
Concurrency Attacks
Junfeng Yang, Ang Cui, John Gallagher, Sal Stolfo, Simha Sethumadhavan

Columbia University

Abstract
Just as errors in sequential programs can lead to security
exploits, errors in concurrent programs can lead tocon-
currency attacks. In this paper, we present an in-depth
study of concurrency attacks and how they may affect ex-
isting defenses. Our study yields several interesting find-
ings. For instance, we find that concurrency attacks can
corrupt non-pointer data, such as user identifiers, which
existing memory-safety defenses cannot handle. Inspired
by our findings, we propose new defense directions and
fixes to existing defenses.

1 Introduction
Two trends have caused concurrent programs to become
pervasive and critical. The first is a hardware trend: the
rise of multicore computing [7]. For years, sequential
code enjoyed automatic speedup as computer architects
steadily made single-core multiprocessors faster. Re-
cently, however, power and wire-delay constraints [17]
have forced microprocessors into multicore designs, and
adding more cores does not automatically speed up se-
quential code.

The second trend is a software one: the coming storm
of cloud computing [8]. More and more users are going
online, requesting ever richer and more powerful—and
thus computation and data intensive—services. These
services, including many of those traditionally offered
on desktops (e.g., word processing), are now served from
distributed “clouds” of servers to meet user demands for
scalability, always-on availability, everywhere connec-
tivity, and desirable consistency. To cope with this mas-
sive workload, practically all services employ concurrent
programs to increase performance.

Unfortunately, despite our increasing reliance on con-
current programs, they remain much more difficult to
write, test, and debug than sequential versions [18, 22].
This impediment has led to numerous subtle but serious
concurrency errorsin many widespread concurrent pro-
grams [19]. Even as tools for sequential programs are
maturing [9, 11], concurrency errors are likely to become
the dominant type of software errors in the near future.

Just as errors in sequential programs can lead to se-
curity exploits, concurrency errors can be similarly vul-
nerable and lead toconcurrency attacks. Although ini-
tial evidence has shown that concurrency attacks are fea-

sible [2], neither the research community nor industry
have studied concurrency attacks to the same extent as
sequential attacks [12, 20]. To better defend against con-
currency attacks, it is key to thoroughly understand them.
For instance, what are the characteristics of concurrency
attacks? How do they work? How do they affect tradi-
tional sequential defense mechanisms?

In this paper, we present an in-depth study of concur-
rency attacks and how they may affect existing defenses.
The raw data of our study consists of 46 potential attacks
on concurrency errors from 23 real-world programs, in-
cluding the Linux kernel, GNU Libc, and applications
such as Apache and Chrome. For each attack, we inves-
tigate its attack path, analyzing the buggy interleaving of
code, identifying data that is corrupted or inconsistently
exposed, and categorizing the actual impact such as ar-
bitrary code execution. We also investigate the effective-
ness of existing defenses against these attacks.

Our study yields several interesting findings. For in-
stance, we find that many concurrency errors compro-
mise memory safety and can be exploited the same way
as sequential errors. Thus, existing memory safety tech-
niques, once made aware of concurrency, can defend
against these attacks. However, some concurrency errors
can corrupt non-pointer data, such as user identifiers or
authentication flags, which existing memory-safety de-
fenses cannot handle. We also analyze many existing de-
fenses and identify common weaknesses caused by con-
currency errors, and propose new defense directions and
fixes to some of these weaknesses.

This paper makes three main contributions. First, to
the best of our knowledge, we are the first to systemat-
ically study concurrency attacks and their implications
for existing defenses. Second, the paper outlines sev-
eral open research challenges in the defense of these at-
tacks as well as new defense directions. We hope our
initial work will motivate fellow researchers to work on
addressing concurrency attacks. Lastly, we will release
our study results including the automated attack scripts
we construct as “concurrency attack specimens” to the
research community.

This paper is organized as follows. We first describe
our study methodology in (§2). We then describe our
findings on concurrency attacks (§3) and existing defense
techniques (§4). We then propose new defense directions

1



Interleaving Data Impact

Figure 1:Concurrency attack paths.

(§5). Finally, we discuss related work (§6).

