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Abstract. We present a new algorithm for estimating the star discrepancy of arbitrary point
sets. Similar to the algorithm for discrepancy approximation of Winker and Fang [SIAM J. Numer.
Anal. 34 (1997), 2028–2042] it is based on the optimization algorithm threshold accepting. Our
improvements include, amongst others, a non-uniform sampling strategy which is more suited for
higher-dimensional inputs and additionally takes into account the topological characteristics of given
point sets, and rounding steps which transform axis-parallel boxes, on which the discrepancy is to be
tested, into critical test boxes. These critical test boxes provably yield higher discrepancy values, and
contain the box that exhibits the maximum value of the local discrepancy. We provide comprehensive
experiments to test the new algorithm. Our randomized algorithm computes the exact discrepancy
frequently in all cases where this can be checked (i.e., where the exact discrepancy of the point set
can be computed in feasible time). Most importantly, in higher dimension the new method behaves
clearly better than all previously known methods.
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1. Introduction. Discrepancy theory analyzes the irregularity of point distri-
butions and has considerable theoretical and practical relevance. There are many
different discrepancy notions with a wide range of applications as in optimization,
combinatorics, pseudo random number generation, option pricing, computer graph-
ics, and other areas, see, e.g., the monographs [2, 5, 7, 12, 14, 30, 31, 33, 34].

In particular for the important task of multivariate or infinite dimensional numer-
ical integration, which arises frequently in fields such as finance, statistics, physics or
quantum chemistry, quasi-Monte Carlo algorithms relying on low-discrepancy samples
have been studied extensively in the last decades. For several classes of integrands the
error of quasi-Monte Carlo approximation can be expressed in terms of the discrep-
ancy of the set of sample points. This is put into a quantitative form by inequalities of
Koksma-Hlawka- or Zaremba-type, see, e.g., [7, 19, 34] and the literature mentioned
therein. The essential point here is that a set of sample points with small discrepancy
results in a small integration error. The most important and most extensively studied
discrepancy notion is the star discrepancy, which is defined as follows.

Let X = (xi)ni=1 be a finite sequence in the d-dimensional (half-open) unit cube
[0, 1)d. For y = (y1, . . . , yd) ∈ [0, 1]d let A(y,X) be the number of points of X lying
in the d-dimensional half-open subinterval [0, y) := [0, y1) × · · · × [0, yd), and let Vy
be the d-dimensional (Lebesgue) volume of [0, y) . We call

δ(y) = δ(y,X) := Vy − 1
nA(y,X)

the local discrepancy of X in the subinterval [0, y), and the supremum norm of the
local discrepancy,

d∗∞(X) := sup
y∈[0,1]d

∣∣δ(y,X)
∣∣,
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the L∞-star discrepancy, or simply the star discrepancy of X.
A generalization of the star discrepancy which attracted more and more attention

over the last few years, is the so-called weighted star discrepancy, see, e.g., [6, 24, 25,
37]. In particular, it is very promising for finance applications, see [38]. In this article
we focus on algorithms to approximate the star discrepancy, but the reader should
keep in mind that these build the necessary basis for algorithms to approximate the
weighted star discrepancy.

In many applications it is of interest to measure the quality of certain sets by
calculating their star discrepancy, e.g., to test whether successive pseudo random
numbers are statistically independent [33], or whether given sample sets are suitable
for multivariate numerical integration of certain classes of integrands. As explained
in [9], the fast calculation or approximation of the star discrepancy would moreover
allow efficient randomized semi-constructions of low-discrepancy samples of moderate
size (meaning at most polynomial in the dimension d). Actually, there are deran-
domized algorithms known to construct such samples deterministically [9, 10, 11],
but these exhibit high running times. Therefore, efficient semi-constructions would
be helpful to avoid the costly derandomization procedures. The critical step in the
semi-construction is the efficient calculation (or approximation) of the discrepancy of
a given point set.

The L2-star discrepancy (i.e., the L2-norm of the local discrepancy function) of
a given n-point set in dimension d can be computed with the help of Warnock’s
formula [42] with O(dn2) arithmetic operations. Heinrich and Frank provided an
asymptotically faster algorithm using O(n(log n)d−1) operations for fixed d [16, 23].
Similarly efficient algorithms are not known for the star discrepancy. In fact it is
known that the problem of calculating the star discrepancy of arbitrary point sets
is an NP -hard problem [20]. Furthermore, it was shown recently that it is also a
W [1]-hard problem with respect to the parameter d [17]. So it is not very surprising
that all known algorithms for calculating the star discrepancy or approximating it up
to a user-specified error exhibit running times exponential in d, see [8, 18, 40, 41]. Let
us have a closer look at the problem: For a finite sequence X = (xi)ni=1 in [0, 1)d and
for j ∈ {1, . . . , d} we define

Γj(X) = {xij | i ∈ {1, ..., n}} and Γ̄j(X) = Γj(X) ∪ {1},

and the grids

Γ(X) = Γ1(X)× · · · × Γd(X) and Γ̄(X) = Γ̄1(X)× · · · × Γ̄d(X).

Then we obtain

d∗∞(X) = max

{
max
y∈Γ̄(X)

(
Vy −

1

n
A(y,X)

)
, max
y∈Γ(X)

(
1

n
Ā(y,X)− Vy

)}
, (1.1)

where Ā(y,X) denotes the number of points of X lying in the closed d-dimensional
subinterval [0, y]. (For a proof see [20] or [32, Thm. 2].) Thus, an enumeration
algorithm would provide us with the exact value of d∗∞(X). But since the cardinality
of the grid Γ(X) for almost all X is nd, such an algorithm would be infeasible for
large values of n and d.

Since an efficient algorithm for the exact calculation of the star discrepancy is
unlikely, and since no efficient approximation algorithm is known, other authors tried
to deal with this problem by using optimization heuristics. In [43], Winker and Fang
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used threshold accepting to find lower bounds for the star discrepancy. Threshold
accepting [13] is a refined randomized local search algorithm based on a similar idea
as the simulated annealing algorithm [28]. In [41], Thiémard gave an integer linear
programming formulation for the problem and used techniques as cutting plane gener-
ation and branch and bound to tackle it (cf. also [20]). Quite recently, Shah proposed
a genetic algorithm to calculate lower bounds for the star discrepancy [36].

In this paper we present a new randomized algorithm to approximate the star
discrepancy. As the algorithm of Winker and Fang, it is based on threshold accepting,
but with more problem specific knowledge added.

The paper is organized as follows. In Section 2 we describe the algorithm of
Winker and Fang. In Section 3 we present a first version of our algorithm. The
most important difference to the algorithm of Winker and Fang is a new non-uniform
sampling strategy that takes into account the influence of the dimension d and topo-
logical characteristics of the given point set. In Section 4 we introduce the concept
of critical test boxes, which are the boxes that lead to the largest discrepancy val-
ues, including the maximum value. We present rounding procedures which transform
given test boxes into critical test boxes. With the help of these procedures and some
other modifications, our algorithm achieves even better results, although at the cost
of larger running times (see Table 6.1). In Section 5 we analyze the new sampling
strategy and the rounding procedures in more depth. We provide comprehensive nu-
merical tests in Section 6. The results indicate that our new algorithm is superior
to all other known methods, especially in higher dimensions. The appendix contains
some technical results necessary for our theoretical analysis in Section 5.

2. The Algorithm of Winker and Fang.

2.1. Notation. In addition to the notation introduced above, we make use of
the following conventions.

For all positive integers m ∈ N we put [m] := {1, . . . ,m}. If r ∈ R, let brc :=
max{n ∈ Z |n ≤ r}. For the purpose of readability we sometime omit the b·c sign,
i.e., whenever we write r where an integer is required, we implicitly mean brc. For
general x, y ∈ [0, 1]d we write x ≤ y if xj ≤ yj for all j ∈ [d] and, equivalently, x < y
if xj < yj for all j ∈ [d].

For a given sequence X = (xi)ni=1 in the d-dimensional unit cube [0, 1)d, we define,
next to the local discrepancy δ, the following functions. For all y ∈ [0, 1]d we set

δ̄(y) = δ̄(y,X) := Ā(y,X)− Vy and δ∗(y) = δ∗(y,X) := max
{
δ(y), δ̄(y)

}
.

Then d∗∞(X) = maxy∈Γ̄(X) δ
∗(y) as discussed in the introduction.

2.2. The algorithm of Winker and Fang. Threshold accepting is an inte-
ger optimization heuristic introduced by Dueck and Scheuer in [13]. Althöfer and
Koschnik [1] showed that for suitably chosen parameters, threshold accepting con-
verges to a global optimum if the number I of iterations tends to infinity. Winker and
Fang [43] applied threshold accepting to compute the star discrepancy of a given n-
point configuration. In the following, we give a short presentation of their algorithm.
A flow diagram of the algorithm can be found in [43].

Initialization: The heuristic starts with choosing uniformly at random a starting
point xc ∈ Γ̄(X) and calculating δ∗(xc) = max{δ(xc), δ(xc)}. Note that throughout
the description of the algorithm, xc denotes the currently used search point.

Optimization: A number I of iterations is performed. In the t-th iteration,
the algorithm chooses a point xnb uniformly at random from a given neighborhood
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N (xc) of xc and calculates δ∗(xnb). It then computes ∆δ∗ := δ∗(xnb) − δ∗(xc). If
∆δ∗ ≥ T for a given (non-positive) threshold value T , then xc is updated, i.e, the
algorithm sets xc := xnb. With the help of the non-positive threshold it shall be
avoided to get stuck in a bad local maximum xc of δ∗—“local” with respect to the
underlying neighborhood definition. The threshold value T changes during the run of
the algorithm and ends up at zero. This should enforce the algorithm to end up at a
local maximum of δ∗ which is reasonably close to d∗∞(X).

