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Abstract The star discrepancy is a measure of how uniformly distributed a finite
point set is in thed-dimensional unit cube. It is related to high-dimensional nu-
merical integration of certain function classes as expressed by the Koksma-Hlawka
inequality. A sharp version of this inequality states that the worst-case error of ap-
proximating the integral of functions from the unit ball of some Sobolev space by
an equal-weight cubature is exactly the star discrepancy ofthe set of sample points.
In many applications, as, e.g., in physics, quantum chemistry or finance, it is es-
sential to approximate high-dimensional integrals. Thus with regard to the Koksma-
Hlawka inequality the following three questions are very important:
(i) What are good bounds with explicitly given dependence onthe dimensiond for
the smallest possible discrepancy of anyn-point set for moderaten?
(ii) How can we construct point sets efficiently that satisfysuch bounds?
(iii) How can we calculate the discrepancy of given point sets efficiently?
We want to discuss these questions and survey and explain some approaches to
tackle them relying on metric entropy, randomization, and derandomization.

1 Introduction

Geometric discrepancy theory studies the uniformity of distribution of finite point
sets. There are many different notions of discrepancies to measure quantitatively
different aspects of “uniformity”, see, e.g., [5, 16, 25, 58, 62, 68].

Michael Gnewuch
Institut für Informatik, Christian-Albrechts-Universität zu Kiel, Christian-Albrechts-Platz 4, 24098
Kiel, Germany, e-mail: mig@informatik.uni-kiel.de

1



2 Michael Gnewuch

1.1 The Star Discrepancy

A particularly relevant measure is the star discrepancy, which is defined in the fol-
lowing way: LetP⊂ [0,1]d be ann-point set. (We always want to understand an
“n-point set” as a “multi-set”: It consists ofn points, but these points are not neces-
sarily pairwise different.) Forx= (x1, . . . ,xd) ∈ [0,1]d thelocal discrepancy∆(x,P)
of P in the axis-parallel box anchored at zero[0,x) := [0,x1)× ·· ·× [0,xd) (which
we, likewise, simply want to calltest box) is given by

∆(x,P) := λd([0,x))−
1
n
|P∩ [0,x)|;

hereλd denotes thed-dimensional Lebesgue measure and|A| denotes the cardinality
of a multi-setA. Thestar discrepancyof P is defined as

d∗∞(P) := sup
x∈[0,1]d

|∆(x,P)|.

Further quantities of interest are thesmallest possible star discrepancy of any n-
point set in[0,1]d

d∗∞(n,d) = inf
P⊂[0,1]d ; |P|=n

d∗∞(P),

and, forε ∈ (0,1), theinverse of the star discrepancy

n∗∞(ε,d) = min{n∈N |d∗∞(n,d)≤ ε}.

Although we mainly focus on the star discrepancy, we will also mention from time
to time theLp-star discrepancy ofP for 1≤ p< ∞, which is defined by

d∗p(P) :=

(

∫

[0,1]d
|∆(x,P)|p dx

)1/p

.

1.2 Relation to Numerical Integration

Discrepancy notions are related to multivariate numericalintegration. Such relations
are put in a quantitative form by inequalities of Koksma-Hlawka- or Zaremba-type.
Here we want to state a sharp version of the classical Koksma-Hlawka inequal-
ity [56, 51], which relates the star discrepancy to the worst-case error of quasi-
Monte Carlo integration on certain function spaces. For other relations of discrep-
ancy notions to numerical integration we refer the reader tothe original papers
[94, 93, 46, 82, 48, 47, 15, 67, 33] or the survey in [68, Chap. 9].

To state a sharp version of the Koksma-Hlawka inequality, let us first define the
normed function spaces we want to consider:



Entropy, Randomization, Derandomization, and Discrepancy 3

LetH1,1 be the space of absolutely continuous functionsf on [0,1] whose deriva-
tives f ′ are integrable. A norm onH1,1 is given by‖ f‖1,1 := | f (1)|+ ‖ f ′‖L1([0,1]).
The (algebraic) tensor product⊗d

i=1H1,1 consists of linear combinations of func-
tions f of product form f (x) = f1(x1) · · · fd(xd), f1, . . . , fd ∈ H1,1. The spaceH1,d

is then defined as the closure of⊗d
i=1H1,1 with respect to the norm

‖ f‖1,d := | f (1)|+ ∑
/06=u⊆{1,...,d}

‖ f ′u‖L1([0,1]|u|)
, (1)

where1 denotes the vector(1, . . . ,1) and f ′u is defined by

f ′u(xu) =
∂ |u|

∏k∈u ∂xk
f (xu,1), (2)

with (xu,1)k = xk if k∈ u, and(xu,1)k = 1 otherwise. Then the following theorem
holds:

Theorem 1.Let t(1), . . . , t(n) ∈ [0,1)d, and let Id be the integration functional and
Qd,n be the quasi-Monte Carlo cubature defined by

Id( f ) :=
∫

[0,1]d
f (t)dt and Qd,n( f ) :=

1
n

n

∑
i=1

f (t(i)).

Then theworst-case errorewor(Qn,d) of Qn,d satisfies

ewor(Qn,d) := sup
f∈H1,d ;‖ f‖1,d=1

|Id( f )−Qd,n( f )| = d∗∞(t
(1), . . . , t(n)). (3)

In particular, we obtain for all f∈ H1,d

|Id( f )−Qd,n( f )| ≤ ‖ f‖1,d d∗∞(t
(1), . . . , t(n)). (4)

Theorem 1 is a corollary of a more general theorem proved by Hickernell, Sloan,
and Wasilkowski in [47]. There the so-calledL∞-same-quadrant discrepancy, which
covers the star discrepancy as a special case, is related to the worst-case error of
quasi-Monte Carlo approximation of multivariate integrals onanchored L1-Sobolev
spaces. In the special case of the star discrepancy the anchor is the point1.

Particularly with regard to Theorem 1 the following three questions are very
important.

Questions:

(i) What are good bounds with explicitly given dependence on thedimension d for
the smallest possible discrepancy of any n-point set for moderate n?

(ii ) How can we construct point sets efficiently that satisfy suchbounds?
(iii ) How can we calculate the discrepancy of given point sets efficiently?
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Let us discuss the relevance of these questions for the star discrepancy. If we
intend to approximate high-dimensional integrals of functions fromH1,d by a quasi-
Monte Carlo cubatureQn,d, and if we wish to minimize the corresponding worst-
case errorewor(Qn,d), then Theorem 1 tells us that we have to minimize the star
discrepancy of the set of integration points we want to use. For this purpose it is
certainly helpful to have upper bounds for the smallest stardiscrepancy that we can
achieve withn points. In high dimensions cubatures whose number of integration
pointsn are exponential in the dimension are not feasible. That is why we ask in
question (i) for good bounds for the smallest possible discrepancy of sample sets
of moderate sizen. By “moderate” we mean thatn does not grow faster than a
polynomial of small degree in the dimensiond.

Bounds for the smallest discrepancy achievable are certainly useful, but for quasi-
Monte Carlo integration we need to have explicit integration points. Therefore ques-
tion (ii) is essential.

In practice we may have some point sets that are reasonable candidates to use for
quasi-Monte Carlo integration. This may be due to several reasons as, e.g., that in
those points we can easily evaluate the functions we want to integrate or that those
points are in some sense uniformly distributed. Therefore it would be desirable to
be able to calculate the star discrepancy of a given set efficiently.

In fact question (iii) is directly related to question (ii) by the concentration of
measure phenomenon:

Let us assume that we have a class ofn-point sets endowed with some probability
measure and the expected discrepancy of a random set is smallenough for our needs.
Under suitable conditions the measure of the discrepancy distribution is sharply
concentrated around the expected discrepancy and a large deviation bound ensures
that a randomly chosen set has a sufficiently small discrepancy with high probability.
In this situation we may consider the following randomized algorithm, which is a
semi-constructionin the sense of Novak and Woźniakowski [66]:

We choose a point set randomly and calculate its actual discrepancy. If it serves
our needs, we accept the point set and stop; otherwise we makea new random
choice. The large deviation bound guarantees that with highprobability we only
have to perform a few random trials to receive an acceptable point set.

Apart from the practical problem of choosing the point set according to the law
induced by the probability measure, we have to think of ways to calculate the dis-
crepancy of a chosen set efficiently.

In this bookchapter our main goal is to study the bracketing entropy of axis-
parallel boxes anchored at zero and use the results, in particular upper bounds for
the bracketing number and explicit constructions of bracketing covers of small size,
to tackle question (i), (ii), and (iii).

Before we do so, we want to survey known bounds for the smallest possible
star discrepancy, the problem of constructing small low-discrepancy samples, and
known algorithms to calculate or approximate the star discrepancy of given point
sets.
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1.3 Known Bounds for the Star Discrepancy

We may distinguish two kinds of bounds for the smallest possible star discrepancy
d∗∞(n,d): Asymptotic boundswhich describe the behavior ofd∗∞(n,d) well in the
asymptotic range, i.e., for fixed dimensiond and a large number of pointsn (which
usually has to be exponential ind, see the discussion in Sect. 1.3.1), andpre-
asymptotic boundswhich describe its behavior well in thepre-asymptotic range,
i.e., for moderate values ofn (which depend at most polynomially ond).

Usually asymptotic bounds do not reveal the explicit dependence ofd∗∞(n,d) on
d, while pre-asymptotic bounds exhibit the dependence ofd∗∞(n,d) on both param-
etersn and d. (Thus an alternative terminology might be “dimension-insensitive
bounds” and “dimension-sensitive bounds”.)

