
Constructing Subtle Concurrency Bugs Using Synchronization-Centric
Second-Order Mutation Operators

Leon Wu Gail Kaiser
Department of Computer Science

Columbia University
New York, NY 10027 USA

{leon,kaiser}@cs.columbia.edu

Abstract

Mutation testing applies mutation operators to modify
program source code or byte code in small ways, and then
runs these modified programs (i.e., mutants) against a test
suite in order to evaluate the quality of the test suite. In
this paper, we first describe a general fault model for con-
current programs and some limitations of previously devel-
oped sets of first-order concurrency mutation operators. We
then present our new mutation testing approach, which em-
ploys synchronization-centric second-order mutation oper-
ators that are able to generate subtle concurrency bugs not
represented by the first-order mutation. These operators are
used in addition to the synchronization-centric first-order
mutation operators to form a small set of effective concur-
rency mutation operators for mutant generation. Our em-
pirical study shows that our set of operators is effective in
mutant generation with limited cost and demonstrates that
this new approach is easy to implement.

1 Introduction

Mutation testing is a white-box fault-based software test-
ing technique that uses mutants, slightly modified variants
of the program source code or byte code, to characterize
the effectiveness of a testing suite and locate weaknesses in
the test data or program that are seldom or never exposed
during normal execution [9]. Mutation testing is based on
the Competent Programmer Hypothesis and the Coupling
Effect Hypothesis. The Competent Programmer Hypothe-
sis assumes that programmers are competent and normally
write programs that are close to perfect; program faults are
syntactically small and can be corrected with a few small
code modifications [1, 9]. The Coupling Effect Hypothesis
states that complex bugs in software are closely coupled to
small, simple bugs. Thus, mutation testing can be effective
in simulating complex real-world bugs [9, 23].

Mutation testing typically involves three stages: (1) Mu-
tant generation, the goal of which is the generation of mu-
tants of the program through inserting bugs. (2) Mutant ex-
ecution, the execution of test cases against both the original
program and the mutants. (3) Result analysis, to check the
mutation score, i.e., the percentage of nonequivalent mu-
tants that are killed by the test suite [26, 23]. A mutant
is equivalent to the original program if the mutant and the
original program always produce the same output, hence no
test case can distinguish between the two [8]. A mutant is
considered killed by the test suite if the execution result of
the mutant is different from the result of the original pro-
gram [25]. A test data set is said to be adequate if its muta-
tion score is 100% [8, 24].

For the first stage, a predefined set of mutation operators
are used to generate mutants from program source code or
byte code. A mutation operator is a rule that is applied to
a program to create mutants [25]. Mutants containing one
simple fault are called first-order mutants and mutants con-
taining two simple faults are called second-order mutants
[26]. Researchers have developed many sets of mutation
operators [25, 17], targeting a variety of programming lan-
guages. For example, Delamaro et al. and Bradbury et al.
have proposed different set of mutation operators for con-
current Java programs [7, 4]. Our empirical study and anal-
ysis shows that some subtle concurrency bugs are not gener-
ated by any of these proposed first-order mutation operators.
Our study further shows that a large portion of these opera-
tors are not effective in mutant generation: the majority of
the mutants are generated by a small subset of the mutation
operators, generally those that are synchronization-centric,
i.e., directly relating to the synchronization of different pro-
cesses or threads. Based on a general fault model for con-
current programs and our analysis of the limitations in prior
work, we present our new mutation testing approach, which
employs synchronization-centric second-order mutation op-
erators that are able to generate subtle concurrency bugs not

represented by the first-order mutation. These operators are
used in addition to the synchronization-centric first-order
mutation operators to form a small set of effective concur-
rency mutation operators that can be used in mutant gen-
eration. Our empirical study shows that our small set of
operators is effective in mutant generation with limited cost
and demonstrates that this new approach is easy to imple-
ment. The initial analysis of the possible implications of our
results has potential impact on the Coupling Effect Hypoth-
esis, indicating that possibly the coupling effect is weaker
in concurrent programs than in sequential programs.

The remainder of this paper is structured as follows. In
Section 2, we describe our fault model for concurrent pro-
grams. In Section 3, we present the limitations of some
previous work. In Section 4, we present our new approach.
In Section 5, we present our empirical study. Lastly, we
discuss the related work before we conclude.