2 Study Methodology

2.1 Attacks

Our study consists of 46 potential concurrency attacks.
To collect this data, we examined three sources of vul-
nerabilities: (1) the Common Vulnerabilities and Expo-
sures (CVE) database [2], (2) real concurrency errors
extensively studied in previous work [19], and (3) the
bug databases of real open-source software. From these
sources, we included only concurrency errors that are
(potentially) exploitable and have detailed description,
such as a well-written report of the error, sample exploit
code, or a source patch. We then carefully inspected
these materials to understand the root cause of the er-
rors and how they may be exploited. The raw data of the
errors is available online [2].

The errors in our dataset range across five main OS
environments, including Windows, MacOS X, Linux,
iPhone OS, and CISCO IOS. These errors are from a di-
verse set of 23 real-world programs, including kernels
such as the Linux kernel, system libraries such as GNU
Libc, and user-space programs such as KDE, Apache,
and Chrome. We hope this diversity increases the cover-
age and value of our dataset.

When studying the concurrency attacks, we classify
them based on theirattack paths, which have the form
“ interleaving→ data→ impact.” Specifically, we define
a taxonomy as in Figure 1 with the following semantics:

• Interleaving: the origin of a concurrency attack,
namely, the buggy interleaving of code execution
that makes the attack possible. For instance, the in-
terleaving may violateatomicity(multiple memory
accesses must occur atomically) orexecution order
(multiple memory accesses must occur in a fixed or-
der) constraints.

• Data: the intermediate effects of a concurrency at-
tack, namely, what data the attack corrupts.1 There
may be one or more data steps in a concurrency at-
tack. For instance, once a pointer is corrupted, a
store instruction via this pointer can further cor-
rupt other program data.

1Sometimes an attack does not literally corrupt data; instead,it
causes some code to read inconsistent data. For brevity, we broadly
define these effects as corrupting data.

• Impact: the results of a concurrency attack, such
as denial of service via program crashes, code in-
jection, or privilege escalation. An attack may have
more than one results: for instance, once an attacker
can run arbitrary code, she can easily escalate her
privilege set.

A previous study [19] investigated interleaving pat-
terns in depth. Our dataset differs from the dataset used
in the previous study in three ways: (1) some errors
in our dataset come from programs communicating by
passing messages; (2) some errors are in the kernel or
user-space libraries; and (3) our focus is on exploits not
just any bugs. Nonetheless, we find that the patterns of
the interleavings in our dataset match those previously
observed. Thus, we do not discuss the interleaving pat-
terns further.

Our key questions of the attack study are therefore
• Which data is corrupted or inconsistently read,

pointer data or scalar data (i.e., non-pointer data)?
• How are the concurrency errors exploited?

2.2 Defense Techniques

An important goal of our study is to analyze the ef-
ficacy of existing defense techniques against concur-
rency attacks. These techniques operate at different
steps along an attack path, some of which operate at
more than one steps. For instance, memory safety tech-
niques (e.g., [21]), StackGuard [14], and PointGuard [15]
prevent memory corruption at the data step. Address
Space Randomization (ASR) [10] makes it harder to
exploit memory corruptions. Anomaly detection tech-
niques (e.g., [16]) look for abnormal system behaviors
along all steps of an attack path.

Our key questions of the defense analysis are
1. What defense techniques still work and what are

weakened by concurrency attacks?
2. How do we strengthen the weakened defense tech-

niques?
When doing this analysis, we consider conceptual at-

tacks because the real concurrency attacks in our dataset
target specific vulnerabilities in programs, not defense
techniques, presumably because few defense techniques
have gained popularity.

2.3 Caveat

The main caveat to keep in mind with our results is that,
as in previous empirical studies, our dataset does not con-
tain the universe of all concurrency attacks, nor is it a
uniform sample of the universal set. Thus, it is unknown
whether our dataset is representative. We attempt to com-
pensate for this issue by collecting concurrency attacks
from multiple sources and from various real-world pro-
grams that spread across the kernel, libraries, and differ-
ent types of user-space applications.

2



Findings Implications

A majority (24 out of 46) of the concurrency attacks corrupt
pointer data.

