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Abstract The star discrepancy is a measure of how uniformly disteibie finite
point set is in thed-dimensional unit cube. It is related to high-dimensional n
merical integration of certain function classes as exgeby the Koksma-Hlawka
inequality. A sharp version of this inequality states tltnet Worst-case error of ap-
proximating the integral of functions from the unit ball afree Sobolev space by
an equal-weight cubature is exactly the star discrepanttyeo$et of sample points.
In many applications, as, e.g., in physics, quantum cheynistfinance, it is es-
sential to approximate high-dimensional integrals. Thiik vegard to the Koksma-
Hlawka inequality the following three questions are verpaortant:

(i) What are good bounds with explicitly given dependencéhendimensiord for
the smallest possible discrepancy of angoint set for moderate?

(i) How can we construct point sets efficiently that satisfich bounds?

(iif) How can we calculate the discrepancy of given poinssfficiently?

We want to discuss these questions and survey and explaia approaches to
tackle them relying on metric entropy, randomization, aachddomization.

1 Introduction

Geometric discrepancy theory studies the uniformity ofrifigtion of finite point
sets. There are many different notions of discrepancieseasnre quantitatively
different aspects of “uniformity”, see, e.g., [5, 16, 25, 68, 68].
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1.1 The Star Discrepancy

A particularly relevant measure is the star discrepancychvis defined in the fol-
lowing way: LetP c [0,1]9 be ann-point set. (We always want to understand an
“n-point set” as a “multi-set”: It consists ofpoints, but these points are not neces-
sarily pairwise different.) Fox= (xq,...,%q) € [0,1]9 thelocal discrepancy (x, P)

of P in the axis-parallel box anchored at zé@ox) := [0,x1) X --- x [0,Xq) (which
we, likewise, simply want to catest boy is given by

A(P) = Aa((0.%) ~ TPA[0.X)|;

hereAy denotes thd-dimensional Lebesgue measure éhcdenotes the cardinality
of a multi-setA. Thestar discrepancyf P is defined as

d(P):= sup A(xP).
x€[0,1]d

Further quantities of interest are thmallest possible star discrepancy of any n-
point set in[0, 1]
dy,(n,d) = inf d, (P),
Pc[0,1)9;|P|=n

and, fore € (0,1), theinverse of the star discrepancy
n,(€,d) =min{ne N|d;(n,d) < €}.

Although we mainly focus on the star discrepancy, we wilbatgention from time
to time thel p-star discrepancy d? for 1 < p < o, which is defined by

di(P) = (/[O’l]d A(X, P)|de) l/p.

1.2 Relation to Numerical Integration

Discrepancy notions are related to multivariate numeiitagration. Such relations
are put in a quantitative form by inequalities of Koksmaa- or Zaremba-type.
Here we want to state a sharp version of the classical Kokdtaaka inequal-
ity [56, 51], which relates the star discrepancy to the woeste error of quasi-
Monte Carlo integration on certain function spaces. Foeotklations of discrep-
ancy notions to numerical integration we refer the readeth&original papers
[94, 93, 46, 82, 48, 47, 15, 67, 33] or the survey in [68, Ch&p. 9

To state a sharp version of the Koksma-Hlawka inequalitysefirst define the
normed function spaces we want to consider:
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LetHY! be the space of absolutely continuous functibies [0, 1] whose deriva-
tives ' are integrable. A norm ohi! is given by| |11 := [ f(1)[+ [|f'l|Ly(0.1)-
The (algebraic) tensor produet! H! consists of linear combinations of func-
tions f of product formf (x) = f1(x1)--- fg(Xq), f1,..., fg € HYL The spaced 1@
is then defined as the closure@f_;H* with respect to the norm

I i=1TOH 5 IRllgoae (1)
0AuCTT,...d}

wherel denotes the vectdd, ..., 1) andf/, is defined by
ol
nkeu ka

with (X, 1)k = X« if K € u, and(xy, 1)k = 1 otherwise. Then the following theorem
holds:

fi(xu) = f(x, 1), (2)

Theorem 1.Let tV), ... t(W ¢ [0,1)9, and let | be the integration functional and
Qun be the quasi-Monte Carlo cubature defined by

n

1 .
If::/ f(t)dt and f)= =5 ).
a(f) 0 (t) Qin(f) ”i; (t")
Then theworst-case errag"*'(Qy ) of Qy 4 satisfies

€ (Qna) = sup  [la(f) = Qun(f)|=dst®,... .t  (3)
feHLA; ||[f]g=1

In particular, we obtain for all fe H1.d

la(f) = Qan(F) < [|fllzada ™, ... .tM). (4)

Theorem 1 is a corollary of a more general theorem proved biétnell, Sloan,
and Wasilkowski in [47]. There the so-called-same-quadrant discrepanayhich
covers the star discrepancy as a special case, is relatbé todrst-case error of
quasi-Monte Carlo approximation of multivariate integrahanchored l;-Sobolev
spaces. In the special case of the star discrepancy therascthe pointl.

Particularly with regard to Theorem 1 the following threeegtions are very
important.

