a variety of attribute classifiers, which further

boost recognition performance.

We believe that these curvature histogram features are particularly suited for shapes

with variations at multiple scales, especially where segmentation or natural intra-class vari-

ations can cause local distortions in the shape. Our method can also handle images with

multiple pieces, as histograms can simply be aggregated over all pieces. Analogoues of

this feature can also be used in 3D, and could allow for many different research directions,

including object recognition using shapes constructed from multiple segmentations of im-

ages, retrieval of 3D medical images (particularly those with volumetric representations),

and 2D-based retrieval of 3D shapes (by looking at which 2D curvature histograms can be

“contained” within a 3D curvature histogram).
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On a more practical level, we have built and publicly released the Leafsnap system to

the general public, demonstrating the effectiveness of our recognition system on real-world

images of leaves. The system is alive and growing, as more people continue to download

it and we continue to improve its operation and coverage. In the future, it is tempting to

consider what other domains we could tackle similarly: Bugsnap? Cloudsnap? Dogsnap?

The possibilities are almost limitless.
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Chapter 9

Conclusions

In this thesis, we have shown how to automatically train classifiers for describable aspects

of visual appearance – attributes and similes. These classifiers are learned using large

collections of labeled images obtained from the internet. We demonstrated the use of these

describable attributes for performing image search, automatic face replacement, and face

verification. For search, we showed that by using our attribute-based FaceTracer engine,

we were able to get significantly more relevant results to users’ queries. Our automatic

face replacement system was shown to be useful for a variety of tasks including privacy

protection, de-identification, personalized replacement, and for creating pleasing composite

group portraits. Finally, our face verification system using attributes showed performance

comparable to the state-of-the-art, and the possibility of doing far better in the future as

the underlying attribute classifiers are improved. We have also made available two large

and complementary datasets for use by the community to make further progress along these

lines.

We also demonstrated the use of visual attributes in a completely different domain –

plant species identification. We developed this into our Leafsnap system, which we have

released publicly to great acclaim.

These seem to be promising first steps in a new direction, and there are many avenues

to explore. The experiments with human attribute labeling suggest that adding more at-

tributes and improving the attribute training process could yield great benefits for face

verification. Another direction to explore is how best to combine attribute and simile clas-
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sifiers with low-level image cues. Finally, an open question is how attributes can be applied

to domains other than faces. It seems that for reliable and accurate attribute training,

analogues to the detection and alignment process must be found.

9.1 Metamers and Dynamic Selection of Attributes to Label

The set of attributes used in this work were chosen in an ad-hoc way; how to select them

dynamically in a more principled manner is an interesting topic to consider. In particular, a

system with a user-in-the-loop could be used to suggest new attributes. Thanks to Amazon

Mechanical Turk, such a system would be easy to setup and could operate autonomously.

The objective function above can be used to identify deficiencies in the information pro-

vided by an initial set of attributes. The task is then to determine what additional attributes

and/or training instances would improve the objective function, increasing mutual informa-

tion and efficiency. It is important to note that we do not have to approach this problem

blindly by considering each possible attribute, labeling instances for that attribute, and

re-evaluating the objective function. Instead, we can take a short-cut by asking for human

intervention. For instance we might have two instances, X and Y , with similar attribute

values, A(X) ≈ A(Y ), but different labels, l(X) 6= l(Y ). We call these metamers, following

the nomenclature for colors that appear the same to a human observer despite differences

in spectra. A person could be asked to suggest additional attributes that distinguish the

two instances. A version of this has been recently described [

Parikh and Grauman, 2011].

9.2 Attribute Dependencies

Another issue to tackle is identifying and effectively dealing with dependencies between at-

tributes, a crucial issue that has not been solved in previous work (including our own) [

Ku-

mar et al., 2008;

Kumar et al., 2009;

Farhadi et al., 2009;

Lampert et al., 2009]. We must

deal with the fact that we do not have all attributes labeled for each training instance

and that the correlations between attributes are not known a priori. One possibility is to

label all attributes for some subset of data, identify dependent attributes using techniques

like stabilized lasso [

Bach, 2008], or more general feature selection approaches [

Guyon and
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Elisseeff, 2003], and then use structured prediction [

Lafferty et al., 2001;

Taskar et al.,

2003]. Another direction of inquiry could be to formulate learning multiple attributes as

a multi-task learning problem [

Baxter, 1995;

Caruana, 1997]. In this setting, some pre-

vious work may point toward techniques to handle training data items labeled only for a

subset of tasks [

Jebara, 2004]. An omnipresent concern when dealing with predicting so

many correlated variables is bias in the training set. Recent results in information theory

on optimal denoising [

Weissman et al., 2005] and their application to vision [

Lazebnik and

Raginsky, 2009] open up the possibility of using techniques that adapt to test data sampled

from different distributions than the training data. We hope to modify this approach to

attribute prediction.

