
Cells: A Virtual Mobile Smartphone Architecture
Jeremy Andrus, Christoffer Dall, Alexander Van’t Hof, Oren Laadan, and Jason Nieh

{jeremya, cdall, alexvh, orenl, nieh}@cs.columbia.edu
Department of Computer Science, Columbia University

Technical Report CUCS-022-11
May 2011

Abstract
Cellphones are increasingly ubiquitous, so much so that
many users are inconveniently forced to carry multiple
cellphones to accommodate work, personal, and geo-
graphic mobility needs. We present Cells, a virtual-
ization architecture for enabling multiple virtual smart-
phones to run simultaneously on the same physical cell-
phone device in a securely isolated manner. Cells in-
troduces a usage model of having one foreground vir-
tual phone and multiple background virtual phones. This
model enables a new device namespace mechanism and
novel device proxies that integrate with lightweight op-
erating system virtualization to efficiently and securely
multiplex phone hardware devices across multiple virtual
phones while providing native hardware device perfor-
mance to all applications. Virtual phone features include
fully-accelerated graphics for gaming, complete power
management features, and full telephony functionality
with separately assignable telephone numbers and caller
ID support. We have implemented a Cells prototype that
supports multiple Android virtual phones on the same
phone hardware. Our performance results demonstrate
that Cells imposes only modest runtime and memory
overhead, works seamlessly across multiple hardware
devices including Google Nexus 1 and Nexus S phones
and NVIDIA tablets, and transparently runs all existing
Android applications without any modifications.

1 Introduction
The preferred platform for everyday computing needs is
shifting from traditional desktop and laptop computers
toward mobile smartphone and tablet devices [5]. Smart-
phones are becoming an even more important work tool
for mobile professionals as they often primarily rely on
them for telephone, text messaging, and email commu-
nication, Web browsing, contact and calendar manage-
ment, and news, travel-related, and location-specific in-
formation. Many of these same functions as well as
the ability to play music, movies, and games also make
smartphones a useful personal tool. In fact, hundreds of
thousands of smartphone applications are available for
users to download and try through various online ap-
plication stores. The ease with which users can down-
load new software imposes a risk on users as malicious
software can easily access sensitive data with the risk

of corrupting it or even leaking it to third parties [41].
For this reason, companies often lock down the smart-
phones they allow to connect to the company network,
resulting in many users having to carry separate work
and personal phones. Application developers also often
carry additional phones for development to avoid having
a misbehaving application prototype corrupt their pri-
mary phone. Parents sometimes wish they had additional
phones when they let their children use their smartphones
as entertainment devices to play educational games and
end up with unexpected charges due to accidental phone
calls or unintended in-application purchases.

To address these problems, a few approaches have
started leveraging traditional virtual machine mecha-
nisms to enable two separate and isolated instances of the
entire software stack of a smartphone to run on the same
ARM hardware phone [25, 3, 6, 14]. These approaches
require substantial modifications to both user and ker-
nel levels of the software stack, and paravirtualization
is used in all cases because ARM is not virtualizable
and proposed ARM virtualization extensions are not yet
available in hardware. While virtual machines provide
important benefits in the context of desktop and server
computers, applying these hardware virtualization tech-
niques to smartphones as done by existing approaches
has two crucial drawbacks. First, smartphones are much
more resource constrained and running an entire addi-
tional operating system (OS) and user-space environment
in a virtual machine imposes high overhead and limits the
number of instances that can run. Second, smartphones
incorporate a plethora of devices that applications expect
to be able to use, such as GPUs for providing acceler-
ated graphics. Existing approaches provide no effective
mechanism for enabling applications to directly leverage
these hardware device features from within virtual ma-
chines, severely limiting the performance of such appli-
cations and making them unusable on a smartphone.

We present Cells, a new, lightweight virtualization
architecture for enabling multiple virtual phones (VPs)
to run simultaneously on the same physical smartphone
hardware with high performance and securely isolated
from one another. Cells does not require running multi-
ple OS instances, but instead uses lightweight OS virtu-
alization to provide virtual namespaces that can run and
securely isolate multiple VPs on a single OS instance.
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The isolation between VPs ensures that buggy or mali-
cious applications running in one VP cannot adversely
impact other VPs. Cells provides a novel file system lay-
out based on unioning to maximize sharing of common
read-only code and data across VPs, minimizing memory
consumption and enabling additional VPs to be instanti-
ated without much overhead.

Because smartphones have small display form factors
and are designed to only allow a single application to
be visible at a given time, Cells takes advantage of this
characteristic to introduce a usage model of having one
foreground VP that is displayed and multiple background
VPs that are not being displayed at any given time. This
simple yet powerful model enables Cells to provide a
novel kernel-level device namespace mechanism to ef-
ficiently and securely multiplex phone hardware devices
across multiple VPs while providing native hardware de-
vice performance to all applications. Cells also provides
a user-level device namespace proxy mechanism that of-
fers similar functionality for devices such as the base-
band processor that are proprietary and entirely closed
source. These hybrid mechanisms ensure that the fore-
ground VP is always given direct access to hardware de-
vices. Background VPs are only given shared access to
hardware devices when the foreground VP does not re-
quire exclusive access. Visible applications are always
running in the foreground VP and those applications can
take full advantage of any available hardware support,
such as hardware-accelerated graphics. Since foreground
applications have direct access to hardware, they perform
as fast as when they are running natively.

Another key aspect of Cells is that it provides full tele-
phony functionality with separately assignable telephone
numbers per VP and caller ID support. Cells achieves
this by integrating a cloud VoIP service to provide indi-
vidual telephone numbers for each VP without the need
for multiple SIM cards. Incoming and outgoing calls
are performed in the standard manner on the smartphone
using the cellular network, but are routed through the
cloud VoIP service as needed to provide both incom-
ing and outgoing caller ID functionality for each VP. In
other words, basic telephony is provided using the stan-
dard cellular network and standard Android applications,
while a VoIP cloud service enables per VP phone num-
bers and caller ID features.

We have implemented a Cells prototype that sup-
ports multiple virtual Android phones on the same mo-
bile device hardware. Each VP can be configured the
same or completely different from other VPs, and VPs
may be running different versions of Android simulta-
neously. Our prototype has been tested to work with
even the most recent openly available version of An-
droid, version 2.3.3. Our performance results demon-
strate that Cells imposes almost no runtime overhead

and only modest memory overhead on benchmarking ap-
plications designed to stress the system. Cells works
seamlessly across multiple hardware devices including
the Google Nexus 1 and Nexus S systems as well as
an NVIDIA tablet. It is the first virtualization system
that fully supports available hardware devices with na-
tive performance including GPUs, sensors, cameras, and
touchscreens, and transparently runs all Android appli-
cations in VPs without any modifications.

2 Usage Model
Cells runs multiple VPs on a single hardware phone.
Each VP runs a full standard Android system capable of
making phone calls, running standard applications, using
data connections, interacting through the touch screen,
utilizing the accelerometer and everything else that a user
can normally do on the available hardware. Each VP is
completely isolated from other VPs and cannot inspect,
tamper with, or otherwise access any other VP.

Given the limited size of smartphone screens and the
ways in which smartphones are used, Cells only allows a
single VP to be displayed at any time, referred to as the
foreground VP. All other running instances are referred
to as background VPs. Background VPs are still running
on the system and are capable of receiving system events
and performing tasks, but will simply run in the back-
ground and not render content on the screen. A user can
easily switch between VPs by selecting one of the back-
ground VPs to become the foreground one. This can be
done using a custom key-combination to cycle through
the set of running VPs, or by swiping up and down on
the home screen of a VP. Each VP also has a simple ap-
plication running in it that can be launched to see a list
of available VPs, the selection of which switches the re-
spective VP to the foreground. The system can also force
a new VP to become the foreground VP as a result of
an event, such as an incoming call or text message. For
security and convenience reasons, a no-auto-switch can
be set to prevent background VPs from being switched
to the foreground without explicit user action, depend-
ing the type of events. As discussed in Section 3, the
foreground-background VP usage model is fundamental
to the Cells virtualization architecture.

VPs are created and configured on a PC and down-
loaded to a phone via USB. A VP can be deleted by the
user but its configuration is password protected and can
only be changed from a PC given the appropriate creden-
tials. For example, a user can create a VP and can decide
to later change various options regarding how the VP is
run and what devices it can access. On the other hand,
an IT administrator can also create a VP that users can
download or remove from their phones, but cannot be re-
configured by users. This is useful for companies that
may want to distribute locked down VPs.
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Each VP can be configured to have different access
rights for different devices. For each device, a VP can be
configured to have no access, shared access, or exclusive
access. Some settings may not be available on certain de-
vices; shared access is for example not available for the
framebuffer, since only a single VP is displayed at any
time. These per device access settings provide a highly
flexible security model and can therefore be used to ac-
commodate a wide range of security policies.