Questions:

(i) What are good bounds with explicitly given dependence owithension d for
the smallest possible discrepancy of any n-point set foraraid n?
(i) How can we construct point sets efficiently that satisfy iatimds?
(i) How can we calculate the discrepancy of given point setdesftig?
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Let us discuss the relevance of these questions for the istenegancy. If we
intend to approximate high-dimensional integrals of fiores fromH19 by a quasi-
Monte Carlo cubatur®y 4, and if we wish to minimize the corresponding worst-
case erroe"*'(Qngq), then Theorem 1 tells us that we have to minimize the star
discrepancy of the set of integration points we want to use.tiis purpose it is
certainly helpful to have upper bounds for the smallestdisarepancy that we can
achieve withn points. In high dimensions cubatures whose number of iategr
pointsn are exponential in the dimension are not feasible. That ig w ask in
question (i) for good bounds for the smallest possible dizancy of sample sets
of moderate sizen. By “moderate” we mean that does not grow faster than a
polynomial of small degree in the dimensidn

Bounds for the smallest discrepancy achievable are cirtaeful, but for quasi-
Monte Carlo integration we need to have explicit integmapoints. Therefore ques-
tion (ii) is essential.

In practice we may have some point sets that are reasonatzl&eses to use for
quasi-Monte Carlo integration. This may be due to seveadans as, e.g., that in
those points we can easily evaluate the functions we wamttégiiate or that those
points are in some sense uniformly distributed. Therefoveuld be desirable to
be able to calculate the star discrepancy of a given setesgffigi

In fact question (iii) is directly related to question (iiy bhe concentration of
measure phenomenon

Let us assume that we have a clase-pbint sets endowed with some probability
measure and the expected discrepancy of a random set isssroatih for our needs.
Under suitable conditions the measure of the discreparstyilalition is sharply
concentrated around the expected discrepancy and a lavggide bound ensures
that a randomly chosen set has a sufficiently small disci@paith high probability.
In this situation we may consider the following randomizégbathm, which is a
semi-constructioin the sense of Novak and Wozniakowski [66]:

We choose a point set randomly and calculate its actualepsercy. If it serves
our needs, we accept the point set and stop; otherwise we malesv random
choice. The large deviation bound guarantees that with pighability we only
have to perform a few random trials to receive an acceptaiiid pet.

Apart from the practical problem of choosing the point sefoading to the law
induced by the probability measure, we have to think of waysalculate the dis-
crepancy of a chosen set efficiently.

In this bookchapter our main goal is to study the bracketingopy of axis-
parallel boxes anchored at zero and use the results, ircpartiupper bounds for
the bracketing number and explicit constructions of bréingecovers of small size,
to tackle question (i), (i), and (iii).

Before we do so, we want to survey known bounds for the snigtlessible
star discrepancy, the problem of constructing small logcipancy samples, and
known algorithms to calculate or approximate the star dizancy of given point
sets.
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1.3 Known Bounds for the Star Discrepancy

We may distinguish two kinds of bounds for the smallest gmesitar discrepancy
d;(n,d): Asymptotic bound#/hich describe the behavior of,(n,d) well in the
asymptotic rangg.e., for fixed dimension and a large number of points(which
usually has to be exponential oh see the discussion in Sect. 1.3.1), grd-
asymptotic bound#hich describe its behavior well in thgre-asymptotic range
i.e., for moderate values of(which depend at most polynomially af).

Usually asymptotic bounds do not reveal the explicit depeicé ofd;,(n,d) on
d, while pre-asymptotic bounds exhibit the dependena#,0h,d) on both param-
etersn andd. (Thus an alternative terminology might be “dimensioneimsitive
bounds” and “dimension-sensitive bounds”.)

1.3.1 Asymptotic Bounds

For fixed dimensiord the asymptotically best upper bounds &y(n,d) that have
been proved so far are of the form

di(n,d) <Cgln(n)®tn7t, n>2, (5)

see, e.g., the original papers [40, 28, 65] or the monogriphk6, 25, 58, 62].
These bounds have been proved constructively, i.e., therexglicit constructions
known that satisfy (5) for suitable constafits

Ford =1 the sefl = {1/2n,3/2n,...,(2n—1)/2n} establishes (5) witl; =
1/2. Ford = 2 the bound (5) can be derived from the results of Hardy arttbhibod
[41] and of Ostrowski [72, 73] (the essential ideas can dlydze found in Lerch’s
paper [57]). Ford > 3 the bound (5) was established by Halton, who showed in
[40] that the Hammersley points exhibit this asymptoticdgbr. The Hammersley
points can be seen as a generalization of the two-dimergioird sets obtained in
a canonical way from the one-dimensional infinite sequefiearmder Corput from
[11, 12]. (In general, if one has an infinitel — 1)-dimensional low-discrepancy
sequencét¥) ., one canonically gets@dimensional low-discrepancy point set
{pW,..., p(M} for everyn by puttingp® = (k/n,t), see also [58, Sect. 1.1, 2.1].)

Looking at the asymptotic bound (5) it is natural to ask whketihis sharp or
not. That it is optimal up to logarithmic factors is clearrfrahe trivial lower bound
1/2n. A better lower bound was shown by Roth in [76]:

di(n,d) > cgln(n)Z°n"t, n>2. (6)

