
Secret Ninja Testing with HALO Software Engineering

Jonathan Bell, Swapneel Sheth, Gail Kaiser
Department of Computer Science, Columbia University, New York, NY 10027

{jbell, swapneel, kaiser}@cs.columbia.edu

ABSTRACT
Software testing traditionally receives little attention in early
computer science courses. However, we believe that if ex-
posed to testing early, students will develop positive habits
for future work. As we have found that students typically
are not keen on testing, we propose an engaging and socially-
oriented approach to teaching software testing in introduc-
tory and intermediate computer science courses. Our pro-
posal leverages the power of gaming utilizing our previously
described system HALO. Unlike many previous approaches,
we aim to present software testing in disguise - so that stu-
dents do not recognize (at first) that they are being exposed
to software testing. We describe how HALO could be inte-
grated into course assignments as well as the benefits that
HALO creates.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education—Computer Science Education;
D.2.5 [Software Engineering]: Testing and Debugging—
Testing Tools; D.2.6 [Software Engineering]: Program-
ming Environments—Interactive environments

General Terms
Human Factors

Keywords
Software Testing Education, Social Testing, Serious Games

1. INTRODUCTION
Introductory computer science courses traditionally focus

on exposing students to basic programming and computer
science theory, leaving little or no time to teach students
about software testing [6, 11, 13]. However, exposure to
testing even at a very basic level, can be very beneficial to
the students [5, 11]. In the short term, they will do bet-
ter on their assignments as testing before submission might

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SSE’11, September 5, 2011, Szeged, Hungary.
Copyright 2011 ACM 978-1-4503-0850-2/11/09 ...$10.00.

help them discover bugs in their implementation that they
hadn’t realized. In the long term, they will appreciate the
importance of testing as part of the software development
life cycle. Testing can be tedious and boring, especially for
students who just want their programs to work.

While there have been a number of approaches to bring
testing to students early in the curriculum [5, 12, 13], there
have been significant setbacks due to low student engage-
ment and interest in testing [6]. Past efforts to teach stu-
dents introductory testing practices have focused on formal
testing practices, including approaches using test driven de-
velopment [5, 6].

Kiniry and Zimmerman [14] propose a different approach
to teaching another topic that students are often disinter-
ested in - formal methods for verification. Their approach,
which they call “secret ninja formal methods” aims to teach
students formal methods without them realizing it (in a
“sneaky” way). We combine this “secret ninja” methodology
with a social environment and apply it to testing in order
to expose students to testing while avoiding any negative
preconceptions about it.

We propose a social approach to expose students to soft-
ware testing using our game-like environment HALO (Highly
Addictive, sociaLly Optimized) Software Engineering [20].
HALO uses MMORPG (Massively Multiplayer Online Role
Playing Game) motifs to create an engaging and collabo-
rative development environment. HALO can make the soft-
ware development process and in particular, the testing pro-
cess, more fun and social by using themes from popular
computer games such as World of Warcraft [2]. By hiding
testing behind a short story and a series of quests, HALO
shields students from discovering that they are learning test-
ing practices. We feel that the engaging and social nature
of HALO will make it easier to expose students to software
testing at an early stage. We believe that this approach can
encourage a solid foundation of testing habits, leading to fu-
ture willingness to test in both coursework and in industry.

2. BACKGROUND AND MOTIVATION

2.1 HALO Software Engineering
HALO, or Highly Addictive sociaLly Optimized Software

Engineering, represents a new and social approach to soft-
ware engineering. Using various engaging and addictive
properties of collaborative computer games such as World
of Warcraft [20], HALO’s goal is to make all aspects of soft-
ware engineering more fun, increasing developer productiv-
ity and satisfaction. HALO represents software engineering

tasks as quests and uses a storyline to bind multiple quests
together - users must complete quests in order to advance
the plot. Quests can either be individual, requiring a devel-
oper to work alone, or group, requiring a developer to form
a team and work collaboratively towards their objective.

This approach follows a growing trend to “gamify” every-
day life (that is, bring game-like qualities to it), and has
been popularized by alternate reality game proponents such
as Jane McGonigal [16]. These engaging qualities can be
found in even the simplest games, from chess to tetris, and
result in deep levels of player immersion [16]. Gamification
has also been studied in education, where teachers use the
engaging properties of games to help students focus[15].