No access means that applications running in the VP
cannot access the given device at any time. For example,
a VP with no access to the GPS sensor would never be
able to track GPS location, despite any user acceptances
of application requests to allow location tracking. Users
often acquiesce to such privacy invasions because an ap-
plication will not work without such consent even if the
application has no need for such information. By using
the no access option, Cells enables users to run such ap-
plications without compromising privacy.

Shared access to a device means that when the given
VP is running in the foreground, other background VPs
can access the device at the same time. For example,
a foreground VP with shared access to the audio device
would allow a background VP with shared access to play
music in the background. Exclusive access means that
when a given VP is running in the foreground, other
background VPs are not allowed to access the device.
For example, a foreground VP with exclusive access to
the microphone would not allow background VPs to ac-
cess the microphone, thus preventing applications run-
ning in background VPs from eavesdropping on conver-
sations or leaking information. This kind of functional-
ity is essential for supporting secure VPs. Exclusive ac-
cess may be used in conjunction with the no-auto-switch
to ensure that events cannot cause a background VP to
move to the foreground and gain access to devices as a
means to circumvent the exclusive access rights of an-
other VP.

3 System Architecture
Figure 1 provides an overview of the Cells system ar-
chitecture. We will describe Cells using Android since
our prototype is based on it. Each VP runs a full
stock Android user-space environment. Cells leverages
lightweight OS virtualization [27, 26, 18, 16] to isolate
VPs from one another. Cells uses a single operating sys-
tem kernel across all VPs that virtualizes identifiers, ker-
nel interfaces and hardware resources in such a way that
several execution environments can exist side-by-side in
virtual OS sandboxes. Each VP has its own private vir-
tual namespace so that VPs can run concurrently and
use the same OS resource names inside their respective
namespaces, yet be isolated from and not conflict with
each other. This is done by transparently remapping OS

resource identifiers to virtual ones that are used by pro-
cesses within each VP. File system paths, process iden-
tifiers (PIDs), IPC identifiers, network interface names,
and user names (UIDs) must all be virtualized to prevent
conflicts and ensure that processes running in a VP can-
not see processes in other VPs. The Linux kernel, used
by Android, provides virtualization for these identifiers
through namespaces [4]. For example, the file system
is virtualized using mount namespaces, which allow dif-
ferent independent views on the file system and provide
secure private file system jails for VPs.
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Figure 1: Overview of Cells architecture
However, basic OS virtualization is not sufficient to

run a complete Android user-space environment. Virtu-
alization mechanisms have primarily been used in head-
less server environments which support relatively few
device interactions, such as networking and storage,
which can already be virtualized in commodity OSes
such as Linux. However, smartphone applications expect
to be able to interact with a plethora of hardware devices,
many of which are physically not designed to be multi-
plexed, and OS device virtualization support is nonexis-
tent for these devices. For Android, at least the devices
listed in Table 1 must be fully supported, which include
both hardware devices and pseudo devices unique to the
Android environment. Three requirements for support-
ing devices must be met: (1) support exclusive or shared
access across VPs, (2) never leak sensitive information
between VPs, and (3) prevent malicious applications in a
VP from interfering with device usage by other VPs.

To accomplish this, we introduce device namespaces,
a new kernel-level abstraction that provides secure iso-
lation and efficient hardware resource multiplexing in
a manner that is completely transparent to applications.
Figure 1 shows how device namespaces are implemented
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Device Description
Alarm* RTC-based alarms
Audio Audio output (speakers, headset)
Binder* IPC framework
Bluetooth Short range communication
Camera Graphics input: stills and video
Frame Buffer Graphics output
GPU Graphical processing unit
Input Touch-screen and input buttons
Leds Backlight and indicator leds
Logger* Light-weight RAM log driver
LMK* Low memory killer
Microphone Audio input (microphone)
Pmem* Contiguous physical memory
Power* Power management framework
Sensors Accelerometer, GPS

Table 1: Android devices
*custom Google drivers

within the overall Cells architecture. Unlike PID names-
paces in the Linux kernel which virtualize PID identi-
fiers, a device namespace does not virtualize identifiers,
but is designed to be used by individual device drivers to
tag data structures and to register callback functions. The
callback functions can be called when a device names-
pace changes state. Each VP is given its own unique de-
vice namespace for its device usage. Cells then leverages
its foreground-background VP usage model to register
callback functions that are called when the VP changes
between foreground and background state. This enables
devices to be aware of the VP state and change how it
responds to VPs depending on whether it is visible to the
user and therefore the foreground VP, or not visible to
the user and therefore one of potentially multiple back-
ground VPs. The usage model is crucial for enabling
Cells to virtualize devices efficiently and cleanly.

Cells virtualize existing kernel hardware devices with
near zero performance overhead based on three ways for
implementing device namespace functionality. One way
is to create a device driver wrapper by creating a new
device driver for a virtual device, which then multiplexes
access and communicates on behalf of applications to the
real device driver. The wrapper typically passes through
all requests from the foreground VP, and changes the de-
vice state and access to the device when a new VP be-
comes the foreground VP. For example, Cells uses a de-
vice driver wrapper to virtualize the framebuffer as de-
scribed in Section 4.1.

A second way is to modify a device subsystem to be
aware of device namespaces. For example, the input de-
vice subsystem in Linux handles various Android input
devices such as touchscreen, navigation wheel, compass,
proximity sensor, light sensor, headset input controls,
and input buttons. The input subsystem consists of the
input core, device drivers, and event handlers, the latter

being responsible for passing input events to user-space.
By default in Linux, input events are sent to any process
that is listening for them, but this does not provide the
isolation needed for supporting VPs. To enable the input
subsystem to use device namespaces, Cells only has to
modify the event handlers so that, for each process lis-
tening for input events, it first checks if the correspond-
ing device namespace is in the foreground. If it is not,
the event is not raised to that specific process. The im-
plementation is simple, and no changes are required to
device drivers or the input core. As another example,
virtualization of the power management subsystem is de-
scribed in Section 5.

A third way is to modify a device driver to be aware
of device namespaces. For example, Android includes
a number of custom pseudo drivers, such as the Binder
IPC mechanism. To provide isolation among VPs, Cells
needs to ensure that under no circumstances can a pro-
cess in one VP gain access to Binder instances in an-
other VP. This is simply done by modifying the Binder
driver so that instead of allowing Binder data structures
to reference a single global list of all processes, they first
check the device namespace of the calling process and
can only reference processes associated with that same
device namespace. The namespace context is only ini-
tialized when the Binder device file is first opened result-
ing in almost no overhead for future accesses. While the
device driver itself needs to be modified, pseudo device
drivers are not hardware-specific and thus changes only
need to be made once for all hardware platforms.

In some cases, it may be necessary to modify a
hardware-specific device driver to make it aware of de-
vice namespaces. For most devices, this is straightfor-
ward to do and just involves duplicating necessary driver
state on device namespace creation and tagging the data
describing that state with the device namespace. Even
this can be avoided if the device driver provides some
basic capabilities as described in Section 4.2, which dis-
cusses GPU virtualization.

In addition to the kernel device namespace abstrac-
tion, Cells also provides a user-level device namespace
proxy mechanism that offers similar functionality for
devices such as the baseband processor that are pro-
prietary and entirely closed source. Sections 6 and 7
describe how this user-level proxy approach is used to
virtualize telephony and wireless network configuration.
Cells uses this hybrid combination to virtualize devices
to take advantage of the benefits of each mechanism. The
kernel-level mechanism provides transparency and per-
formance. The user-level mechanism provides greater
portability and a high degree of transparency when the
user-space environment provides appropriate interfaces
that can be leveraged for virtualization. In the case
of proprietary devices with completely closed software
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stacks, having such an interface is an inherent necessity.
In addition to VPs and device namespaces, Figure 1

also shows the root namespace used by Cells to man-
age VP instances. Cells works by booting a minimal
init environment in a root namespace which is not vis-
ible to the user of a VP and is used to manage indi-
vidual VPs. The root namespace is considered part of
the trusted computing base and processes in the root
namespace have full access to the entire file system.
The init environment starts a custom process, CellD,
which manages the starting and switching of VPs be-
tween operating in the background or foreground. The
device namespaces export an interface to the root names-
pace through the /proc filesystem, which is used to
switch the foreground VP and set access permissions for
devices. CellD also coordinates the configuration of
telephony and wireless networking as discussed in Sec-
tions 6 and 7. To start a new VP, CellD mounts the VP
filesystem then clones itself into a new process with sep-
arate namespaces and starts the VP’s init process to boot
up the Android user-space environment. CellD also sets
up the limited set of IPC sockets accessible to processes
in the VP for communicating with the root namespace.
These IPC sockets are the only ones that can be used for
communicating with the root namespace; all other IPC
sockets are internal to the respective VP. To further en-
sure isolation, CellD removes the capability to create
device nodes for processes inside the VP to prevent pro-
cesses from gaining direct access to Linux devices and to
outside their confined environment, e.g. by re-mounting
block devices. Cells also leverages existing Linux ker-
nel frameworks for resource control to prevent resource
starvation from a single VP [15].