In fact, Roth proved that the right hand side of (6) is a lowaurind for the smallest
possiblel-star discrepancygs; (n,d), and this bound is best possible as was shown
for d = 2 by Davenport [13], and fod > 3 by Roth himself [77, 78] and indepen-
dently by Frolov [30]. Although Roth’s lower bound is shagp thel ,-star discrep-
ancy, it is not optimal for thé..-star discrepancy. This was shown by Schmidt in
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[79]. He established in dimensiah= 2 the lower bound
d:(n,2) > cIn(nn™t, n>2, (7)

and proved in this way that the upper bound (5) is optimal metision 2. In di-
mensiond > 3 improvements of (6) were achieved by Beck [4], and later bykB
Lacey, and Vagharshakyan [6, 7]; but although those impr&rds are deep mathe-
matical results, their quantitative gain is rather modEisé remaining gap, baptized
the “great open problem” by Beck and Chen in [5], has stilllmegn bridged so far.
Nonetheless, the solution of this intricate problem is nvetrty significant for nu-
merical integration in high dimensions. In particular, hds of the form (5) give us
no helpful information for moderate valuesmfsince Ir(n)®~1n~1 is an increasing
function innas long a: < €41, This means that with respectdave have to use at
least exponentially many integration points to perceiverate of decay of the right
hand side of inequality (5). Additionally it is instructit® compare the convergence
raten—1In(n)4-1 and the Monte Carlo convergence raté”/?: For example, in di-
mensiord = 3 we haven—tIn(n)4-1 < n~%/2if n > 5504, but ford = 10 we already
haven—tIn(n)4-1 > n=1/2 for all n < 1.295- 10**. Furthermore, point configura-
tions satisfying (5) may lead to constafgthat depend critically od. (Actually,
it is known for some constructions that the cons@in the representation

ds(n,d) < (CéIn(n)d*lJrod(In(n)d*l)) nt

of (5) tends to zero aapproaches infinity, see, e.g., [2, 62, 65]. Hereddmotation
with indexd should emphasize that the implicit constant may deperdj ea far no
good bounds for the implicit constant or, respectively,¢bastantCy in (5), have
been published.)

1.3.2 Pre-Asymptotic Bounds

A bound more suitable for high-dimensional integration watablished by Hein-
rich, Novak, Wasilkowski and Wozniakowski [45], who pralve

di(n,d) < cd’?n"Y2 and ni(d,e) < [cPde?], (8)

wherec does not depend ah n or €. Here the dependence of the inverse of the star
discrepancy ol is optimal. This was also established in [45] by a lower bofand
n;(d, ), which was later improved by Hinrichs [49] to

ni(d,e) > code! for0< e < g, (9)

wherecy, & > 0 are suitable constants. The proof of (8) uses a large daviadund

of Talagrand for empirical processes [86] and an upper bafikthussler for cov-
ering numbers of Vapniléervonenkis classes [42]. In particular, the proof is not
constructive but probabilistic, and the proof approachsduoa provide an estimate
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for the value ofc. (Hinrichs presented a more direct approach to prove (&) wit
¢ < 10 at the Dagstuhl Seminar 04401 “Algorithms and CompléexityContinuous
Problems” in 2004, but this result has not been publishedrt8tafter the submis-
sion of this book chapter Aistleitner gave a proof of (8) witkd 10 [1]. Since it
relies on bracketing entropy and the bracketing covers wsequt in Section 2, we
added a discussion of his approach in Section 3.2.1.)

In the paper [45] the authors proved also two slightly wedla@rnds with ex-
plicitly known constants: The first one relies on upper baufuit theaverage lp-
star discrepancyor evenp, the fact that the.,-star discrepancy converges to the
star discrepancy gstends to infinity, and combinatorial arguments. For a dedail
description of the approach, improvements, and closebtedlresults we refer to
[45, 34, 85].

Here we are more interested in the second bound from [45]exjpticitly known
small constants, which is of the form

ds(n,d) < kd¥2n~Y2(In(d) +In(n)) ™2, (10)

and leads to
ni(d,e) < O(de~?(In(d) +In(e™%))) (11)

where essentiallik ~ 2v/2 and the implicit constant in the big-O-notation is known
and independent af and . The proof of (10) is probabilistic and relies on Ho-
effding’s large deviation bound. (A similar probabilistipproach was already used
by Beck in [3] to prove upper bounds for other discrepangesm a conceptional
point of view it usedracketing covergalthough in [45] the authors do not call them
that way). As we will see later in Section 3.3, the probatidiproof approach can
actually be derandomized to construct point sets detestigaily that satisfy the
discrepancy bound (10).

1.4 Construction of Small Discrepancy Samples

On the one hand there are several construction methods kthatprovide point
sets satisfying (5), and these constructions can be dote efticiently. So one can
construct, e.g., Hammersley points of si@e dimensiord with at mostO(dnin(n))
elementary operations. On the other hand it seems to be tiahstruct point sets
efficiently that satisfy bounds like (8) or (10), althougindam sets should do this
with high probability. That it is not trivial to find such cangctions was underlined
by Heinrich, who pointed out in [44] that even the followingséer problems are
unsolved.

Problems:

(i) For eache > 0and de N, give a construction of a point sétV, ... t("W} ¢
[0,1]9 with n < cd¥ and d;(t™V, ... t("V) < &, where ¢ and k. are positive
constants which may depend &rbut not on d.
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(i) Foreach nd € N, give a construction of a point sétV, ...t} < [0,1]% with
dit®, ... tV) < cd“n~9, where ¢k anda are positive constants not depend-
ingonnord.

Although not stated explicitly in [44], these construcsaare required to be ef-
ficiently executable, preferably in polynomial timednande~1 or n, respectively,
see also [66, Open Problem 6]. If our ultimate goal is nunagiictegration, we
may view the construction of low-discrepancy points as a@mputation. Since
we can use the resulting integration points for the (effigiemaluation of various
integrands, we may still accept a little bit higher coststfar construction itself.

As stressed by Heinrich, it remains in particular a chalieggjuestion whether
any of the various known classical constructions satisBtismates like in problem
(i) and (ii) or even the bound (8) or (10).