Neighborhood Structure: Let x ∈ Γ̄(X) be given. Let ` < n/2 be an integer
and put k := 2` + 1. We allow only a certain number of coordinates to change by
fixing a value mc ∈ [d] and choosing mc coordinates j1, . . . , jmc ∈ [d] uniformly at
random. For j ∈ {j1, . . . , jmc} we consider the set of grid coordinates

Nk,j(x) :=
{
γ ∈ Γ̄j(X)

∣∣∣ max{1, φ−1
j (xj)−`} ≤ φ−1

j (γ) ≤ min{|Γ̄j(X)|, φ−1
j (xj)+`}

}
,

where φj : [|Γ̄j(X)|]→ Γ̄j(X) is the ordering of the set Γ̄j(X), i.e., φj(r) < φj(s) for

r < s. The neighborhood N j1,...,jmc
k (x) of x of order k is the Cartesian product

N j1,...,jmc
k (x) := N̂k,1(x)× . . .× N̂k,d(x) , (2.1)

where N̂k,j(x) = Nk,j(x) for j ∈ {j1, . . . , jmc} and N̂k,j(x) = {xj} otherwise. Clearly,

|N j1,...,jmc
k (x)| ≤ (2`+1)mc. We abbreviate Nmc

k (x) := N j1,...,jmc
k (x) if j1, . . . , jmc are

mc coordinates chosen uniformly at random.
Threshold Values: The following procedure is executed prior to the algorithm

itself. Let I be the total number of iterations to be performed by the algorithm and
let k ≤ n and mc ≤ d be fixed. For each t ∈ [

√
I], the procedure computes a pair

(yt, ỹt), where yt ∈ Γ̄(X) is chosen uniformly at random and ỹt ∈ Nmc
k (yt), again

chosen uniformly at random. It then calculates the values T (t) := −|δ∗(yt)− δ∗(ỹt)|.
When all values T (t), t = 1, . . . ,

√
I, have been computed, the algorithm sorts them in

increasing order. For a given α ∈ (0.9, 1], the α
√
I values closest to zero are selected

as threshold sequence. The number J of iterations performed for each threshold value
is J = α−1

√
I.

3. A First Improved Algorithm – TA basic. Our first algorithm, TA basic,
builds on the algorithm of Winker and Fang as presented in the previous section. A
preliminary, slightly different version of TA basic can be found in [44]. This version
was used in [11] to provide lower bounds for the comparison of the star discrepancies
of different point sequences. In particular in higher dimensions it performed better
than any other method tested by the authors.

Recall that the algorithm of Winker and Fang employs a uniform probability
distribution on Γ̄(X) and the neighborhoods Nmc

k (x) for all random decisions.
Firstly, this is not appropriate for higher-dimensional inputs: In any dimension d

it is most likely that the discrepancy of a set X is caused by test boxes with volume
at least c, c some constant in (0, 1). Thus in higher dimension d we expect the upper
right corners of test boxes with large local discrepancy to have coordinates at least
c1/d. Thus it seems appropriate for higher dimensional sets X to increase the weight
of those points in the grid Γ̄(X) with larger coordinates whereas we decrease the
weight of the points with small coordinates.

Secondly, a uniform probability distribution does not take into account the topo-
logical characteristics of the point set X as, e.g., distances between the points
in the grid Γ̄(X): If there is a grid cell [x, y] in Γ̄(X) (i.e., x, y ∈ Γ̄(X) and
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φ−1
j (yj) = φ−1

j (xj) + 1 for all j ∈ [d], where φj is again the ordering of the set

Γ̄j(X)) with large volume, we would expect that δ̄(x) or δ(y) are also rather large.
Thus, on the one hand, it seem better to consider a modified probability measure

on Γ̄(X) which accounts for the influence of the dimension and the topological char-
acteristics of X. On the other hand, if n and d are large, we clearly cannot afford an
elaborate precomputation of the modified probability weights.

To cope with this, the non-uniform sampling strategy employed by TA basic

consists of two steps:
• A continuous sampling step, where we select a point in the whole d-

dimensional unit cube (or in a “continuous” neighborhood of xc) with re-
spect to a non-uniform (continuous) probability measure πd, which is more
concentrated in points with larger coordinates.

• A rounding step, where we round the selected point to the grid Γ̄(X).
In this way we address both the influence of the dimension and the topological char-
acteristics of the point set X. This works without performing any precomputation
of probability weights on Γ̄(X) – instead, the random generator, the change of mea-
sure on [0, 1]d from the d-dimensional Lebesgue measure to πd, and our rounding
procedure do this implicitly! Theoretical and experimental justifications for our non-
uniform sampling strategy can be found in Section 5 and Section 6.

3.1. Sampling of Neighbors. In the following, we present how we modify
the probability distribution over the neighborhood sets. Our non-uniform sampling
strategy consists of the following two steps.

Continuous Sampling. Consider a point x ∈ Γ̄(X). For fixed mc ∈ [d] let
j1, . . . , jmc ∈ [d] be pairwise different coordinates. For j ∈ {j1, . . . , jmc} let ϕj :
[|Γ̄j(X) ∪ {0}|] → Γ̄j(X) ∪ {0} be the ordering of the set Γ̄j(X) ∪ {0} (in particular
ϕj(1) = 0). Let us now consider the real interval Ck,j(x) := [ξ(xj), η(xj)] with

ξ(xj) := ϕ
(

max{1, ϕ−1(xj)− `}
)

and η(xj) := ϕ
(

min{|Γ̄j(X) ∪ {0}|, ϕ−1(xj) + `}
)
.

Our new neighborhood Cj1,...,jmck (x) of x of order k is the Cartesian product

Cj1,...,jmck (x) := Ĉk,1(x)× . . .× Ĉk,d(x) , (3.1)

where Ĉk,j(x) = Ck,j(x) for j ∈ {j1, . . . , jmc} and Ĉk,j(x) = {xj} otherwise. We

abbreviate Cmck (x) := Cj1,...,jmck (x) if j1, . . . , jmc are mc coordinates chosen uniformly
at random.

Instead of endowing Cj1,...,jmck (x) with the Lebesgue measure on the non-trivial
components, we choose a different probability distribution which we describe in the
following. First, let us consider the polynomial product measure

πd( dx) = ⊗dj=1f(xj)λ( dxj) with density function f : [0, 1]→ R , r 7→ drd−1

on [0, 1]d; here λ = λ1 should denote the one-dimensional Lebesgue measure. Notice
that in dimension d = 1 we have π1 = λ. Picking a random point y ∈ [0, 1]d with
respect to the new probability measure πd can easily be done in practice by sampling

a point z ∈ [0, 1]d with respect to λd and then putting y := (z
1/d
1 , . . . , z

1/d
d ).

We endow Cj1,...,jmck (x) with the probability distribution induced by the polyno-
mial product measure on the mc non-trivial components Ck,j1(x), . . . , Ck,jmc(x). To
be more explicit, we map each Ck,j(x), j ∈ {j1, . . . , jmc}, to the unit interval [0, 1] by

Ψj : Ck,j(x)→ [0, 1], r 7→ rd − (ξ(xj))
d

(η(xj))d − (ξ(xj))d
.
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Recall that ξ(xj) := minCk,j(x) and η(xj) := maxCk,j(x). The inverse mapping Ψ−1
j

is then given by

Ψ−1
j : [0, 1]→ Ck,j , s 7→

((
(η(xj))

d − (ξ(xj))
d
)
s+ (ξ(xj))

d
)1/d

.

If we want to sample a random point y ∈ Cj1,...,jmck (x), we randomly choose scalars
s1, . . . , smc in [0, 1] with respect to λ and put yji := Ψ−1

ji
(si) for i = 1, . . . ,mc. For

indices j /∈ {j1, . . . , jmc} we set yj := xj .
Rounding Procedure. We round the point y once up and once down to the

nearest points y+ and y− in Γ̄(X). More precisely, for all j ∈ [d], let y+
j := min{xij ∈

Γ̄j(X) | yj ≤ xij}. If yj ≥ min Γ̄j(X) we set y−j := max{xij ∈ Γ̄j(X) | yj ≥ xij} and in

case yj < min Γ̄j(X), we set y−j := max Γj(X).

Obviously, A(y+, X) = A(y,X) and thus, δ(y+) = Vy+ − A(y+, X) ≥ Vy −
A(y,X) = δ(y) . Similarly, if yj ≥ min Γj(X) for all j ∈ [d], we have Ā(y−, X) =
Ā(y,X). Hence, δ̄(y−) = Ā(y−, X)− Vy− ≥ Ā(y,X)− Vy = δ̄(y) . If yj < min Γj(X)
for at least one j ∈ [d] we have δ̄(y) ≤ 0 since Ā(y,X) = 0. But we also have
A(y,X) = 0 and thus δ∗(y) = δ(y) ≤ δ(y+) . Putting everything together, we have
shown that max{δ(y+), δ̄(y−)} ≥ δ∗(y) .

Since it is only of insignificant additional computational cost to also compute
δ̄(y−,−) where y−,−j := y−j for all j ∈ [d] with yj ≥ min Γ̄j(X) and y−,−j := min Γ̄j(X)

for j with yj < min Γ̄j(X), we also do that in case at least one such j with yj <
min Γ̄j(X) exists.

For sampling a neighbor xnb of xc the algorithm thus does the following. First,
it samples mc coordinates j1, . . . , jmc ∈ [d] uniformly at random. Then it samples
a point y ∈ Cj1,...,jmck (xc) as described above, computes the rounded grid points y+,
y−, and y−,− and computes the discrepancy δ∗Γ(y) := max{δ(y+), δ̄(y−), δ̄(y−,−)} of
the rounded grid points. The subscript Γ shall indicate that we consider the rounded
grid points. As in the algorithm of Winker and Fang, TA basic updates xc if and
only if ∆δ∗ = δ∗Γ(y) − δ∗(xc) ≥ T , where T denotes the current threshold. In this
case we always update xc with the best rounded test point, i.e., we update xc := y+

if δ∗Γ(y) = δ(y+), xc := y− if δ∗Γ(y) = δ̄(y−), and xc := y−,− otherwise.