2 Fault Model for Concurrent Programs

Testing concurrent programs is difficult. It is generally
impossible or impractical to exhaustively test all combina-
tions of input values or cover all possible control or data
flow paths in sequential programs but even more so in con-
current programs; nevertheless, test suites can and must be
constructed according to various criteria to attempt to find
bugs. In order to develop a set of concurrency mutation
operators that are able to model subtle concurrency bugs,
we employ a general fault model that is based on the con-
currency bug patterns and the synchronization mechanisms.
Our definition of fault is a programming error that leads to
an erroneous result in some programs during execution.

2.1 Concurrency Bug Patterns
Some prior research on concurrency bug patterns has

been done. [13] and [20] described taxonomy of common
concurrency bugs. [12] compiled a benchmark of concur-
rency bugs. [6] and [21] described some empirical studies
on concurrency bugs. We consolidate the common concur-
rency faults from these prior researches that we consider for
mutation operators to model and present them below.

• Data Race: Data race condition happens when multi-
ple threads read and write the same data, and the out-
come of the execution depends on the particular or-
der in which the accesses happen [6]. It is also called
thread interference.
• Memory Inconsistency: Memory inconsistency errors

occur when different threads have inconsistent views
of the same variable.
• Atomicity Violation: Atomicity violation error is

caused by concurrent execution of multiple threads vi-
olating the atomicity of a certain code region [21].

• Deadlock: Deadlock happens when multiple threads
are blocked forever, waiting for each other.
• Livelock: Livelock happens when two threads are busy

responding to each other and make no progress.
• Starvation: Starvation happens when a thread is unable

to gain regular access to shared resources and is unable
to make progress.
• Suspension: Suspension happens when a thread sus-

pends or waits indefinitely.

2.2 Synchronization Mechanism
Concurrent programs rely on synchronization to ensure

correct program execution. There are two main synchro-
nization mechanisms: synchronization using shared mem-
ory and synchronization using message passing. For pro-
gramming models that use shared memory synchronization
(e.g., Java and C#), the threads communicate primarily by
sharing access to fields and the objects reference fields re-
fer to. The synchronization aims to avoid thread interfer-
ence and memory consistency errors. For programming
models that use message passing (e.g., Erlang [3] and Mi-
crosoft Asynchronous Agents Library [22]), the concurrent
agents or actors in the programs communicate with each
other through exchanging messages and use the synchro-
nization to avoid problems in the message communications.

3 Limitations of First-Order Concurrency
Mutation Operators

To measure the testability of concurrent Java programs,
Ghosh described mutation based on two mutation operators
that remove the keyword synchronized [14]. Long et
al. tested mutation-based exploration for concurrent Java
components [19]. Delamaro et al. proposed a set of 15 con-
currency mutation operators for Java [7]. Later, Bradbury
et al. proposed a new set of 24 concurrency mutation oper-
ators for Java [4]. The operators they proposed are all first-
order mutation operators. We have investigated these muta-
tion operators in our empirical study and identified some of
their limitations.

3.1 Subtle Concurrency Bugs Are Not Generated
The first important limitation we found is that some sub-

tle concurrency bugs are not generated by any of these pro-
posed first-order mutation operators. This limitation could
lead to loss of comprehensive representation of common
concurrency bugs by the mutants, thus reducing the relia-
bility of the mutation score that follows. We give two ex-
amples in the following subsections.

3.1.1 Data Race Example
The following code fragment from the LinkedList program,
a Java program from the IBM concurrency benchmark pro-
grams repository [12], inserts an element to the end of a