There had been attempts from computer scientists to catstmall low-discre-
pancy samples [27, 9], but the size of those samples withegteed discrepancy at
moste in dimensiord is not polynomial ind ande 1. The size of the best construc-
tion is polynomial ine~* and(d/ In(e~1))"(¢ ™) [9]. Formally, those constructions
solve problem (i) (but not problem (ii)). Obviously, theesiaf the samples is a lower
bound for the costs of the construction, which are therefotgolynomial ind and
gL

We will discuss alternative constructions, based on bitangeovers and deran-
domization in Section 3.3.

1.5 Calculating the Star Discrepancy

In some applications it is of interest to measure the qualityertain point sets by
calculating their star discrepancy, e.g., to test whethecessive pseudo random
numbers are statistically independent [62], or whetherpdarsets are suitable for
multivariate numerical integration of particular classésntegrands, cf. Theorem
1. Apart from that, it is particularly interesting with resg to question (ii) that the
fast calculation or approximation of the star discrepanoylbd allow practicable
semi-constructions of low-discrepancy samples of modesiae.

It is known that the_,-star discrepancy of a givamnpoint set in dimensiod can
be calculated via Warnock’s formula [91] with(dr?) arithmetic operations and
similar formulas hold for weighted versions of the-star discrepancy. Heinrich
and Frank developed an asymptotically faster algorithniHfet_,-star discrepancy
using onlyO(nlog(n)9-1) operations for fixed [29, 43]. (Due to the exponent of
the log-term, the algorithm is only practicable in low dirsems.)

What methods are known to calculate or approximate the sarepancy of a
given setP? At the first glance an exact calculation seems to be diffgintte the
star discrepancy is defined as the supremum over infinitetyrtest boxes. But for
calculating the discrepancy &f exactly it suffices to consider only finitely many
test boxes. So P = {pW,...,p™M1 < [0,1)9, let us define
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r(P)={p’|i€{L..n}} and F(P)=r;(P)U{L},

and let us put

F(P)=ry(P)x---xIg(P) and I =Try(P)x - x [4(P).
Then it is not hard to verify that
ds,(P) =

[PN[0y)| [PN[0Y]]
max{_ max (a0~ 2 ) ma (FEIL g0 )},
(12)

for a proof see, e.g., [38]. Thus we need to consider at 1@¢st) test boxes to
computed;, (P). For a randorm-point setP we have almost surely” (P)| = nd,
resulting inQ(n%) test boxes that we have to take into account to calculate (12)
This underlines thaf12) is in general impractical ih andd are large. There are
some more sophisticated methods known to calculate thelserepancy, which
are especially helpful in low dimensions. If we have in the-aiimensional case
pM < p@ < ... < p, then (12) simplifies to

d.,(P)

= — + max (i)—Zi_1’
2n = 1<i<n 2n |’
a result due to Niederreiter, see [60, 61].
In dimensiond = 2 a reduction of the number of steps to calculate (12) was
achieved by de Clerck [10]. In [8] her formula was slightlyterxxded and simplified
by Bundschuh and Zhu. If we assurp%) < p<12) <---< p<1”) and rearrange for each

i €{1,...,n} the numbers m(zl), e pg), 1in increasing order and rewrite them as
0=¢0<é&1<--<&i<é&ir1=1,then[8, Thm. 1] states that

Bundschuh and Zhu provided also a corresponding formuthé&three-dimensional
case. The method can be generalized to arbitrary dimexséom requires roughly
O(nd/d!) elementary operations. This method was, e.g., used in {92hlculate
the exact discrepancy of particular point sets, so-caibdted) rank-1 lattice rules
(cf. [81]), up to sizen = 236 in dimensior = 5 and ton = 92 in dimensiord = 6.
But as pointed out by Winker and Fang in [92], for this methustances like, e.g.,
sets of sizen > 2000 ind = 6 are completely infeasible.

Another method to calculate the star discrepancy in tD(Té*d/ 2) was proposed
by Dobkin, Eppstein, and Mitchell in [17]. It uses sophiated, but complicated
data structures, and the authors implemented only asyiogitgtslightly slower
variants of the algorithm in dimensiah= 2.

K_ 0z | [K_ i+
n P1 El,k ar P1 El,k+l

d;,(P) = max maxmax{
0<i<n O<k<i
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The discussion shows that all known methods that calcutatstar discrepancy
exactly depend exponentially on the dimensgileind are infeasible for large values
of nandd.

Indeed, the problem of calculating the star discrepanbyAshard as was proved
in [38]. We will briefly outline the main proof ideas below ihi$ section. In [32]
Giannopoulos, Knauer, Wahlstrom, and Werner proved dtresuheparametrized
complexityof the problem of calculating the star discrepancy, nantedy showed
that it isW[1]-hard with respect to the parametdr It follows from [32] that the
general problem cannot be solved in ti@&°@) unless theexponential time hy-
pothesigs false, which is widely regarded as extremely unlikely.

Notice that the complexity results above are about the esalculation of the
discrepancy of arbitrary point sets; they do not directigdrads the complexity of
approximating the discrepancy. So what is known about aqmation algorithms?

Since in high dimension no efficient algorithm for the exaaicalation of the
star discrepancy is known, some authors tried to tackleattgeIscale enumeration
problem (12) by using optimization heuristics. In [92] Warland Fang usettiresh-
old accepting26], a refined randomized local search algorithm based ami¢as
idea as the well-known simulated annealing algorithm [&5lind lower bounds for
the star discrepancy. The algorithm performed well in ndca¢tests on (shifted)
rank-1 lattice rules.