3.2. Sampling of the Starting Point. Similar to the probability distribution
on the neighborhood sets, we sample the starting point xc as follows. First, we sample
a point x from [0, 1]d according to πd. We then round x up and down to x+, x−,
and x−,−, respectively and again we set xc := x+ if δ∗Γ(x) = δ(x+), xc := x− if
δ∗Γ(x) = δ̄(x−), and xc := x−,− otherwise.

3.3. Computation of Threshold Sequence. The modified neighborhood
sampling is also used for computing the sequence of threshold values. If we want
the algorithm to perform I iterations, we compute the threshold sequence as follows.
For each t ∈ [

√
I] we sample a pair (yt, ỹt), where yt ∈ Γ̄(X) is sampled as is the

starting point and ỹt ∈ Γ̄(X) is a neighbor of yt, sampled according to the procedure
described in Section 3.1. The thresholds −|δ∗(yt) − δ∗(ỹt)| are sorted in increasing
order and each threshold will be used for

√
I iterations of TA basic. Note that by

this choice, we are implicitly setting α := 1 in the notion of the algorithm of Winker
and Fang.

4. Further Improvements – Algorithm TA improved. In the following, we
present further modifications which we applied to the basic algorithm TA basic. We
call the new, enhanced algorithm TA improved.



AN ALGORITHM TO APPROXIMATE STAR DISCREPANCIES 7

The main improvements, which we describe in more detail below, are (i) a further
reduction of the search space by introducing new rounding procedures (“snapping”),
(ii) shrinking neighborhoods and growing number of search directions, and (iii) sep-
arate optimization of δ and δ̄ .

4.1. Further Reduction of the Search Space. We mentioned that for cal-
culating the star discrepancy it is sufficient to test just the points y ∈ Γ̄(X) and to
calculate δ∗(y), cf. equation (1.1). Therefore Γ̄(X) has been the search space we have
considered so far. But it is possible to reduce the cardinality of the search space even
further.

We obtain the reduction of the search space via a rounding procedure which we
call snapping. We now discuss the underlying concept of critical points (or test boxes),
which is an important element in the modified algorithm. For y ∈ [0, 1]d we define

Sj(y) :=

j−1∏
i=1

[0, yi)× {yj} ×
d∏

k=j+1

[0, yk) , j = 1, . . . , d .

We say that Sj(y) is a δ(X)-critical surface if Sj(y)∩{x1, . . . , xn} 6= ∅ or yj = 1. We
call y a δ(X)-critical point if for all j ∈ [d] the surfaces Sj(y) are δ(X)-critical. Let C
denote the set of δ(X)-critical points in [0, 1]d.

Further, let S̄j(y) be the closure of Sj(y), i.e.,

S̄j(y) :=

j−1∏
i=1

[0, yi]× {yj} ×
d∏

k=j+1

[0, yk] , j = 1, . . . , d .

We say S̄j(y) is a δ̄(X)-critical surface if S̄j(y)∩{x1, . . . , xn} 6= ∅. If for all j ∈ [d] the
surfaces S̄j(y) are δ̄(X)-critical, then we call y a δ̄(X)-critical point. Let C̄ denote the
set of δ̄(X)-critical points in [0, 1]d. We call y a δ∗(X)-critical point if y ∈ C∗ := C∪C̄.

For j ∈ [d] let νj := |Γ̄j(X)|, and let again φj : [νj ]→ Γ̄j(X) denote the ordering
of Γ̄j(X). Let Φ : [ν1] × · · · × [νd] → Γ̄(X) be the mapping with components φj ,
j = 1, . . . , d. We say that a multi-index (i1, . . . , id) ∈ [ν1]×· · ·× [νd] is a δ(X)-critical
multi-index if Φ(i1, . . . , id) is a δ(X)-critical point. We use similar definitions in cases
where we deal with δ̄(X) or δ∗(X).

Lemma 4.1. Let X = (xi)ni=1 be a sequence in [0, 1)d. Let C = C(X), C̄ = C̄(X),
and C∗ = C∗(X) be as defined above. Then C, C̄ and C∗ are non-empty subsets of
Γ̄(X). Furthermore,

sup
y∈[0,1]d

δ(y) = max
y∈C

δ(y) , sup
y∈[0,1]d

δ̄(y) = max
y∈C̄

δ̄(y) and sup
y∈[0,1]d

δ∗(y) = max
y∈C∗

δ∗(y).

Proof. The set C is not empty, since it contains the point (1, . . . , 1). Let y ∈ C.
By definition, we find for all j ∈ [d] an index σ(j) ∈ [n] with yj = x

σ(j)
j or we have

yj = 1. Therefore y ∈ Γ̄(X). Let z ∈ [0, 1]d \ C. Since δ(z) = 0 if zj = 0 for any index
j, we may assume zj > 0 for all j. As z /∈ C there exists a j ∈ [d] where Sj(z) is
not δ(X)-critical. In particular, we have zj < 1. Let now τ ∈ Γ̄j(X) be the smallest
value with zj < τ . Then the point ẑ := (z1, . . . , zj−1, τ, zj+1, . . . , zd) fulfills Vẑ > Vz.
Furthermore, the sets [0, ẑ) \ [0, z) and X are disjoint. So [0, ẑ) and [0, z) contain the
same points of X. In particular we have A(ẑ, X) = A(z,X) and thus, δ(ẑ) > δ(z).
This argument verifies supy∈[0,1]d δ(y) = maxy∈C δ(y). The remaining statements of
Lemma 4.1 can be proved with similar simple arguments.
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We now describe how to use this concept in our algorithm. Let us first explain
how we sample a neighbor xnb of a given point xc. The procedure starts exactly as
described in Section 3.1. That is, we first sample mc coordinates j1, . . . , jmc ∈ [d]
uniformly at random. Next, we sample y ∈ Cj1,...,jmck (xc) according to the proba-
bility distribution induced by the polynomial product measure πd on the non-trivial
components of Cj1,...,jmck (xc), cf. Section 3.1. Again we round y up and down to
the nearest grid points y+, y− and y−,−, respectively. We then apply the following
snapping procedures1.

Snapping down. We aim at finding a δ̄(X)-critical point y−,sn ≤ y− such
that the closed box [0, y−,snj ]dj=1 contains exactly the same points of X as the box

[0, y−j ]dj=1. We achieve this by simply setting for all j ∈ [d]

y−,snj := max{xij | i ∈ [n], xi ∈ [0, y−]} .

From the algorithmic perspective, we initialize y−,sn := (0, . . . , 0) and check for each
index i ∈ [n] whether xi ∈ [0, y−]. If so, we check for all j ∈ [d] whether xij ≤ y−,snj

and update y−,snj := xij otherwise.

Snapping up2. Whereas snapping down was an easy task to do, the same is
not true for snapping up, i.e., rounding a point to a δ(X)-critical one. More precisely,
given a point y+, there are in general multiple δ(X)-critical points y+,sn ≥ y+ such
that the open box created by y+,sn contains only those points which are also contained
in [0, y+).

Given that we want to perform only one snapping up procedure per iteration, we
use the following random version of snapping upwards. In the beginning, we initialize
y+,sn := (1, . . . , 1). Furthermore, we pick a permutation σ of [d] uniformly at random
from the set Sd of all permutations of set [d]. For each point x ∈ {xi | i ∈ [n]} we now
do the following. If x ∈ [0, y+) or xj ≥ y+,sn

j for at least one j ∈ [d], we do nothing.

Otherwise we update y+,sn
σ(j) := xσ(j) for the smallest j ∈ [d] with xσ(j) ≥ y+

σ(j). After

this update, x is no longer inside the half-open box generated by y+,sn.
Note that snapping up is subject to randomness as the δ(X)-critical point ob-

tained by our snapping procedure can be different for different permutations σ ∈ Sd.
The complexity of both snapping procedures is of order O(nd). In our experi-

ments, the snapping procedures caused a delay in the (wall clock) running time by a
factor of approximately two, if compared to the running time of TA basic. It is not
difficult to verify the following.

Lemma 4.2. Let X be a given n-point sequence in [0, 1)d For all y ∈ [0, 1]d, the
point y+,sn, computed as described above, is δ(X)-critical and both y−,sn and y−,−,sn

are δ̄(X)-critical.
In the run of the algorithm we now do the following. Given that we start in

some grid point xc, we sample y ∈ Cmck (xc) and we round y to the closest grid points
y+, y−, y−,− ∈ Γ̄(X) as described in Section 3.1. Next we compute the δ(X)-critical
point y+,sn, the δ̄(X)-critical point y−,sn, and, if y− 6= y−,−, we also compute the
δ̄(X)-critical point y−,−,sn. We decide to update xc if ∆δ∗ = δ∗,sn(y)−δ∗,sn(xc) ≥ T ,
where T is the current threshold, δ∗,sn(y) := max{δ(y+,sn), δ̄(y−,sn), δ̄(y−,−,sn)}, and
δ∗,sn(xc) is the value as was computed in the iteration where xc was updated last.
Note that we do not update xc with any of the critical points y+,sn, y−,sn, or y−,−,sn

1The snapping procedure is the same for y− and y−,−. Therefore, we describe it for y− only.
2While this is a slight misnomer, we still use this phrase to ease readability in what follows.
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but only replace xc with the simple rounded grid points y+, y−, or y−,−, respectively.
More precisely, we update xc := y+ if δ∗,sn(y) = δ(y+,sn), xc := y− if δ∗,sn(y) =
δ̄(y−,sn), and xc := y−,−, otherwise.

4.1.1. Computation of the Starting Point and the Threshold Sequence.
When computing the starting point xc we first sample a random point x from [0, 1]d

according to πd (see Section 3.1) and compute x+ and x−, and, if applicable, x−,−.
We also compute the δ(X)- and δ̄(X)-critical points x+,sn, x−,sn, and x−,−,sn and
set δ∗,sn(x) := max{δ(x+,sn), δ̄(x−,sn), δ̄(x−,−,sn)}. We put xc := x+ if δ∗,sn(x) =
δ(x+,sn), xc := x− if δ∗,sn(x) = δ̄(x−,sn), and xc := x−,−, otherwise.