We leverage the inherently competitive-collaborative na-
ture of software engineering in HALO by providing devel-
opers with social rewards. These social rewards harness op-
erant conditioning - a model that rewards players for good
behavior and encourages repeat behavior. Operant condi-
tioning is a technique commonly harnessed in games to re-
tain players [3, 21]. Multi-user games typically use peer
recognition as the highest reward for successful players [21].

Simple social rewards in HALO can include titles - pre-
fixes or suffixes for players’ names - and levels, both of which
showcase players’ successes in the game world. For instance,
a developer who successfully closes over 500 bugs may re-
ceive the suffix “The Bugslayer.” For completing quests,
players also receive experience points that accumulate caus-
ing them to “level up” in recognition of their ongoing work.
HALO is also designed to create an immersive environment
that helps developers to achieve a flow state, a technique
that has been found to lead to increased engagement and
addiction [18]. While typically viewed as negative behavior,
controlled addiction can be beneficial, when the behavior
is productive, as in the case of software testing addiction.
These methods try to motivate players similar to what’s
suggested in [9].

2.2 Student Software Testing
We have anecdotally observed many occasions in which

students do not sufficiently test their assignments prior to
submission, and conducted a brief study to support our ob-
servations. We looked at a sampling of student performance
in the second level computer science course at Columbia Uni-
versity, COMS 1007: “Object Oriented Programming and
Design in Java.” This course focuses on honing design and
problem solving skills, building upon students’ existing base
of Java programming knowledge. The assignments are not
typically intended to be difficult to get to “work” - the inten-
tion is to encourage students to use proper coding practices.

With its design-oriented nature, we believe that this course
presents an ideal opportunity to demonstrate students’ test-
ing habits. Our assumption is that in this class, students
who were missing (or had incorrect) functionality did so by
accident (and didn’t test for it), rather than due to techni-
cal inability to implement the assignment. We reviewed the
aggregate performance of the class (15 students - a summer
session) across 4 assignments to gauge the opportunities for
better testing.

We found that 33% of the students had at least one “ma-
jor” functionality flaw (defined as omitting a major require-
ment from the assignment) and over 85% of all students
had multiple “minor” functionality flaws (defined as omit-
ting individual parts of requirements from assignments) in

at least one assignment. We believe that this data shows
that students were not testing appropriately and suggests
that student performance could increase from a greater fo-
cus on testing (note that while other classes explicitly teach
testing, this one did not). Similar student testing habits
have also been observed at other institutions [7].

3. HALO FOR TESTING
As we have found that students don’t test as thoroughly

as they ought to, HALO can make testing more engaging
for students. HALO’s social nature and interesting quests
will make testing more attractive to students leading to
fewer bugs in their code. It also aims to make testing tech-
niques more accessible to new programmers. We now de-
scribe HALO’s role using a sample assignment and show the
potential benefits of using HALO in the classroom.

3.1 A sample assignment
This assignment, taken from an introductory course at

Columbia University, requires students to create a command-
line implementation of a “Metrocard Vending Machine”, or
MVM. MVMs are provided in the subways in New York City
to dispense subway cards to passengers. The basic require-
ments for the machine are as follows: (1) The MVM ac-
cepts money (bills or coins) and credit cards (MasterCard,
Visa, American Express, and Discover) and dispenses sub-
way cards and possibly change. (2) The MVM can dispense
cards with a variable declining balance ($2.50 to $80) and
weekly or monthly passes. (3) The MVM can refill variable
declining balance cards with more credit. (4) The MVM
contains a fixed number of subway cards and coins.

Graders run a battery of tests on student code to verify
input validation and general program logic. For example,
for requirement 1, they verify that users must insert enough
money to complete a transaction. If using cash, then the
machine must have enough of each necessary coin to make
change before processing the transaction (requirement 4).
If using credit cards, then the machine must validate the
format of the credit card number and the issuer of the card (a
simplification from how a real MVM would work, of course).
The tester also tries to refill cards and test all boundary
conditions on input.

We have created a storyline and set of quests for help-
ing students understand what sort of testing they should
do. The quests are designed to guide students toward de-
termining boundary conditions on their own, allowing for a
“discovery” process.

3.2 Sample Quests
We now describe briefly a few sample quests that could

be created for the above assignment. When implemented
for a class, the storyline and quests will be more complex,
fully embellished with plot details. We have included a few
brief notes in the quests as aids to the reader (that would
not be shown to students) to illustrate the mapping between
requirements and quests.