In [89] Thiemard gave amteger linear programming formulatiofor the prob-
lem and used techniques as cutting plane generation andhaad bound to tackle
it. With the resulting algorithm Thiémard performed naivitll star discrepancy
comparisons between low-discrepancy sequences.

The key observation to approach the non-linear expresdi®nyia linear pro-
gramming is that one can reduce it to at mass@b-problems of the tyg@ptimal
volume subintervals with k pointsThese sub-problems are the problems of find-
ing the largest box€el®,y), y € I" (P), containingk points,k € {0,1,...,n— 1}, and
the smallest boxel®,y], y € I (P), containing/ points for¢ € {1,...,n}. Thiemard
conjectured these sub-problems to be NP-hard.

The conjecture of Thiémard is proved rigorously in [38] lsyablishing the NP-
hardness of the optimal volume subinterval problems. R NP-hardness of an
optimization problen is proved by verifying that deciding the so-called threshol
language otJ is an NP-hard decision problem (see, e.g., [53, Sect. 2.38ls
actually the NP-completeness of decision problems cooredipg to the optimiza-
tion problems mentioned above is verified. The verificat®dane by reduction of
the problem MINATING SET to the maximal volume subinterval problems and of
BALANCED SUBGRAPHto the minimal volume subinterval problems, respectively;
the graph theoretical decision problememNATING SET and BALANCED SUB-
GRAPH are known to be NP-hard, see [31, 54]. With the help of th¢Béhardness
results for the optimal volume subinterval problems it iswh that the problem of
calculating the star discrepancy itself is NP-hard. (Femtiore, some minor errors
occurring in [89] are listed in [38]. Since those errors mead to incorrect solu-
tions of Thiémard'’s algorithm for certain instances, giplained how to avoid their
undesired consequences.)
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A genetic algorithito approximate the star discrepancy was recently proposed
by Shah [80].

In the recent paper [39] a new randomized algorithm to apgprate the star
discrepancy based on threshold accepting was presentetghr€oensive numerical
tests indicate that it improves on the algorithms from [92, 80], especially in
higher dimension 26 d < 50.

All the approximation algorithms we have mentioned so farehshown their
usefulness in practice, but unfortunately none of them iples/an approximation
guarantee.

An approach that approximates the star discrepancy of a gt up to a user-
specified errod was presented by Thieémard [87, 88]. Itis in principle basethe
generation of small bracketing covers (which were not nathisdvay in [87, 88]).

2 Bracketing Entropy

In this section we want to study the bracketing entropy of-goarallel boxes an-
chored at zero. We start by introducing the necessary notion

2.1 Basic Definitions

Definition 1. Let x,y € [0,1]¢ with x; <y; for i = 1,...,d. We assign aveight
W([x,y]) to the closed bokx,y] := [X1,Yy1] X - X [X4,Yd] BY

W([va]) = Ad([oay]) —Ad([O,X]).

Let & > 0. The box[x,y] is a d-bracketif W([x,y]) < d. A set.# of d-brackets
whose union cover®, 1)9 is ad-bracketing coveof [0,1]%. Thebracketing number
N;)(d,d) denotes the smallest cardinality of adybracketing cover ofo, 19, Its
logarithm In(N;;(d, 8)) is thebracketing entropyor entropy with bracketing

The notion of bracketing entropy is well established in eiopl process theory,
see, e.g., [86, 90]. In some places it will be more converi@nis to use the related
notion of 3-covers from [21] instead of the notion of bracketing covers

Definition 2. Let & > 0. A finite setl” is a d-coverof [0,1]¢ if for all y € [0,1]®
there existx,z € I U {0} such thatx,Z] is a d-bracket andy € [x,Z. Let N(d, d)
denote the smallest cardinality of adycover of[0, 1]9.

If, on the one hand, we havedabracketing covegs, then it is easy to see that
My :={xe[0,1%\ {0}|3ye[0,1]%: [xy] € Z or [y,x € B} (13)

is ad-cover. If, on the other hand, is ad-cover, then
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Br ={[xyl|xyel U{0},[xY] isad-bracket x # y}
is ad-bracketing cover. Therefore we have
N(d,d) +1<2N;(d,d) < (N(d,d) +1)N(d, ). (14)

(The second inequality is obviously a weak one, and it woddhize to have a
tighter bound.) The bracketing number and the quaiity, d) are related to the
coveringand thel;-packing numbersee, e.g., [21, Rem. 2.10].

2.2 Construction of Bracketing Covers

How large is the bracketing entropy and how does a sthaltacketing cover look
like? To get some idea, we have a look at some exampléghwécketing covers.

2.2.1 Cells of an Equidistant Grid

To prove (10), Heinrich et al. used in [45] &cover in form of an equidistant
grid E5 = {0,1/m,2/m,...,1}4 with m= [d/3]. The grid cells, i.e., all closed
boxes of the fornix,x"], wherex; € {0,1/m,...,1—1/m} andx’" = x +1/m for

i €{1,...,d}, form ad-bracketing covefs. Indeed, the grid cell with the largest
weight is[(1—1/m)1, 1] with

W((1-1/m11)=1-(1-1/m<d/m<3.
The cardinality of thed-bracketing covegy is clearly
&5 =md < (do 1+ 1), (15)

Although the weight of the grid ce](1— 1/m)1, 1] is nearlyd, the weights of most
of the other grid cells are reasonably smaller tbafor example, the weight of the
cell [0,(1/m)1] is (1/m)4 < (5/d)9, which is ford > 2 much smaller thad.