list. Another process, not shown here, reads the list. The
synchronized method first starts from the top of the list
(line 4), then moves to the end of the list via a loop (line
5) before inserts the object x to the end (line 6). Suppose
we only apply first-order mutation operators (e.g., removing
synchronized keyword from line 2 or deleting a state-
ment from line 4 to 6), the mutant does not represent a fea-
sible programming error that line 2 is not synchronized and
line 5’s error causes the node index itr does not move to
the end of the list properly. The combined error in line 2
and line 5 would potentially cause data race because multi-
ple threads would try to write to the header of the list with-
out synchronization and other threads might read the list at
the same time. The outcome of the execution would depend
on the thread schedule and which thread made the last call
to the method because different threads all try to update the
header of the list. By definition, this is a data race condi-
tion. To apply either operator independently is not going
to create the same fault because under single application
of either first-order mutation operator, data race would less
likely happen and their mutants would represent different
kind of faults.
1 /∗ I n s e r t s e l e m e n t t o t h e end o f l i s t ∗ /
2 p u b l i c synchronized void a d d L a s t (O b j e c t x)
3 {
4 MyListNode i t r = t h i s . h e a d e r ;
5 whi le (i t r . n e x t != n u l l) i t r = i t r . n e x t ;
6 i n s e r t (x , new M y L i n k e d L i s t I t r (i t r)) ;
7 }

3.1.2 Deadlock Example
Incorrect use of synchronization can result in two or more
threads waiting for each other to release the locks on the
synchronized objects, forming a deadlock circle. As shown
in the following example code for money transfer between
two accounts, the line 5 and 6 in the original code may
be incorrectly programmed in a nested synchronized block,
which makes the deadlock possible. For example, two
threads with execution of line 9 and 10 simultaneously
would lead to deadlock since each thread will be waiting
in a circle for the other thread to release required lock. This
kind of deadlocks that require changes in more than one
place are not generated by any first-order operator.
1 void Transfe rMoney (Acct a , Acct b , i n t amount) {
2 synchronized (a) {
3 a . d e b i t (amount) ;
4 }
5 synchronized (b) {
6 b . c r e d i t (amount) ;
7 }
8 }
1 void Transfe rMoney (Acct a , Acct b , i n t amount) {
2 synchronized (a) {
3 synchronized (b) { / / f i r s t change
4 a . d e b i t (amount) ;
5 b . c r e d i t (amount) ; / / s econd change
6 }
7 }
8 }
9 Thread1 . run () { Transfe rMoney (a , b , 1 0) ; }
10 Thread2 . run () { Transfe rMoney (b , a , 2 0) ; }

3.2 A Large Portion of Mutation Operators Do
Not Generate Any Mutant

Our empirical study shows that a large portion of exist-
ing mutation operators are not effective in generating mu-
tants. For example, several previously proposed mutation
operators for concurrent Java, including MSF, MXC, MBR,
RCXC, ELPA, EAN, RSTK, RFU, RXO and EELO [7, 4],
did not generate any mutants in our experiments. Some oth-
ers, including MXT, RNA, RJS, InsNegArg, and ReplTar-
gObj [7, 4], generated very few mutants. In our assess-
ment, over half of the total number of operators are non-
performing mutation operators, i.e., operators that do not
generate any new mutant. Most of the performing ones are
related to mutation of a synchronized method or block.

4 Approach

4.1 Synchronization-Centric Second-Order Con-
currency Mutation Operators

Our new mutation testing approach is based on our fault
model and our analysis of the limitations of some previous
work. We use synchronization-centric second-order concur-
rency mutation operators to construct subtle concurrency
bugs that are not represented by the first-order mutation.
While, a random and brute-force approach without any re-
duction would lead to n ∗ n second-order mutation opera-
tors based on n first-order mutation operators. To reduce
the number of second-order mutation operators and mutant
execution cost, we employ two steps of reduction. We first
choose one of the two first-order mutation operators to be a
synchronized method or block related modification and the
other first-order operator to perform code changes related
to the same synchronized method or block. For example,
in concurrent Java, there are five first-order mutation op-
erators related to synchronized methods [7, 4], we choose
two out of the five in the same category. Then we evalu-
ate the chosen two first-order mutation operators to see if
their combination can generate mutants that resemble some
possible faults due to programming mistakes and only keep
those meaningful combinations. This second reduction step
through selection based on domain knowledge further re-
duces the amount of second-order mutation operators and
leads to fewer unnecessary or redundant mutants.

After the set of synchronization-centric second-order
concurrency mutation operators are chosen, they are com-
bined with the synchronization-centric first-order mutation
operators to form a smaller set of mutation operators for
mutant generation.