Existing memory safety tools, once made aware of concur-
rency, may be able to prevent concurrency attacks that cor-
rupt pointer data.

9 concurrency attacksdirectly corrupt scalar data, such as
user identifiers, without compromising memory safety.

Few existing defenses handle attacks that directly corrupt
scalar data.

Many existing defenses become unsafe in the face of concur-
rency errors

These defenses must consider concurrent execution.

The exploitability of a concurrency error highly depends on
the duration of itsvulnerable window(i.e., the timing win-
dow within which the concurrency error may occur).

New defense techniques may reduce the exploitability of
concurrency errors by reducing the duration of the vulner-
able window.

Table 1:Summary of Findings.

2.4 Summary of Key Findings

We summarize the key findings from our study in Ta-
ble 1. In the next two sections (§3 and§4), we provide
more detailed explanations, as well as real examples, of
these findings.

3 Findings on Concurrency Attacks
In this section, we present our findings on concurrency
attacks, focusing on the data step (§3.1) and the impact
step (§3.2) along the attack paths.

3.1 Data

In our dataset, 13 out of 46 concurrency errors lead to
file corruption, and the other 35 errors corrupt program
data. Since previous work has studied file system Time-
of-Check-to-Time-of-Use (TOCTOU) races in detail, in
this paper we focus on program data.

We further distinguish program data intopointer data
andscalar data. We define pointer data as data that, once
corrupted, compromises memory safety. For instance,
regular pointers or array indexes are pointer data. We
define scalar data as all other program data. We distin-
guish these two types of data because pointer data cor-
ruption can largely be exploited the same way for both
concurrency and sequential attacks, whereas scalar data
corruption is unique to concurrency attacks.

Of the 35 concurrency errors that corrupt program
data, 24 involve pointer data and the other 9 involve
scalar data. Figure 2 shows an example concurrency er-
ror that corrupts pointer data in the Linux kernel. This
violation is quite serious: a working exploit of this viola-
tion enables a local user to gain root access or execute ar-
bitrary code within ring 0 [3]. Specifically, this violation
occurs as follows. To load a shared library in ELF for-
mat, a process issues system calluselib(), which sub-
sequently calls functionload elf binary() (Fig-
ure 2). This function correctly holds the semaphore
mmap sem the first time it modifies the current process’s
memory map structures (line 2–4). However, when it

1 : load elf library(. . .) {
2 : down write(&current−>mm−>mmap sem);
3 : error = do map(. . .); // CORRECT
4 : up write(&current−>mm−>mmap sem);
5 : . . .
6 : if(bss > len)
7 : do brk(. . .);
8 : }
9 : do brk(. . .) {
10: vma = kmem cachealloc(. . .);
11: . . . // initialize vma
12: // ERROR! modify mmap without holdingmmap sem
13: vma link(mm, vma, . . .); // link vma onto mm
14: }
15:

Figure 2:Linux kernel memory map corruption.

modifies these data structures the second time by calling
do brk() (line 7), it does not hold the right semaphore.
Thus, another thread in the same process may be modi-
fying the memory map structures concurrently while this
do brk() call is running, causing kernel memory cor-
ruption.

Figure 3 shows a concurrency error that corrupts scalar
data, in particular user identities, and allows privilege es-
calation attacks. This bug is caused by Glibc’s default
thread library,nptl, not handlingsetuid() atomi-
cally. In Linux, each kernel thread has its own set of
user identities (user ID, effective user ID, etc). How-
ever, POSIX standards require that all other threads in the
same process have identical user identities. Thus, when
one thread callssetuid(), nptl has to ensure that all
threads in the current process callsetuid(). It does so
using function nptl setxid() in Figure 3, which
iterates through a list of all threads and signals each
thread to callsetuid() (line 6–12). However, this
function releases the lockstack cache lock pro-
tecting the thread list, before it waits for all threads to
finish setting their identifiers. A new thread may be
created, and still have the old user identifiers. Since

3



1 : nptl setxid (struct xid command*cmdp)
2 : {
3 : lll lock (stack cachelock);
4 : // signal all threads on list to set user id.
5 : // a thread is represented as a stack
6 : list for each (runp, &stack used)
7 : {
8 : struct pthread*t = list entry (runp, struct pthread, list);
9 : if (t == self)
10: continue;
11: setxid signal thread (cmdp, t);
12: }
13: lll unlock (stack cachelock);
14: // ERROR: does not wait for other threads to acknowledge
15: }
16: allocatestack(. . .) { // called when a new thread is created
17: lll lock (stack cachelock);
18: list add (&pd−>list, &stack used);
19: lll unlock (stack cachelock);
20: }

Figure 3:Glibc setuid race.