To enable multiple VPs running the same Android en-
vironment to share code and reduce memory usage, each
VP is given read-only access to the same base Android
file system. To provide a read-write file system view for
a VP, file system unioning [38] is used to join the read-
only base Android file system with a writable file sys-
tem layer by stacking the latter on top of the former.
This creates a unioned view of the two: files system
objects, namely files and directories, from the writable
layer are always visible, while objects from the read-only
layer are only visible if no corresponding object exists in
the other layer. When a new VP is started, Cells also
enables Linux Kernel Samepage Merging (KSM) for a
short time to further reduce memory usage by finding
anonymous memory pages used by the base Android sys-
tem that have the same contents, then arranging for one
copy to be shared among the various VPs [36]. Cells also
leverages the unique Android low memory killer tech-
nology to increase the total number of VPs it is possible
to run on a device without sacrificing functionality. This
Linux kernel driver is a more flexible replacement for the

standard Linux OOM killer. Instead of randomly choos-
ing processes to kill when the system runs out of RAM,
the Android low memory killer uses heuristics to priori-
tize background and inactive processes consuming large
amounts of RAM. Android starts these processes purely
as an optimization to reduce application startup-time, so
these processes can be killed and restarted without any
loss of functionality. Critical system processes are never
chosen to be killed, and if the user requires the services
of a background process which was killed, the process
is simply restarted (possibly killing other unused back-
ground processes).

4 Graphics
Starting with graphics, we now describe in detail the vir-
tualization of several key Android devices. The display
and its graphics hardware is one of the most important
devices in modern smartphones. Applications expect
to be able to take full advantage of any hardware dis-
play acceleration or GPU available on the smartphone.
Android relies on a standard Linux framebuffer which
provides an abstraction to a physical display, including
screen memory, memory dedicated to and controlled ex-
clusively by the display device. The framebuffer allows
applications to map screen memory, and the GPU hard-
ware also maps screen memory, so that it can be writ-
ten to directly for performance reasons. The memory-
mapped use of screen memory and the performance re-
quirements of the graphics subsystem make it one of the
more challenging devices to virtualize in a mobile phone.

4.1 Framebuffer

To virtualize the framebuffer to support multiple VPs,
Cells leverages device namespaces and its foreground-
background usage model to provide a multiplexing
framebuffer, a new framebuffer driver called mux_fb
that serves as a device driver wrapper for the hardware
framebuffer. mux_fb is registered as a standard frame-
buffer device and multiplexes access to a single physi-
cal framebuffer device. The foreground VP is given ex-
clusive access to the screen memory and display hard-
ware while each background VP maintains virtual hard-
ware state and renders any output to a virtual screen
memory buffer in system RAM, referred to as the back-
ing buffer. VP access to the mux_fb driver is isolated
through its device namespace, such that a unique virtual
device state and backing buffer is associated with each
VP. mux_fb currently supports multiplexing a single
physical frame buffer device, but more complicated mul-
tiplexing schemes involving multiple physical devices
could be accomplished in a similar manner.

In Linux, the basic framebuffer usage pattern in-
volves three types of accesses: mmaps, standard control
ioctls, and custom ioctls. When a process mmaps
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an open framebuffer device file, the framebuffer driver is
expected to map its associated screen memory into the
process’ address space allowing the process to render di-
rectly on the display. A process controls and configures
the framebuffer hardware state through a set of standard
control ioctls defined by the Linux framebuffer in-
terface, which, for example, can change the pixel for-
mat. Each framebuffer device may also define custom
ioctlswhich can be used to perform accelerated draw-
ing or rendering operations.

Cells passes all accesses to the mux_fb device
from the foreground VP directly to the hardware back
end. This includes control ioctls as well as custom
ioctls, allowing applications to take full advantage of
any custom ioctls implemented by the physical de-
vice driver that may be used, for example, for accelerated
graphics. When an application running in the foreground
VP mmaps an open mux_fb device, the mux_fb driver
simply maps the physical screen memory provided by the
hardware back end. This creates the same zero-overhead
pass-through to the screen memory as on native systems.

Cells does not pass any accesses to the mux_fb driver
from background VPs to the hardware back end, ensur-
ing that the foreground VP has exclusive hardware ac-
cess. Standard control ioctls are applied to virtual
hardware state maintained in RAM. Custom ioctls,
by definition, perform non-standard functions such as
graphics acceleration or memory allocation, and there-
fore accesses to these functions from background VPs
must be at least partially handled by the same kernel
driver which defined them. Instead of passing the ioctl
to the hardware driver, Cells uses a new notification API
that allows the original driver to appropriately virtual-
ize the access. If the new driver does not register for
this new notification then Cells will return an error code
when the custom ioctl is called from a background
VP. In our experience, returning an error code was suf-
ficient for all systems tested except an NVDIA devel-
opment tablet. When an application running in a back-
ground VP mmaps the framebuffer device, the mux_fb
driver will map its backing buffer into the process’ vir-
tual address space.

Switching the display from a foreground VP to a back-
ground VP is accomplished in four steps, all of which
must occur before any additional framebuffer operations
are performed: (1) screen memory remapping, (2) screen
memory deep copy, (3) hardware state synchronization,
and (4) GPU coordination. Screen memory remapping is
done by altering the page table entries for each process
which has mapped framebuffer screen memory to redi-
rect virtual addresses in each process to different physi-
cal locations. Processes running in the VP which is to be
moved into the background have their virtual addresses
remapped to backing memory in system RAM, and pro-

cesses running in the VP which is to become the fore-
ground VP have their virtual addresses remapped to the
physical screen memory. Screen memory deep copy is
done by copying the contents of the screen memory into
the previous foreground VP’s backing buffer and copy-
ing the contents of the new foreground VP’s backing
buffer into screen memory. This copy is not strictly nec-
essary if the new foreground VP completely redraws the
screen. Hardware state synchronization is done by sav-
ing the current hardware state into the virtual state of the
previous foreground VP and passing the virtual hardware
state in the previous background VP into the hardware.
Because the display device only uses the current hard-
ware state to output the screen memory, there is no need
to correlate particular drawing updates with individual
standard control ioctls; only the accumulated virtual
hardware state is needed. GPU coordination involves no-
tifying the GPU of the memory address switch so that
it can update any internal graphics memory mappings.
This is discussed in more detail in Section 4.2.

To better scale the Cells framebuffer virtualization, the
backing buffer in system RAM could be reduced to a sin-
gle memory page which is mapped into the entire screen
memory address region of background VPs. This op-
timization not only saves memory, but also eliminates
the need for the screen memory deep copy. However,
it does require the VP’s user-space environment to re-
draw the entire screen when it becomes the foreground
VP. The redraw overhead is minimal. Android conve-
niently provides this redraw functionality through the
fbearlysuspend driver discussed in Section 5.1.

4.2 GPU

Cells virtualizes the GPU by leveraging the GPU’s inde-
pendent graphics contexts [28] together with the frame-
buffer virtualization of screen memory described in Sec-
tion 4.1. Each VP is given direct pass-through access to
the GPU device. Because each process which uses the
GPU executes graphics commands in its own context,
processes are already isolated from another and there is
no need for further VP GPU isolation. The key challenge
is that each VP requires framebuffer screen memory on
which to compose the final scene to be displayed, and in
general the GPU driver will request and use this memory
from within the OS kernel.

To address this problem, Cells again leverages its
foreground-background usage model to provide a vir-
tualization solution similar to how framebuffer screen
memory remapping is done. The foreground VP will use
the GPU to render directly into screen memory. Back-
ground VPs which use the GPU will render into their
respective backing buffers. When the foreground VP
is switched, the GPU driver must locate all GPU ad-
dresses which are mapped to the physical screen mem-
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ory as well as the new foreground VP’s backing buffer in
system RAM. It must then remap those GPU addresses
to point to the new backing buffer and the physical screen
memory, respectively. To accomplish this remapping,
Cells provides a callback interface from the mux_fb
driver which provides source and destination physical
addresses on each foreground VP switch. Implementing
this virtualization technique for the Nexus 1 and Nexus S
phones required adding 329 out of 5,550 lines of code to
the Adreno GPU driver, which is used in the Nexus 1, and
adding 835 out of 48,042 lines of code to the PowerVR
GPU driver, which is used in the Nexus S.

While this technique necessitates a certain level of ac-
cess to the GPU driver, it does not preclude the possi-
bility of using a proprietary driver so long as it exposes
three basic capabilities. First, it should provide the abil-
ity to remap GPU linear addresses to specified physical
addresses as required by the virtualization mechanism.
Second, it should provide the ability to safely reinitialize
the GPU device or ignore re-initialization attempts, as
each VP running a stock Android instance will attempt to
do GPU initialization on startup. Third, it should provide
the ability to ignore device power management and other
non-graphics related hardware state updates, to make it
possible to ignore such updates from an Android instance
running in a background VP. Some of these capabilities
were already available on the Adreno GPU driver, but
not all. The small number of lines of code added to the
Adreno and PowerVR GPU drivers were precisely to add
these three capabilities.