4.2 Example Mutation Operators for Java
Table 1 lists the synchronization-centric second-order

concurrency mutation operators for Java, as an example of
synchronization using shared memory. We describe each
operator with example code in the following subsections.

Table 1. Second-Order Concurrency Mutation
Operators for Java

sy
nc

m
et

ho
d RKSN+RSSN Remove synchronized Keyword and a Statement

from Synchronized Method
AKST+MASN Add static Keyword and Modify Argument with

Constant to Synchronized Method
RKSN+MASN Remove synchronized Keyword and Modify Ar-

gument with Constant

sy
nc

bl
oc

k RSNB+RSSB Remove synchronized Block and a Statement
from Synchronized Block

MOSB+RSSB Modify synchronized Object and Remove a State-
ment from Synchronized Block

MOSB+MVSB Modify synchronized Object and Move State-
ment(s) Out of Synchronized Block

4.2.1 RKSN+RSSN
The RKSN+RSSN operator removes a synchronized
keyword and a statement from a synchronized method. This
operator simulates programming errors that can potentially
lead to data race, memory inconsistency, and deadlock. The
data race described in Section 3.1.1 can be constructed by
this operator.

/∗ O r i g i n a l Code ∗ /
p u b l i c synchronized void p roc (O b j e c t A) {

<s t a t e m e n t 1>
<s t a t e m e n t 2>

}
/∗ RKSN+RSSN Mutant 1 ∗ /
p u b l i c vo id p roc (O b j e c t A) { / / s ync removed

. . . / / s t a t e m e n t removed
<s t a t e m e n t 2>

}
/∗ RKSN+RSSN Mutant 2 ∗ /
p u b l i c vo id p roc (O b j e c t A) { / / s ync removed

<s t a t e m e n t 1>
. . . / / s t a t e m e n t removed

}

4.2.2 AKST+MASN
The AKST+MASN operator adds a static keyword and
modifies an argument with a constant to a synchronized
method. This operator simulates programming errors that
can potentially lead to data race and memory inconsistency.

/∗ O r i g i n a l Code ∗ /
p u b l i c synchronized void send (S t r i n g m) { . . . }
/∗ AKST+MASN Mutant ∗ /
p u b l i c s t a t i c synchronized void send (S t r i n g n) { . . . }

4.2.3 RKSN+MASN
The RKSN+MASN operator removes a synchronized
keyword and modifies an argument with a constant to a syn-
chronized method. This operator simulates programming
errors that can potentially lead to data race and memory in-
consistency.

/∗ O r i g i n a l Code ∗ /
p u b l i c synchronized void send (S t r i n g m) { . . . }
/∗ AKST+MASN Mutant ∗ /
p u b l i c vo id send (S t r i n g n) { . . . }

4.2.4 RSNB+RSSB
The RSNB+RSSB operator removes the synchronized
block and a statement from a synchronized block. This
operator simulates programming errors that can potentially
lead to data race, memory inconsistency, and deadlock.

/∗ O r i g i n a l Code ∗ /
synchronized (t h i s) {

<s t a t e m e n t 1>
<s t a t e m e n t 2>

}
/∗ RSNB+RSSB Mutant 1 ∗ /
. . . / / removed

. . . / / removed
<s t a t e m e n t 2>

. . .
/∗ RSNB+RSSB Mutant 2 ∗ /
. . . / / removed

<s t a t e m e n t 1>
. . . / / removed

. . .

4.2.5 MOSB+RSSB
The MOSB+RSSB operator modifies a synchronized object
and removes a statement from a synchronized block. This
operator simulates programming errors that can potentially
lead to data race and memory inconsistency.

/∗ O r i g i n a l Code ∗ /
synchronized (ob j1) {

<s t a t e m e n t 1>
<s t a t e m e n t 2>

}
/∗ MOSB+RSSB Mutant ∗ / / / o b j e c t m o d i f i e d
synchronized (newobj) {

<s t a t e m e n t 1>
. . . / / removed

}
/∗ MOSB+RSSB Mutant ∗ /
synchronized (newobj) { / / o b j e c t m o d i f i e d

. . . / / removed
<s t a t e m e n t 2>

}

4.2.6 MOSB+MVSB
The MOSB+MVSB operator modifies a synchronized ob-
ject and moves statement(s) out of a synchronized block.
This operator simulates programming errors that can poten-
tially lead to data race, deadlock, memory inconsistency,
and atomicity violation. The deadlock described in Section
3.1.2 can be constructed by this operator, i.e., moving two
lines of code including the synchronized block.