For computing the threshold sequence, we also use the δ(X)- and δ̄(X)-critical
δ∗,sn-values. That is, for t = 1, . . . ,

√
I we compute t-th pair (yt, ỹt) by first sampling

a random starting point yt as described above (i.e., yt ∈ {x+, x−, x−,−} for some x
sampled from [0, 1]d according to πd and yt = x+ if δ∗,sn(x) = δ(x+,sn), yt = x− if
δ∗,sn(x) = δ̄(x−,sn), and yt = x−,− otherwise). We then compute a neighbor ỹt ∈
Cmck (yt) and the maximum of the discrepancy of the δ(X)- and δ̄(X)-critical points
δ∗,sn(ỹt) := max{δ(ỹt,+,sn), δ̄(ỹt,−,sn), δ̄(ỹt,−,−,sn)}. Finally, we sort the threshold
values T (t) := −|δ∗,sn(yt)− δ∗,sn(ỹt)|, t = 1, . . . ,

√
I in increasing order. This will be

our threshold sequence.

4.2. Shrinking Neighborhoods and Growing Number of Search Direc-
tions. We add the concept of shrinking neighborhoods, i.e., we consider neighbor-
hoods that decrease in size during the run of the algorithm. The intuition here is
the following. In the beginning, we want the algorithm to make large jumps. This
allows it to explore different regions of the search space. However, towards the end of
the algorithm we want it to become more local, allowing it to explore large parts of
the local neighborhood. We implement this idea by iteratively shrinking the k-value.
At the same time, we increase the mc-value, letting the algorithm explore the local
neighborhood more thoroughly.

More precisely, we do the following. In the beginning we set ` := (n − 1)/2 and
mc := 2. That is, the algorithm is only allowed to change few coordinates of the
current search point but at the same time it can make large jumps in these directions.
Recall that k = 2`+ 1. In the t-th iteration (out of a total number of I iterations) we
then update

` :=
n− 1

2
· I − t

I
+
t

I
and mc := 2 +

t

I
(d− 2) .

For the computation of the threshold sequence, we equivalently scale k and mc
by initializing ` := (n− 1)/2 and mc := 2 and then setting for the computation of the
t-th pair (yt, ỹt)

` :=
n− 1

2
·
√
I − t√
I

+
t√
I

and mc := 2 +
t√
I

(d− 2) .

Recall that we compute a total number of
√
I threshold values.

4.3. Separate Optimization of δ and δ̄. Our last modification is based on the
intuition that if the star discrepancy obtained by an open, sub-proportionally filled
box (i.e., there exists a y ∈ Γ̄(X) such that d∗∞(X) = δ(y)), then one might assume
that there are many points ỹ with large δ(ỹ)-values. Conversely, if the discrepancy is
obtained by a closed, over-proportionally filled box (i.e., there exists a y ∈ Γ̄(X) such
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that d∗∞(X) = δ̄(y)), then there should be multiple points ỹ with large δ̄(ỹ)-values.
This intuition triggered us to test the following split variant of the algorithm.

In the δ-version of the algorithm, we only consider open test boxes. That is,
whenever we want to sample a random starting point [a random neighbor], we proceed
exactly as described in Section 4.1 but instead of computing both y+ and y− (and,
potentially y−,−) as well as the δ(X)- and δ̄(X)-critical points y+,sn, y−,sn, and
y−,−,sn in the notation of Section 4.1, we only compute y+ [and y+,sn], and we
initialize xc := y+ [we update xc := y+ if and only if ∆δ = δ(y+,sn)−δ

(
(xc)+,sn

)
≥ T ,

where T again denotes the current threshold].
The δ̄-version is symmetric. We compute both y− and y−,− as well as the δ̄(X)-

critical points y−,sn and y−,−,sn, and we initialize xc := y− or xc := y−,− [we update
xc := y− or xc := y−,− if and only if ∆δ̄ = max{δ̄(y−,sn), δ̄(y−,−,sn)}− δ̄

(
(xc)−,sn

)
≥

T ]. Note that only δ-values (or δ̄-values, respectively) are considered for the compu-
tation of the threshold sequence as well.

The algorithm is now the following. We perform I iterations of the δ-version of
the algorithm and I iterations of the δ̄-version. We then output the maximum value
obtained in either one of the two versions.

It should be noted that a large proportion of the computational cost of
TA improved lies in the snapping procedures. Thus, running I iterations of the δ-
version followed by I iterations of the δ̄-version has a comparable running time to
running I iterations of an algorithm of the “mixed” form where we snap each point
up and down to the δ(X)- and δ̄(X)-critical grid points. Furthermore, as most modern
CPUs are multi-core and able to run several programs in parallel, the actual wall-clock
cost of switching from TA basic to the split version of TA improved may be smaller
still.

5. Theoretical Analysis. From our main innovations, namely the non-uniform
sampling strategy and the rounding procedures “snapping up” and “snapping down”,
we already analyzed the snapping procedures and proved that they enlarge the quality
of our estimates. The analysis of the non-uniform sampling strategy is much more
complicated. One reason is that our sampling strategy strongly interacts with the
search heuristic threshold accepting. That is why we confine ourselves to the analysis
of the pure non-uniform sampling strategy without considering threshold accepting.

In Section 5.1 we prove that sampling in the d-dimensional unit cube with re-
spect to the probability measure πd instead of λd leads to larger values of the local
discrepancy. In Section 5.2 we verify that for d = 1 sampling with respect to the
probability distribution induced on Γ̄(X) by sampling with respect to πd in [0, 1]d

and then rounding to the grid Γ̄(X) leads to better discrepancy estimates than the
uniform distribution on Γ̄(X). We comment also on the case d ≥ 2. In Section 5.3
we prove that for random point sets X the probability of x ∈ Γ̄(X) being a critical
point is essentially an increasing function of the position of its coordinates xj in the
ordered sets Γ̄j(X), j = 1, . . . , d. Recall that critical points yield higher values of the
function δ∗ and include the point that leads to its maximum value. Thus the analysis
in Section 5.3 serves as another justification of choosing a probability measure on the
neighborhoods which weights points with larger coordinates stronger than points with
smaller coordinates.

5.1. Analysis of Random Sampling with Respect to λd and πd. Here we
want to show that sampling in the d-dimensional unit cube with respect to the non-
uniform probability measure πd leads to superior results than sampling with respect
to the Lebesgue measure λd.
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Before we start with the theoretical analysis, let us give a strong indication that
our non-uniform sampling strategy is much more appropriate in higher dimension than
a uniform sampling strategy. In [43] Winker and Fang chose in each of the dimensions
d = 4, 5, 6 in a random manner 10 lattice points sets, cf. also our Section 6. They
calculated the discrepancy of these sets exactly. If ηd denotes the average value of
the coordinates of the points y with δ∗(y) = supz∈[0,1]d δ

∗(z), we get η4 = 0.799743,
η5 = 0.840825, and η6 = 0.873523. The expected coordinate value µd of a point x,
randomly sampled from [0, 1)d with respect to the measure πd, is µd = d/(d+ 1). So
we get µ4 = 0.8, µ5 = 0.83̄, and µ6 = 0.857143. Note that for using λd instead of πd

the expected coordinate value is only 0.5 for all dimensions.

5.1.1. Random Sampling in the Unit Cube with Respect to λd. We
analyze the setting, where we sample in [0, 1]d with respect to λd to maximize the
objective function δ. A similar analysis for δ is technically more involved than the
proof of Proposition 5.1. Furthermore, it leads to a less clear and also worse result.
We comment on this at the end of this subsection.

Proposition 5.1. Let ε ∈ (0, 1), let n, d ∈ N, and let X = (xi)ni=1 be a sequence
in [0, 1)d. Let x∗ = x∗(X) ∈ [0, 1]d satisfy δ(x∗) = supx∈[0,1]d δ(x). Let us assume

that Vx∗ ≥ ε. Consider a random point r ∈ [0, 1]d, sampled with respect to the
probability measure λd. If Pλε = Pλε (X) denotes the probability of the event {r ∈
[0, 1]d | δ(x∗)− δ(r) ≤ ε}, then

Pλε ≥
1

d!

εd

V d−1
x∗

≥ εd

d!
. (5.1)

This lower bound is sharp in the sense that there exist sequences of point configurations
{X(k)} such that limk→∞ d! ε−dPλε (X(k)) converges to 1 as ε tends to zero.

Let additionally ε ∈ (0, 1) and R ∈ N. Consider random points r1, . . . , rR ∈ [0, 1]d,
sampled independently with respect to λd, and put δR := maxRi=1 δ(r

i). If

R ≥ | ln(ε)|
∣∣∣ ln(1− εd

d!

)∣∣∣−1

, (5.2)

then δ(x∗)− δR ≤ ε with probability at least 1− ε.
Notice, that the case Vx∗ < ε left out in Proposition 5.1 is less important for us,

since our main goal is to find a good lower bound for the star-discrepancy d∗∞(X).
Indeed, the approximation of d∗∞(X) up to an admissible error ε is a trivial task if
d∗∞(X) ≤ ε. If d∗∞(X) > ε, then Vx∗ < ε implies δ(x∗) < d∗∞(X), and the function δ̄
plays the significant role.

Proof. For x ≤ x∗ we get

δ(x) = Vx −
1

n
A(x,X) ≥ δ(x∗)− (Vx∗ − Vx) .

Therefore the Lebesgue measure of the set

Aε(x
∗) := {x ∈ [0, 1]d |x ≤ x∗, Vx∗ − Vx ≤ ε} (5.3)

is a lower bound for Pλε . Due to Proposition A.2, we have for d ≥ 2

λd(Aε(x
∗)) =

1

d!