While most modern GPUs include an MMU, there are
some devices which require memory used by the GPU
to be physically contiguous. For example, the Adreno
GPU can selectively disable the use of the MMU. For
Cells GPU virtualization to work under these conditions,
the backing memory in system RAM must be physically
contiguous. This can be done by allocating the back-
ing memory either with kmalloc, or using an alter-
nate physical memory allocator such as Google’s pmem
driver, Samsung’s s3c_mem driver or NVIDIA’s nvmap
driver.

5 Power Management
To provide Cells users the same power management
experience that they have when using non-virtualized
phones, we apply two simple virtualization principles:
(1) background VPs should not be able to put the de-
vice into a low power mode, and (2) background VPs
should not prevent the foreground VP from putting the
device into a low power mode. We apply these prin-
ciples to Android’s custom power management, which
is based on the premise that a mobile phone’s preferred
state should be suspended. Android introduces three in-
terfaces which attempt to extend the battery life of mo-

bile devices through extremely aggressive power man-
agement: early suspend, fbearlysuspend, and wake locks,
also known as suspend blockers.

The early suspend framework is an ordered callback
interface which allows drivers to receive notifications
just before the device is suspended and after it resumes.
Cells virtualizes the early suspend framework by simply
disallowing background VPs from initiating a suspend
operation. The remaining two Android-specific power
management interfaces present more unique challenges
and offer insights into aggressive power management vir-
tualization.

5.1 Frame Buffer Early Suspend

The fbearlysuspend driver exports display device sus-
pend and resume state into user-space. This allows
user space to stop all processes which use the display
when the display is powered off and redraw the screen
after the display is powered on. Power is saved be-
cause the overall device workload is lower, and devices
such as the GPU may be powered down or made qui-
escent. Android implements this functionality with two
sysfs files, /sys/power/wait_for_fb_sleep
and /sys/power/wait_for_fb_wake. A user
process can open and read from one of these files, and
the read will block until the frame buffer device is either
asleep or awake, respectively.

Cells virtualizes fbearlysuspend by making the
fbearlysuspend driver namespace-aware, leveraging the
device namespace and foreground-background usage
model. Reads from the foreground VP function exactly
as a non-virtualized system while reads from a back-
ground VP always report the device as sleeping. When
the foreground VP switches, all processes which are
blocked on either of the two files are unblocked, and the
return values from the read calls are based on the new
state of the VP in which the process is running. Pro-
cesses in the new foreground VP will see the display as
awake (on), processes in the formerly foreground VP will
see the display as asleep, and processes which are run-
ning in background VPs that remain in the background
will continue to see the display as asleep. This forces
background VPs to pause drawing or rendering, result-
ing in three benefits. First, it reduces the overall system
load by reducing the number of processes which are us-
ing the hardware drawing resources. Second, it increases
throughput in the foreground VP by ensuring that its pro-
cesses are the only ones using the drawing resources.
Third, it reduces power consumption and minimizes the
power footprint of multiple VPs running simultaneously
on a mobile phone.
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5.2 Wake Locks

Wake locks are a controversial [39] Android power man-
agement feature. A wake lock is a special kind of kernel
reference counter with two states: active and inactive.
When a wake lock is “locked” its state is changed to ac-
tive; conversely when the lock is “unlocked,” its state is
changed to inactive. A wake lock can be locked multiple
times, but only requires a single unlock to put the lock
into the inactive state. The Android system will not en-
ter either suspend, or any other low power mode until all
wake locks are in the inactive state.

To further complicate the matter, wake locks can be
created statically at compile time, dynamically by ker-
nel drivers or dynamically by user-space. Wake locks
can also be locked and unlocked from user context, ker-
nel context (from work queues), and interrupt context
(from IRQ handlers) in a completely orthogonal man-
ner. This creates an extremely distributed power manage-
ment paradigm, and makes determining the VP to which
a wake lock belongs when it is locked or unlocked a
non-trivial task. Consequently, preventing a background
VP from suspending the device or interfering with the
foreground VP’s ability to suspend the device becomes a
challenging virtualization problem.

Cells virtualizes wake locks by leveraging the device
namespace and foreground-background usage model to
maintain both the kernel and user-space wake lock inter-
faces as well as adhere to the two virtualization princi-
ples specified above. The solution is predicated on three
assumptions. First, all kernel and interrupt context lock-
ing and unlocking coordination as well as any user-level
locking and unlocking coordination in the trusted root
namespace were correct and appropriate before virtual-
ization. Second, we “trust” the kernel and its drivers;
when lock or unlock is called from interrupt context, we
perform the operation unconditionally. Third, the fore-
ground VP maintains full control of the hardware.

Under these assumptions, Cells solves the wake
lock virtualization problem by allowing multiple device
namespaces to lock and unlock the same wake lock or-
thogonally, and only starting power management opera-
tions based on the set of locks associated with the fore-
ground VP. The solution can be summarized in the fol-
lowing set of rules:

1. When a wake lock is locked, keep a namespace “to-
ken” associated with the lock which indicates the
context in which the lock was taken. A wake lock
token may contain references to multiple names-
paces if the lock was taken from those namespaces.

2. When a wake lock is unlocked from user context,
remove the associated namespace token.

3. When a wake lock is unlocked from interrupt con-
text or the root namespace, remove all lock tokens.

This follows from the second assumption.
4. After a user context lock or unlock operation, adjust

any suspend timeout value based only on the locks
active in the current device namespace.

5. After a root namespace lock or unlock operation,
adjust the suspend timeout based on the foreground
VP’s device namespace.

6. When the foreground device namespace changes,
reset the suspend timeout based on the locks ac-
quired in the new namespace. This involves keep-
ing per-namespace timeout values with each token
associated with a given wake lock.

One additional piece of infrastructure was necessary
to implement the Cells wake lock virtualization mecha-
nism. The set of rules given above implicitly assumes
that, aside from interrupt context, the lock and unlock
functions are aware of the device namespace in which the
operation is being performed. While this is true for oper-
ations started from user context, it is not the case for op-
erations performed from kernel work queues. To address
this issue, we introduced a mechanism which forces a
kernel work queue into a specific device namespace.

6 Telephony
Cells provides each VP with its own separate telephony
functionality so that it can have its own call logs, list of
recently dialed and received telephone numbers, and sep-
arate phone number. We first describe how Cells virtual-
izes the radio stack to provide telephony isolation among
VPs, then we discuss how multiple phone numbers can
be provided on a single hardware phone.

6.1 RIL Proxy

The Android telephony subsystem is designed to be eas-
ily ported by phone vendors to their specific hardware
devices. The Android phone application uses a set of
Java libraries and services that handle the telephony state
and settings, such as displaying current radio strength in
the status bar and menus to select, for instance, roam-
ing options. The phone application, the libraries and the
services all communicate via Binder IPC with the Ra-
dio Interface Layer (RIL) Daemon (RilD). RilD dynam-
ically links with a library provided by the phone hard-
ware vendor which in turn communicates with kernel
drivers and the radio baseband system. The left side of
Figure 2 shows a representation of the standard Android
telephony system.

The entire radio baseband system is proprietary and
closed source, starting from the user-level RIL vendor
library down to the physically separate hardware base-
band processor. Details of the vendor library implemen-
tation and its communication with the baseband are well-
guarded secrets. Each hardware phone vendor provides
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its own proprietary radio stack. Since the stack is a com-
plete black box, it would be difficult if not impossible to
intercept, replicate, or virtualize any aspect of this sys-
tem in the kernel without direct hardware vendor sup-
port. Furthermore, the vendor library is designed to be
used by only a single RilD and the radio stack as a whole
is not designed to be multiplexed.

Android Java
Java Phone / 
RIL services

VP Libraries
RilD

Cells RIL

Kernel
Drivers / PPP

Baseband

GSM / CDMA

Root namespace
CellD

Vendor RIL

Android Java
Java Phone / 
RIL services

Libraries
RilD

Vendor RIL

Kernel
Drivers / PPP

Baseband
GSM / CDMA

Android
Radio Interface Layer

Cells
Radio Interface Layer

Figure 2: Android Radio Interface Layer for Cells
As a result of these constraints, Cells virtualizes tele-

phony using a different user-space approach designed to
work transparently with the black box radio stack. Each
VP has the standard Android telephony Java libraries and
services and its own stock RilD, but rather than hav-
ing RilD communicate directly with the hardware vendor
provided RIL library, Cells provides its own proxy RIL
library in each VP. The proxy RIL library is loaded by
RilD in each VP and connects to CellD running in the
root namespace. CellD in turn communicates with the
vendor library to use the proprietary radio stack. Since
there can be only one radio stack, CellD loads the ven-
dor RIL library on system startup and multiplexes access
to it. The right side of Figure 2 shows a representation
of the Cells Android telephony system. We refer to the
proxy RIL library together with CellD as the RIL proxy.
This approach has three key advantages. First, no hard-
ware vendor support is required since it treats the radio
stack as a black box. Second, it works with a stock An-
droid environment by leveraging the fact that Android
already does not provide its own RIL library but instead
relies on it being supplied by the system on which it will
be used. Third, it operates at a well-defined interface,
making it possible to understand exactly how communi-
cation is done between RilD and the RIL library it uses.