/∗ O r i g i n a l Code ∗ /
synchronized (ob j1) {

<s t a t e m e n t 1>
<s t a t e m e n t 2>
. . .

}
/∗ MOSB+MVSB Mutant 1∗ /
<s t a t e m e n t 1> / / moved
synchronized (newobj) { / / o b j e c t m o d i f i e d

<s t a t e m e n t 2>
. . .

}
/∗ MOSB+MVSB Mutant 2∗ /
<s t a t e m e n t 1> / / moved
<s t a t e m e n t 2> / / moved
synchronized (newobj) { / / o b j e c t m o d i f i e d

. . .
}

4.3 Example Mutation Operators for Erlang
Table 2 lists the synchronization-centric second-order

concurrency mutation operators for Erlang, as an example
of synchronization using message passing. The CRT (i.e.,

Change Reference Type) refers to changing a message ref-
erence from Send by Ref to Send by Val, and vice versa
[15]. The CST (i.e., Change Synchronization Type) refers
to changing a message’s synchronization method from Sync
Send to Async Send, and vice versa. Since these mutation
operators are self-explanatory, we do not give detailed ex-
ample code here.

Table 2. Second-Order Concurrency Mutation
Operators for Erlang

M
es

sa
gi

ng

CRT+MMP Change reference type and modify message parameter
CRT+RMP Change reference type and reorder message parameter
CRT+MMN Change reference type and modify message name
CRT+MMR Change reference type and modify message recipient
CST+MMP Change sync type and modify message parameter
CST+RMP Change sync type and reorder message parameter
CST+MMN Change syn type and modify message name
CST+MMR Change syn type and modify message recipient

C
on

st
ra

in
t CRT+RC Change reference type and remove constraint

CRT+MC Change reference type and modify constraint
CST+RC Change syn type and remove constraint
CST+MC Change syn type and modify constraint

5 Empirical Study

5.1 Implementation
We developed an Eclipse Plug-in [11] named BUGGEN

that is able to automate mutant generation after the spe-
cific mutation operator is selected. Eclipse is a popular in-
tegrated development environment (IDE) with an extensi-
ble plug-in system. Building BUGGEN as an Eclipse Plug-
in leverages the functionalities of the Eclipse and simpli-
fies software development. During our implementation, we
found our set of mutation operators is easy to implement. In
our empirical study, we focus on concurrent Java.

5.2 Example Programs
We use the following four example programs in our ex-

periments to study mutant generation, as well as the cost
and effectiveness of each proposed operator,
• Webserver, a Java web server program that supports

concurrent client connections and synchronization [2].
• Chat, a Java chat program that supports multiple

clients exchanging messages [10].
• Miasma, a graphical Java applet program from the NIH

web-site [18]. It supports synchronization and uses
wait(t) for prior pixels to be accepted before trig-
gering another one.
• LinkedList, a modified Java program from the IBM

concurrency benchmark programs repository [12].
The original program was developed to emulate the
concurrency bug in using Java linked list, which is a
non-synchronized collection.

We select the above example programs because they all
employ different concurrency features and these programs
are diversified in terms of type, size, coding style, applied

field, and developer. These programs are representative in
demonstrating common programming practices using con-
current Java. Table 3 lists some statistical information for
each program’s source code.

Table 3. Example programs
Program Name LOC classes sync methods sync blocks
Webserver 125 6 11 2
Chat 482 4 10 2
Miasma 360 1 0 2
LinkedList 421 5 1 1
Total 1,388 16 22 7

5.3 Mutant Generation Results and Analysis
In our experiments, we apply each of the mutation op-

erators listed in Table 1, along with the synchronization-
centric first-order mutation operators, on the example pro-
grams, count the number of mutants generated by each op-
erator for each program, and then examine these mutants.
From our experiments, we found that over half of the first-
order mutation operators, especially those that are not re-
lated to synchronization, are not effective in generating mu-
tants. Synchronization-centric mutation operators generate
the majority of the mutants. Our quantitative data and sum-
mations for each category are recorded in the histogram
chart presented in Figure 1. Details for each operator and
the example programs can be found in our technical re-
port [27]. The vertical axis shows the number of mutants.
Most synchronization-centric mutation operators, in partic-
ular the second-order ones, are effective in mutant genera-
tion.