2.2.2 Cells of a Non-Equidistant Grid

We generate a smallérbracketing cover by usingrgon-equidistant grid’s of the
form

5= {Yo..-, V(5.0 )" (16)

wherey, ¥, ..., Yi(s.d) IS @ decreasing sequencg @ 1]. We calculate this sequence
recursively in the following way (cf. Figure 1):

We setyy := 1 and choosgy € (0,1) such thaty© := y;1 andz? := 1 satisfy
W([y\9,Z9]) = &. Obviously,y1 = (1— 8)Y/9. Let y be calculated. If; > 5, we
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compute the real number, 1 € (0,y) that ensures that’) := (y,1,v1,...,y1) and
2V = (y,1,...,1) satisfyw([y"),2]) = . If y < &, then we puk(5,d) :=i and
stop. From the geometrical setting it is easy to see jhay, ... is a decreasing
sequence withy — yi+1 < V11— Vi+2. Thereforex(d,d) is finite.

Z#6) 25 A4 A3 A2 A1) H0)
Yo . ° v . = - —o
Vi e el e e e - --e

SO NS TN e Y Yo

° . . . ° o o

° ° ° ° ° o o

° ° ° ° ° o o

° ° ° ° ° o o

° ° ° ° ° o o

0 w 5 Va2 5 V2 oW
Fig. 1 Construction of the non-equidistant giigl for d = 2 andd = 0.2. Here k (5,d) = 6.

The following result was proved in [21, Thm. 2.3].

Theorem 2.Letd> 2, and let0O < d < 1. Letls = {yo,yl,...,y,((a’d)}d be as in
(16). ThenTs is a -cover of[0,1]9, and consequently

N(d,8) < |l5] < (k(8,d)+1)%, 17)
where ( )1/d) (
1 d In(1—(1-8)Y%) —In(3)
K@Ed=]g-7 In(1-o) | (18)

The inequality (5,d) < [5%5 @} holds, and the quotient of the left and the right

hand side of this inequality convergesltas é approache®.

From thed-coverls we obtain a-bracketing cove¥s by taking the grid cells of
the form[y,y*], wherey; = y; for somej = j(i) € {1,...,k(8,d)} andy;" = y;_ for
alli € {1,...,d}, and thed brackets of the fornD, Z] with zhavingd — 1 coordinates
equal to 1 and one coordinate equalfes q)- Thus

d
95| = K((S,d)d +d= (%) In(d)d(jfdJrod (57d+1) : (19)

the last identity follows from
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K(o,d) = d%lln(d)cS*lJrOd(l) aso approaches 0,
see [36, Sect. 2]. Note th(igdfl)d is bounded above by 4 and convergeg tsd
tends to infinity.

2.2.3 A Layer Construction

By construction the brackefg", 2],i=0,1,...,k(8,d)—1, satisiyw/([y), 2V]) =
0, but it can be shown that the weights of the brackets] in ¢5, with w; < 1 for
more than one indeixe {1,...,d}, are strictly smaller thad. It seems obvious that
a suitabled-bracketing cover consisting almost exclusively of braskéth weights
exactlyd should exhibit a smaller cardinality th&fy. We outline here a construc-
tion 25 which satisfies this specification. To simplify the repreéagan, we confine
ourselves to the cagk= 2 and refer to [35] for a generalization of the construction
to arbitrary dimensioul. Let & be given. The essential idea is the following:

We definea; = a;(3) := (1—id6)Y?fori=0,...,{ =¢(8):=[6 1] -1, and
az;1:= 0. We decomposg@, 1)? into layers

L®(8) :=[0,a1]\ [0,a:11), i=0,...,¢,

and cover each layer separately wéitbrackets. To covelt<°)(5), we can simply
use thed-bracketsy(), 21)],i =0,1,...,k(5,2) — 1, from our previous construction
and thed-brackets we obtain after permuting the first and seconddioates ofy!)
andZ", respectively. To cover the remaining layers, we obseraette brackets
[@11,a1],i=1,...,¢ — 1, all have weight, and we can cover the laydr§) (),
i (:0)1, ...,{ —1, by a straightforward modification of the procedure we useambver
L7 ().

The final layerL(¢)(8) = [0,a,1] is trivially covered by thed-bracket[0,a, 1]
itself. Figure 2 shows the resulting bracketing co¢grfor 4 = 0.075.

As shown in [36, Prop. 4.1], the two-dimensiodabracketing cover?; satisfies

|Z5| =2In(2)5724+0(371). (20)

Notice that the coefficient 2(2) ~ 1.3863 in front ofd—2 is smaller than the cor-
responding coefficier(2In(2))? ~ 1.9218 in (19).

2.2.4 An Essentially Optimal Construction

The layer construction was generated in a way to guaranéalild-brackets have
weight exactlyd (except of maybe those which intersect with the coordingési
To minimize the number of brackets needed to cd®et]?, or, more generally,
[0,1]9, it seems to be a good idea to find brackets with wedthat exhibit max-
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L

o8] [ 1 1 1 punl

0.4 ‘ L+

0

0 02 04 06 08 1.0
Fig. 2 The layer constructior¥s for = 0.075.

imum volume. The following lemma [35, Lemma 1.1] shows howtsd-brackets
look like.