Cells leverages its foreground-background VP model
to enable the necessary multiplexing of the radio stack.
Since the user can only make calls from the foreground
VP, because only its user interface is displayed, CellD
allows only the foreground VP to make calls. All other
forms of multiplexing are done in response to incoming

requests from the radio stack through CellD. CellD op-
erates in the same manner as Android’s RilD in how it
interfaces with the vendor RIL library, and can therefore
provide all of the standard call multiplexing available in
Android for handling incoming calls. For example, to
place the current call in the foreground VP on hold while
answering another call to a background VP, CellD is-
sues the same set of standard GSM commands that RilD
would issue to the radio stack.

The RIL proxy needs to support the two classes of
function calls defined by the RIL, solicited calls which
pass from RilD to the RIL library, and unsolicited calls
which pass from the RIL library to RilD. The interface is
relatively simple, as there are only four defined solicited
function calls and two defined unsolicited function calls,
though there are a number of possible arguments. Both
the solicited requests and the responses carry structured
data in their arguments. The structured data can contain
pointers to nested data structures and arrays of pointers.
The main complexity in implementing the RIL proxy is
dealing with the implementation assumption in Android
that the RIL vendor library is normally loaded in the RilD
process so that pointers can be passed between the RIL
library and RilD without further processing. In Cells, the
RIL vendor library is loaded in the CellD process but not
the RilD process. Instead, the RIL proxy passes the ar-
guments over a standard Unix Domain socket so all data
must be thoroughly packed and unpacked on either side.

The basic functionality of the RIL proxy is to pass
requests sent from within a VP unmodified to the ven-
dor RIL library and to forward unsolicited calls from
the vendor RIL library unmodified to RilD inside a VP.
To support the Cells security model, the CellD compo-
nent of the proxy will filter requests as needed to dis-
able telephony functionality for VPs that are configured
not to have telephony access. However, even in the
absence of such VP configurations, some solicited re-
quests must be filtered from background VPs and some
calls require special handling to properly support our
foreground-background model and provide working tele-
phony isolation functionality. Filtering and special han-
dling are done by the CellD component of the proxy for
security reasons. The commands that require filtering or
special handling can be loosely categorized as those in-
volving the foreground VP, initialization, signal strength,
and incoming calls.

Dial Request represents outgoing calls, Set Screen
State is used to suppress certain notifications like signal
strength, and Set Radio State is used to turn the radio on
or off. These operations are only allowed from the fore-
ground VP and filtered from all background VPs to en-
sure that the only the foreground VP can make calls and
background VPs do not interfere with that functionality.
These restrictions are implemented in CellD by simply
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examining the requests from each VP and returning an
error code to background VPs.

SIM I/O requests are used amongst other things to ini-
tialize the radio when turning on the device or turning
off airplane mode, and to query SIM information such
as the IMSI. When a second VP starts up, it will try to
re-initialize the radio, which is problematic as the ra-
dio is already initialized. CellD addresses this problem
by keeping a log of SIM I/O requests and correspond-
ing responses, including recorded data from when the
foreground VP initialized the radio. This sequence is
replayed in order upon requests from background VPs.
When the radio is turned off, the log is cleared, and the
first foreground VP to turn on the radio will be allowed to
do so, causing CellD to start recording a new log. Since
a VP can also inquire about the radio state, and this is
inherently tied to the initialization process, CellD also
records the radio state between each SIM I/O operation
and replays these states for background VPs. The result
is that background VPs successfully start up, capable of
receiving phone calls and displaying the network status.

Signal Strength is an unsolicited notification about the
current signal strength generated by the vendor library
and sent to RilD. In Cells, this notification is received by
CellD and forwarded across the sockets to the RIL proxy
library and thereby RilD inside a VP. Since all VPs with
access to telephony functionality should know the signal
strength, this is sent unmodified to all such VPs, with
one important exception. During initialization, the VP
cannot be notified of a signal strength, since that would
indicate an already initialized radio, which is unexpected
from the point of view of the starting VP.

Call State Changed, Call Ring and Get Current Calls
are all related to incoming calls. When an incoming
call occurs, the vendor library will first send a Call State
Changed notification, followed by a number of Call Ring
notifications for as long as the call is pending. CellD
inspects each notification and decides to which VP it
should forward the notification, but this is complicated
by the fact that these notifications are not associated with
a phone number. Therefore, CellD holds these notifica-
tions and issues a Get Current Calls, mirroring function-
ality typically done by RilD, to receive a list of all in-
coming and active calls and determines the VP that is
being called based on tagging information in the incom-
ing caller ID as discussed in Section 6.2. Once the VP
has been determined, CellD replays the notifications to
that VP. Any VP can issue a Get Current Calls request,
in which case CellD inspects the data returned from the
vendor library and allows only calls made to the request-
ing VP or calls initiated from the requesting VP to exist
in the returned list.

6.2 Multiple Phone Numbers

While some hardware phones support multiple SIM
cards, which makes supporting multiple phone numbers
straightforward, most phones do not provide this feature.
Since mobile network operators do not generally offer
multiple phone numbers per SIM card or CDMA phone,
we offer an alternative system to provide a distinct phone
number for each VP on existing unmodified single SIM
card phones which dominate the marketplace. Our ap-
proach is based on pairing Cells with a VoIP cloud ser-
vice that enables telephony with the standard cellular net-
work and standard Android applications, but with sepa-
rate phone numbers.

The Cells VoIP cloud service consists of a VoIP server
which registers a pool of subscriber numbers. Numbers
from this pool are paired with the actual mobile phone
number of the user’s hardware phone and when those
numbers are dialed, the VoIP server receives those calls.
The VoIP server then calls the user’s actual phone num-
ber, but replaces the caller ID with the one that called the
VoIP server. The VoIP server further appends a digit to
the caller ID, which is used to designated the VP to which
the call should be delivered. When CellD receives the
incoming call list, it checks the last digit of the caller ID
and chooses a VP based on that digit. Cells allows users
to configure which VP should handle which digit through
the cloud service interface. CellD strips the appended
digit before forwarding the information to the receiving
VP, causing the caller ID to be correctly presented to the
user. If the VP is not available, the VoIP cloud service
will direct the incoming call to the server-provided voice
mail. We currently use a single digit scheme supporting
a maximum of ten selectable VPs, which should be more
than sufficient for any user. It is certainly possible to
spoof caller ID as is currently the case on existing hard-
ware phones; in the worst case, this would simply appear
to be a case of dialing the wrong phone number.

Our VoIP cloud service is implemented using an As-
terisk server [2] as it provides unique functionality not
available through other commercial voice services. For
example, Google Voice cannot provide this functionality
because, although it can forward multiple phone numbers
to the same land line, it does not provide this capability
for mobile phone numbers [10].

The caller ID of outgoing calls should also be replaced
with the phone number of the VP that actually makes
the outgoing call instead of the hardware phone’s actual
mobile phone number. Unfortunately, the GSM standard
does not have any facility to change the caller ID, only
to either enable or disable showing the caller ID. There-
fore, if the VP is configured to display outgoing caller
IDs, Cells ensures that they are correctly sent by routing
those calls through the VoIP server. CellD intercepts the
Dial Request, dials the VoIP number associated with the

10



dialing VP, and passes the actual number to be dialed via
DTMF tones. The VoIP server interprets the tones, dials
the requested number, and connects the call.

7 Networking
Mobile phones are most commonly equipped with an
IEEE 802.11 wireless LAN adapter and cellular data
connectivity through either a GSM or CDMA network.
Each VP that has network access must be able to use
either WLAN or mobile data depending on what is avail-
able to the user at any given location. At the same time,
each VP must be completely isolated from other VPs.
Cells takes a hybrid approach to virtualize networking
and to provide necessary isolation and functionality, in-
cluding virtualizing core network resources and uniquely
virtualizing wireless configuration management.

Cells leverages previous work [32, 33] in virtualizing
core network resources such as network adapters, routing
tables, IP addresses, and port numbers, which has been
largely built-in to recent versions of the Linux kernel in
the form of network namespaces [4]. Virtual identifiers
are provided in VPs for all network resources, which are
then translated into real physical identifiers. Real net-
work devices representing the WLAN or cellular data
connection are not visible within a VP. Instead, a virtual
Ethernet pair is setup from the root namespace where one
end of the Ethernet pair is present inside a VP and the
other end in the root namespace. The kernel is then con-
figured to perform Network Address Translation (NAT)
between the active public interface (either WLAN or cel-
lular data) and the VP end of an Ethernet pair. Each VP
is then free to bind to any socket address and port without
conflicting with other VPs. Cells uses NAT as opposed
to bridged networking since bridging is not supported on
cellular data connections and is also not guaranteed to
work on WLAN connections. Note that since each VP
has its own virtualized network resources, network secu-
rity mechanisms are isolated among VPs. For example,
VPN access to a corporate network from one VP cannot
be used by another VP.