Our empirical study demonstrates that the second-order
mutation operators generate subtle concurrency bugs not
represented by the first-order mutation; our mutant gen-
eration effort is limited; fewer percentages of equivalent
mutants are generated. Second-order operators tend to de-
crease the percentage of equivalent mutants [26].

6 Related Work

Some prior studies have been done on mutation testing
for concurrent programs [17]. Carver described determinis-
tic execution mutation testing and debugging of concurrent
programs using synchronization-sequence [5]. Researchers
have developed many sets of mutation operators [25, 17],
targeting a variety of programming languages. Other than
the mutation operators for concurrent Java, Jagannath et al.
have proposed a set of mutation operators for actor pro-
gramming model [15]. Our synchronization-centric second-
order mutation operators for message passing also apply to
the actor programming model.

For higher-order mutation, Polo et al. studied mutation
cost reduction using second-order mutants [26]. Jia et al.
described some general cases of higher-order mutation and
related algorithms [16]. In our approach, we used second-
order mutation to construct some subtle concurrency faults.

0

10

20

30

40

50

60

70

R
K
SN

R
C
SN

R
SS
N

A
K
ST

M
A
SN

R
SN
B

R
SS
B

M
O
SB

E
O
SB

M
V
SB

R
M
W
N

R
M
SV

R
K
SN
+R
SS
N

A
K
ST
+M
A
SN

R
K
SN
+M
A
SN

R
SN
B
+R
SS
B

M
O
SB
+R
SS
B

M
O
SB
+M
V
SB

Webserver

Chat

Miasma

LinkedList

Total

Figure 1. Number of mutants generated per operator

By keeping a small number of second-order mutation op-
erators based on synchronization and reduction through do-
main analysis, we avoided the drastic growth of the number
of mutants, thus avoiding higher computing cost in mutant
execution. To the best of our knowledge, our work is the
first study of the second-order mutation operators specifi-
cally for concurrent programs.

7 Conclusion

This paper first described a general fault model for con-
current programs and some limitations of previously devel-
oped sets of first-order concurrency mutation operators. We
then presented our new mutation testing approach, which
employs synchronization-centric second-order mutation op-
erators that are able to generate subtle concurrency bugs not
represented by the first-order mutation. These operators are
used in addition to the synchronization-centric first-order
mutation operators to form a small set of effective concur-
rency mutation operators that can be used in mutant gener-
ation. We developed an Eclipse Plug-in named BUGGEN to
automate the mutant generation using these operators. Our
empirical study showed that our set of mutation operators
is effective in mutant generation with limited cost and this
new approach is easy to implement. For future work, we
plan to evaluate some concurrency testing suites using the
set of mutation operators.

8 Acknowledgments

Wu and Kaiser are members of the Programming
Systems Laboratory, funded in part by NSF CNS-
0717544, CNS-0627473 and CNS-0426623, and NIH 2
U54 CA121852-06.

References

[1] A. T. Acree, T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Mu-
tation analysis. Technical Report GIT-ICS-79/08, Georgia Institute of Tech-
nology, Atlanta, Georgia, 1979.

[2] J. Aldrich, E. G. Sirer, C. Chambers, and S. J. Eggers. Comprehensive syn-
chronization elimination for java. Science of Computer Programming, 47(2-
3):91–120, 2003.

[3] J. Armstrong, R. Virding, C. Wikström, and M. Williams. Concurrent Pro-
gramming in ERLANG. Prentice Hall, 1993, Second Edition.

[4] J. S. Bradbury, J. R. Cordy, and J. Dingel. Mutation operators for concurrent
java (j2se 5.0). In Proceedings of the Second Workshop on Mutation Analysis
(Mutation ’06), pages 11–11. IEEE Computer Society, 2006.

[5] R. Carver. Mutation-based testing of concurrent programs. In Proceedings of
the International Test Conference, pages 845–853, 1993.