εd

V d−1
x∗

∞∑
k=0

bk(d)
( ε

Vx∗

)k
,
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with positive coefficients bk(d). In particular, we have b0(d) = 1. Thus,

λd(Aε(x
∗)) ≥ 1

d!

εd

V d−1
x∗

≥ εd

d!
, (5.4)

and this estimate is obviously also true for d = 1. Let us now consider for sufficiently
large k ∈ N point configurations X(k) = (x(k),i)ni=1, where

x
(k),1
1 = . . . = x

(k),n
1 = k/(k + 1) > ε (5.5)

and x
(k),i
j < k/(k + 1) − ε for all i ∈ [n], j > 1. Then obviously x∗(X(k)) = (k/(k +

1), 1, . . . , 1), and it is easy to see that Pλε (X(k)) = λd(Aε(x
∗)). From Proposition A.2

we get

λd(Aε(x
∗)) =

(
k + 1

k

)d−1
εd

d!

(
1 +O

(
k + 1

k
ε

))
.

This proves that estimate (5.1) is sharp. Notice that we assumed (5.5) only for
simplicity. Since δ(x∗(X)) is continuous in X, we can find for fixed k an open set of
point configurations doing essentially the same job as X(k).

Assume now δ(x∗)− δR > ε, i.e., δ(x∗)− δ(ri) > ε for all i ≤ R. The probability
of this event is at maximum (1− εd/d!)R. This probability is bounded from above by
ε if R satisfies (5.2).

For d ≥ 1 and ε ≤ 1/2 we have
∣∣ ln(1 − εd/d!)

∣∣−1 ∼ d! ε−d . In this case we can
only assure that δR is an ε-approximation of supx∈[0,1]d δ(x) with a certain probability
if the number R of randomly sampled points is super-exponential in d.

Let us end this section with some comments on the setting where we are only
interested in maximizing δ̄. If for given ε > 0, X ∈ [0, 1)nd the maximum of δ̄ is
achieved in x̄ = x̄(X) ∈ [0, 1]d, and if we want to know the probability of the event
{r ∈ [0, 1]d | δ̄(x̄)− δ̄(r) ≤ ε}, there seems to be no alternative to estimating λd(U(x̄)),
where

U(x̄) := {r ∈ [0, 1]d | x̄ ≤ r , Vr − Vx̄ ≤ ε} .

It is easy to see that λd(U(x̄(X))) approaches zero if one of the coordinates of x̄ tends
to 1 – regardless of ε and Vx̄. We omit a tedious error analysis to cover the δ̄-setting.

5.1.2. Random Sampling in the Unit Cube with Respect to πd. Similarly
as in the preceding section, we analyze here the setting where, in order to maximize
δ, we sample in [0, 1]d with respect to πd.

Proposition 5.2. Let ε, d, n,X = (xi)ni=1 and x∗ as in Proposition 5.1. Again
assume Vx∗ ≥ ε. Consider a random point r ∈ [0, 1]d, sampled with respect to the
probability measure πd. If Pπε = Pπε (X) denotes the probability of the event {r ∈
[0, 1]d | δ(x∗)− δ(r) ≤ ε}, then Pπε ≥ εd. This lower bound is sharp, since there exists
a point configuration X such that Pπε (X) = εd.

Let additionally ε ∈ (0, 1) and R ∈ N. Consider random points r1, . . . , rR ∈ [0, 1]d,
sampled independently with respect to πd, and put δR := maxRi=1 δ(r

i). If

R ≥ | ln(ε)|| ln(1− εd)|−1 , (5.6)

then δ(x∗)− δR ≤ ε with probability at least 1− ε.
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Proof. Clearly Pπε ≥ πd(Aε(x
∗)), where Aε(x

∗) is defined as in (5.3). Due to
Proposition A.4 we have πd(Aε(x

∗)) ≥ εd. Let us now consider the point configuration
X, where x1

1 = . . . = xn1 = ε and xij < ε for all i ∈ [n], j > 1. Furthermore, at

least an ε−1-fraction of the points should be equal to (ε, 0, . . . , 0). Then obviously
x∗(X) = (ε, 1, . . . , 1) and Pλε (X) = πd(Aε(x

∗)) = εd.

Let us now assume that δ(x∗)− δR > ε, i.e., δ(x∗)− δ(ri) > ε for all i ≤ R. This
happens with probability not larger than (1− εd)R. Therefore we have (1− εd)R ≤ ε
if R satisfies (5.6).

If d ≥ 1 and ε ≤ 1/2, then | ln(1 − εd)|−1 ∼ ε−d. Here the number of iterations
R ensuring with a certain probability that δR is an ε-approximation of sup{δ(x) |x ∈
[0, 1]d} is still exponential in d, but at least not super-exponential as in the previous
section.

Altogether we see that a simple sampling algorithm relying on the probability
measure πd rather than on λd is more likely to find larger values of δ.

5.2. Analysis of Rounding to the Coordinate Grid. As described in Sec-
tions 3.1 and 3.2, our non-uniform sampling strategy on the grids Γ̄(X) and Γ(X)
for the objective functions δ and δ̄ consists of sampling in [0, 1]d with respect to πd

and then rounding the sampled point y up and down to grid points y+ and y−, re-
spectively. This induces discrete probability distributions wu = (wu(z))z∈Γ̄(X) and

wl = (wl(z))z∈Γ(X) on Γ̄(X) and Γ(X), respectively. If we use additionally the
rounding procedures “snapping up” and “snapping down”, as described in Section
4.1, this will lead to modified probability distributions wsnu = (wsnu (z))z∈Γ̄(X) and

wsnl = (wsnl (z))z∈Γ(X) on Γ̄(X) and Γ(X), respectively. In dimension d = 1 the prob-
ability distributions wu and wsnu as well as wl and wsnl are equal, since every test box
is a critical one. Essentially we prove in the next section that in the one-dimensional
case sampling with respect to the probability distributions wu = wsnu [wl = wsnl ]
leads to larger values of δ [δ̄] than sampling with respect to the uniform distribution
on Γ̄(X) [Γ(X)].

5.2.1. Analysis of the 1-Dimensional Situation. Recall that in the 1-
dimensional case π = π1 coincides with λ = λ1.

To analyze the 1-dimensional situation, let X := (xi)ni=1 be the given point con-
figuration in [0, 1). Without loss of generality we assume that 0 ≤ x1 < · · · < xn < 1.
Since δ∗(1) = 0 we do not need to consider the whole grid Γ̄(X) but can restrict
ourselves to the set Γ(X) = {x1, . . . , xn}. For the same reason, let us set y+ := x1 if
y > xn (recall that, following the description given in Section 3.1, we set y− := xn

for y < x1 anyhow).

As discussed above, we take points randomly from Γ(X), but instead of using
equal probability weights on Γ(X), we use the probability distributions wu = wsnu
and wl = wsnl on Γ(X) to maximize our objective functions δ and δ̄, respectively. If
we put x0 := xn − 1 and xn+1 := x1 + 1, then the corresponding probability weights
for δ and δ̄ are given by wl(x

i) := xi − xi−1 and wu(xi) := xi+1 − xi, respectively.

In the next lemma we will prove the following statements rigorously: If one wants
to sample a point τ ∈ Γ(X) with δ(τ) as large as possible or if one wants to enlarge
the chances to sample the point τ where δ takes its maximum, its preferable to use
the weights wl instead of the equal weights 1/n on Γ(X). Similarly, it is preferable
to employ the weights wu(xi), i = 1, . . . , n, instead of equal weights if one wants to
increase the expectation of δ̄ or the chances of sampling the maximum of δ̄.

Lemma 5.3. Let d = 1 and τ , τ̄ ∈ Γ(X) with δ(τ) = supz∈[0,1] δ(z) and δ̄(τ̄) =
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supz∈[0,1] δ̄(z). Then we have

wl(τ) ≥ 1/n and wu(τ̄) ≥ 1/n. (5.7)

Furthermore, let E, El, and Eu denote the expectations with respect to the uniform
weights {1/n}, the weights {wl(xi)}, and the weights {wu(xi)} on the probability space
Γ(X), respectively. Then El(δ) ≥ E(δ) and Eu(δ̄) ≥ E(δ̄).

Proof. Let ν ∈ [n] with τ = xν . Assume first wl(x
ν) < 1/n, i.e., xν−xν−1 < 1/n.

If ν > 1, then

δ(xν−1) = xν−1 − ν − 2

n
> xν − ν − 1

n
= δ(xν) .

If ν = 1, then however

δ(xn) = xn − n− 1

n
= x0 +

1

n
> x1 = δ(xν) .

So both cases result in a contradiction.
We prove now El(δ) ≥ E(δ) by induction over the cardinality n of X. For n = 1

we trivially have El(δ) = x1 = E(δ).
Therefore, let the statement be true for n and consider an ordered set Γ(X) :=

{x1, . . . , xn+1}. Let δ achieve its maximum in xν ∈ Γ(X). We already proved that
wl(x

ν) = xν − xν−1 ≥ 1/(n+ 1) holds. With the notation

x̃i := xi if 1 ≤ i < ν, x̃i := xi+1 − 1

n+ 1
if i ≥ ν,

and

x̂i :=
n+ 1

n
x̃i , i = 1, . . . , n , and x̂0 := x̂n − 1 ,

we get

El(δ) =

n+1∑
i=1

wl(x
i)δ(xi) =

δ(xν)

n+ 1
+
(
wl(x

ν)− 1

n+ 1

)
δ(xν) +

n+1∑
i=1
i6=ν

wl(x
i)δ(xi)

≥ δ(xν)

n+ 1
+
(
wl(x

ν+1) + wl(x
ν)− 1

n+ 1

)
δ(xν+1) +

n+1∑
i=1

i/∈{ν,ν+1}

wl(x
i)δ(xi)

=
δ(xν)

n+ 1
+
(
x̃1 − x̃n +

n

n+ 1

)
x̃1 +

n∑
i=2

(x̃i − x̃i−1)
(
x̃i − i− 1

n+ 1

)
=

δ(xν)

n+ 1
+
( n

n+ 1

)2 n∑
i=1

(x̂i − x̂i−1)
(
x̂i − i− 1

n

)
.