1 : bool FastCopy(MonoArray *src, MonoArray* dest, int length){
2 : // Checks that the type ofdst[i] derive from src[i]
3 : for (i = 0; i < length; ++i)
4 : if(!safe cast(type of(src[i]), type of(dest[i])))
5 : return FALSE;
6 :
7 : //ERROR: another thread might run
8 : // dst[0] = object with incompatible type;
9 :
10: // directly copy the bytes withmemcpy()
11: for (i = 0; i < length; ++i)
12: memcpy(dest[i], src[i], size of(ObjPtr));
13: return TRUE;
14: }
15:

Figure 4:Moonlight fast array copy race.

setuid() is often called to drop privileges, a thread
skippingsetuid() can thus result in privilege escala-
tion.

Figure 4 shows an atomicity error which allows an at-
tacker to silently violate type safety in Moonlight, the
Mono implementation of the Silverlight browser plugin.
To speed up an array copying process, theFastCopy()
method in the Mono CLR first checks that the types of
the destination element and the source element are com-
patible (line 3–5) and, if so, performs a fast element-wise
memcpy() instead of a slow copy implemented as CLR
instructions. However, the type check and the copy are
not implemented as one atomic step, allowing an attacker
to change the destination array after the type check, com-
promising type safety. For instance, the attacker can cre-
ate a new type with the same field layout, except that all
fields in this new type arepublic, thus gaining access
to the private fields in the original object.

3.2 Impact

Once a concurrency error corrupts pointer data and com-
promises memory safety, an attacker can exploit the cor-
ruption by leveraging the same techniques for sequen-
tial errors, such as launching denial of service (DoS) by
crashing the program, injecting code, or escalating privi-
leges. One example is the kernel memory map corruption
in Figure 2. Another example is the MSIE R6025 ex-
ploit [1] which allows an attacker to launch a code injec-
tion attack to Microsoft Internet Explorer (IE) through a
malicious webpage. Specifically, when IE opens the ma-
licious page in multiple windows, the javascript code in
the page calls theappendChild() method to append
a DHTML element of one window to an element of an-
other. A race inappendChild() can corrupt a func-
tion pointer in the heap. To reliably exploit this function
pointer corruption, the attacker sprays the heap by re-
peatedly invoking the DHTMLcreateComments()
function, before callingappendChild().

A concurrency error can also corrupt scalar data with-
out compromising memory safety. At a basic level, scalar
data corruption compromises data integrity. Worse, by
exploiting scalar data corruption, an attacker can often
launch privilege escalation attacks. All the studied con-
currency errors of this kind, including the two examples
(Figure 4 and Figure 3) shown in previous section, enable
privilege escalation attacks.

In our analysis, we also find that the exploitability
of a concurrency error heavily depends on the duration
of its vulnerable window, the timing window in which
the concurrency error may occur. The concurrency er-
rors presented so far have vulnerable windows measured
in quanta of memory access time. The moonlight er-
ror in Figure 4 is particularly dangerous because an at-
tacker can enlarge the vulnerability window of the er-
ror by copying a large array and increasing the num-
ber of iterations of the type check loop (line 3–5). The
file system TOCTOU races often have vulnerability win-
dows measured in quanta of disk access time. Our study
also revealsphysical proximate attacks, a unique class
of attacks carried out in human-time. Such attacks typi-
cally exploit concurrency errors in the user interface (UI)
logic.