Since the publication of work described in this thesis, attributes have exploded in pop-

ularity. Some of these include further progress on using attributes for object and cate-

gory classification [

Wang and Forsyth, 2009;

Farhadi et al., 2010a;

Wang and Mori, 2010;

Yu and Aloimonos, 2010;

Torresani et al., 2010;

Russakovsky and Fei-Fei, 2010;

Li-Jia Li

and Fei-Fei, 2010b;

Sadhegi and Farhadi, 2011;

Hwang et al., 2011;

Siddiquie et al., 2011;

Douze et al., 2011;

Li-Jia Li and Fei-Fei, 2010a], better ways to collect data and at-

tribute labels [

Berg et al., 2010b;

Berg et al., 2010a;

Parikh and Grauman, 2011], using

attribute classifiers to automatically generate descriptions of images [

Farhadi et al., 2010b;

Kulkarni et al., 2011], predicting aesthetics of images [

Dhar et al., 2011], activity recogni-

tion [

Liu, 2011], and pose tracking [

Sigal et al., 2010]. Also related to attributes are the

poselets of Bourdev et al . [

Bourdev and Malik, 2009;

Bourdev et al., 2010;

Brox et al., 2011;

Maji et al., 2011], which have shown great promise for recognizing human poses, in addition

to applications in segmentation, activity recognition, and other tasks as well.

Wherever the path of attributes leads us to, we have several exciting years ahead!
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Appendix A

Mechanical Turk Usage

We label our training data using Amazon’s Mechanical Turk (MTurk) service [

Amazon,

2011], which allow us to create online “Human Intelligence Tasks” (HITs). Workers who

have registered with Mechanical Turk can sign on and complete the HITs. Our HITs consist

of web pages that show some images and ask the worker for some sort of judgement. For

example we show two faces and ask if they show the same person, to build our verification

training data. Or we show thirty faces and ask the worker to select all of them with blond

hair, for our attribute classifier training data.

Here are the different types of labeling jobs we’ve done using Mechanical Turk:

1. Attribute Labeling (Sec.

A.3)

2. Identity Labeling (Sec.

A.4)

3. Face Verification (Sec.

A.5)

4. Attribute Verification for boosting (Sec.

A.6)

5. Joint Attribute Labeling for bias removal (Sec.

A.7)

Below is some detailed information about how to get started with Mechanical Turk

yourself.
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A.1 Mechanical Turk Jobs

A job in Mechanical Turk is defined using 3 pieces:

1. A page template: This consists of HTML code that defines what a worker sees, with

placeholders for template arguments, such as images, etc. This takes any standard

HTML code, including CSS stylesheets for custom styling and javascript scripts for

adding interactive and intuitive user-interface functionality, or even links to external

databases, etc. This is a very flexible system, and as more applications move to the

web, it means that this system will be increasingly familiar to software developers of

all types.

2. Batch data file: A batch of data to fill into the template, given as a Comma-

Separated Values (CSV) file. All the variables defined in the page template are filled

in here, for as many individual HITs as you want to create. It’s easy to create these

from any programming language, or even Excel. You can also have as many lines

(i.e., HITs) as you want within a single CSV file, allowing for the creation of small

and large batches alike.

3. Additional metadata: Some metadata about the job, such as keywords, price,

quality filters, etc. These are used to determine how workers can find your job, which

workers are eligible to work on it (i.e., they must have a certain approval rating on

past jobs), how much they get paid, how much time they have available to work on

each job, how many individual workers must complete each job, etc. You set this once

per job, and it’s easy to modify if you want to experiment with different prices, etc.

You can create as many templates as you want, and you can upload as many CSVs as

you want. The cost of running a job is set by you, and Amazon takes an additional 10% or

$0.005 per HIT, whichever is higher.

Once you submit a job, there’s a progress page showing how fast workers are completing

the HITs. You can even view results as a table while in progress. Once done, you can

export the results as a CSV file to analyze them as you wish.
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Workers are paid either automatically after a time limit (default 1 week), or you can

explicitly approve/reject individual HITs. This means that if you find workers who are

sloppy or cheating, you can reject them (they are not paid) and additionally ban them

forever from working on your jobs.

A.2 Strategies and Tips

Over the past few years that we have been using MTurk, we have discovered several impor-

tant things about how to most effectively use it:

• Jobs should typically take between 30 seconds to 2 minutes. There are many more

workers available to take these kind of jobs than longer ones. The typical rate is

anywhere from 1 to 5 cents for such jobs. However, with such low rates, Amazon’s

fees are proportionately higher.

• The utmost care should be taken to streamline the page templates for the workers.