These quests are designed to have three goals: (1) To
help students test their implementations vis-à-vis the re-
quirements. (2) To make them as comprehensive as possible
(i.e., if the students complete all the quests and their imple-
mentation works correctly, this would imply that they have
tested their code for edge cases and so on). (3) To make
them engaging and fun.

The setup is as follows: The Justice League is in distress -
the Hall of Justice (their usual hideout) is undergoing repairs
and is currently uninhabitable. Batman pulled some of his
Gotham City strings and rented some temporary space on
the cheap from the city. We join our heroes as they arrive in
Gotham and are trying to get to the hideout. To look like
“superheroes of the people,” the team decides to travel via
the subway, rather than with their powers. Your quests:

Wonder Woman’s quest: Wonder Woman parks her invis-
ible jet in the park and enters the subway. She approaches
the MVM and considers what sort of card to buy. She de-
cides to purchase a weekly “unlimited ride” card, realizing
that she’ll want to do some shopping and see the sights, and
would probably use the card many times over her week in
Gotham. The card costs $29 and she inserts two $20 bills.
How does your machine respond?

Flash’s quest: Flash wasn’t expecting to have to pay for
transportation and doesn’t have any money with him, so he
convinces Wonder Woman to spot him $5. He selects a $4.50
declining balance card (the price of two trips in the system)
and inserts a $5 bill. How does your machine respond?

Batman’s quest: Batman whips out his BatCard credit
card and slides it into the vending machine. Throwing cau-
tion to the wind, Batman tries to select a $100 valued card
(note that the maximum value allowed on a card is $80).
Batman settles on an $80 card and attempts to charge it to
his credit card (note that the machine does not accept Bat-
Card issued credit cards). How does your machine respond?

Superman’s quest: When Superman arrives, the machine
indicates that there is only one card left in its stock and that
it is out of change, but that’s OK because Superman can use
exact change. Superman selects to receive a $30 card and
inserts two $10 bills, sighing as he realizes that that’s all
of the cash that he has. After your machine responds that
he hasn’t inserted enough money, he selects a $20 card, and
re-inserts his bills. How does your machine respond?

Green Lantern’s quest: After a wave of superheroes all us-
ing the same metrocard vending machine, Green Lantern ar-
rives to see that your machine has neither change nor cards.
Luckily for him, he has an old card from the last time that
he was in Gotham City and selects to add $20 to it with his
MasterCard. How does your machine respond?

Aquaman’s quest: Aquaman finally gets to the subway
station and realizes that he completely missed out - your
vending machine is out of cards and out of change! Aquaman
wants to buy a monthly unlimited card ($104) with 6 $20
bills. Help Aquaman get a subway card by using one of the
other vending machines in the station (that is, one created
by a classmate). Note that while he is trying to use the
machine, Aquaman is not used to vending machines and
sometimes pushes extra buttons randomly. How does your
classmate’s machine respond?

3.3 Social Testing
We envision that students will use Eclipse as the Inte-

grated Development Environment (IDE) and HALO will be
an Eclipse Plugin. This is not required however as HALO,
in theory, could be implemented for any IDE that supports
plugins. Students will see a list of quests (similar to the ones
mentioned above) that are pertinent to the current assign-
ment. HALO will keep track of their progress through the
various quests. Completing each quest will give the students
“experience points,” which could be redeemed for some ex-

tra credit at the discretion of the instructor (or required for
completion of the assignment). In addition to experience
points, there can also be “achievements” such as being the
first student to complete a quest. There will also be a global
leader board that will let the students track their own and
other students’ achievements and experience points. This
social aspect will help the quests be engaging and fun.

Further, our system will also support the notion of group
quests. Typically, in lower-level undergraduate classes at
Columbia University, most assignments are meant to be
done individually. Students can still work together to test
their independent implementations. Consider two students
Alice and Bob who have implemented the system as required
individually. In a group quest, they could pick their favorite
characters - Wonder Woman and Batman - and work their
way together through the quests mentioned above. They
would still be testing their own implementations but working
with a friend or classmate is usually more fun than working
alone. This might lead to students doing more quests and
as a result, discovering more bugs in their code. For as-
signments where collaboration with teammates is required
(usually in more advanced classes), team groups can work
through the quest lines together and there can exist notions
of team achievements and team experience points, rather
than individual ones.