1.3.1 Asymptotic Bounds

For fixed dimensiond the asymptotically best upper bounds ford∗∞(n,d) that have
been proved so far are of the form

d∗∞(n,d)≤Cd ln(n)d−1n−1 , n≥ 2, (5)

see, e.g., the original papers [40, 28, 65] or the monographs[5, 16, 25, 58, 62].
These bounds have been proved constructively, i.e., there are explicit constructions
known that satisfy (5) for suitable constantsCd.

For d = 1 the setT = {1/2n,3/2n, . . .,(2n− 1)/2n} establishes (5) withC1 =
1/2. Ford=2 the bound (5) can be derived from the results of Hardy and Littlewood
[41] and of Ostrowski [72, 73] (the essential ideas can already be found in Lerch’s
paper [57]). Ford ≥ 3 the bound (5) was established by Halton, who showed in
[40] that the Hammersley points exhibit this asymptotic behavior. The Hammersley
points can be seen as a generalization of the two-dimensional point sets obtained in
a canonical way from the one-dimensional infinite sequence of van der Corput from
[11, 12]. (In general, if one has an infinite(d− 1)-dimensional low-discrepancy
sequence(t(k))k∈N, one canonically gets ad-dimensional low-discrepancy point set
{p(1), . . . , p(n)} for everyn by puttingp(k) = (k/n, t(k)), see also [58, Sect. 1.1, 2.1].)

Looking at the asymptotic bound (5) it is natural to ask whether it is sharp or
not. That it is optimal up to logarithmic factors is clear from the trivial lower bound
1/2n. A better lower bound was shown by Roth in [76]:

d∗∞(n,d)≥ cd ln(n)
d−1

2 n−1 , n≥ 2. (6)

In fact, Roth proved that the right hand side of (6) is a lower bound for the smallest
possibleL2-star discrepancyd∗2(n,d), and this bound is best possible as was shown
for d = 2 by Davenport [13], and ford ≥ 3 by Roth himself [77, 78] and indepen-
dently by Frolov [30]. Although Roth’s lower bound is sharp for theL2-star discrep-
ancy, it is not optimal for theL∞-star discrepancy. This was shown by Schmidt in
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[79]. He established in dimensiond = 2 the lower bound

d∗∞(n,2)≥ c2 ln(n)n−1 , n≥ 2, (7)

and proved in this way that the upper bound (5) is optimal in dimension 2. In di-
mensiond≥ 3 improvements of (6) were achieved by Beck [4], and later by Bilyk,
Lacey, and Vagharshakyan [6, 7]; but although those improvements are deep mathe-
matical results, their quantitative gain is rather modest.The remaining gap, baptized
the “great open problem” by Beck and Chen in [5], has still notbeen bridged so far.

Nonetheless, the solution of this intricate problem is not overly significant for nu-
merical integration in high dimensions. In particular, bounds of the form (5) give us
no helpful information for moderate values ofn, since ln(n)d−1n−1 is an increasing
function inn as long asn≤ ed−1. This means that with respect tod we have to use at
least exponentially many integration points to perceive any rate of decay of the right
hand side of inequality (5). Additionally it is instructiveto compare the convergence
raten−1 ln(n)d−1 and the Monte Carlo convergence raten−1/2: For example, in di-
mensiond= 3 we haven−1 ln(n)d−1 < n−1/2 if n≥ 5504, but ford= 10 we already
haven−1 ln(n)d−1 > n−1/2 for all n≤ 1.295· 1034. Furthermore, point configura-
tions satisfying (5) may lead to constantsCd that depend critically ond. (Actually,
it is known for some constructions that the constantC′d in the representation

d∗∞(n,d)≤
(

C′d ln(n)d−1+od(ln(n)
d−1)

)

n−1

of (5) tends to zero asd approaches infinity, see, e.g., [2, 62, 65]. Here theo-notation
with indexd should emphasize that the implicit constant may depend ond; so far no
good bounds for the implicit constant or, respectively, theconstantCd in (5), have
been published.)

1.3.2 Pre-Asymptotic Bounds

A bound more suitable for high-dimensional integration wasestablished by Hein-
rich, Novak, Wasilkowski and Woźniakowski [45], who proved

d∗∞(n,d)≤ cd1/2n−1/2 and n∗∞(d,ε)≤ ⌈c2dε−2⌉ , (8)

wherec does not depend ond, n or ε. Here the dependence of the inverse of the star
discrepancy ond is optimal. This was also established in [45] by a lower boundfor
n∗∞(d,ε), which was later improved by Hinrichs [49] to

n∗∞(d,ε) ≥ c0dε−1 for 0< ε < ε0, (9)

wherec0,ε0 > 0 are suitable constants. The proof of (8) uses a large deviation bound
of Talagrand for empirical processes [86] and an upper boundof Haussler for cov-
ering numbers of Vapnik-̌Cervonenkis classes [42]. In particular, the proof is not
constructive but probabilistic, and the proof approach does not provide an estimate
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for the value ofc. (Hinrichs presented a more direct approach to prove (8) with
c≤ 10 at the Dagstuhl Seminar 04401 “Algorithms and Complexityfor Continuous
Problems” in 2004, but this result has not been published. Shortly after the submis-
sion of this book chapter Aistleitner gave a proof of (8) withc≤ 10 [1]. Since it
relies on bracketing entropy and the bracketing covers we present in Section 2, we
added a discussion of his approach in Section 3.2.1.)

In the paper [45] the authors proved also two slightly weakerbounds with ex-
plicitly known constants: The first one relies on upper bounds for theaverage Lp-
star discrepancyfor evenp, the fact that theLp-star discrepancy converges to the
star discrepancy asp tends to infinity, and combinatorial arguments. For a detailed
description of the approach, improvements, and closely related results we refer to
[45, 34, 85].

Here we are more interested in the second bound from [45] withexplicitly known
small constants, which is of the form

d∗∞(n,d)≤ kd1/2n−1/2( ln(d)+ ln(n)
)1/2

, (10)

and leads to
n∗∞(d,ε)≤O(dε−2(ln(d)+ ln(ε−1))) (11)

where essentiallyk≈ 2
√

2 and the implicit constant in the big-O-notation is known
and independent ofd andε. The proof of (10) is probabilistic and relies on Ho-
effding’s large deviation bound. (A similar probabilisticapproach was already used
by Beck in [3] to prove upper bounds for other discrepancies.) From a conceptional
point of view it usesbracketing covers(although in [45] the authors do not call them
that way). As we will see later in Section 3.3, the probabilistic proof approach can
actually be derandomized to construct point sets deterministically that satisfy the
discrepancy bound (10).

1.4 Construction of Small Discrepancy Samples

On the one hand there are several construction methods knownthat provide point
sets satisfying (5), and these constructions can be done quite efficiently. So one can
construct, e.g., Hammersley points of sizen in dimensiond with at mostO(dnln(n))
elementary operations. On the other hand it seems to be hard to construct point sets
efficiently that satisfy bounds like (8) or (10), although random sets should do this
with high probability. That it is not trivial to find such constructions was underlined
by Heinrich, who pointed out in [44] that even the following easier problems are
unsolved.

Problems:

(i) For eachε > 0 and d∈ N, give a construction of a point set{t(1), . . . , t(n)} ⊂
[0,1]d with n≤ cεdκε and d∗∞(t

(1), . . . , t(n)) ≤ ε, where cε and κε are positive
constants which may depend onε, but not on d.
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(ii ) For each n,d ∈ N, give a construction of a point set{t(1), . . . , t(n)} ⊂ [0,1]d with
d∗∞(t

(1), . . . , t(n))≤ cdκn−α , where c,κ andα are positive constants not depend-
ing on n or d.

Although not stated explicitly in [44], these constructions are required to be ef-
ficiently executable, preferably in polynomial time ind, andε−1 or n, respectively,
see also [66, Open Problem 6]. If our ultimate goal is numerical integration, we
may view the construction of low-discrepancy points as a precomputation. Since
we can use the resulting integration points for the (efficient) evaluation of various
integrands, we may still accept a little bit higher costs forthe construction itself.

As stressed by Heinrich, it remains in particular a challenging question whether
any of the various known classical constructions satisfies estimates like in problem
(i) and (ii) or even the bound (8) or (10).

There had been attempts from computer scientists to construct small low-discre-
pancy samples [27, 9], but the size of those samples with guaranteed discrepancy at
mostε in dimensiond is not polynomial ind andε−1. The size of the best construc-
tion is polynomial inε−1 and(d/ ln(ε−1))ln(ε−1) [9]. Formally, those constructions
solve problem (i) (but not problem (ii)). Obviously, the size of the samples is a lower
bound for the costs of the construction, which are thereforenot polynomial ind and
ε−1.

We will discuss alternative constructions, based on bracketing covers and deran-
domization in Section 3.3.

1.5 Calculating the Star Discrepancy

In some applications it is of interest to measure the qualityof certain point sets by
calculating their star discrepancy, e.g., to test whether successive pseudo random
numbers are statistically independent [62], or whether sample sets are suitable for
multivariate numerical integration of particular classesof integrands, cf. Theorem
1. Apart from that, it is particularly interesting with respect to question (ii) that the
fast calculation or approximation of the star discrepancy would allow practicable
semi-constructions of low-discrepancy samples of moderate size.

It is known that theL2-star discrepancy of a givenn-point set in dimensiond can
be calculated via Warnock’s formula [91] withO(dn2) arithmetic operations and
similar formulas hold for weighted versions of theL2-star discrepancy. Heinrich
and Frank developed an asymptotically faster algorithm fortheL2-star discrepancy
using onlyO(nlog(n)d−1) operations for fixedd [29, 43]. (Due to the exponent of
the log-term, the algorithm is only practicable in low dimensions.)