Minimize scrolling, make instructions very clear and as explicit as possible, make

anything that they have to click as big as possible, use colors to make things clearer

and provide feedback on state changes, use some javascript if needed to make things

easier, provide adequate feedback for what a completion means, etc.

• If you need things done faster, raising the price helps a lot!

• Keep in mind that some workers do hundreds or thousands of our HITs – and they

don’t re-read the instructions every time. If you change a task in a subtle way, workers

are likely not to notice and continue doing the old task.

• A tedious and painstaking job (e.g ., Fiducial Labeling) makes doing bad work very

attractive for the worker – at least relative to doing good work. Some quality control

becomes necessary. Something to remember in general is that there are two types

of bad work: honest bad work, where the worker made an attempt to complete the

task but either didn’t understand it or wasn’t sufficiently careful; and spam, where

the worker did the minimum required to enable the submit button, without regard
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to the task. Spam, if found, can be rejected (not paid for), and the worker blocked

from our future HITs. Honest bad work is worse: It’s harder to find, it’s more likely

to corrupt our data (because it’s harder to find and ignore), and rejecting it is more

likely to give us a bad reputation. Here are some points about HITs that garner a lot

of bad work.

– Manual review is worthwhile for some jobs. It’s a pain, but made easier by

sorting the results before looking through them. Group by worker, and sort by

number of jobs completed – the workers who do a lot of jobs tend to be the

worst both in quality (because they’re just speeding through the HITs) and in

damage done (because each bad worker corrupts a larger portion of the results).

The largest fiducial labeling job we ran consisted of 1312 tasks, each to be done

by 8 workers. The most prolific worker did 1013 of the tasks all of which (that

we checked) were spam. The 8 most prolific workers did half of the assignments.

Just looking through a few workers can rid you of most of your bad data.

– We’ve been reluctant to block workers who do honest bad work because of the

consequences (workers blocked by several requesters will be kicked out of MTurk

entirely). But these workers can actually do more damage than spammers. A

way around this is by using qualifications:

1. Create a qualification which is automatically granted upon request (this type

of qualification cannot be created through the web UI, but can be done with

a script through the REST API. Give it a default value of 50. Require this

qualification with a value of at least 40 to do your HITs. We don’t have a

lot of data to support this, but it seems like even an automatically granted

qualification makes workers more careful – or scares away the careless.

2. Decrease the score of workers who do bad work, and increase it for workers

who do good work. If you have a way of stepping through results and flagging

them as good or bad, it’s pretty easy to write a script to update workers’

scores, and even send them messages with feedback.

3. Although we haven’t taken it this far yet, if you build up a pool of known



APPENDIX A. MECHANICAL TURK USAGE 99

good workers this way, you may be able to run future HITs with fewer

repetitions per task, by requiring a higher qualification score (possibly paying

more for these, making workers value the qualification).

A.3 Attribute Labeling

We collect training data for the attribute classifiers by posting MTurk jobs like that shown

in Fig.

A.1. On each job, workers are shown 30 cropped face images from our list of faces and

asked to click the faces which match the given attribute. They’re asked to be conservative;

i.e., to only mark images for which they’re sure. This way, we get a minimum of junk labels.

For binary attributes, we submit separate jobs for the positive and negative cases.

One trick we can use when creating jobs is to look at the faces not marked in previous

jobs and select more faces from this set when creating a job for a competing attribute. For

example, if we showed a page of faces asking for workers to click on male, and then we

create a new job for labeling female faces, the ones that were not clicked in the first job

are more likely to be female and hence we get more usable results in the second job by this

sampling strategy.

The raw labels obtained by each batch are stored in a database table locally, and we

then aggregate counts for each image (i.e., across all the workers that have seen that image

for that attribute) to get an overall confidence. If this confidence is high enough, then the

image is considered a positive (or negative) example of the attribute, and used during feature

selection/classifier training. The threshold for confidence is dependent on the number of

times an image has been seen. It has to be seen at least 3 times, and agreed upon all 3

times to become a confirmed label. If an image is seen more than 3 times, then a sliding

scale used.

A.4 Identity Labeling

We collect training data for building datasets of faces labeled by identity by posting jobs

like that shown in Fig.

A.2.
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Figure A.1:

An example of an attribute labeling job.
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Figure A.2:

An example of an identity labeling job.

On each job, workers are shown 30 cropped face images from our list of faces (usually a

subset that we expect to contain images of this celebrity) and asked to click the faces which

are of the given person (named at the top, and with 5 example images shown). They’re

asked to be conservative; i.e., to only mark images for which they’re sure it’s the same

person. This way, we get a minimum of junk labels.

The raw labels obtained by each batch are stored in a database table locally, and we

then aggregate counts for each image (i.e., across all the workers that have seen that image

for that attribute) to get an overall confidence. If this confidence is high enough, then the

image is considered a positive image of this person.