We feel that such a social emphasis on testing will make
it fun. From a pedagogical point of view, it will also result
in students learning about and doing software testing more
often from the start.

4. RELATED WORK
There has been ongoing work in studying how best to

teach students testing. Jones proposed integrating software
testing across all computer science courses [12, 13] and sug-
gested splitting different components of testing across differ-
ent courses, teaching aspects incrementally so as not to over-
whelm students all at once with testing. Edwards proposed
a “test-first” software engineering curriculum, applying test-
driven development to all programming assignments, requir-
ing students to submit complete test cases with each of their
assignments [5]. Our approach is similar to these in that we
also propose early and broad exposure to testing.

Goldwasser proposed a highly social, competitive means
to integrate software testing where students provided test
cases that were used on each others code [8]. Elbaum et al.
presented “Bug Hunt” - a tool to teach software testing in
a self paced, web-driven environment [6]. With Bug Hunt,
students progress through a set of predefined lessons, cre-
ating test cases for sample code. Both of these approaches
introduce testing directly into the curriculum; with HALO,
we aim to introduce testing surreptitiously.

Kiniry and Zimmerman proposed teaching formal verifica-
tion through “Secret Ninja Formal Methods” - an approach
that avoids students’ apprehension to use complex mathe-
matics by hiding it from them [14]. The Secret Ninja ap-
proach differs from those mentioned above in that it exposes
students to new areas without them realizing it. They imple-
mented this technique at multiple institutions, receiving pos-
itive student responses (based on qualitative evaluations).
We adapt their “secret ninja” method for our approach.

Much work has also been done to create games to teach
software engineering concepts. Horning and Wortman cre-
ated Software Hut, turning the course project itself into a

Figure 1: HALO Dashboard Mockup

Figure 2: HALO Sidebar Mockup

game, played out by all of the students together [10] . SimSE
and Card Game were games created to teach students soft-
ware engineering, through a game environment [1, 17]. Eagle
and Barnes introduced a game to help students learn basic
programming techniques: basic loops, arrays, and nested for
loops [4]. However, none of these games focused specifically
on testing practices. There has been research into teach-
ing aspects such as Global Software Development [19] in a
classroom, but these don’t focus on software testing.

5. RESEARCH AGENDA
We foresee many potential challenges and research ar-

eas stemming from this proposal. Broadly, we believe that
further study is needed in the design space of educational
games. How do we appeal specifically to students and im-
prove their approach to the software development life cycle?
While reward tracking systems are commonly used in ele-
mentary education classes with success (for example, charts
on the wall that display how many “gold stars” each student
received), we are concerned that in HALO, students who are
falling behind may be discouraged by other students’ appar-
ent progress. How is this issue addressed in popular games
and in typical education environments?

What requirements must we make sure we fulfill to appeal
to instructors? Can we design quest templates that would
work for many different classes? How do we evaluate such
social software for teaching software engineering?

While we believe that we certainly have the capabilities
from a software engineering perspective to implement HALO
for a course, we acknowledge that none of the authors are
story designers, but we are interested in studying game de-
sign further. Specifically, we are planning to implement
HALO for a lower-level undergraduate course in Fall 2011
to evaluate HALO’s impact and benefit to students. We
have begun our proof of concept implementation of HALO
and present prototype user interface mockups for an Eclipse
plugin in Figures 1 and 2.

6. CONCLUSION
We have described a new approach for teaching students

software testing using a social learning environment. We
have outlined a sample assignment and accompanying quests
for HALO to enhance teaching of software testing in a class-
room environment. We believe that our Secret Ninja Soft-
ware Testing approach will make testing more engaging and
fun for students leading to better testing and fewer bugs.

We also feel that this will inculcate good software testing
habits at an early stage.

7. ACKNOWLEDGEMENTS
The authors are members of the Programming Systems

Laboratory, funded in part by NSF CNS-0717544, CNS-
0627473 and CNS-0426623, and NIH 2 U54 CA121852-06.

8. REFERENCES
[1] A. Baker, E. O. Navarro, and A. van der Hoek. An

experimental card game for teaching software
engineering processes. Journal of Systems and
Software, 75(1-2):3 – 16, 2005. Software Engineering
Education and Training.