Lemma1.Letd>2, & € (0,1], and let z€ [0,1]9 with A4([0,2) = z;---zg > &. Put

5 \d
X=X(z09) := (1—21"'2(1) z. (21)

Thenx, 7 is the uniquely determined-bracket having maximum volume of aH
brackets containing z. Its volume is

1/d\ d
)\d([x,z]):<1— (1—21?2(1) ) 7y Zg.

A positive aspect of the previous constructigfy is that (essentially) all its
brackets have largest possible weighand overlap only on sets of Lebesgue mea-
sure zero. But if we look at the brackets #% which are close to the first or the
second coordinate axis and away from the main diagonal,ttiese boxes do cer-
tainly not satisfy the “maximum area criterion” stated imma 1. The idea of the
next construction is to generate a bracketing cadgrsimilarly as in the previous
section, but to “re-orientate” the brackets from time todim the course of the
algorithm to enlarge the area which is covered by a singlekata Of course this
procedure should not lead to too much overlap of the gercbtatgckets. Let us
explain the underlying geometrical idea of the construrctio

Like all the constructions we have discussed so far, our nawskieting cover
should be symmetric with respect to both coordinate axeasTie only have to
state explicitly how to cover the subset
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H:={(xy) € [0.1%]x <y}
of [0,1]2. For a certain numbey = p(&) we subdivideH into sectors

h—1 x h
< —

< = =1,...,2"
2p — y — ZD}U{(O)O)}a h 1) 72

T {(x,y) eH\{(0,0)}

We start withT(2”) and cover this subset d0,1]2 in the same way as we cov-
ered it in the constructior®?s, i.e., we decompos§(2p> into horizontal stripes
[(0,8i11), (a,&)]NT@),i=0,1,..., = [61] — 1, and cover each stripe sepa-
rately with d-brackets whose weights are (except of maybe one brackstniee)
exactlyd. Notice that thed-brackets of% that cover the main diagonal (@, 1)?
are volume optimal due to Lemma 1. Hence, if we chopsefficiently large, the
sectorT @) will be thin and all thed-brackets we use to cover it will have nearly
maximum volume.

If p=0, thenH = T(2” and our new constructiows will actually be equal
to Zs. If p> 0, then we have additional sectofs?,..., T~ Again, for a
giveni € {1,...,2° — 1} we decompos@ () into horizontal stripes, but the verti-
cal heights of the stripes increases decreases. We essentially choose the heights
of each stripe in a way that the bracket on the right hand ditteestripe having this
heights and weight exacty exhibits maximum volume. Thus, if the sec®f) is
sufficiently thin, again essentially ajlbrackets that cover it will have nearly max-
imum volume. Therefore we should choose= p(d) large enough. On the other
hand, we usually will have overlappirdgbrackets at the common boundary of two
sectors. To minimize the number of brackets needed to ¢dyand thug0, 1]%), we
should try to avoid too much overlap of brackets and consettyueot choosep too
large. SinceT (@) has the most horizontal stripes of all sectf8, namely[51],
a choice satisfying 2% = o(&~1) ensures that the overlap has no impact on the
coefficient in front the most significant terd2 in the expansion of%;| in terms
of 6~1. Figure 3 and 4 show bracketing covefg based on this idea constructed in
[36] for 6 = 0.075 andd = 0.03. The parametgy was chosen to be

p=p(@) = |02

The figures show the overlapping of brackets at the commondeies of different
sectors. Note in particular that the 16 squares near théndrigrigure 4 are not
individual 6-brackets with weigh® — these squares just occur since larger brackets
intersect near the origin.

For all technical details of thé-bracketing cove#; of [0,1]? we refer to [36].
As shown there in Proposition 5.1, its size is of order

\%5| = 32+ 0(572) (22)
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Fig. 3 The essentially optimal constructic#s for & = 0.075.

0 0.2 0.4 06 08 1.0

0,

Fig. 4 The essentially optimal constructic#s for 6 = 0.03.

as long agp = p(9) is a decreasing function of®, 1) with lims_,op(d) = « and
2P = 0(571) asd tends to zero.

The constructios is (essentially) optimal, as will be shown by a lower bound
in the next section.

2.3 Bounds for the Bracketing Number

Here we state bounds for the bracketing number for arbittangnsiond.
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Theorem 3.Let d be a positive integer artl< é < 1. Then we have the following
two upper bounds on the bracketing number:

dd
N;(d,d) < acsfd +0q4(679%) (23)
and
d 1dd 1 d
Nj(d,8) <21 (5714 1)" (24)

Both bounds were proved constructively in [35] bypdracketing cover which
can be seen ad-dimensional generalization of the two-dimensional cardion
%5 from Section 2.2.3. In the same paper the following lowerrzbior the brack-
eting number was shown, see [35, Thm. 1.5].

Theorem 4.For d > 2 and0 < 6 < 1 there exist a constantavhich may depend
on d, but not ord, with

Ny(d,8) > 6 9(1—cqgd). (25)

The proof of Theorem 4 is based on the fact that the bracketingber\; (d, d)
is bounded from below by the average([d§(Bs(x))]~* over allx € [0,1]9, where
Bs(X) is ad-bracket containing with maximum volume.

The lower bound shows that the upper bodqid2, ) < &240(67?), resulting
from the bound (22) on the cardinality 685 from Section 2.2.4, is (essentially)
optimal.

3 Application of Bracketing to Discrepancy

We want to discuss how the results about bracketing covetbeatketing entropy
from the last section can be used to tackle the three qusedtiom Section 1.2. We
start with question (iii), where our results are most diseapplicable.