However, virtualizing core network resources is not
enough in the context of mobile phones, which have
WLAN and cellular data connections that introduce a
new challenge. These types of connections require con-
figuration by the user, and that configuration changes as
the user moves around with the mobile phone. There
exists little if any support for virtualizing WLAN or cel-
lular data configuration. Current best practice is embod-
ied in desktop virtualization products such as VMware
Workstation [35] which create a virtual wired Ethernet
adapter inside a virtual machine but leave the configura-
tion on host system. This model does not work on a mo-
bile phone where no such host system is available and
a VP is the primary system used by the user. VPs rely

heavily on network status notifications reflecting a net-
work configuration that can frequently change, making
it essential for wireless configuration and status notifica-
tions to be virtualized and made available to each VP.

Virtualizing wireless configuration management re-
quires different mechanisms from virtualizing core net-
work resources. Configuration management is highly
device-specific in terms of the exact operations that
are used for configuration. A user-level library called
wpa_supplicant with support for a large number of
devices is typically used to issue various ioctls and
netlink socket options that are unique to each device. Un-
like virtualizing core network resources which are gen-
eral and well-defined, virtualizing wireless configuration
in the kernel would involve essentially emulating the
device-specific understanding of configuration manage-
ment, which is error-prone and complicated.

To address this problem, Cells leverages its
foreground-background VP model to decouple wireless
configuration from the actual network interfaces. A con-
figuration proxy is introduced to replace the user-level
WLAN configuration library and RIL libraries inside
each VP. The proxy communicates with CellD running
in the root namespace, which in turn communicates
with the user-level library for configuring the Wi-Fi
or cellular data connections. Assuming the default
case when all VPs are allowed network access, CellD
basically forwards all configuration requests from the
foreground VP proxy to the user-level library, but
ignores configuration requests from background VP
proxies that would adversely affect the foreground VP’s
network access. This approach is minimally intrusive
since user-space phone environments, such as Android,
are already designed to run on multiple hardware plat-
forms and therefore cleanly interfaces with user-space
configuration libraries.

For virtualizing Wi-Fi configuration management,
Cells replaces wpa_supplicant inside each VP with
a thin Wi-Fi proxy. It is simple to virtualize wpa_-
supplicant, as Android communicates with it over
a well-defined socket interface. The Wi-Fi proxy com-
municates with CellD running in the root namespace,
which in turn starts and communicates with wpa_-
supplicant as needed on behalf of individual VPs.
The protocol used by the Wi-Fi proxy and CellD is quite
simple, as the standard interface to wpa_supplicant
consists of only eight function calls each with text-based
arguments. The protocol just sends the function num-
ber, a length of the following message, and the message
data itself. Replies are similar, but also contain an inte-
ger return value in addition to data. CellD ensures that
background VPs cannot interfere with the operation of
the foreground VP. For instance, if a foreground VP is
connected to a Wi-Fi network and a background VP at-
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tempts to disable the Wi-Fi access, the request from the
background VP is ignored. At the same time, inquiries
that do not change state or divulge sensitive information
sent from background VPs, such as requesting the cur-
rent signal strength, are typically processed since appli-
cations such as email clients inside background VPs may
use this information to decide whether to check for new
email.

For virtualizing cellular data connection management,
Cells replaces the RIL vendor library as described in Sec-
tion 6, which is responsible for establishing cellular data
connections. As in the case of Wi-Fi, CellD ensures
that background VPs cannot interfere with the opera-
tion of the foreground VP. Similarly, innocuous inquiries
from background VPs that have network access, such as
the status of the data connection (connected, Edge, 3G,
HSPDA, etc.) or signal strength, are processed and re-
ported back to the VPs.

8 Experimental Results
We have implemented an Android Cells prototype and
demonstrated its functionality across different Android
devices, including Google Nexus 1 [8] and Nexus S [9]
phones, and NVIDIA Ventana development tablets [23].
In running multiple VPs on a phone or tablet, there is no
user noticeable performance difference between running
in a VP and running natively on the phone. For exam-
ple, while running 4 VPs on a Nexus 1 device, we simul-
taneously played the popular game Angry Birds [31] in
one VP, raced around a dirt track in the Reckless Rac-
ing [29] game on a second VP, crunched some numbers
in a spreadsheet using the Office Suite Pro [21] applica-
tion in a third VP, and listened to some music using the
Android music player in the fourth VP. Using Cells we
were able to deliver native 3D acceleration to both game
instances while seamlessly switch between and interact-
ing with all four running VPs.

8.1 Methodology

We further quantitatively measured the performance of
our unoptimized prototype running a wide range of appli-
cations in multiple VPs. Most of our measurements were
obtained using Nexus 1 (Qualcomm 1GHz QSD8250 +
Adreno 200 GPU, 512 MB RAM) and Nexus S (Sam-
sung Hummingbird 1GHz Cortex A8 + PowerVR GPU,
512 MB RAM) phones. The Nexus 1 uses an SD card for
storage for some of the applications; we used a Patriot
Memory class 10 16 GB SD card. Also, due to space con-
straints on the Nexus 1 flash device, all Android system
files for all Cells configurations were stored on, and run
from, the SD card. We also obtained some measurements
using an NVIDIA Ventana development tablet (NVIDIA
Tegra 2 dual 1GHz ARM Cortex A9 + GeForce GPU,
1 GB of RAM).

The Cells implementation used for our measurements
was based on then Android Open Source Project (AOSP)
version 2.3.3. Aufs version 2.1 was used for file system
unioning [24]. A single read-only branch of a union file
system was used as the /system and /data partitions
of each VP. This saves megabytes of file system cache
while maintaining isolation between VPs through sepa-
rate writeable branches i.e. when one VP modified a file
in the read-only branch, the modification would be stored
in its own private write branch of the file system. The im-
plementation enables the Linux KSM driver for a period
of time when a VP is booted. To maximize the benefit of
KSM, CellD made a custom system call which added
all memory pages from all processes to the set of pages
KSM attempts to merge. While this potentially max-
imizes shared pages, the processing overhead required
to hash and check all memory pages from all processes
quickly outweighs the benefit. Therefore, we monitored
the KSM statistics through the procfs interface and dis-
abled shared page merging after the page merging rate
dropped below a pre-determined threshold.

We present measurements along three dimensions of
performance: runtime overhead, power consumption,
and memory usage. To measure runtime overhead, we
compared the performance of various applications run-
ning with Cells versus running the applications on the
latest manufacturer stock image available for the respec-
tive mobile devices. We measured the performance of
Cells when running 1 VP (1-VP), 2 VPs (2-VP), 3 VPs
(3-VP), 4 VPs (4-VP), and 5 VPs (5-VP), each with a
fully booted Android environment running all applica-
tions and system services available in such an environ-
ment. Since AOSP v2.3.3 was used as the origin for the
Cells Android version used in our experiments, we also
measured the performance of a baseline system (Base-
line) created by downloading AOSP v2.3.3 source, com-
piling, and installing it without modification.

We measured runtime overhead in two scenarios, one
with a benchmark application designed to stress some as-
pect of the system, and the other with the same applica-
tion running, but simultaneously with an additional back-
ground workload. For Cells, the benchmark application
was always run in the foreground VP and if a background
workload was used, it was run in a background VP when
multiple VPs were used. For the benchmark application,
we ran one of six Android applications designed to mea-
sure different aspects of performance: CPU using Lin-
pack for Android v1.1.7; 2D graphics and file I/O using
Quadrant Advanced Edition v1.1.1 (2D, I/O); 3D graph-
ics using Neocore by Qualcomm; web browsing using
the popular SunSpider v0.9.1 JavaScript benchmark; and
networking using the wget module in a cross-compiled
version of BusyBox v1.8.1 to download a single 400 MB
file from a dedicated Samsung nb30 laptop. The lap-
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top was running Windows 7, providing a WPA wireless
access point via its Atheros AR9285 chipset and built-
in Windows 7 SoftAP [20] functionality, and serving up
the file through the HFS [19] file server v2.2f. To mini-
mize network variability, a location with minimal exter-
nal Wi-Fi network interference was chosen. Each An-
droid phone was used from this same location for all ex-
periments, and was connected to the same 802.11g laptop
access point. For the background workload, we played a
music file from local storage in a loop using the stan-
dard Android music player. All results were normalized
against the performance of the manufacturer’s stock con-
figuration without the background workload.

To measure power consumption, we compared the
power consumption of the latest manufacturer stock im-
age available for the respective mobile devices against
that of Baseline and Cells in 1-VP, 2-VP, 3-VP, 4-VP, and
5-VP configurations. We measured two different scenar-
ios. In the first power scenario, the device configuration
under test was fully booted, i.e. all VPs started up and
KSM had stopped merging pages, and then the device
was left idle for 12 hours. During the idle period, the de-
vice would normally enter a low power state, preventing
intermediate measurements. However, occasionally the
device would wake up to service timers and Android sys-
tem alarms, and during this time we would take a mea-
surement of the remaining battery capacity. At the end
of 12 hours we took additional measurements of capac-
ity. In the second power scenario, the device configura-
tion under test was fully booted, then the Android mu-
sic player was started. In multiple VP configurations, the
music player ran in the foreground VP in order to prevent
the device from entering a low power state. The music
player was set to repeat the same song continuously and
did so for four hours. During this time we sampled the
remaining battery capacity every 10 seconds. To mea-
sure power consumption due to Cells and avoid having
those measurements completely eclipsed by WiFi, cellu-
lar, and display power consumption, we disabled Wi-Fi
and cellular communication, and turned off the display
back-light for these experiments.