What methods are known to calculate or approximate the star discrepancy of a
given setP? At the first glance an exact calculation seems to be difficultsince the
star discrepancy is defined as the supremum over infinitely many test boxes. But for
calculating the discrepancy ofP exactly it suffices to consider only finitely many
test boxes. So ifP= {p(1), . . . , p(n)} ⊂ [0,1)d, let us define



Entropy, Randomization, Derandomization, and Discrepancy 9

Γj(P) = {p(i)j | i ∈ {1, ...,n}} and Γ̄j(P) = Γj(P)∪{1},

and let us put

Γ (P) = Γ1(P)×·· ·×Γd(P) and Γ̄ = Γ̄1(P)×·· ·× Γ̄d(P).

Then it is not hard to verify that

d∗∞(P) =

max

{

max
y∈Γ̄ (P)

(

λd([0,y))−
|P∩ [0,y)|

n

)

, max
y∈Γ (P)

( |P∩ [0,y]|
n

−λd([0,y))

)}

,

(12)

for a proof see, e.g., [38]. Thus we need to consider at mostO(nd) test boxes to
computed∗∞(P). For a randomn-point setP we have almost surely|Γ (P)| = nd,
resulting inΩ(nd) test boxes that we have to take into account to calculate (12).
This underlines that(12) is in general impractical ifn andd are large. There are
some more sophisticated methods known to calculate the stardiscrepancy, which
are especially helpful in low dimensions. If we have in the one-dimensional case
p(1) ≤ p(2) ≤ ·· · ≤ p(n), then (12) simplifies to

d∗∞(P) =
1
2n

+ max
1≤i≤n

∣

∣

∣

∣

p(i)− 2i−1
2n

∣

∣

∣

∣

,

a result due to Niederreiter, see [60, 61].
In dimensiond = 2 a reduction of the number of steps to calculate (12) was

achieved by de Clerck [10]. In [8] her formula was slightly extended and simplified

by Bundschuh and Zhu. If we assumep(1)1 ≤ p(2)1 ≤ ·· · ≤ p(n)1 and rearrange for each

i ∈ {1, . . . ,n} the numbers 0, p(1)2 , . . . , p(i)2 ,1 in increasing order and rewrite them as
0= ξi,0≤ ξi,1 ≤ ·· · ≤ ξi,i ≤ ξi,i+1 = 1, then [8, Thm. 1] states that

d∗∞(P) = max
0≤i≤n

max
0≤k≤i

max

{∣

∣

∣

∣

k
n
− p(i)1 ξi,k

∣

∣

∣

∣

,

∣

∣

∣

∣

k
n
− p(i+1)

1 ξi,k+1

∣

∣

∣

∣

}

.

Bundschuh and Zhu provided also a corresponding formula forthe three-dimensional
case. The method can be generalized to arbitrary dimensiond and requires roughly
O(nd/d!) elementary operations. This method was, e.g., used in [92] to calculate
the exact discrepancy of particular point sets, so-called (shifted) rank-1 lattice rules
(cf. [81]), up to sizen= 236 in dimensiond = 5 and ton= 92 in dimensiond = 6.
But as pointed out by Winker and Fang in [92], for this method instances like, e.g.,
sets of sizen≥ 2000 ind = 6 are completely infeasible.

Another method to calculate the star discrepancy in timeO(n1+d/2)was proposed
by Dobkin, Eppstein, and Mitchell in [17]. It uses sophisticated, but complicated
data structures, and the authors implemented only asymptotically slightly slower
variants of the algorithm in dimensiond = 2.
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The discussion shows that all known methods that calculate the star discrepancy
exactly depend exponentially on the dimensiond and are infeasible for large values
of n andd.

Indeed, the problem of calculating the star discrepancy isNP-hard, as was proved
in [38]. We will briefly outline the main proof ideas below in this section. In [32]
Giannopoulos, Knauer, Wahlström, and Werner proved a result on theparametrized
complexityof the problem of calculating the star discrepancy, namely they showed
that it isW[1]-hard with respect to the parameterd. It follows from [32] that the
general problem cannot be solved in timeO(no(d)) unless theexponential time hy-
pothesisis false, which is widely regarded as extremely unlikely.

Notice that the complexity results above are about the exactcalculation of the
discrepancy of arbitrary point sets; they do not directly address the complexity of
approximating the discrepancy. So what is known about approximation algorithms?

Since in high dimension no efficient algorithm for the exact calculation of the
star discrepancy is known, some authors tried to tackle the large scale enumeration
problem (12) by using optimization heuristics. In [92] Winker and Fang usedthresh-
old accepting[26], a refined randomized local search algorithm based on a similar
idea as the well-known simulated annealing algorithm [55],to find lower bounds for
the star discrepancy. The algorithm performed well in numerical tests on (shifted)
rank-1 lattice rules.

In [89] Thiémard gave aninteger linear programming formulationfor the prob-
lem and used techniques as cutting plane generation and branch and bound to tackle
it. With the resulting algorithm Thiémard performed non-trivial star discrepancy
comparisons between low-discrepancy sequences.

The key observation to approach the non-linear expression (12) via linear pro-
gramming is that one can reduce it to at most 2n sub-problems of the type“optimal
volume subintervals with k points”. These sub-problems are the problems of find-
ing the largest boxes[0,y), y∈ Γ (P), containingk points,k∈ {0,1, . . . ,n−1}, and
the smallest boxes[0,y], y∈ Γ (P), containingℓ points forℓ ∈ {1, . . . ,n}. Thiémard
conjectured these sub-problems to be NP-hard.

The conjecture of Thiémard is proved rigorously in [38] by establishing the NP-
hardness of the optimal volume subinterval problems. Recall that NP-hardness of an
optimization problemU is proved by verifying that deciding the so-called threshold
language ofU is an NP-hard decision problem (see, e.g., [53, Sect. 2.3.3]). Thus
actually the NP-completeness of decision problems corresponding to the optimiza-
tion problems mentioned above is verified. The verification is done by reduction of
the problem DOMINATING SET to the maximal volume subinterval problems and of
BALANCED SUBGRAPH to the minimal volume subinterval problems, respectively;
the graph theoretical decision problems DOMINATING SET and BALANCED SUB-
GRAPH are known to be NP-hard, see [31, 54]. With the help of theseNP-hardness
results for the optimal volume subinterval problems it is shown that the problem of
calculating the star discrepancy itself is NP-hard. (Furthermore, some minor errors
occurring in [89] are listed in [38]. Since those errors may lead to incorrect solu-
tions of Thiémard’s algorithm for certain instances, it isexplained how to avoid their
undesired consequences.)



Entropy, Randomization, Derandomization, and Discrepancy 11

A genetic algorithmto approximate the star discrepancy was recently proposed
by Shah [80].

In the recent paper [39] a new randomized algorithm to approximate the star
discrepancy based on threshold accepting was presented. Comprehensive numerical
tests indicate that it improves on the algorithms from [92, 89, 80], especially in
higher dimension 20≤ d≤ 50.

All the approximation algorithms we have mentioned so far have shown their
usefulness in practice, but unfortunately none of them provides an approximation
guarantee.

An approach that approximates the star discrepancy of a given setP up to a user-
specified errorδ was presented by Thiémard [87, 88]. It is in principle basedon the
generation of small bracketing covers (which were not namedthis way in [87, 88]).

2 Bracketing Entropy

In this section we want to study the bracketing entropy of axis-parallel boxes an-
chored at zero. We start by introducing the necessary notion.

2.1 Basic Definitions

Definition 1. Let x,y ∈ [0,1]d with xi ≤ yi for i = 1, . . . ,d. We assign aweight
W([x,y]) to the closed box[x,y] := [x1,y1]×·· ·× [xd,yd] by

W([x,y]) = λd([0,y])−λd([0,x]).

Let δ > 0. The box[x,y] is a δ -bracket if W([x,y]) ≤ δ . A set B of δ -brackets
whose union covers[0,1]d is aδ -bracketing coverof [0,1]d. Thebracketing number
N[ ](d,δ ) denotes the smallest cardinality of anyδ -bracketing cover of[0,1]d. Its
logarithm ln(N[ ](d,δ )) is thebracketing entropy(or entropy with bracketing).

The notion of bracketing entropy is well established in empirical process theory,
see, e.g., [86, 90]. In some places it will be more convenientfor us to use the related
notion ofδ -covers from [21] instead of the notion of bracketing covers.

Definition 2. Let δ > 0. A finite setΓ is a δ -coverof [0,1]d if for all y ∈ [0,1]d

there existx,z∈ Γ ∪ {0} such that[x,z] is a δ -bracket andy ∈ [x,z]. Let N(d,δ )
denote the smallest cardinality of anyδ -cover of[0,1]d.

If, on the one hand, we have aδ -bracketing coverB, then it is easy to see that

ΓB := {x∈ [0,1]d \ {0}|∃y∈ [0,1]d : [x,y] ∈B or [y,x] ∈B} (13)

is aδ -cover. If, on the other hand,Γ is aδ -cover, then
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BΓ := {[x,y] |x,y∈ Γ ∪{0} , [x,y] is aδ -bracket, x 6= y}

is aδ -bracketing cover. Therefore we have

N(d,δ )+1≤ 2N[ ](d,δ )≤ (N(d,δ )+1)N(d,δ ). (14)

(The second inequality is obviously a weak one, and it would be nice to have a
tighter bound.) The bracketing number and the quantityN(d,δ ) are related to the
coveringand theL1-packing number, see, e.g., [21, Rem. 2.10].