On the other hand we have

E(δ) =

n+1∑
i=1

1

n+ 1
δ(xi) =

δ(xν)

n+ 1
+

n∑
i=1

1

n+ 1

(
x̃i − i− 1

n+ 1

)
=

δ(xν)

n+ 1
+
( n

n+ 1

)2 n∑
i=1

1

n

(
x̂i − i− 1

n

)
.

These calculations and our induction hypothesis, applied to {x̂1, . . . , x̂n}, lead to
El(δ) ≥ E(δ). For µ ∈ [n] with τ̄ = xµ the inequalities wu(xµ) ≥ 1/n and Eu(δ̄) ≥ E(δ̄)
can be proved in a similar manner.



AN ALGORITHM TO APPROXIMATE STAR DISCREPANCIES 15

5.2.2. Analysis of Higher Dimensional Situations d ≥ 2. In dimension
d ≥ 2 a rigorous analysis is much harder as in the one-dimensional case, especially
if we want to take into account the snapping procedures. A direct generalization
of Lemma 5.3 is not possible, since one can easily construct point configurations in
dimension d = 2 which do not satisfy the weight inequalities (5.7). We give some
examples in [21], but one has to keep in mind that these point configurations are
rather artificial and not well-distributed at all. We believe that in generic cases or
for well-distributed point sets our probability distributions on Γ̄(X) and Γ(X) are in
general superior to the uniform distribution on these grids. Further theoretical results
would be interesting.

5.3. The Chances of a Grid Point Being a Critical Point. If X = (xi)ni=1

is a sequence in [0, 1)d which has been chosen randomly with respect to the Lebesgue
measure and if x ∈ Γ̄(X), then the larger the components of x, the higher is the
probability of x being a δ(X)-critical point. The same holds for x̃ ∈ Γ(X) and δ̄(X),
respectively.

Proposition 5.4. Consider [0, 1)nd as a probability space endowed with the
probability measure λnd. Let ι := (i1, . . . , id) ∈ [n + 1]d. If k indices iν(1), . . . , iν(k)

of the ij, j = 1, . . . , d, are at most n and the remaining d − k of them are equal to
n+ 1, then for uniformly distributed random variable X in [0, 1)nd the multi-index ι
is δ(X)-critical with probability(

(n− k)!

n!

)k−1 k∏
j=1

( k−1∏
`=1

max{iν(j) − `, 0}
)
.

Proof. Let Φ = (φ1, . . . , φd) be as in Section 4.1. Since the event that for all
coordinates j ∈ [d] we have |Γ̄j(X)| = n + 1 holds with probability 1, we restrict
ourselves to this situation.

Without loss of generality, we may assume that i1, . . . , ik ≤ n and ik+1 = . . . =
id = n+ 1. Obviously, Sk+1(Φ(ι)), . . . , Sd(Φ(ι)) are δ-critical surfaces, since φk+1(n+
1) = . . . = φd(n + 1) = 1. For i = 1, . . . , k let σi = σi(X) : [n] → [n] be the
permutation with

x
σi(1)
i < x

σi(2)
i < · · · < x

σi(n)
i < 1 .

Clearly, Φ(ι)j = φj(ij) = x
σj(ij)
j for all j ∈ [k]. Since Si(x) ∩ Sj(x) = ∅ for all i 6= j

and all x ∈ [0, 1]d, the surfaces S1(Φ(ι)), . . . , Sk(Φ(ι)) can only be δ(X)-critical if
|{σ1(i1), . . . , σk(ik)}| = k. More precisely, ι is a δ(X)-critical multi-index if and only
if the condition

∀j ∈ [k]∀l ∈ [k] \ {j} : x
σj(ij)
l < Φ(ι)l = x

σl(il)
l

holds. This is equivalent to the k conditions

σ−1
1 (σ2(i2)) , σ−1

1 (σ3(i3)) ,. . . , σ−1
1 (σk(ik)) < i1 ,

σ−1
2 (σ1(i1)) , σ−1

2 (σ3(i3)) ,. . . , σ−1
2 (σk(ik)) < i2 ,

...
...

...
...

...
σ−1
k (σ1(i1)) , σ−1

k (σ2(i2)) ,. . . ,σ−1
k (σk−1(ik−1))< ik .

(5.8)

Since all the components xij , i ∈ [n], j ∈ [d], of X are independent random variables,
we have that for a fixed index ν ∈ [d] each permutation τ : [n]→ [n] is equally likely
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to fulfill σν(X) = τ . Thus, the probability of ι being a δ(X)-critical index is just the
number of k-tuples (σ1, . . . , σk) of permutations fulfilling (5.8), divided by (n!)k.

For given pairwise distinct values σ1(i1), . . . , σk(ik) the j-th condition of (5.8) is
satisfied by ((ij−1) . . . (ij−(k−1)))(n−k)! permutations σj . Since all k conditions in
(5.8) can be solved independently of each other, it is now easy to deduce the statement
of the Proposition.

To state the corresponding proposition for δ̄, we have to introduce Stirling num-
bers of second kind S(d, k). For k ∈ N, k ≤ d let S(d, k) denote the number of
partitions of [d] into k non-empty subsets. A closed formula for S(d, k) is

S(d, k) =

k∑
j=0

(−1)j (k − j)d

j! (k − j)!
.

This formula and other useful identities can, e.g., be found in [35].
Proposition 5.5. Let X be a uniformly distributed random variable in [0, 1)nd.

Let ι = (i1, . . . , id) ∈ [n]d. Then ι is a δ̄(X)-critical multi-index with probability

d∑
k=1

S(d, k)

(
(n− k)!

n!

)d−1 d∏
j=1

( k−1∏
ν=1

(ij − ν)

)
.

Proof. We just need to consider the case where the almost-sure event |Γj(X)| = n
for all j ∈ [d] holds. For j = 1, . . . , d let σj := σj(X) : [n] → [n] be the permutation
with

x
σj(1)
j < x

σj(2)
j < · · · < x

σj(n)
j < 1 .

Then Φ(ι)j = φj(ij) = x
σj(ij)
j for all j ∈ [d]. It is easy to see that the surface S̄j(Φ(ι))

is δ̄(X)-critical if and only if the condition

∀j ∈ [d]∀l ∈ [d] \ {j} : x
σj(ij)
l ≤ Φ(ι)l = x

σl(il)
l

is satisfied. This can be rewritten as

σ−1
1 (σ2(i2)) , σ−1

1 (σ3(i3)) ,. . . , σ−1
1 (σd(id)) ≤ i1 ,

σ−1
2 (σ1(i1)) , σ−1

2 (σ3(i3)) ,. . . , σ−1
2 (σd(id)) ≤ i2 ,

...
...

...
...

...
σ−1
d (σ1(i1)) , σ−1

d (σ2(i2)) ,. . . ,σ−1
d (σd−1(id−1))≤ id .

(5.9)

If |{σ1(i1), . . . , σd(id)}| = k, then there exist

S(d, k)n!
(
(n− k)!

)d−1
d∏
j=1

k−1∏
ν=1

(ij − ν)

permutations satisfying (5.9). With this observation and the fact that all components
xij , i ∈ [n], j ∈ [d], of X are stochastically independent, it is now easy to deduce the
statement of Proposition 5.5.

6. Experimental Results. We now present the experimental evaluations of
the algorithms. We will compare our basic and improved algorithms, TA basic and
TA improved, against the algorithm of Winker and Fang [43], and also give a brief
comparison against the genetic algorithm of Shah [36] and the integer programming-
based algorithm of Thiémard [41].
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6.1. Experimental Setup. We divide our experiments into a thorough com-
parison against the algorithm of Winker and Fang [43], given in Section 6.3, and more
brief comparisons against the algorithms of Shah [36] and Thiémard [41], in Sec-
tions 6.4 and 6.5, respectively. The algorithms TA basic and TA improved, as well
as the algorithm of Winker and Fang [43], were implemented by the authors in the
C programming language, based on the code used in [44]. All implementations were
done with equal care. In the case of Winker and Fang [43], while we did have access
to the original Fortran source code (thanks to P. Winker), due to lack of compatible
libraries we could not use it, and were forced to do a re-implementation.

For the integer programming-based algorithm of Thiémard [41], E. Thiémard has
kindly provided us use of the source code. This source code was modified only as
far as necessary for compatibility with newer software versions – specifically, we use
version 11 of the CPLEX integer programming package, while the code of Thiémard
was written for an older version. Finally, Shah has provided us with the application
used in the experiments of [36], but as this application is hard-coded to use certain
types of point sets only, we restrict ourselves to comparing with the experimental
data published in [36]. Random numbers were generated using the Gnu C library
pseudo-random number generator.

The instances used in the experiments are described in Section 6.2. For some
instances, we are able to compute the exact discrepancy values either using an im-
plementation of the algorithm of Dobkin et al. [8], available from the third author’s
homepage3, or via the integer programming-based algorithm of Thiémard [41]. These
algorithms both have far better time dependency than that of Bundschuh and Zhu [3],
allowing us to report exact data for larger instances than previously done. For those
instances where this is too costly, we report instead the largest discrepancy value
found by any algorithm in any trial; these imprecise values are marked by a star.
Note that this includes some trials with other (more time-consuming) parameter set-
tings than those of our published experiments; thus sometimes, none of the reported
algorithms are able to match the approximate max value.

As parameter settings for the neighbourhood for TA basic, we use ` = bn8 c if
n ≥ 100, and ` = bn4 c otherwise, and mc = 2 throughout. These settings showed
reasonable performance in our experiments and in [44]. For TA improved, these pa-
rameters are handled by the scaling described in Section 4.2.