We afterwards run duplicate-detection software to get rid of duplicates, conservatively.
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We use the linux program findimagedupes

1 for this task.

A.5 Face Verification

Fig.

A.3 shows an example of the human face verification task, as presented to workers on

MTurk.

Figure A.3:

An example of a face verification job, used to evaluate human performance on the LFW

benchmark [

Huang et al., 2007c].

Directions are given at the top, and then the two images are shown along with 5 different

confidence options below the pair of images. A user must click on one of the options before

they can go on to the next pair. The background color changes according to the user’s

choice, as a visual cue to let them know which option they picked. Each job consists of 30

pairs.

By averaging the responses from 10 different workers, we are able to get a real-valued

1

http://www.jhnc.org/findimagedupes/
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“score” for each verification pair, which we can then slide a threshold over to generate an

ROC curve.

A.6 Attribute Verification for Boosting

A standard practice when training classifiers, boosting attempts to produce a new classifier

that is better at predicting samples for which the current classifiers performance is poor.

To do this, we first classify some of our images with our attribute classifier for the given

attribute. We then submit images for a given attributes to Mechanical Turk, asking workers

to click on images which don’t match the given attribute. These jobs look like that shown

in Fig.

A.4. From the results of these jobs, we get a list of faces which our current classifiers

are wrong on. We then include these faces more prominently in our feature selection and

final training procedures.

Some statistics about the improvements made using boosting are given in Table

A.1

Attribute # Incorrect Classifications Old Acc. New Acc.

Gender 1618 81.22% 85.78%

Asian 506 92.32% 93.80%

Table A.1:

By emphasizing images which our current attribute classifiers err on, we are able to boost

their performance, as shown here for the “gender” and “asian” attributes.

A.7 Joint Attribute Labeling for Bias Removal

Some attribute scores are highly correlated, for example “gender” and “eyebrow thickness”

(see Fig.

A.5a). One suspects that a correlation in attribute scores would be reflected as

a correlation in MTurk labels, if we asked for labels for both these attributes on the same

images. Fig.

A.5b and c show 20 randomly chosen faces labeled as having bushy and thin

eyebrows, respectively. If we had gender labels for these, it’s pretty clear there would be a

high correlation.

If the correlation is strong, and one of the attributes is difficult to learn, the classifier

for that attribute may just mimic the classifier for the other attribute. For example, in
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Figure A.4:

An example of an attribute verification job.
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(a) Gender and eyebrow thickness correlation

(b) Random “bushy eyebrow” images (c) Random “thin eyebrow” images

Figure A.5:

(a) Some attributes are highly correlated, such as “gender” and “eyebrow thickness.”

This makes it more difficult to obtain good training data for the correlated attribute. Randomly

chosen images labeled as (b) “bushy eyebrows” and (c) “thin eyebrows” show a strong correlation

with gender. This causes the learned classifier to essentially mimic the gender classifier, regardless

of actual eyebrow thickness.
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the gender-eyebrow case, if gender is easier to learn than eyebrow thickness, the nominal

eyebrow thickness classifier may really be a gender classifier. If our end goal is eyebrow

classification, this may not be a bad thing. But if our goal is to build a set of composable

attribute classifiers, to be combined in a higher order classifier, it’s important that each

classifier bring as much new information to the party as possible.

To confirm this, we collected these labels for the “gender (male/female)” and “eyebrow

thickness (bushy/thin)” attributes in a set of joint attribute labeling HITs, an example of

which is shown in Fig.

A.6. Some statistics on the data gathered are listed in Table

A.2.

We have at least 500 samples labeled with each of the four possible combinations of these

two attributes. Holding out 100 samples from each of these four sets, we train on the

remainder. This gives us a gender-balanced eyebrow thickness classifier, which does better

than our previous eyebrow thickness classifier on the rare combinations, as can be seen in

Table

A.2.

Joint Label # Labeled Hit Rate Old Acc. Balanced Acc.

male, bushy eyebrows 650 10.6% 94% 91%

female, bushy eyebrows 503 2.9% 35% 70%

male, thin eyebrows 522 3.5% 62% 80%

female, thin eyebrows 638 9.3% 96% 95%

entire test set 2,313 7.9% 92% 92%

Table A.2:

By submitting joint attribute labeling jobs, we are able to gather a balanced dataset of

images for the “eyebrow thickness classifier.” By retraining the eyebrow thickness classifier using

this balanced set, we obtain a significant boost in performance for the rarer cases of males with thin

eyebrows and females with thick eyebrows.

Notice how awful the old classifier is on the rare subset. Improving accuracy on the

rare subsets does not improve accuracy overall (the common case becomes slightly worse),

but the new classifier may be less correlated with the gender classifier, and so provide more

information to the higher level verification classifier.
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Figure A.6:

An example of an joint attribute labeling job, which helps reduce correlation bias.
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