2.2 Construction of Bracketing Covers

How large is the bracketing entropy and how does a smallδ -bracketing cover look
like? To get some idea, we have a look at some examples ofδ -bracketing covers.

2.2.1 Cells of an Equidistant Grid

To prove (10), Heinrich et al. used in [45] aδ -cover in form of an equidistant
grid Eδ = {0,1/m,2/m, . . . ,1}d with m= ⌈d/δ⌉. The grid cells, i.e., all closed
boxes of the form[x,x+], wherexi ∈ {0,1/m, . . . ,1−1/m} andx+i = xi +1/m for
i ∈ {1, . . . ,d}, form aδ -bracketing coverEδ . Indeed, the grid cell with the largest
weight is[(1−1/m)1,1] with

W([(1−1/m)1,1]) = 1− (1−1/m)d≤ d/m≤ δ .

The cardinality of theδ -bracketing coverEδ is clearly

|Eδ |= md ≤ (dδ−1+1)d. (15)

Although the weight of the grid cell[(1−1/m)1,1] is nearlyδ , the weights of most
of the other grid cells are reasonably smaller thanδ . For example, the weight of the
cell [0,(1/m)1] is (1/m)d ≤ (δ/d)d, which is ford≥ 2 much smaller thanδ .

2.2.2 Cells of a Non-Equidistant Grid

We generate a smallerδ -bracketing cover by using anon-equidistant gridΓδ of the
form

Γδ = {γ0, ...,γκ(δ ,d)}d , (16)

whereγ0,γ1, ...,γκ(δ ,d) is a decreasing sequence in(0,1]. We calculate this sequence
recursively in the following way (cf. Figure 1):

We setγ0 := 1 and chooseγ1 ∈ (0,1) such thaty(0) := γ11 andz(0) := 1 satisfy
W([y(0),z(0)]) = δ . Obviously,γ1 = (1− δ )1/d. Let γi be calculated. Ifγi > δ , we
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compute the real numberγi+1 ∈ (0,γi) that ensures thaty(i) := (γi+1,γ1, ...,γ1) and
z(i) := (γi ,1, ...,1) satisfyW([y(i),z(i)]) = δ . If γi ≤ δ , then we putκ(δ ,d) := i and
stop. From the geometrical setting it is easy to see thatγ0, γ1, ... is a decreasing
sequence withγi− γi+1≤ γi+1− γi+2. Thereforeκ(δ ,d) is finite.

γ0

γ0

γ1

γ1γ2γ3γ4γ5γ6

z(0)z(1)z(2)z(3)z(4)z(5)z(6)

y(0)y(1)y(2)y(3)y(4)y(5)y(6)

0

Fig. 1 Construction of the non-equidistant gridΓδ for d = 2 andδ = 0.2. Here,κ(δ ,d) = 6.

The following result was proved in [21, Thm. 2.3].

Theorem 2.Let d≥ 2, and let0 < δ < 1. Let Γδ = {γ0,γ1, . . . ,γκ(δ ,d)}d be as in
(16). ThenΓδ is a δ -cover of[0,1]d, and consequently

N(d,δ )≤ |Γδ | ≤ (κ(δ ,d)+1)d , (17)

where

κ(δ ,d) =
⌈ d

d−1
ln(1− (1− δ )1/d)− ln(δ )

ln(1− δ )

⌉

. (18)

The inequalityκ(δ ,d)≤
⌈

d
d−1

ln(d)
δ
⌉

holds, and the quotient of the left and the right
hand side of this inequality converges to1 asδ approaches0.

From theδ -coverΓδ we obtain aδ -bracketing coverGδ by taking the grid cells of
the form[y,y+], whereyi = γ j for somej = j(i)∈ {1, . . . ,κ(δ ,d)} andy+i = γ j−1 for
all i ∈ {1, . . . ,d}, and thed brackets of the form[0,z] with zhavingd−1 coordinates
equal to 1 and one coordinate equal toγκ(δ ,d). Thus

|Gδ |= κ(δ ,d)d +d =

(

d
d+1

)d

ln(d)dδ−d +Od

(

δ−d+1
)

; (19)

the last identity follows from
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κ(δ ,d) =
d

d−1
ln(d)δ−1+Od(1) asδ approaches 0,

see [36, Sect. 2]. Note that( d
d−1)

d is bounded above by 4 and converges toe asd
tends to infinity.

2.2.3 A Layer Construction

By construction the brackets[y(i),z(i)], i = 0,1, . . . ,κ(δ ,d)−1, satisfyW([y(i),z(i)])=
δ , but it can be shown that the weights of the brackets[v,w] in Gδ , with wi < 1 for
more than one indexi ∈ {1, . . . ,d}, are strictly smaller thanδ . It seems obvious that
a suitableδ -bracketing cover consisting almost exclusively of brackets with weights
exactlyδ should exhibit a smaller cardinality thanGδ . We outline here a construc-
tion Zδ which satisfies this specification. To simplify the representation, we confine
ourselves to the cased = 2 and refer to [35] for a generalization of the construction
to arbitrary dimensiond. Let δ be given. The essential idea is the following:

We defineai = ai(δ ) := (1− iδ )1/2 for i = 0, . . . ,ζ = ζ (δ ) := ⌈δ−1⌉− 1, and
aζ+1 := 0. We decompose[0,1]2 into layers

L(i)(δ ) := [0,ai1]\ [0,ai+11), i = 0, . . . ,ζ ,

and cover each layer separately withδ -brackets. To coverL(0)(δ ), we can simply
use theδ -brackets[y(i),z(i)], i = 0,1, . . . ,κ(δ ,2)−1, from our previous construction
and theδ -brackets we obtain after permuting the first and second coordinates ofy(i)

andz(i), respectively. To cover the remaining layers, we observe that the brackets
[ai+11,ai1], i = 1, . . . ,ζ −1, all have weightδ , and we can cover the layersL(i)(δ ),
i = 1, . . . ,ζ−1, by a straightforward modification of the procedure we usedto cover
L(0)(δ ).

The final layerL(ζ )(δ ) = [0,aζ 1] is trivially covered by theδ -bracket[0,aζ 1]
itself. Figure 2 shows the resulting bracketing coverZδ for δ = 0.075.

As shown in [36, Prop. 4.1], the two-dimensionalδ -bracketing coverZδ satisfies

|Zδ |= 2ln(2)δ−2+O(δ−1). (20)

Notice that the coefficient 2 ln(2) ≈ 1.3863 in front ofδ−2 is smaller than the cor-
responding coefficient(2ln(2))2 ≈ 1.9218 in (19).

2.2.4 An Essentially Optimal Construction

The layer construction was generated in a way to guarantee that allδ -brackets have
weight exactlyδ (except of maybe those which intersect with the coordinate axes).
To minimize the number of brackets needed to cover[0,1]2, or, more generally,
[0,1]d, it seems to be a good idea to find brackets with weightδ that exhibit max-
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Fig. 2 The layer constructionZδ for δ = 0.075.

imum volume. The following lemma [35, Lemma 1.1] shows how such δ -brackets
look like.

Lemma 1. Let d≥ 2, δ ∈ (0,1], and let z∈ [0,1]d with λd([0,z]) = z1 · · ·zd ≥ δ . Put

x= x(z,δ ) :=

(

1− δ
z1 · · ·zd

)1/d

z. (21)

Then[x,z] is the uniquely determinedδ -bracket having maximum volume of allδ -
brackets containing z. Its volume is

λd([x,z]) =

(

1−
(

1− δ
z1 · · ·zd

)1/d
)d

·z1 · · ·zd.

A positive aspect of the previous constructionZδ is that (essentially) all its
brackets have largest possible weightδ and overlap only on sets of Lebesgue mea-
sure zero. But if we look at the brackets inZδ which are close to the first or the
second coordinate axis and away from the main diagonal, thenthese boxes do cer-
tainly not satisfy the “maximum area criterion” stated in Lemma 1. The idea of the
next construction is to generate a bracketing coverRδ similarly as in the previous
section, but to “re-orientate” the brackets from time to time in the course of the
algorithm to enlarge the area which is covered by a single bracket. Of course this
procedure should not lead to too much overlap of the generated brackets. Let us
explain the underlying geometrical idea of the construction:

Like all the constructions we have discussed so far, our new bracketing cover
should be symmetric with respect to both coordinate axes. Thus we only have to
state explicitly how to cover the subset
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H := {(x,y) ∈ [0,1]2 |x≤ y}

of [0,1]2. For a certain numberp= p(δ ) we subdivideH into sectors

T(h) :=

{

(x,y) ∈H \ {(0,0)}
∣

∣

∣

∣

∣

h−1
2p ≤

x
y
≤ h

2p

}

∪{(0,0)}, h= 1, . . . ,2p.

We start withT(2p) and cover this subset of[0,1]2 in the same way as we cov-
ered it in the constructionZδ , i.e., we decomposeT(2p) into horizontal stripes
[(0,ai+1),(ai ,ai)]∩T(2p), i = 0,1, . . . ,ζ = ⌈δ−1⌉−1, and cover each stripe sepa-
rately withδ -brackets whose weights are (except of maybe one bracket perstripe)
exactlyδ . Notice that theδ -brackets ofZδ that cover the main diagonal of[0,1]2

are volume optimal due to Lemma 1. Hence, if we choosep sufficiently large, the
sectorT(2p) will be thin and all theδ -brackets we use to cover it will have nearly
maximum volume.