To measure memory usage, we recorded the amount of
memory used for the Baseline and Cells in 1-VP, 2-VP,
3-VP, 4-VP, and 5-VP configurations. We measured four
different scenarios. First, we ran a full Android environ-
ment without launching any additional applications other
than those that are launched by default on system bootup
(NoApps). Second, we ran the first scenario plus the An-
droid web browser (Browser). Third, we ran the second
scenario plus the Android email client (Browser+Email).
Finally, we ran the third scenario plus the Android cal-
endar application. In each scenario, an instance of every
application was running in all background VPs as well
as the foreground VP. We also performed the same mea-

surements of memory usage on the NVIDIA tablet while
scaling up to 9 and 10 VPs (9-VP and 10-VP). This il-
lustrates the scalability of the system on more powerful
tablet devices.

8.2 Measurements

Figures 3a to 3i show the measurement results. These are
the first measurements that we are aware of for running
multiple Android instances on a single phone or tablet. In
all experiments, Baseline and stock measurements were
within 1% of each other, so only Baseline results are
shown.

Figures 3a and 3b show the runtime overhead on the
Nexus 1 and Nexus S, respectively, for each of the bench-
mark applications with no additional background work-
load. Cells runtime overhead was small in all cases, even
with up to 5 VPs running at the same time. Cells incurs
less than than 1% overhead in all cases on the Nexus 1
except for Network and Quadrant I/O, and less than 4%
overhead in all cases on the Nexus S. The Quadrant 2D
and Neocore measurements show that Cells is the first
system that can deliver fully-accelerated graphics perfor-
mance in virtual mobile devices. Quadrant I/O on the
Nexus 1 has less than 7% overhead in all cases, though
the 4-VP and 5-VP measurements have more overhead
than the configurations with fewer VPs. This is likely
due to the use of the slower SD card on the Nexus 1 for
this benchmark instead of internal flash memory on the
Nexus S coupled with the presence of I/O system back-
ground processes running in each VP.

The Network runtime overhead measurements show
the highest overhead on the Nexus 1 and the least over-
head on the Nexus S. The measurements shown are av-
eraged across ten experiments per configuration. The
differences here are not reflective of any significant dif-
ferences in performance as much as the fact that the re-
sults of this benchmark were highly variable; the vari-
ance in the results for any one configuration was much
higher than any differences across configurations. De-
spite our best efforts, the variability was extremely diffi-
cult to control. The Wi-Fi connection would occasionally
drop out, was subject to varying interference levels based
on time of day, and was sensitive to the distance and ori-
entation between the device and the laptop providing the
Wi-Fi hot spot. While more extensive testing in a tightly
controlled environment would provide increasingly sta-
ble numbers, any overhead introduced by Cells was con-
sistently below Wi-Fi variability levels observed on the
manufacturer’s stock system and would not be noticeable
by a user.

Figures 3c and 3d show the runtime overhead on the
Nexus 1 and Nexus S, respectively, for each of the bench-
mark applications while running the additional back-
ground music player workload. Note that all results are
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(a) Normalized Nexus 1 results
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(b) Normalized Nexus S results

0.00 

0.20 

0.40 

0.60 

0.80 

1.00 

1.20 

1.40 

Linpack Quadrant 
(2D) 

NeoCore Quadrant 
(I/O) 

SunSpider Network 

Baseline 1-VP 2-VP 3-VP 4-VP 5-VP 

(c) Normalized Nexus 1 + music results
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(d) Normalized Nexus S + music results
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(e) Normalized Nexus 1 power usage
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(f) Normalized Nexus S power usage

0 

64 

128 

192 

256 

320 

384 

448 

512 

No Apps Browser Browser + Email Browser + Email + 
Calendar 

Baseline 1-VP 2-VP 3-VP 4-VP 5-VP 

(g) Nexus 1 Memory usage in MB
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(h) Nexus S Memory usage in MB with total
number of processes overlayed
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Figure 3: Experimental results

normalized to the performance of the stock system run-
ning the first scenario without a background workload to
show the overhead introduced by the background work-
load. As would be expected, there is some additional
overhead relative to a stock system not running a back-
ground workload, though the amount of overhead varies
across applications. Relative to a stock system, Neocore
has the least overhead and has almost the same over-
head as without the background workload, because it
primarily uses the GPU for 3D rendering, which is not
used by the music player. Linpack, Quadrant 2D, and
SunSpider incur some additional overhead compared to
running without the background music player workload,
reflecting the additional CPU overhead of running the
music player at the same time. Network runtime over-
head while running an additional background workload
showed the same level of variability in measurement re-
sults as the benchmarks run without a background work-
load. Cells’s network performance overhead is mod-
est, as the variance in the results for any one configu-
ration still exceeded the difference across configurations.

Quadrant I/O overhead was the highest among the bench-
mark applications, reflecting the expected I/O contention
between the I/O benchmark and the music player.

Comparing to the Baseline configuration with an ad-
ditional background workload, Cells overhead remains
small in all cases. It incurs less than 1% overhead in
all cases on the Nexus 1 except for Network and Quad-
rant I/O, and less than 4% overhead in all cases on the
Nexus S except for Quadrant I/O, although the majority
of benchmark results on the Nexus S show nearly zero
overhead. Quadrant I/O on the Nexus 1, while running
an additional background workload, incurs a maximum
overhead of 7% relative to Baseline performance. Quad-
rant I/O on the Nexus S has less than 2% overhead for the
1-VP configuration when compared to the Baseline con-
figuration. However, configurations with more than 1 VP
show an overhead of 10% relative to the Baseline. This is
because the Baseline results on the Nexus S were better
than the Nexus 1 reflecting better I/O performance. This
higher absolute performance of the Nexus S accentuates
the virtualization overhead due to running multiple VPs.
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Figures 3e and 3f show power consumption on the
Nexus 1 and Nexus S, respectively, both while play-
ing music with the standard Android music player for 4
hours continuously, and while letting the phone sit idle
for 12 hours in a low-power state. In both scenarios,
the background VPs were the same as the foreground VP
except that in the second scenario the music player was
not running in the background VPs. Note that the graph
presents normalized results, not absolute percentage dif-
ference in battery capacity usage, so lower numbers are
better.

The power consumption attributable to Cells during
the 4 hours of playing music on the Nexus 1 increased
while running more VPs, which involved running more
processes on the system. We found that while playing
music, Cells created a higher power supply load varia-
tion due to the scheduling and running of a much larger
set of processes and threads. The nonlinearity in how this
variation affects power consumption resulted in the 4-6%
overhead in battery usage for 1-VP through 3-VP, and
the 10-20% overhead for 4-VP and 5-VP experiments.
Nexus 1 power consumption after 12 hours of sitting idle
was within 2% of Baseline. Note that when the device sat
idle, the Android wake lock system would aggressively
put the device in a low-power mode where the CPU was
completely powered down. The idle power consumption
results hold even when background cells are running ap-
plications which would normally hold wake locks to pre-
vent the device from sleeping such as a game like Angry
Birds or the Android music player. This shows that the
Cells’ wake lock system virtualization makes efficient
use of precious battery resources.

Nexus S power measurements showed no measurable
increase in power consumption due to Cells for either
playing music for 4 hours or letting the phone idle for
12 hours. Because the Nexus S is a newer device, the
better power management performance may be reflective
of what could be expected for running Cells on newer
hardware.

Figures 3g, 3h, and 3i show memory usage on the
Nexus 1, Nexus S, and NVIDIA tablet, respectively.
These results show that by leveraging the KSM driver
and file system unioning, Cells requires incrementally
less memory to start each additional VP compared to run-
ning the first VP. Furthermore, the 1-VP configuration
uses less memory than the Baseline configuration, also
because of the use of the KSM driver. In other words, the
memory used increases linearly with the number of VPs
running, but at a rate that is much less than the amount
of memory required for the Baseline configuration.

Figure 3g shows memory usage on the Nexus 1 for
all six configurations with different combinations of pre-
installed and commonly used Android applications run-
ning in each VP. In each configuration, an instance of

every application listed in the figure is running in all
background VPs as well as the foreground VP. Lever-
aging the Linux KSM driver, Cells uses approximately
20% less memory for 1-VP than Baseline. The mem-
ory cost for Cells to start each additional VP is approx-
imately 55 MB, which is roughly 40% of the mem-
ory used by the Baseline Android system and roughly
50% of the memory used to start the first VP. The re-
duced memory usage of additional VPs is due to Cells’s
use of file system unioning to share common code and
data as well as KSM, providing improved scalability on
memory-constrained phones.