[2] Blizzard Entertainment. World of Warcraft.
http://us.battle.net/wow/en.

[3] J. P. Charlton and I. D. Danforth. Distinguishing
addiction and high engagement in the context of
online game playing. Computers in Human Behavior,
23(3):1531 – 1548, 2007.

[4] M. Eagle and T. Barnes. Experimental evaluation of
an educational game for improved learning in
introductory computing. SIGCSE Bull., 41:321–325,
March 2009.

[5] S. H. Edwards. Rethinking computer science
education from a test-first perspective. In Companion
of the 18th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications, OOPSLA ’03, pages 148–155, New York,
NY, USA, 2003. ACM.

[6] S. Elbaum, S. Person, J. Dokulil, and M. Jorde. Bug
Hunt: Making Early Software Testing Lessons
Engaging and Affordable. In Proceedings of the 29th
international conference on Software Engineering,
ICSE ’07, pages 688–697, Washington, DC, USA,
2007. IEEE Computer Society.

[7] D. Ginat, O. Astrachan, D. D. Garcia, and
M. Guzdial. “But it looks right!”: the bugs students
don’t see. In Proceedings of the 35th SIGCSE technical
symposium on Computer science education, SIGCSE
’04, pages 284–285, New York, NY, USA, 2004. ACM.

[8] M. H. Goldwasser. A gimmick to integrate software
testing throughout the curriculum. SIGCSE Bull.,
34:271–275, February 2002.

[9] T. Hall, H. Sharp, S. Beecham, N. Baddoo, and
H. Robinson. What do we know about developer
motivation? Software, IEEE, 25(4):92 –94, July-Aug.
2008.

[10] J. Horning and D. Wortman. Software Hut: A
Computer Program Engineering Project in the Form
of a Game. Software Engineering, IEEE Transactions
on, SE-3(4):325 – 330, July 1977.

[11] U. Jackson, B. Z. Manaris, and R. A. McCauley.
Strategies for effective integration of software
engineering concepts and techniques into the
undergraduate computer science curriculum.
In Proceedings of the twenty-eighth SIGCSE technical
symposium on Computer science education, SIGCSE
’97, pages 360–364, New York, NY, USA, 1997. ACM.

[12] E. L. Jones. An experiential approach to incorporating
software testing into the computer science curriculum.
In Proceedings of the Frontiers in Education
Conference, 2001. 31st Annual - Volume 02, pages
F3D–7–F3D–11 vol.2. IEEE Computer Society, 2001.

[13] E. L. Jones. Integrating testing into the curriculum
arsenic in small doses. SIGCSE Bull., 33:337–341,
February 2001.

[14] J. R. Kiniry and D. M. Zimmerman. Secret Ninja
Formal Methods. In Proceedings of the 15th
international symposium on Formal Methods, FM ’08,
pages 214–228, Berlin, Heidelberg, 2008.
Springer-Verlag.

[15] J. J. Lee and J. Hammer. Gamification in Education:
What, How, Why Bother? Academic Exchange
Quarterly, 15(2):2, 2011.

[16] J. McGonigal. Reality Is Broken: Why Games Make
Us Better and How They Can Change the World. The
Penguin Press HC, 2011.

[17] E. O. Navarro and A. van der Hoek. SimSE: an
educational simulation game for teaching the software
engineering process. In Proc. of the 9th annual
SIGCSE conference on Innovation and technology in
CS education, ITiCSE ’04, pages 233–233, 2004.

[18] S. Park and H. Hwang. Understanding online game
addiction: Connection between presence and flow. In
Human-Computer Interaction. Interacting in Various
Application Domains, volume 5613 of Lecture Notes in
Computer Science, pages 378–386. Springer Berlin /
Heidelberg, 2009.

[19] I. Richardson, S. Moore, D. Paulish, V. Casey, and
D. Zage. Globalizing software development in the local
classroom. In Software Engineering Education
Training, 2007. CSEET ’07. 20th Conference on,
pages 64 –71, july 2007.

[20] S. Sheth, J. Bell, and G. Kaiser. HALO (Highly
Addictive, sociaLly Optimized) Software Engineering.
In Proceeding of the 1st international workshop on
Games and software engineering, GAS ’11, pages
29–32, New York, NY, USA, 2011. ACM.

[21] P. Wallace. The Psychology of the Internet. Cambridge
University Press, March 2001.