If p = 0, thenH = T(2p) and our new constructionRδ will actually be equal
to Zδ . If p > 0, then we have additional sectorsT(1), . . . ,T(2p−1). Again, for a
given i ∈ {1, . . . ,2p−1} we decomposeT(i) into horizontal stripes, but the verti-
cal heights of the stripes increases asi decreases. We essentially choose the heights
of each stripe in a way that the bracket on the right hand side of the stripe having this
heights and weight exactlyδ exhibits maximum volume. Thus, if the sectorT(i) is
sufficiently thin, again essentially allδ -brackets that cover it will have nearly max-
imum volume. Therefore we should choosep = p(δ ) large enough. On the other
hand, we usually will have overlappingδ -brackets at the common boundary of two
sectors. To minimize the number of brackets needed to coverH (and thus[0,1]2), we
should try to avoid too much overlap of brackets and consequently not choosep too
large. SinceT(2p) has the most horizontal stripes of all sectorsT(i), namely⌈δ−1⌉,
a choice satisfying 2p(δ ) = o(δ−1) ensures that the overlap has no impact on the
coefficient in front the most significant termδ−2 in the expansion of|Rδ | in terms
of δ−1. Figure 3 and 4 show bracketing coversRδ based on this idea constructed in
[36] for δ = 0.075 andδ = 0.03. The parameterp was chosen to be

p= p(δ ) =
⌊

ln(δ−1)

1.7

⌋

.

The figures show the overlapping of brackets at the common boundaries of different
sectors. Note in particular that the 16 squares near the origin in Figure 4 are not
individualδ -brackets with weightδ – these squares just occur since larger brackets
intersect near the origin.

For all technical details of theδ -bracketing coverRδ of [0,1]2 we refer to [36].
As shown there in Proposition 5.1, its size is of order

|Rδ |= δ−2+o(δ−2) (22)
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Fig. 3 The essentially optimal constructionRδ for δ = 0.075.

Fig. 4 The essentially optimal constructionRδ for δ = 0.03.

as long asp = p(δ ) is a decreasing function on(0,1) with limδ→0 p(δ ) = ∞ and
2p = o(δ−1) asδ tends to zero.

The constructionRδ is (essentially) optimal, as will be shown by a lower bound
in the next section.

2.3 Bounds for the Bracketing Number

Here we state bounds for the bracketing number for arbitrarydimensiond.
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Theorem 3.Let d be a positive integer and0< δ ≤ 1. Then we have the following
two upper bounds on the bracketing number:

N[ ](d,δ ) ≤
dd

d!
δ−d +Od(δ−d+1) (23)

and

N[ ](d,δ ) ≤ 2d−1dd

d!

(

δ−1+1
)d

. (24)

Both bounds were proved constructively in [35] by aδ -bracketing cover which
can be seen asd-dimensional generalization of the two-dimensional construction
Zδ from Section 2.2.3. In the same paper the following lower bound for the brack-
eting number was shown, see [35, Thm. 1.5].

Theorem 4.For d ≥ 2 and0< δ ≤ 1 there exist a constant cd which may depend
on d, but not onδ , with

N[ ](d,δ )≥ δ−d(1− cdδ ). (25)

The proof of Theorem 4 is based on the fact that the bracketingnumberN[ ](d,δ )
is bounded from below by the average of[λd(Bδ (x))]

−1 over allx∈ [0,1]d, where
Bδ (x) is aδ -bracket containingx with maximum volume.

The lower bound shows that the upper boundN[ ](2,δ )≤ δ−2+o(δ−2), resulting
from the bound (22) on the cardinality ofRδ from Section 2.2.4, is (essentially)
optimal.

3 Application of Bracketing to Discrepancy

We want to discuss how the results about bracketing covers and bracketing entropy
from the last section can be used to tackle the three questions from Section 1.2. We
start with question (iii), where our results are most directly applicable.

3.1 Approximation of the Star Discrepancy

Bracketing covers can be used to approximate the star discrepancy by exploiting the
following approximation property.

Lemma 2. Let B be a bracketing cover of[0,1]d, and letΓB as in (13). For finite
subsets P of[0,1]d put

d∗Γ (P) := max
x∈ΓB

|∆(x,P)|. (26)

Then we have
d∗Γ (P)≤ d∗∞(P)≤ d∗Γ (P)+ δ .
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The proof is straightforward, but can also be found in, e.g.,[21, Lemma 3.1].
The essential idea of Thiémard’s algorithm from [87, 88] isto generate for a

given point setP and a user-specified errorδ a smallδ -bracketing coverB = Bδ
of [0,1]d and to approximated∗∞(P) by maxx∈ΓB

|∆(x,P)|.
The costs of generatingBδ are of orderΘ(d|Bδ |). If we count the number of

points in [0,x) for eachx ∈ ΓB in a naive way, this results in an overall running
time ofΘ(dn|Bδ |) for the whole algorithm. As Thiémard pointed out in [88], this
orthogonal range counting can be done in moderate dimensiond more effectively
by employing data structures based on so-called range trees. This approach reduces
the timeO(dn) per test box that is needed for the naive counting toO(log(n)d).
Since a range tree forn points can be generated inO(Cdnlog(n)d) time,C> 1 some
constant, this results in an overall running time of

O((d+ log(n)d)|Bδ |+Cdnlog(n)d) .

For the precise details of the implementation we refer to [88].
The upper bounds on the running time of the algorithm show that smallerδ -

bracketing coversBδ will lead to shorter running times. But since the lower bound
(25) implies

|Bδ | ≥ δ−d(1− cdδ ),

even the time for generating aδ -bracketing coverBδ is bounded from below by
Ω(dδ−d), and this is obviously also a lower bound for the running timeof the
whole algorithm. This shows that the approach of Thiémard has practical limita-
tions. Nevertheless, it is useful in moderate dimensions aswas reported, e.g., in [23]
or [70].

The smallest bracketing covers used by Thiémard are different from the construc-
tions we presented in the previous section, see [88]. Figure5 shows his construction
Tδ in dimensiond = 2 for δ = 0.075.

He proved the upper bound

|Tδ | ≤
(

d+h
d

)

, where h=

⌈

d ln(δ )
ln(1− δ )

⌉

.

This leads to

|Tδ | ≤ ed
(

lnδ−1

δ
+1

)d

,

a weaker bound than|Bδ | ≤ edδ−d +Od(δ−d+1) and |Bδ | ≤ 2d−1ed(δ−1 + 1)d

which hold for the constructionBδ that established Theorem 3.
For d = 2 the bound|Tδ | = 2ln(2)δ−2 +O(δ−1) was proved in [36], which

shows that in two dimensions the quality ofTδ is similar to the one of the layer
constructionZδ that we presented in the section 2.2.3.
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Fig. 5 Thiémard’s constructionTδ for δ = 0.075.

3.2 Pre-Asymptotic Bounds via Randomization

Here we want discuss question (i) from Section 1.2. We distinguish between de-
terministic discrepancy bounds forn-point samples in[0,1]d and ford-dimensional
projections of infinite sequences of points with infinitely many coordinates. Further-
more, we mention briefly probabilistic discrepancy bounds for hybrid-Monte Carlo
sequences.

3.2.1 Point Sets in thed-Dimensional Unit Cube

Probabilistic pre-asymptotic bounds on the smallest possible star discrepancy of any
n-point set in[0,1]d can be proved in three steps:

Probabilistic Proof Scheme:

1. We discretize the star discrepancy at the cost of an approximation error at most
δ . More precisely, we use aδ -bracketing coverB and consider for a point setP
instead ofd∗∞(P) its approximationd∗Γ (P) defined in (26), whereΓ = ΓB is as in
(13).

2. We perform a random experiment that results in a randomn-point setP in [0,1]d

that fails to satisfy the events{|∆(x,P)| ≤ δ}, x∈ ΓB, with small probability. If
the random experiment is subject to the concentration of measure phenomenon,
then these “failing probabilities” can be controlled with the help of large devia-
tion bounds.

3. Since the event{d∗Γ (P)> δ} is the union of the events{|∆(x,P)|> δ}, x∈ ΓB,
a simple union bound shows thatP satisfiesd∗Γ (P)≤ δ with positive probability
if P{|∆(x,P)|> δ}< |ΓB|−1 for all x∈ ΓB.
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Then forε = 2δ there exists ann-point setP with d∗∞(P)≤ d∗Γ (P)+ δ ≤ ε. The
aim is to chooseε as small as possible.

To keep the loss caused by the union bound small, the size of the δ -bracketing
coverB (or theδ -coverΓB, respectively) should be chosen as small as possible. To
receive a bound for the star discrepancy with explicit constants, bounds with explicit
constants are needed for the size of theδ -bracketing cover used.

The bound (10) from [45] was proved in this way: Theδ -coverΓ was chosen
to be the equidistant grid from Section 2.2.1 and the random experiment was to
distributen points uniformly and independently in[0,1]d. The “failing probability”
in each single test box was bounded above byHoeffding’s large deviation bound
[52], which reads as follows:

Let X1, . . . ,Xn be independent random variables with ai ≤ Xi ≤ bi for all i. Then
for all δ > 0

P

{

1
n

∣

∣

∣

∣

∣

n

∑
k=1

(Xi−E(Xi))

∣

∣

∣

∣

∣

≥ δ

}

≤ 2exp

(

− 2δ 2n2

∑n
k=1(bi−ai)2

)

.