[6] S.-E. Choi and E. C. Lewis. A study of common pitfalls in simple multi-
threaded programs. In Proceedings of the 31st SIGCSE Technical Symposium
on Computer Science Education. ACM, 2000.

[7] M. Delamaro, M. Pezzé, A. M. R. Vincenzi, and J. C. Maldonado. Mutant
operators for testing concurrent java programs. In XV Simpósio Brasileiro de
Engenharia de Software, pages 272 – 285, Rio de Janeiro, RJ, Brasil, 2001.

[8] R. A. DeMillo, D. S. Guindi, W. M. McCracken, A. J. Offutt, and K. N.
King. An extended overview of the mothra software testing environment. In
Proceedings of the Second Workshop on Software Testing, Verification, and
Analysis, pages 142–151, 1988.

[9] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection:
Help for the practicing programmer. Computer, 11(4):34–41, 1978.

[10] D. J. Eck. Chat. available at http://math.
hws.edu/eck/cs124/s06/lab11/index.html, 2006.

[11] Eclipse. Eclipse.org. available at http://www.eclipse.org, 2010.
[12] Y. Eytani and S. Ur. Compiling a benchmark of documented multi-threaded

bugs. In Proceedings of the 18th International Parallel and Distributed Pro-
cessing Symposium (IPDPS ’04), page 266, 2004.

[13] E. Farchi, Y. Nir, and S. Ur. Concurrent bug patterns and how to test them. In
Proceedings of the 17th International Symposium on Parallel and Distributed
Processing. IEEE Computer Society, 2003.

[14] S. Ghosh. Towards measurement of testability of concurrent object-oriented
programs using fault insertion: a preliminary investigation. In Proceedings
of the Second IEEE International Workshop on Source Code Analysis and
Manipulation, pages 17–25, 2002.kim

[15] V. Jagannath, M. Gligoric, S. Lauterburg, D. Marinov, and G. Agha. Mutation
Operators for Actor Systems In 2010 Third International Conference on Soft-
ware Testing, Verification, and Validation Workshops (ICSTW), pp. 157–162,
2010.

[16] Y. Jia and M. Harman. Constructing subtle faults using higher order mutation
testing. In Proceedings of the Eighth IEEE International Working Conference
on Source Code Analysis and Manipulation, pages 249–258, 2008.

[17] Y. Jia and M. Harman. An analysis and survey of the development of mutation
testing. IEEE Transactions of Software Engineering, 2010.

[18] JRP. Miasma. available at http://rsb.
info.nih.gov/miasma/Miasma.java, 2010.

[19] B. Long, R. Duke, D. Goldson, P. Strooper, and L. Wildman. Mutation-
based exploration of a method for verifying concurrent java components. In
Proceedings of the 18th International Parallel and Distributed Processing
Symposium (IPDPS ’04), page 265, 2004.

[20] B. Long and P. Strooper. A classification of concurrency failures in java com-
ponents. In Proceedings of the International Parallel and Distributed Pro-
cessing Symposium (IPDPS ’03), pp. 8, 2003.

[21] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: a comprehen-
sive study on real world concurrency bug characteristics. In Proceedings of
the 13th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’08). ACM, 2008.

[22] Microsoft Asynchronous Agents Library http://msdn.microsoft.com/en-
us/library/dd492627(VS.100).aspx

[23] A. J. Offutt. Investigations of the software testing coupling effect. ACM
Transactions on Software Engineering and Methodology, 1(1):5–20, 1992.

[24] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf. An experimental
determination of sufficient mutant operators. ACM Transactions on Software
Engineering and Methodology, 5(2):99–118, 1996.

[25] A. J. Offutt and R. H. Untch. Mutation 2000: uniting the orthogonal. Mutation
Testing for the New Century, pages 34–44, 2001.

[26] M. Polo, M. Piattini, and I. Garcı́a-Rodrı́guez. Decreasing the cost of mu-
tation testing with second-order mutants. Software Testing, Verification and
Reliability, 19(2):111–131, 2009.

[27] L. Wu and G. Kaiser. Empirical study of concurrency mutation operators
for java. Technical Report CUCS-041-10, Department of Computer Science,
Columbia University, 2010.