Throughout, for our algorithms and for the Winker and Fang algorithm, we esti-
mate the expected outcome of running 10 independent trials of 100,000 iterations each
and returning the largest discrepancy value found, and call this the best-of-10 value.
The estimation is computed from a basis of 100 independent trials, as suggested by
Johnson [27], which strongly decreases irregularities due to randomness compared to
the method of taking 10 independent best-of-10 values and averaging these. The com-
parisons are based on a fix number of iterations, rather than equal running times, as
the point of this paper is to compare the strengths of the involved concepts and ideas,
rather than implementation tweaks. For this purpose, using a re-implementation
rather than the original algorithm of Winker and Fang [43] has the advantage that all
algorithms compared use the same code base, compiler, and libraries, including the
choice of pseudo-random number generator. This further removes differences that are
not interesting to us.

3http://www.mpi-inf.mpg.de/~wahl/.

http://www.mpi-inf.mpg.de/~wahl/
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Smaller instance Larger instance
Algorithm d = 10, n = 100 d = 20, n = 1000
TA basic 0.78s 9.34s
TA improved, δ only 1.22s 10.94s
TA improved, δ̄ only 0.85s 9.11s
TA improved, mixed form 1.87s 20.37s
Winker & Fang 0.61s 7.2s

Table 6.1
Running times for the considered algorithms. All algorithms executed one trial of 100,000

iterations. The inputs are two randomly generated point sets.

6.2. Instances. Our point sets are of four types: Halton sequences [22], Faure
sequences [15], Sobol’ point sets [39], and so-called Good Lattice Points (GLP) [43].
The Halton sequences and GLPs were generated by programs written by the authors,
the Faure sequences by a program of John Burkardt [4], and the Sobol’ sequences
using the data and code of Stephen Joe and Frances Kuo [26, 29].

6.3. Comparisons against the Algorithm of Winker and Fang. To begin
the comparisons, an indication of the running times of the algorithms is given in
Table 6.1. As can be seen from the table, TA basic takes slightly more time than our
implementation of Winker and Fang, and TA improved takes between two and three
times as long, mainly due to the snapping procedures. For TA improved, we report
the separate times for δ and δ̄ optimization, as well as the time required for a mixed
optimization of both (as is done in TA basic). As can be seen, the overhead due to
splitting is negligible to non-existent.

The parameter settings for our implementation of the algorithm of Winker and
Fang are as follows. Since our experiments did not reveal a strong influence of the
choice of α on the quality of the algorithm, we fix α := 0.995 for our experiments.
Winker and Fang do not explicitly give a rule how one should choose k and mc. For
the small-dimensional data (dimensions 4 to 11), we use the settings of [43]. For the
other tests, we use mc = 3 if d ≤ 12 and mc = 4 otherwise, and k = 41 if n ≤ 500
and k = 301 otherwise. This seems to be in line with the choices of Winker and Fang
for the sizes used.

For all GLP sets tested in [43] all algorithms behave reasonably, with both of
our algorithms generally outperforming our implementation of Winker and Fang, and
with TA improved showing much higher precision than TA basic. Here we omit a
full presentation of the results, which, nevertheless, can be found in the extended
preprint version [21]. We only note that our re-implementation of the Winker and
Fang algorithm gives notably worse results than what was reported in [43] for the
same instances, in a way that cannot be fully explained by parameter settings. After
significant experimentation, the best hypothesis we can provide is that there might
be a difference in the behavior of the pseudo-random number generators used (in
particular, as [43] uses a random number library we do not have access to). Still,
even compared to the results reported in [43], our algorithms, and TA improved in
particular, still fare well.

Table 6.2 shows the new data, for larger-scale instances. A few trends are notice-
able, in particular for the higher-dimensional data. Here, the algorithm of Winker
and Fang seems to deteriorate, and there is also a larger difference emerging between
TA basic and TA improved, in particular for the Sobol’ sets. However, as can be seen
for the 2048-point, 20-dimensional Sobol’ set, it does happen that the lower bound is
quite imprecise. (The value of 0.0724 for this point set was discovered only a handful
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d∗∞(·) TA basic TA improved Winker & Fang
Name d n found Hits Best-of-10 Hits Best-of-10 Hits Best-of-10
Sobol’ 7 256 0.0883 1 0.0804 78 0.0883 0 0.0819
Sobol’ 7 512 0.0452 1 0.0440 17 0.0451 0 0.0395
Sobol’ 8 128 0.1202 0 0.1198 98 0.1202 0 0.1102
Sobol’ 9 128 0.1372 8 0.1367 100 0.1372 0 0.1254
Sobol’ 10 128 0.1787 36 0.1787 100 0.1787 0 0.1606
Sobol’ 11 128 0.1811 14 0.1811 97 0.1811 0 0.1563
Sobol’ 12 128 0.1885 1 0.1873 82 0.1885 0 0.1689
Sobol’ 12 256 0.1110∗ 2 0.1108 41 0.1110 0 0.0908
Faure 7 343 0.1298 21 0.1297 100 0.1298 0 0.1143
Faure 8 121 0.1702 99 0.1702 100 0.1702 0 0.1573
Faure 9 121 0.2121 98 0.2121 100 0.2121 0 0.1959
Faure 10 121 0.2574 95 0.2574 100 0.2574 0 0.2356
Faure 11 121 0.3010 100 0.3010 100 0.3010 0 0.2632
Faure 12 169 0.2718 73 0.2718 100 0.2718 0 0.1708
GLP 6 343 0.0870 1 0.0869 36 0.0870 0 0.0778
GLP 7 343 0.0888 3 0.0883 28 0.0888 0 0.0791
GLP 8 113 0.1422 6 0.1399 95 0.1422 0 0.1303
GLP 9 113 0.1641 98 0.1641 100 0.1641 0 0.1490
GLP 10 113 0.1871 1 0.1862 94 0.1871 0 0.1744

Sobol’ 20 128 0.2616∗ 0 0.2576 51 0.2616 0 0.0497
Sobol’ 20 256 0.1856∗ 13 0.1854 49 0.1856 0 0.0980
Sobol’ 20 512 0.1336∗ 0 0.1080 86 0.1336 0 0.0635
Sobol’ 20 1024 0.1349∗ 0 0.0951 0 0.1330 0 0.0560
Sobol’ 20 2048 0.0724∗ 0 0.0465 0 0.0505 0 0.0370
Faure 20 529 0.2615∗ 0 0.2587 98 0.2615 0 0.0275
Faure 20 1500 0.0740∗ 0 0.0733 14 0.0740 0 0.0347
GLP 20 149 0.2581∗ 1 0.2548 65 0.2581 0 0.0837
GLP 20 227 0.1902∗ 0 0.1897 1 0.1899 0 0.0601
GLP 20 457 0.1298∗ 0 0.1220 3 0.1272 0 0.0519
GLP 20 911 0.1013∗ 0 0.0975 8 0.1013 0 0.0315
GLP 20 1619 0.0844∗ 0 0.0809 2 0.0844 0 0.0299

Sobol’ 50 2000 0.1030∗ 0 0.0952 0 0.1024 0 0.0005
Sobol’ 50 4000 0.0677∗ 0 0.0597 0 0.0665 0 0.00025
Faure 50 2000 0.3112∗ 0 0.2868 100 0.3112 0 0.0123
Faure 50 4000 0.1979∗ 0 0.1912 0 0.1978 0 0.0059
GLP 50 2000 0.1465∗ 0 0.1317 0 0.1450 0 0.0005
GLP 50 4000 0.1205∗ 0 0.1053 0 0.1201 0 0.0003

Table 6.2
New instance comparisons. Discrepancy values marked with a star are lower bounds only (i.e.,

largest discrepancy found over all executions of algorithm variants). All data is computed using 100
trials of 100, 000 iterations; reported is the average value of best-of-10 calls, and number of times
(out of 100) that the optimum (or a value matching the largest known value) was found.

of times over nearly 5000 trials of algorithm variants and settings.)
The highest-dimensional sets (d = 50) illustrate the deterioration of Winker and

Fang with increasing dimension; for many of the settings, the largest error this algo-
rithm finds is exactly 1/n (due to the zero-volume box containing the origin with one
point).

6.4. Comparisons with the Algorithm by Shah. Table 6.3 lists the point
sets used by Shah [36]. The Faure sets here are somewhat nonstandard in that they
exclude the origin, i.e., they consist of points 2 through n+ 1 of the Faure sequence,
where the order of the points is as produced by the program of Burkhardt [4].

Some very small point sets were omitted, as every reported algorithm would find
the optimum every time. For all but one of the point sets, the exact discrepancy could
be computed; the remaining instance is the first 500 points of the 10-dimensional Faure
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TA basic TA improved Shah
Class d n d∗∞(·) Hits Best-of-10 Hits Best-of-10 Hits Best Found
Halton 5 50 0.1886 100 0.1886 100 0.1886 81 0.1886
Halton 7 50 0.2678 100 0.2678 100 0.2678 22 0.2678
Halton 7 100 0.1714 9 0.1710 100 0.1714 13 0.1714

Halton 7 1000 0.0430 0 0.0424 81 0.0430 8(1) 0.0430(1)

Faure 10 50 0.4680 100 0.4680 100 0.4680 97 0.4680
Faure 10 100 0.2483 52 0.2483 100 0.2483 28 0.2483

Faure 10 500 0.0717∗ 2 0.0701 100 0.0717 0(1) 0.0689(1)

Table 6.3
Comparison against point sets used by Shah. Reporting average value of best-of-10 calls, and

number of times (out of 100) that the optimum was found; for Shah, reporting highest value found,
and number of times (out of 100) this value was produced. The discrepancy value marked with a star
is lower bound only (i.e., largest value found by any algorithm). Values marked (1) are recomputed
using the same settings as in [36].