Using the same probabilistic experiment and again Hoeffding’s large deviation
bound, but instead of the bracketing cover from Section 2.2.1 the one that implied
the estimate (24), one obtains the improved discrepancy bound

d∗∞(n,d)≤ k′d1/2n−1/2 ln
(

1+
n
d

)1/2
(27)

(here we have essentiallyk′ ≈
√

2, see [35, Thm. 2.1]). Since the inverse of the
star discrepancy depends linearly on the dimensiond, the practically most relevant
choice ofn seems to ben proportional tod. Note that in this case (27) behaves
asymptotically as the bound (8). In fact, if (8) holds withc = 10 (as claimed by
Hinrichs and recently published by Aistleitner), then the bound [35, (22)], a version
of (27), is still better than (8) for alln≤ 1.5 ·e95d. Actually, we may use the upper
bound in (24) to reprove (8) without using Haussler’s resulton covering numbers
of Vapnik-Červonenkis classes—a version of Talagrand’s large deviation bound for
empirical processes holds under the condition that theδ -bracketing number of the
set system under consideration is bounded from above by(Cδ−1)d for some con-
stantC not depending onδ or d, see [86, Thm. 1.1]. (As we discuss at the end of
this subsection, Aistleitner’s approach to prove (8) with aconstantc≤ 10 indeed
uses the upper bound (24).)

For other discrepancy notions similar approaches, relyingon uniformly and in-
dependently distributed random points, were used to prove pre-asymptotic bounds
with explicitly given constants. This was done, e.g., for thesame-quadrant discrep-
ancy[47], discrepancies with respect toellipsoids, stripes, andspherical capsin R

d

[59], theextreme discrepancy[35], and theweighted star discrepancy[50].
One can modify the probabilistic experiment by using, e.g.,the variance reduc-

tion techniquestratified sampling. If, e.g., n = νd, then one can subdivide[0,1]d

into n subcubes of the same size and distribute in each subcube one point uniformly



22 Michael Gnewuch

at random (and independently from the other points). This experiment was used in
[20, Thm. 4.3] (a preprint version of [21]) to derive

d∗∞(n,d)≤ k′′dn−
1
2− 1

2d ln(n)1/2. (28)

(Again, we have essentiallyk′′ ≈
√

2. The proof used theδ -coverΓδ from (16).)
For the discrepancy oftilted boxesand ofballs with respect to probability mea-

sures on[0,1]d which are absolutely continuous with respect toλd, a similar ap-
proach relying on a stratified sampling technique was used byBeck in [3] to prove
asymptotic probabilistic upper bounds. But these bounds donot exhibit the de-
pendence on the dimension; in particular, the involved constants are not explicitly
known.

We will discuss a further random experiment in more detail inSection 3.3.
Let us finish this subsection with the discussion of the recent result of Aistleitner,

who proved in [1] that the constantc in (8) is smaller than 10. As in the probabilistic
proof scheme stated above, his approach starts by discretizing the star discrepancy
at the cost of an approximation errorδ = 2−K , whereK ≈ − log2(d/n)/2. The
underlying probabilistic experiment is to distributen pointsp(1), . . . , p(n) uniformly
and independently in[0,1]d. An important observation is now that for measurable

subsetsA of [0,1]d the variance of the random variablesξ (i)
A := λd(A)−|{p(i)}∩A|,

i = 1, . . . ,n, depends strongly on the volumeλd(A) of A:

Var(ξ (i)
A ) = λd(A)(1−λd(A)).

Now Hoeffding’s large deviation bound gives good bounds forthe failing probabil-

itiesP{|1n ∑n
i=1 ξ (i)

A |> δA} for δA > 0 if λd(A) ≈ 1/2. But if λd(A) is much smaller
or larger than 1/2, then Hoeffding’s bound cannot exploit the fact that the variance

of the random variableξ (i)
A is small. A large deviation bound which can exploit this

fact isBernstein’s inequalitywhich reads as follows (see, e.g., [90]):
Let X1, . . . ,Xn be independent random variables with zero means and bounded

ranges|Xi | ≤M for all i. Then for all t> 0

P

{∣

∣

∣

∣

∣

n

∑
k=1

Xi

∣

∣

∣

∣

∣

≥ t

}

≤ 2exp

(

− t2/2

∑n
k=1 Var(Xi)+Mt/3

)

.

Aistleitner uses Bernstein’s inequality and thedyadic chainingtechnique, which
can be seen as a “multi-cover” approach:

For all k = 1,2, . . . ,K consider a 2−k-coverΓ2−k, and putx(0) := 0. From the
definition of aδ -cover it follows that for anyx(K) ∈Γ2−K one recursively finds points

x(k) ∈ Γ2−k, k = K− 1, . . . ,1, such thatx(K)
j ≥ x(K−1)

j ≥ ·· · ≥ x(1)j for j = 1, . . . ,d,
and

Ak = Ak

(

x(K)
)

:=
[

0,x(k)
)

\
[

0,x(k−1)
)
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has volume at most 2−(k−1). We have
[

0,x(K)
)

= ∪K
k=1Ak and, if P denotes the set

{p(1), . . . , p(n)},

∣

∣

∣
∆
(

x(K),P
)∣

∣

∣
≤

K

∑
k=1

∣

∣

∣

∣

λd (Ak)−
1
n
|P∩Ak|

∣

∣

∣

∣

=
K

∑
k=1

∣

∣

∣

∣

∣

1
n

n

∑
i=1

ξ (i)
Ak

∣

∣

∣

∣

∣

.

If for k = 1, . . . ,K we defineAk :=
{

Ak

(

x(K)
)

|x(K) ∈ Γ2−K

}

, then |Ak| ≤ |Γ2−k|.
Using a 2−k-bracketing cover as constructed in [35], we obtain via (13)a 2−k-cover
Γ2−k satisfying|Γ2−k| ≤ (2e)d(2k + 1)d, see (24) and (14). Choosing a suitable se-
quenceck, k = 1, . . . ,K, one essentially obtains with the help of a union bound,
Bernstein’s inequality, and the estimate (24)

P





⋃

Ak∈Ak

{∣

∣

∣

∣

∣

1
n

n

∑
i=1

ξ (i)
Ak

∣

∣

∣

∣

∣

> ck2
−K

}



≤ ∑
Ak∈Ak

P

{∣

∣

∣

∣

∣

1
n

n

∑
i=1

ξ (i)
Ak

∣

∣

∣

∣

∣

> ck2
−K

}

≤ 2−k.

Recall that|Ak| ≤ |Γ2−k| ≤Od(2kd) and Var(ξ (i)
Ak
)≤ 2−(k−1). In particular,|AK | is of

the size of the finestδ -coverΓ2−K , but, since the variance of allξ (i)
AK

is small (namely

at most 2−(K−1)), Bernstein’s inequality ensures that we can choose a smallcK . If,
on the other hand,k = 1, then it may happen thatλd(A1) ≈ 1/2, so Bernstein’s
inequality gives us no advantage over Hoeffding’s bound. But the size ofA1 is
relatively small, namely at mostOd(2d). In general, the largerk is, the more we

can exploit the small variance of allξ (i)
Ak

, but the larger is the size ofAk. Aistleitner

proved that this “trade off” ensures that one can choose(ck)
K
k=1 such that∑K

k=1ck≤
8.65 holds. Thus the approximation property (see Lemma 2) leads to the estimate

P

{

d∗∞(P)>

(

1+
K

∑
k=1

ck

)

2−K

}

≤ P

{

d∗Γ2−K
(P)>

K

∑
k=1

ck2
−K

}

= P





⋃

x(K)∈Γ2−K

{

∣

∣

∣∆
(

x(K),P
)∣

∣

∣>
K

∑
k=1

ck2
−K

}





≤ P





⋃

x(K)∈Γ2−K

K
⋃

k=1

{∣

∣

∣

∣

∣

1
n

n

∑
i=1

ξ (i)
Ak

∣

∣

∣

∣

∣

> ck2
−K

}





≤
K

∑
k=1

P





⋃

Ak∈Ak

{∣

∣

∣

∣

∣

1
n

n

∑
i=1

ξ (i)
Ak

∣

∣

∣

∣

∣

> ck2
−K

}



< 1,

showing that there exists ann-point setP in [0,1]d that satisfies the estimate (8) with
c= 9.65. (For the technical details we refer, of course, to [1].)
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3.2.2 Infinite dimensional infinite sequences

So far we have discussed the existence of point sets that satisfy reasonably good
discrepancy bounds. In practice it is desirable to have integration points that can be
extended in the number of points, and preferably also in the dimensiond. This al-
lows to achieve higher approximation accuracy while still being able to reuse earlier
calculations.

In [14] the probabilistic bounds stated in the previous subsection were extended
by Dick to infinite sequences of infinite dimensional points.For an infinite sequence
P of points in[0,1)N, let us denote byPd the sequence of the projections of the points
of P onto their firstd components, and byPn,d the firstn points ofPd. Then in [14]
the following results were shown:

There exists an unknown constantC such that for every strictly increasing se-
quence(nm)m∈N in N there is an infinite sequenceP in [0,1)N satisfying

d∗∞(Pnm,d)≤C
√

d/nm

√

ln(m+1) for all m,d ∈N.

(We add here that with the help of Aistleitner’s approach in [1] one can derive an
upper bound forC.)

Furthermore, there exists an explicitly given constantC′ such that for every
strictly increasing sequence(nm)m∈N in N there is an infinite sequenceP satisfy-
ing

d∗∞(Pnm,d)≤C′
√

(

m+d+d ln

(

1+
d
√

nm

m+d

))

/nm for all m,d ∈ N. (29)

The results from [14] show that there exist point sets that can be extended in the
dimension and in the number of points while bounds similar to(10) or (27) remain
valid.

A disadvantage of (29) is nevertheless that in the case where, e.g.,nm = m for all
m it is not better than the trivial boundd∗∞(Pm,d)≤ 1.