For instance, there have been several demonstrated
vulnerabilities in the UI logic of Apple’s iOS that allow
attackers to bypass the passcode protection screen by ex-
ecuting a timed sequence of physical actions. Consider
the latest vulnerability in iOS version 4. When presented
with a passcode screen, an attacker can hit the “Emer-
gency Call” button, enter a malformed phone number
such as “###”, and then quickly hit the screen lock but-
ton to bypass the passcode screen. Several other physical
proximity attacks which exploit race-condition vulnera-
bilities within GUI’s have been identified [4–6].

4



// thread t1 thread t2
taint[x] = taint[bad];

taint[x] = taint[good];
x = good;

x = bad;

Figure 5:Data race renders taint tracking unsafe.

The apparent tri-modal distribution of the duration of
vulnerable windowof analyzed attacks suggests that this
feature may be used to identify the general type of con-
currency vulnerability. Furthermore, since such attacks
tend to be highly time-sensitive, theexpectedduration
of the vulnerable window within any region of a vul-
nerable program may be used to improve the efficacy of
randomization-based defenses against these attacks.

4 Findings on Defense Techniques

As discussed in previous section, many concurrency er-
rors can be exploited in the same ways as sequential er-
rors. It is thus key to understand (1) which defense tech-
niques are effective against concurrency attacks and (2)
for those that are ineffective, how to fix them.

In this section, we attempt to answer these questions
by analyzing a plethora of defense techniques from the
rich research literature. Specifically, we extract five com-
mon mechanisms that underlie many defense techniques
such as memory safety tools, taint trackers, and intrusion
detection systems. For each mechanism, we analyze how
it is affected by concurrency.

Metadata tracking. Techniques such as taint track-
ing or memory safety enforcement track program data
with metadata, such as taint tags or array bounds. If the
tracked program has a data race, the race may manifest
on the metadata owned by the defense technique, render-
ing it unsafe. Figure 5 illustrates this problem using a
contrived example. The original code has a race on vari-
ablex: thread t1 assigns a taintedbad value tox and
thread t2 assigns a untaintedgood value tox. The in-
terleaving in the figure can cause the taint tag ofx to be
inconsistent with the value ofx. That is, at the end of the
execution, the tag ofx indicates thatx is untainted, but
the value ofx is bad.

Software checks. Many techniques rely on software
checks to validate untrusted data. For instance, a taint
tracker checks that a piece of data is untainted before us-
ing it in a dangerous operation; a memory safety tool
checks that a pointer is within bounds before deferenc-
ing it; and a type checker ensures type safety (such the
fast copy type check in Figure 4). These techniques, if
unaware of concurrency, are prone to TOCTOU attacks
if the check and the use are not made atomic against con-
currently running code. Software checks on stack data
are typically not affected by concurrency errors because

stack data is rarely shared.
Static analysis. Static bug detectors have been very

effective at finding sequential errors. In addition, tech-
niques such as memory safety enforcement often rely
on sophisticated static analysis to identify places where
bounds checking is unnecessary. However, static analy-
sis for concurrent programs tend to be very inaccurate.
Thus, it is unlikely we will get precise static bug detec-
tors or other analysis tools for concurrent programs.

Anomaly detection. Typical anomaly detection sys-
tems work by learning normal program behaviors, then
detect deviations from the learned behaviors. Compli-
cations arise at both steps for concurrency attacks. For
instance, if an anomaly detector learns behaviors only
with respect to a single thread in a multithreaded system,
it may miss anomalies involving multiple threads. On
the flip side, if the anomaly detector models behaviors
of all threads, the model may become overly complex
and noisy. For instance, multiple threads may issue con-
current system calls, making the n-gram model [16] too
noisy. In other words, we lack simple and accurate mod-
els for the behaviors of concurrent programs. (Content-
based anomaly detection techniques may still work.)

Hardware checks. Some techniques rely on hardware
checks. For instance, several defense techniques prevent
code injection attacks by marking pages non-executable
via the NX bit. These techniques should work in concur-
rent models because the check is performed atomically
by the hardware at the time of use.

Randomization. Address Space Randomization or in-
struction set randomization work by hindering the impact
step. They should be equally effective for both concur-
rency and sequential attacks.