TA improved Thiémard: Initial Same time, Same result,
Instance Time Result Time Result result time

Faure-12-169 25s 0.2718 1s 0.2718 0.2718 1s
Sobol’-12-128 20s 0.1885 1s 0.1463 0.1463 453s (7.6m)
Sobol’-12-256 35s 0.1110 3s 0.0872 0.0872 1.6 days
Faure-20-1500 280s (4.7m) 0.0740 422s (7m) 0.0732 None > 4 days
GLP-20-1619 310s (5.2m) 0.0844 564s (9.4m) 0.0572 None > 5 days

Sobol’-50-4000 2600s (42m) 0.0665 32751s (9h) 0.0743 None 32751s (9h)
GLP-50-4000 2500s (43m) 0.1201 31046s (8.6h) 0.0301 None > 5 days

Table 6.4
Comparison against the integer programming-based algorithm of Thiémard [41]. The values

for TA improved represent the time and average result of a best-of-10 computation with 100, 000
iterations per trial. The middle pair of columns give the time required for [41] to return a first
output, and the value of this output; the last two columns report the lower bound reached by [41]
if allocated the same time that TA improved needs for completion, and the time required by [41] to
match the result of TA improved.

sequence.

Most of the sets seem too easy to really test the algorithms, i.e., all variants
frequently find essentially optimal points. The one exception is the last item, which
shows a clear advantage for our algorithms. We also find (again) that TA improved

has a better precision than the other algorithms.

6.5. Comparisons with the Algorithms by Thiémard. Finally, we give a
quick comparison against the integer programming-based algorithm of Thiémard [41].
Since [41] has the feature that running it for a longer time produces gradually stronger
bounds, we report three different checkpoint values; see Table 6.4 for details. The
results are somewhat irregular; however, [41] may require a lot of time to report a first
value, and frequently will not improve significantly on this initial lower bound except
after very large amounts of computation time (for example, for the 12-dimensional,
256-point Sobol’ set, the value 0.0872 is discovered in seconds, while the first real
improvement takes over an hour to produce).

Thiémard also constructed a second algorithm for discrepancy estimation, based
on delta-covers [40]; this is freely downloadable from Thiémard’s homepage. Its prime
feature is that it provides upper bounds with a non-trivial running time guarantee.
The lower bounds that it produces are not as helpful as the upper bounds, e.g., it
was reported in [11] and [36] that the lower bounds from the preliminary version of
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TA basic [44] and the genetic algorithm of Shah [36] are better. Thus we omit this
kind of comparison here.

7. Conclusion. Our numerical experiments clearly indicate that the improve-
ments made from the algorithm of Winker and Fang in TA basic and TA improved

greatly increases the quality of the lower bounds, in particular for the difficult higher-
dimensional problem instances. Also the comparison with the algorithms by Thiémard
and Shah, respectively, is favorable for our algorithms. Thus we conclude that the
algorithms TA basic and TA improved presented in the current work represent sig-
nificant improvements over previous lower-bound heuristics for computing the star
discrepancy, and to the best of our knowledge, make up the best performing star
discrepancy estimation algorithms in higher dimension.
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Appendix A. Calculation of λd(Aε(z)) and πd(Aε(z)).

Lemma A.1. Let ε ∈ (0, 1], and let z ∈ [0, 1]d with Vz ≥ ε. Then

λd(Aε(z)) = Vz − (Vz − ε)
d−1∑
k=0

(− ln(1− ε/Vz))k

k!
. (A.1)

Proof. Let Vz ≥ ε. Then we have

λd(Aε(z)) =

∫ z1

α1

...

∫ zd

αd

dζd... dζ1 ,

where

α1 =
Vz − ε
z2z3...zd

, α2 =
Vz − ε
ζ1z3...zd

, ..., αd =
Vz − ε

ζ1ζ2...ζd−1
.

We prove formula (A.1) by induction over the dimension d. If d = 1, then clearly
λ(Aε(z)) = ε. Let now d ≥ 2. We denote by z̃ the (d−1)-dimensional vector (z2, ..., zd)
and by ε̃ the term (ε+(ζ1−z1)Vz̃)/ζ1. Furthermore we define for i ∈ [d−1] the lower
integration limit α̃i = (Vz̃ − ε̃)/(ζ2...ζi z̃i+1...z̃d−1). Note that α̃i = αi+1. Then, by
our induction hypothesis,

λd(Aε(z)) =

∫ z1

α1

∫ z̃1

α̃1

...

∫ z̃d−1

α̃d−1

dζd... dζ2 dζ1

=

∫ z1

α1

(
Vz̃ − (Vz̃ − ε̃)

d−2∑
k=0

(− ln(1− ε̃/Vz̃))k

k!

)
dζ1

= Vz − (Vz − ε)− (Vz − ε)

[
d−1∑
k=1

1

k!
ln
( Vz̃
Vz − ε

ζ1

)k]z1
ζ1=α1

= Vz − (Vz − ε)
d−1∑
k=0

(− ln(1− ε/Vz))k

k!
.

Proposition A.2. Let d ≥ 2. For z ∈ [0, 1]d with Vz > ε, we obtain

λd(Aε(z)) =
1

d!

εd

V d−1
z

∞∑
k=0

bk(d)
( ε
Vz

)k
with positive coefficients

bk(2) =
2

(k + 1)(k + 2)
, bk(3) =

6

(k + 2)(k + 3)

k∑
ν=0

1

ν + 1
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and

bk(d) =
d!

(k + d− 1)(k + d)

k∑
k1=0

...

kd−3∑
kd−2=0

d−2∏
j=1

1

kj + d− j − 1
for d ≥ 4.

The power series converges for each ε > 0 uniformly and absolutely for all Vz ∈
[ε+ ε, 1]. Furthermore, we have b0(d) = 1 and b1(d) = d(d− 1)/2(d+ 1).

Proof. To prove the power series expansion, we consider the function

R(x, d) = 1− (1− x)

d−1∑
k=0

(− ln(1− x))k

k!
for x ∈ [0, 1).

Due to Lemma A.1 we have λd(Aε(z)) = VzR(ε/Vz, d). Since ∂xR(x, d) = (− ln(1 −
x))d−1/(d− 1)!, it suffices to prove the following statement by induction over d:

(− ln(1− x))d−1

(d− 1)!
=

1

d!

∞∑
k=0

(k + d)bk(d)xk+d−1 , (A.2)

where the power series converges for each ε > 0 uniformly and absolutely on [0, 1− ε].
Let first d = 2. Then

− ln(1− x) =

∞∑
k=1

xk

k
=

1

2!

∞∑
k=0

(k + 2)bk(2)xk+1 ,

and the required convergence of the power series is obviously given. Now let d ≥ 3.
Our induction hypothesis yields

∂x
(− ln(1− x))d−1

(d− 1)!
=

1

1− x
(− ln(1− x))d−2

(d− 2)!

=

( ∞∑
ν=0

xν
)(

1

(d− 1)!

∞∑
µ=0

(µ+ d− 1)bµ(d− 1)xµ+d−2

)

=
1

d!

∞∑
k=0

(
d

k∑
µ=0

(µ+ d− 1)bµ(d− 1)

)
xk+d−2 ,

where the last power series converges as claimed above. Now

d

k∑
µ=0

(µ+ d− 1)bµ(d− 1) =

k∑
µ=0

d!

(µ+ d− 2)

µ∑
µ1=0

...

µd−4∑
µd−3=0

d−3∏
j=2

1

µj + d− 2− j

= d!

k∑
ν1=0

ν1∑
ν2=0

...

νd−3∑
νd−2=0

d−2∏
j=1

1

νj + d− j − 1

= (k + d)(k + d− 1)bk(d) .

After integration we get (A.2).
Furthermore, it is easily seen that b0(d) = 1 and b1(d) = d(d− 1)/2(d+ 1).
We now consider the polynomial product measure πd.
Lemma A.3. Let ε ∈ (0, 1], and let z ∈ [0, 1]d with Vz ≥ ε. Then

πd(Aε(z)) = V dz − (Vz − ε)d
d−1∑
k=0

dk

k!
(− ln(1− ε/Vz))k , (A.3)
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and, as a function of Vz, πd(Aε(z)) is strictly increasing.
Proof. Let Vz ≥ ε. We have

πd(Aε(z)) =

∫
Aε(z)

ddV d−1
x λd(dx) =

∫ ε

0

G(Vz, r) dr , (A.4)

where

G(Vz, r) := dd(Vz − r)d−1∂rλ
d(Ar(z)) .

From (A.1) we get for all 0 ≤ r ≤ ε

∂rλ
d(Ar(z)) =

(
− ln(1− r/Vz)

)d−1

(d− 1)!
.

If we define

F (r) := −(Vz − r)d
d−1∑
k=0

dk

k!
(− ln(1− r/Vz))k ,

then we observe that F ′(r) = G(Vz, r) holds. Thus we have πd(Aε(z)) = F (ε)−F (0),
which proves (A.3). Furthermore, according to (A.4), we get

∂Vzπ
d(Aε(z)) =

∫ ε

0

∂VzG(Vz, r) dr .

The integrand of the integral is positive, as the next calculation reveals:

∂VzG(Vz, r) = dd(Vz − r)d−2 (− ln(1− r/Vz))d−2

(d− 2)!

(
− ln(1− r/Vz)− r/Vz

)
= dd(Vz − r)d−2 (− ln(1− r/Vz))d−2

(d− 2)!

∞∑
k=2

1

k

( r
Vz

)k
> 0

for all 0 < r < Vz. Thus ∂Vzπ
d(Aε(z)) > 0, and, considered as a function of Vz,

πd(Aε(z)) is strictly increasing.
Proposition A.4. Let ε ∈ (0, 1], and let z ∈ [0, 1]d with Vz ≥ ε. Then we have

the lower bound πd(Aε(z)) ≥ εd.
Proof. Let Vz = ε. Then

πd(Aε(z)) =

∫
[0,z]

ddV d−1
x λd(dx) =

d∏
i=1

zdi = εd .

Since πd(Aε(z)) is an increasing function of Vz, the lower bound holds.