By using the bound (24), another result for infinite sequences P in [0,1)N was
presented in [19]: There exists an explicitly given constant C′′ such that for every
strictly increasing sequence(nm)m∈N in N there is an infinite sequenceP satisfying

d∗∞(Pnm,d)≤C′′
√

d ln
(

1+
nm

d

)

/nm for all m,d ∈ N. (30)

This bound is an improvement of (29), which in particular is still useful in the case
nm = m for all m. Moreover, it establishes the existence of infinite sequencesP in
[0,1)N having the following property: To guaranteed∗∞(Pn,d) ≤ ε for a givenε, we
only have to taken≥ cεd, wherecε is a constant depending only onε, see [19, Cor.
2.4]. Note that this result cannot be deduced directly from the results in [14]. As
mentioned above, it is known from [45, 49] that we have to takeat leastn≥ c′εd
if ε is sufficiently small. (Herec′ε depends again only onε.) In this sense [19, Cor.
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2.4] shows that the statement “the inverse of the star discrepancy depends linearly
on the dimension” (which is the title of the paper [45]) extends to the projections of
infinite sequences in[0,1)N. To make this more precise, the notion of theinverse of
the star discrepancy of an infinite sequence Pis introduced in [19], given by

N∗P(ε,d) := min{n : ∀m≥ n : d∗∞(Pm,d)≤ ε}.

Then Corollary 2.4 of [19] states that there exist sequencesP such that

N∗P(ε,d) ≤O(dε−2 ln(1+ ε−1)) for all d ∈N, ε ∈ (0,1]. (31)

In fact even more holds: If we endow the set[0,1)N with the canonical probabil-
ity measureλN = ⊗∞

i=1λ1 and allow the implicit constant in the big-O-notation to
depend on the particular sequenceP, then inequality (31) holds almost surely for a
random sequenceP, see again [19, Cor. 2.4]. In [19, Thm. 2.3] bounds of the form
(30) and (31) with explicitly given constants and estimatesfor the measure of the
sets of sequences satisfying such bounds are provided.

3.2.3 Hybrid-Monte Carlo Sequences

A hybrid-Monte Carlo sequence, which is sometimes also called amixed sequence,
results from extending a low-discrepancy sequence in the dimension by choosing
the additional coordinates randomly. In several applications it has been observed
that hybrid-Monte Carlo sequences perform better than pureMonte Carlo and pure
quasi-Monte Carlo sequences, especially in difficult problems, see, e.g., [83, 69, 71].

For a mixedd-dimensional sequencesm, whose elements are, technically speak-
ing, vectors obtained by concatenating thed′-dimensional vectors from a low-
discrepancy sequenceq with (d−d′)-dimensional random vectors, probabilistic up-
per bounds for its star discrepancy have been provided. Ifmn andqn denote the sets
of the firstn points of the sequencesm andq respectively, then̈Okten, Tuffin, and
Burago showed in [71] that

P(d∗∞(mn)−d∗∞(qn)< ε)≥ 1−2exp

(

−ε2n
2

)

for n sufficiently large. (32)

The authors did not study how largen actually has to be and if and how this ac-
tually depends on the parametersd andε. In the note [37] a lower bound forn is
derived, which significantly depends ond andε. Furthermore, with the help of the
probabilistic proof scheme the probabilistic bound

P(d∗∞(mn)−d∗∞(qn)< ε)> 1−2N(d,ε/2)exp

(

−ε2n
2

)

(33)

was established, which holds without any restriction onn. In this sense it improves
the bound (32) and is more helpful in practice, especially for small samples sizesn.
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As we know from (25) and (14), for smallε the quantityN(d,ε/2) grows exponen-
tially in d. As pointed out in [37, Remark 3.4] a factor depending exponentially on
d has to appear in front of exp(−ε2n/2) in the bound (33) if we want it to hold for
all n∈ N. Recall that we can use the bound (24) on the bracketing number to obtain
an upper bound forN(d,ε/2) with explicit constants.

Recently, there has been increasing interest in (deterministic) discrepancy bounds
for (deterministic) mixed sequences, see, e.g., [63, 64].

3.3 Small Discrepancy Samples via Derandomization

Here we want to consider question (ii) from Section 1.2: How can we construct
point sets that satisfy the probabilistic bounds stated in Section 3.2? How can we
derandomize the probabilistic experiments to get deterministic point sets with low
discrepancy? The probabilistic experiment of distributing n points uniformly at ran-
dom in[0,1]d was derandomized in [21]. We illustrate the derandomization idea for
a different probabilistic experiment used in [23], which leads to a simpler and faster
algorithm.

3.3.1 Random Experiment

Let k ∈ N be given and letδ be the largest value that satisfiesk = κ(δ ,d), where
κ(δ ,d) is as in (18). LetΓ =Γδ be the non-equidistant grid from (16). Putγk+1 := 0
and letB = Bδ the set of all (half-open) grid cells, i.e., all boxes[y,y+) with yi =
γ j for some j = j(i) ∈ {1, . . . ,k+1} andy+i = γ j−1 for all i ∈ d. Then obviously
|Γ |= |B|.

Let n∈N be given. ForB∈B let xB := n·λd(B), i.e.,xB is the expected number
of points insideB if we distributen points independently at random in[0,1]d.

Our aim is now toround randomlyfor eachB ∈ B the real numberxB to an
integeryB such that the following two constraints are satisfied:

• Weak constraint: Each setY with yB points inB for all B∈B should have small
discrepancy with high probability.

• Hard constraint: The equation|Y|= ∑B∈B yB = ∑B∈B xB = n should hold.

We saw in Section 3.2 that in the previous random experimentsthe weak constraint
can be satisfied for independent random points with the help of large deviation in-
equalities. But if our rounding procedure has to satisfy thehard constraint our ran-
dom variablesyB, B∈B, are clearly not independent any more.

Nevertheless, such a randomized rounding that satisfies theweak constraint with
high probability and respects the hard constraint can be done. There are two ap-
proaches known, due to Srinivasan [84] and to Doerr [18]. We present here the
randomized rounding procedure of Srinivasan:

Randomized Rounding Procedure:
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• Initialize yB = xB for all B∈B.
• Repeat the following step until allyB are integral:

Pair Rounding Step: ChooseyB, yB′ not integral.
Chooseσ ∈ [0,1] minimal such thatyB+σ or yB′−σ is integral.
Chooseτ ∈ [0,1] minimal such thatyB− τ or yB′+ τ is integral.
Set

(yB,yB′) :=

{

(yB+σ ,yB′−σ) with probability τ
σ+τ ,

(yB− τ,yB′+ τ) with probability σ
σ+τ .

• Output:(yB)B∈B.

The pair rounding step leaves∑B∈B yB invariant. Hence we have always

∑
B∈B

yB = ∑
B∈B

xB = n.

This shows particularly that if there is a variableyB left which is not integral, there
has to be another oneyB′ , B 6= B′, which is not integral. Thus the algorithm termi-
nates and the output setyB, B ∈B, satisfies the hard constraint. Furthermore, the
pair rounding step leavesE(yB) invariant, henceE(yB) = xB. Now letY be a set with
yB points inB for all B∈B. Then

E(n∆(g,Y)) = E

(

∑
B∈B ;B⊆[0,g)

(xB− yB)

)

= 0 for all g∈ Γ .

Furthermore, a concentration of measure result holds. TheyB, B∈B, are not inde-
pendent, but it can be shown that they satisfy certain negative correlation properties,
cf. [84]. As shown by Panconesi and Srinivasan, Chernoff-Hoeffding-type bounds
hold also in this situation [74]. This result and the earlierobservations yield the
following theorem, see [23].

Theorem 5.The randomized rounding procedure generates in time O(|B|) ran-
domized roundings yB of xB for all B ∈B such that∑B∈B yB = ∑B∈B xB = n and

P{|∆(g,Y)|> λ}< 2exp

(

− λ 2n
3

)

for all g ∈ Γ .

If we now chooseλ =
√

3n−1 ln(2|Γ |) andδ ≈
√

d/n
√

ln ln(d), then the next
theorem can be proved by following the three steps of the proof sheme in Section
3.2.1, see [23].

Theorem 6.There exists a constant C> 0 such that

P

{

d∗∞(Y)≤C
√

d/n
√

ln(σn)
}

> 0, (34)

whereσ = σ(d)< 1.03 tends to zero if d→ ∞.

(Essentially we haveC≈
√

6.)
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3.3.2 Derandomized Construction

Now we want to derandomize the random experiment, i.e., we want to construct
ann-point setY deterministically that satisfies the bound (34) in Theorem 6. More
precisely, we want to compute a rounding(yB)B∈B of (xB)B∈B that satisfies

∑
B∈B

yB = ∑
B∈B

xB = n (35)

and
∣

∣

∣

∣

∣

∑
B⊆[0,g)

(xB− yB)

∣

∣

∣

∣

∣

≤ δg ·n ·λd([0,g)) for all g∈ Γ , (36)

where theδgs are error tolerances fixed in the algorithm. If thenY is a set withyB

points inB for all B∈B, we obtain|Y|= n and
∣

∣

∣

∣

λd([0,g))−
1
n
|Y∩ [0,g)|

∣

∣

∣

∣

≤ δg ·λd([0,g)) for all g∈ Γ .