To summarize, four out of the six mechanisms dis-
cussed above are weakened by concurrency. Although
fixing static analysis or anomaly detection for concur-
rent programs may be difficult, fixing metadata track-
ing and software checks appear viable using standard ap-
proaches. For instance, a defense technique can use locks
to enforce the atomicity; it can also make a local copy of
a piece of shared data, then perform the check and the
use on the local data for atomicity.

5 New Defense Directions
Our study of concurrency attacks and existing defenses
inspire us to look for new, effective defense techniques.
The reasons are two-fold. First, for concurrency attacks
corrupting scalar data, we have few or no effective de-
fense techniques. Second, based on our analysis of the
wide spectrum of the exploit types of concurrency errors,
we posit that it is unlikely that a single mechanism can
defend against all types of concurrency attacks.

If we know the program location and cause of an ex-
ploitable concurrency error, we can use techniques such
as LOOM [23] to fix these known vulnerabilities. How-

5



F
re

q
u
e
n
c
y
 o

f 
E

x
p
lo

it
s

Duration of Vulnerable Window

Mem-Race Vulns (ns)
File-Race Vulns (ms)

UI-Race Vulns (seconds)

Figure 6: Our study suggests a likelytri-modal distri-
bution of the duration of the vulnerable window for all
concurrency attacks.

ever, deployed concurrent programs often contain many
unknown concurrency errors because it is extremely dif-
ficult to write correct concurrent programs or check
them. Thus, we focus on defense mechanisms which do
not requirea priori knowledge of the existence of con-
currency errors.

Randomization techniques can often mitigate un-
known errors. For instance, address space randomiza-
tion and instruction set randomization are often the “uni-
versal last resort” to mitigate many traditional sequen-
tial attacks. We believe that we can develop similar ran-
domization techniques to defend against unknown con-
currency attacks. Specifically, we can randomize timing
to hinder an attacker from exploiting predicted duration
and timing of the vulnerability window of a concurrency
error.

Figure 6 shows a likelytri-modal distribution of the
duration of the vulnerability windows for all concur-
rency errors analyzed in our study. Intuitively, this dis-
tribution can be broken into at least three distinguishable
ranges, corresponding to concurrency errors culminating
in memory, file, andphysical proximatebased exploit.

Two challenging research questions arise. First, can
we develop defense mechanisms which can mitigate all
concurrency errors regardless of vulnerability window
duration? Second, given an arbitrary program, can we
identify, with some confidence, the most likely type of
concurrency vulnerability to exist in a region of the pro-
gram, assuming that a vulnerability does exist?

6 Related Work
Since we have discussed related work on attacks and
defenses throughout this paper, this section focuses on
related empirical studies of software errors and attacks.
Previous work studied a large number of operating sys-
tem errors [13]. The study focuses on sequential errors
detected by an automated static analysis tool.

Chenet al. studiednon-control dataattacks [12], the
attacks that do not compromise control flow integrity.
However, Chen’s study focused on sequential errors,
and the proposed non-control data attacks still originated
from memory corruption attacks. In contrast, our study

focuses on concurrency errors, and attacks corrupting
scalar data do not cause memory corruption at all.

Recently, Luet al. studied many concurrency er-
rors from real software such as MySQL and Apache.
Their analysis focuses on interleaving and memory ac-
cess characteristics of concurrency errors, whereas ours
focuses on the security, exploit, and defense aspects of
the concurrency errors.
References
[1] Msie javaprxy.dll com object exploit. http://www.exploit-db.

com/exploits/1079/.
[2] Common vulnerabilities and exposures database. http://

cvedetails.com.
[3] Cve-2006-4814. http://www.cvedetails.com/cve/

CVE-2006-4814.
[4] Cve-2008-0034. http://www.cvedetails.com/cve/

CVE-2008-0034/, .
[5] Cve-2010-1754. http://www.cvedetails.com/cve/

CVE-2010-1754/, .
[6] Cve-2010-0923. http://www.cvedetails.com/cve/

CVE-2010-0923.
[7] A. Agarwal and M. Levy. The kill rule for multicore. InDAC ’07: Proceed-

ings of the 44th annual Design Automation Conference, pages 750–753,
2007.