Figure 3h shows memory usage on the Nexus S un-
der the same conditions described above. The memory
cost of starting a cell on the Nexus S is roughly 70 MB.
This is higher than the Nexus 1 due to increased heap us-
age of Android base applications and system support li-
braries. In addition, the Nexus S device contains several
hardware acceleration components which require dedi-
cated regions of memory. These regions can be multi-
plexed across VPs, but reduce the total available system
memory for use by applications for general use. As a re-
sult, although the Nexus 1 and Nexus S have the same
amount of RAM, the RAM available for general use on
the Nexus S is about 350 MB versus 400 MB for the
Nexus 1. Thus, after starting the 4th VP, and after start-
ing the browser and the email client in each of 3 VPs, the
Android low memory killer kernel driver begins to kill
background processes to free system memory for new
applications. While this allows us to start and interact
with 5 VPs on the Nexus S, it can increase application
startup time, and invalidates a direct memory usage com-
parison to the Nexus 1. To better illustrate the effects of
the low memory killer, the total number of processes run-
ning at the time of measurement is indicated by the black
bar overlaid on each measurement point in Figure 3h.
Note that the set of processes in each measurement may
be different, so the number of processes and amount of
memory used are not strictly correlated.

Figure 3i shows memory usage on the NVIDIA tablet.
We were able to start and use 10 VPs on the NVIDIA
Ventana tablet development kit. Each VP ran a com-
plete and standard Android software suite, and each had
full access to the NVIDIA GeForce GPU and well as
other hardware devices present in the dev-kit such as a
forward-facing camera, a back-facing stereo camera pair,
an accelerometer and a 1080p video decoder. To show
the linear increase of both system and graphics memory,
the portion of the each column below the horizontal black
bar represents the amount of dedicated graphics mem-
ory requested in each configuration. Memory required
to start a single VP is approximately equivalent to the
Baseline configuration, and the memory cost for Cells to
start each additional VP is roughly 65 MB, which is less
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than 60% of the memory required for the Baseline sys-
tem, and also less than the amount of memory required
to start additional VPs on the Nexus S.

Note that the NVIDIA graphics memory allocator ker-
nel driver, nvmap, can over-commit RAM resources by
only physically allocating memory blocks which are ac-
tually used. This driver also provides a mechanism sim-
ilar to the low memory killer which can kill processes in
order to reclaim graphics memory. Also note that the ap-
parent memory cost of starting the 10th cell is roughly
14 MB of system RAM. In the 10-VP configuration, the
physical memory of the tablet device is exhausted and the
Android low memory killer is invoked to kill background
processes and free memory.

9 Related Work
Virtualization on embedded and mobile devices is a rel-
atively new area. OKL4 Microvisor [25] is a bare metal
hypervisor based on the L4 microkernel [12]. A bare
metal hypervisor offers the benefit of a smaller trusted
computing base, but the disadvantage of having to pro-
vide device support and emulation, an onerous require-
ment for smartphones which provide increasingly diverse
hardware devices. We are not aware of any OKL4 im-
plementations that run Android on any phones other than
the HTC G1, which is no longer sold. Another commer-
cial bare-metal hypervisor solutions is VLX from Red
Bend [30]. VMware MVP [3] is a hosted virtualization
solution for Android. It can therefore leverage Android
device support and runs on more recent hardware such
as the Google Nexus 1. However, its trusted computing
base is larger as it includes both the Android user-space
environment and host Linux OS. Xen for ARM [14] and
KVM/ARM [6] are open-source virtualization solutions
for ARM, but are both incomplete with respect to device
support. All of these approaches require paravirtualiza-
tion and need to run an entire OS instance in each VM,
which adds to both memory and CPU overhead. This
can significantly limit scalability and performance on re-
source constrained phones. For example, VMware MVP
is targeted for running just one VM to encapsulate an
Android virtual work phone on an Android host personal
phone. INTEGRITY from Green Hills [11] provides
ARM virtualization specifically targeted at real-time ap-
plications.

Cells’s OS virtualization approach provides sev-
eral advantages over these hardware virtualization ap-
proaches on resource constrained phones. First, OS vir-
tualization is more lightweight and introduces less over-
head. Second, only a single OS instance is run to sup-
port multiple VPs as opposed to needing to run several
OS instances on the same hardware, one per virtual ma-
chine plus an additional host instance for hosted virtual-
ization. Attempts have been made to run a heavily mod-

ified Android in a VM without the OS instance [13], but
they lack support for most applications and are problem-
atic to maintain. Third, OS virtualization is supported in
existing commodity OSes such as Linux, enabling Cells
to leverage existing investments in commodity software
as opposed to building and maintaining a separate, com-
plex hypervisor platform. Fourth, by running the same
commodity OS already shipped with the hardware, we
can leverage already available device support instead of
needing to rewrite our own with a bare metal hypervisor.

A potential disadvantage of relying on the OS is that
the trusted computing base necessary for ensuring secu-
rity is potentially larger than a bare metal hypervisor. We
believe the benefits in ease of deployment from lever-
aging existing OS infrastructure are worth this tradeoff.
Furthermore, existing non-virtualized smartphones rely
on the same OS as the trusted computing base, so the
assumption of trusting the OS for security is no worse
than existing non-virtualized smartphones and hosted
hardware virtualization approaches such as that used by
VMware. Another potential disadvantage of an OS vir-
tualization approach is that applications in VPs are ex-
pected to run on the same kind of OS; VPs cannot run
Apple iOS on an Android system. However, any attempt
at running a different OS using hardware virtualization
would first need to overcome licensing restrictions and
device compatibility issues that would prevent popular
smartphone OSs such as iOS from being run on non-
Apple hardware and hypervisors from being run on Ap-
ple hardware.

User-level approaches have also been proposed to sup-
port separate work and personal virtual phones on the
same hardware [1]. This is done by providing an Android
work phone application that also supports other custom
work-related functions such as email. Alternative user-
level approaches supply a secure SDK on which appli-
cations can be developed [37]. While the advantage of
such solutions is portability, a fundamental limitation of
this approach is the inability to run standard applications
in the virtual phone and a weaker security model.

Efficient device virtualization has been a difficult
problem on user-centric systems such as desktops and
phones that must support a plethora of devices. Most
approaches require emulation of hardware devices, im-
posing high overhead [40]. Dedicating a device to a VM
can enable low overhead pass through operation, but then
does not allow the device to be used by other VMs [22].
Mechanisms to bypass the kernel or VMM for network
I/O have been proposed to reduce overhead [17], but re-
quire specialized hardware support used in high-speed
network interfaces and not present on most user-centric
systems, including phones. GPU devices are perhaps
the most difficult to virtualize. For example, VMware
MVP simply cannot run graphics applications such as
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games within a VM with reasonable performance [34].
Front-end GPU approaches require user-level modifica-
tions and have high overhead, while back-end GPU ap-
proaches have had inherent problems with multiplex-
ing [7]. In contrast, Cells takes advantage of the usage
model of phones to provide and use a new device names-
pace abstraction that can transparently virtualize devices
while maintaining native or near native device perfor-
mance for applications across a wide range of devices,
including GPU devices

10 Conclusions
We have designed, implemented, and evaluated Cells,
the first operating system virtualization solution for An-
droid mobile phones. Mobile phones have a different
usage model than traditional computers. We use this
observation to provide new device virtualization mech-
anisms, device namespaces and device namespace prox-
ies, that leverage a foreground-background usage model
to isolate and multiplex phone devices with near zero
overhead. Device namespaces provide a kernel-level ab-
straction that is used to virtualize critical hardware de-
vices such as the framebuffer and GPU while providing
fully-accelerated graphics performance. Device names-
paces are also used to virtualize Android’s complicated
power management framework, resulting in almost no
extra power consumption for Cells compared to stock
Android. Device namespace proxies provide a user-level
mechanism to virtualize closed and proprietary device in-
frastructure, such as the telephony radio stack, with only
minimal configuration changes to the Android user-space
environment. Cells further provides each virtual phone
complete use of the standard cellular phone network with
its own phone number and incoming and outgoing caller
ID support through the use of a VoIP cloud service.

We have implemented a Cells prototype that runs on
the latest versions of Android, the most recent Google
phone hardware, including both the Nexus 1 and Nexus
S, and an NVIDIA Tegra powered tablet device. The sys-
tem is no less secure than a standard unmodified Android
system and can use virtual mobile devices to run standard
unmodified Android applications downloadable from the
Android market. Scalability tests on the NVIDIA tablet
device show that Cells makes efficient use of device
memory via KSM and scales to multiple VPs with a per-
VP memory cost nearly half that of an unmodified An-
droid device. It also shows that Cells can leverage the
Android low memory killer to start more VPs than the
physical memory would otherwise allow. Performance
results across a wide-range of applications running in up
to 5 virtual phones on the same Nexus 1 and Nexus S
hardware show that Cells incurs near-zero performance
overhead, and human UI testing reveals no visible per-
formance degradation in any of the benchmark configu-

rations.
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