To compute such a rounding we follow Raghavan [75] and definepessimistic
estimators P+g ,P−g , g∈ Γ . For B∈B let pB = {xB}, where{xB} denotes the frac-
tional part ofxB, and forg∈ Γ let µg := ∑B⊆[0,g){xB}. The pessimistic estimators
are defined as

P+
g = (1+ δg)

−(1+δg)µg ∏
B⊆[0,g)

(1+ δgpB)

P−g = (1+ δg)
(1−δg)µg ∏

B⊆[0,g)

(

1+

(

1
1+ δg

−1

)

pB

)

.

With the help of the pessimistic estimators we can see whether (36) is satisfied
or not. This is easily seen by making the following observation: For B ∈ B let
qB ∈ {0,1}, and forq ∈ Γ let Q+

g , Q−g be the values ofP+
g andP−g , respectively,

calculated on valuesqB instead ofpB (with µg unchanged). Then it is a simple
observation thatQ+

g ≥ 1 if and only if ∑B⊆[0,g)qB≥ (1+ δg)µg, andQ−g ≥ 1 if and
only if ∑B⊆[0,g)qB≤ (1− δg)µg.

By updatingthe pessimistic estimators for some adjustmentpB← x, we shall
mean the operation of replacing the factor(1+ δgpB) in P+

g by (1+ δgx), and anal-
ogously forP−g , for eachg∈ Γ such thatB⊆ [0,g). (Again,µg stays unchanged.)

The derandomized rounding algorithm proceeds as follows.

Derandomized Rounding Procedure:

1. Initialize pB := {xB} for all B∈B.
2. Set the error tolerancesδg such that for eachg∈ Γ we haveP+

g ,P−g < 1/(2|Γ |).
LetU := ∑g∈Γ (P

+
g +P−g ).

3. LetJ = {B∈B | pB /∈ {0,1}}. While |J | ≥ 2:

a. PickB,B′ ∈J .
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b. Let(p(i)B , p(i)B′ ), i = 1,2, be the two possible outcomes of the pair-rounding step
of the randomized rounding procedure with respect to the pair of variables
(pB, pB′). LetUi , i = 1,2, be the sum of the pessimistic estimatorsU updated
according to the corresponding outcome.

c. Pick i ∈ {1,2} to minimizeUi . Let pB← p(i)B , pB′ ← p(i)B′ and updateJ , the
pessimistic estimators, andU .

4. Output:yB = ⌊xB⌋+ pB, B∈B.

Note that in step 2 we haveU < 1. Furthermore, it was shown in [24, Sect. 3.1]
that the minimumUi of {U1,U2} appearing in step 3.c satisfiesUi ≤U . After step
3 we haveJ = /0 andpB ∈ {0,1} for everyB ∈B. By our previous observation,
∑B⊆[0,g) pB≥ (1+δg)µg if and only if P+

g ≥ 1, and analogously for the lower bound.
SinceU < 1 is maintained throughout the algorithm and since the pessimistic es-
timators are non-negative, this cannot occur. The process thus produces a round-
ing satisfying equation (36). Note that as in the randomizedrounding, the value of
∑B∈B pB is kept constant throughout the process, thus (35) is satisfied.

Although the order in which variables are picked in step 3.a is not important for
the theoretical bound, numerical tests indicate that it is preferable to use an order in
which the tree formed by the pairings is a balanced binary tree (so that each value
pB is adjusted onlyO(log|Γ |) times), see [24] for details.

Using the bounds on theδgs derived by Raghavan [75] and choosingδ of order
δ ≈

√

d/n
√

ln ln(d), the derandomized rounding algorithm leads to the following
theorem, see [23].

Theorem 7.There exists a deterministic algorithm which, on input n andd, com-
putes in time O(d ln(dn)(σn)d) an n-point set Y⊂ [0,1]d with discrepancy

d∗∞(Y)≤C
√

d/n
√

ln(σn);

here C< 2.44, andσ = σ(d)< 1.03 tends to zero if d→ ∞.

The output setY hasyB points in each grid cellB∈B. Although the exact place-
ment of these points inside the boxesB does not affect the theoretical bound on
d∗∞(Y) from Theorem 7, numerical experiments indicate that it is a good idea to
place these points independently, uniformly at random inB.

3.3.3 A Component-by-Component Derandomization

Another approach is presented in [19]. There a component-by-component (CBC)
construction ofn-point sets via derandomization is proposed. In particular, via this
approach given point sets can be extended in the dimension. Here the underlying
random experiment is as follows: Given ann-point setPd′ = {p(1), . . . , p(n)} in di-
mensiond′, we choose new componentsx(1), . . . ,x(n) randomly from some one-
dimensional grid and receive then-point setPd′+1 = {(p(1),x(1)), . . . ,(p(n),x(n))}.
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We may repeat this procedure until we obtain ann-point set in the desired dimension
d. This probabilistic experiment can be derandomized with the classical method of
Raghavan [75]. If we start the CBC-construction in dimension one, the deterministic
output setPd of sizen in dimensiond satisfies the bound

d∗∞(Pd)≤O(d3/2n−1/2 ln(1+n/d)1/2). (37)

and the running time of the algorithm is bounded by

O(cdn(d+3)/2(d ln(1+n/d))−(d+1)/2),

c a suitable constant independent ofn andd. Certainly the bound (37) is weaker than
the bound in Theorem 7, but the bound on the running time of theCBC algorithm
is a reasonable improvement upon the running time guaranteeof the derandomized
algorithm discussed before. The CBC-algorithm has the additional nice feature that
it can calculate the exact discrepancy of the output set without essentially more
effort.

In [22] some more implementation details of the CBC-algorithm are provided
and several numerical tests are performed. In particular, the experiments indicate
that the discrepancies of the output sets of the CBC-algorithm behave in practice
much better than predicted by the theoretical bound (37). They depend rather linear
on the dimensiond than proportional tod3/2. The numerical experiments reveal that
the discrepancies of the output sets, which are subsets of certain full d-dimensional
grids, are almost exactly equal to the discrepancies of the full grids (for reasons ex-
plained in [22] we want to call the latter discrepancies “grid gaps”). For output sets
of sizen the corresponding full grid has size larger thannd/2/d!. We may interpret
this result in a positive way: The CBC-algorithm provides a sparse sample from a
completed-dimensional grid, which exhibits essentially the same discrepancy as the
full grid.

To overcome the lower bound on the discrepancy given by the “grid gap”, we
also consider a randomized CBC-variant: After receiving anoutput setPd, we ran-
domize its points locally to receive a new output setP∗d . For the randomized setP∗d
the theoretical discrepancy bound (37) still holds, and in all the numerical tests in
dimensiond = 10 its discrepancy was always much smaller than the corresponding
grid gap (which, as already said, is a lower bound ford∗∞(Pd)). (To be more precise,
an estimator ford∗∞(P

∗
d ), which majorizesd∗∞(P

∗
d ) with certainty at least 95%, is al-

ways much smaller than the corresponding grid gap. We use this estimator, since
calculating the actual discrepancy ofP∗d is a much harder problem than calculating
the discrepancy ofPd.)

The star discrepancy of the output sets of both derandomizedalgorithms we pre-
sented here was compared in [23] to the star discrepancy of other low discrepancy
point sets. These experiments took place in dimensions from5 to 21 and indicate
that the first derandomized algorithm leads to superior results if the dimension is rel-
atively high and the number of points is rather small. (We usethe phrase “indicate”,
since for dimension 10 or more, we are not able to calculate the exact discrepancy,
but can only use upper and lower bounds on it.) For details see[23].
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4 Conclusion and Open Problems

In the previous sections we discussed question (i), (ii), and (iii) and described in
particular how approaches based on bracketing entropy, randomization, and deran-
domization lead to improvements on previously achieved results.

The discussion shows that good bounds for the star discrepancy with explicitly
known constants are available. Similar bounds hold also forthe star discrepancy of
point sets that are extensible in the number of points and in the dimension, and the
statement that the inverse of the star discrepancy depends linearly on the dimension
d [45] can be extended to this situation: The inverse of the star discrepancy of infinite
sequences in[0,1)N depends almost surely linearly on the dimensiond.

Can we find even better bounds than (27) or (8)? A lower bound for the star dis-
crepancy that follows directly from (9) is of the formd∗∞(n,d)≥min{ε0,c0dn−1}, c0

andε0 suitable constants [49, Thm. 1], and leaves some room for improvements of
(27) or (8). Also the bound (28) shows that some trade-off between the dependence
on the number of points and on the dimension is possible. But instead of agonizing
over this intriguing question, let us state theconjecture of Wózniakowski(see [44],
or [66, Open Problem 7]):If there exist constants C,α > 0 and a polynomial p such
that

d∗∞(n,d)≤C p(d)n−α for all d,n∈ N, (38)

then necessarilyα ≤ 1/2.
The construction of point sets satisfying bounds like (8) or(27) can be done

with the help of derandomized algorithms [21, 19, 22, 23]. Unfortunately, these
algorithms exhibit running times that are exponential withrespect to the dimension
d, a fact prohibiting their use in really high dimensions.

This is maybe not too surprising, since even the seemingly easier problem of
calculating the star discrepancy of an arbitrary point set (or approximating it up to a
user-specified error) can only be solved in exponential timein d so far. And indeed
the problem of calculating the star discrepancy is known to beNP-hard.

Nevertheless, the discussed derandomized algorithms can be used in low and
modestly high dimensiond.

In light of the discussion above, it would be of interest to make further progress
in designing algorithms that construct low-discrepancy point sets of small size and
algorihms that approximate the star discrepancy of arbitrary n-point sets (which
would allow “semi-constructions” as described above). Furthermore, it would be
interesting to learn more about the dependence of the star discrepancy of classi-
cal constructions on the dimensiond and the complexity of approximating the star
discrepancy of given point sets.
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