[8] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Kon-
winski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia.
Above the clouds: A berkeley view of cloud computing. Technical Report
UCB/EECS-2009-28, EECS Department, University of California, Berke-
ley, Feb 2009. URLhttp://www.eecs.berkeley.edu/Pubs/
TechRpts/2009/EECS-2009-28.html.

[9] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-
Gros, A. Kamsky, S. McPeak, and D. Engler. A few billion lines of code
later: using static analysis to find bugs in the real world.Commun. ACM,
53:66–75, February 2010.

[10] E. Bhatkar, D. C. Duvarney, and R. Sekar. Address obfuscation: an efficient
approach to combat a broad range of memory error exploits. InIn Proceed-
ings of the 12th USENIX Security Symposium, pages 105–120, 2003.

[11] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs. InPro-
ceedings of the Eighth Symposium on Operating Systems Design and Im-
plementation (OSDI ’08), pages 209–224, Dec. 2008.

[12] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. Non-control-data
attacks are realistic threats. InIn USENIX Security Symposium, pages 177–
192, 2005.

[13] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An empirical study
of operating systems errors. InProceedings of the 18th ACM Symposium
on Operating Systems Principles (SOSP ’01), pages 73–88, Nov. 2001.

[14] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, and Q. Zhang. Stackguard: automatic adaptive detection
and prevention of buffer-overflow attacks. InProceedings of the 7th con-
ference on USENIX Security Symposium - Volume 7, pages 5–5, Berkeley,
CA, USA, 1998. USENIX Association. URLhttp://portal.acm.
org/citation.cfm?id=1267549.1267554.

[15] C. Cowan, S. Beattie, J. Johansen, and P. Wagle. Pointguard: Protecting
pointers from buffer overflow vulnerabilities. InIn Proc. of the 12th Usenix
Security Symposium, 2003.

[16] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff. A sense of
self for unix processes. InProceedings of the 1996 IEEE Symposium on
Security and Privacy, 1996.

[17] M. Horowitz. Scaling, power and the future of cmos. InVLSID ’07: Pro-
ceedings of the 20th International Conference on VLSI Design held jointly
with 6th International Conference, page 23, 2007.

[18] E. A. Lee. The problem with threads.Computer, 39(5):33–42, 2006.
[19] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: a compre-

hensive study on real world concurrency bug characteristics. InThirteenth
International Conference on Architecture Support for ProgrammingLan-
guages and Operating Systems (ASPLOS ’08), Mar. 2008.

[20] H. Meer. Memory Corruption Attacks: The (Almost) Complete History...
In In BlackHat USA, 2010.

[21] G. C. Necula, S. McPeak, and W. Weimer. Ccured: type-safe retrofitting of
legacy code. InProceedings of the 29th ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages, POPL ’02, pages 128–139,
2002.

[22] H. Sutter and J. Larus. Software and the concurrency revolution.ACM
Queue, 3(7):54–62, 2005.

[23] J. Wu, H. Cui, and J. Yang. Bypassing races in live applications with execu-
tion filters. InProceedings of the Ninth Symposium on Operating Systems
Design and Implementation (OSDI ’10), Oct. 2010.

6

http://www.exploit-db.com/exploits/1079/
http://www.exploit-db.com/exploits/1079/
http://cvedetails.com
http://cvedetails.com
http://www.cvedetails.com/cve/CVE-2006-4814
http://www.cvedetails.com/cve/CVE-2006-4814
http://www.cvedetails.com/cve/CVE-2008-0034/
http://www.cvedetails.com/cve/CVE-2008-0034/
http://www.cvedetails.com/cve/CVE-2010-1754/
http://www.cvedetails.com/cve/CVE-2010-1754/
http://www.cvedetails.com/cve/CVE-2010-0923
http://www.cvedetails.com/cve/CVE-2010-0923
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://portal.acm.org/citation.cfm?id=1267549.1267554
http://portal.acm.org/citation.cfm?id=1267549.1267554

	1 Introduction
	2 Study Methodology
	2.1 Attacks
	2.2 Defense Techniques
	2.3 Caveat
	2.4 Summary of Key Findings

	3 Findings on Concurrency Attacks
	3.1 Data
	3.2 Impact

	4 Findings on Defense Techniques
	5 New Defense Directions
	6 Related Work