3.1 Approximation of the Star Discrepancy

Bracketing covers can be used to approximate the star gseoy by exploiting the
following approximation property

Lemma 2. Let # be a bracketing cover db,1]%, and letl; as in (13). For finite
subsets P o0, 1] put
dr (P) := max|A(x,P)|. (26)
xXelp
Then we have
dr (P) <d;(P) <d:(P)+9.
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The proof is straightforward, but can also be found in, €21, Lemma 3.1].

The essential idea of Thiémard’s algorithm from [87, 88tdsgenerate for a
given point seP and a user-specified errdra smalld-bracketing coveZ = %
of [0,1]¢ and to approximate; (P) by maxer, |A(x,P)|.

The costs of generatings are of order©(d|%;|). If we count the number of
points in[0,x) for eachx € Iz in a naive way, this results in an overall running
time of ©(dn|%;|) for the whole algorithm. As Thiemard pointed out in [88]isth
orthogonal range counting can be done in moderate dimewsioare effectively
by employing data structures based on so-called range fraessapproach reduces
the timeO(dn) per test box that is needed for the naive countin@ftog(n)?).
Since a range tree farpoints can be generated@{C%nlog(n)?) time,C > 1 some
constant, this results in an overall running time of

O((d +log(n)9)|Z5| +C%nlog(n)9).

For the precise details of the implementation we refer t¢.[88
The upper bounds on the running time of the algorithm show shaaller -
bracketing coversgs will lead to shorter running times. But since the lower bound
(25) implies
|B5| > 5791~ cqd),

even the time for generating&bracketing coveZ; is bounded from below by
Q(dé~9), and this is obviously also a lower bound for the running tiofiehe
whole algorithm. This shows that the approach of Thiemaxsl practical limita-
tions. Nevertheless, it is useful in moderate dimensiongaagsreported, e.g., in [23]
or [70].

The smallest bracketing covers used by Thiemard are diftérom the construc-
tions we presented in the previous section, see [88]. Figste®ws his construction
s in dimensiond = 2 for = 0.075.

He proved the upper bound

| T5] < (dgh), whereh = [%-‘ .

This leads to

1 d
| T5| < & (Ing +1) :

a weaker bound thajs| < €169 + 04(6-9*1) and | %5| < 29-1ed (571 + 1)
which hold for the constructios8s that established Theorem 3.

For d = 2 the bound 73| = 2In(2)52 + O(5~!) was proved in [36], which
shows that in two dimensions the quality 8 is similar to the one of the layer
constructionZs that we presented in the section 2.2.3.
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Fig. 5 Thiémard’s constructiotZs for = 0.075.

3.2 Pre-Asymptotic Bounds via Randomization

Here we want discuss question (i) from Section 1.2. We djsish between de-
terministic discrepancy bounds forpoint samples in0, 19 and ford-dimensional
projections of infinite sequences of points with infinitelgny coordinates. Further-
more, we mention briefly probabilistic discrepancy bouratdiybrid-Monte Carlo
sequences.

3.2.1 Point Sets in thed-Dimensional Unit Cube

Probabilistic pre-asymptotic bounds on the smallest pésstar discrepancy of any
n-point set in[0,1]9 can be proved in three steps:

Probabilistic Proof Scheme:

1. We discretize the star discrepancy at the cost of an appation error at most
0. More precisely, we use @ bracketing coveZ and consider for a point sét
instead ofd, (P) its approximatiord;: (P) defined in (26), wheré =T isasin
(13).

2. We perform a random experiment that results in a randqmint setP in [0, 1]¢
that fails to satisfy the even{A(x,P)| < 8}, x € I, with small probability. If
the random experiment is subject to the concentration osoregphenomenon,
then these “failing probabilities” can be controlled witiethelp of large devia-
tion bounds.

3. Since the eventd; (P) > &} is the union of the event§A(x,P)| > &}, x € I,
a simple union bound shows thiasatisfiesd; (P) <  with positive probability
if P{|A(x,P)| > &} < || tforallxe .
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Then fore = 26 there exists an-point setP with d,(P) < dj(P)+ 06 <e&. The
aim is to choose as small as possible.

To keep the loss caused by the union bound small, the sizee@-tracketing
coverZ (or thed-coverl 4, respectively) should be chosen as small as possible. To
receive a bound for the star discrepancy with explicit camist, bounds with explicit
constants are needed for the size of dhleracketing cover used.

The bound (10) from [45] was proved in this way: Téecoverl” was chosen
to be the equidistant grid from Section 2.2.1 and the randope@ment was to
distributen points uniformly and independently [8,1]9. The “failing probability”
in each single test box was bounded aboveHogffding’s large deviation bound
[52], which reads as follows:

Let X, ..., X, be independent random variables with<aX; < b; for all i. Then

forall 6 >0
212
P } >0 §2exp(—nan>.
n Yke1(bi —a)
Using the same probabilistic experiment and again Hoeffditarge deviation

bound, but instead of the bracketing cover from Sectionl2t2 one that implied
the estimate (24), one obtains the improved discrepancgdou

n

S (% ~E(X)

k=1

1/2
dz(n,d) < KdY2n"12|n (1+ g) / 27)

(here we have essentially ~ v/2, see [35, Thm. 2.1]). Since the inverse of the
star discrepancy depends linearly on the dimendidhe practically most relevant
choice ofn seems to ben proportional tod. Note that in this case (27) behaves
asymptotically as the bound (8). In fact, if (8) holds with= 10 (as claimed by
Hinrichs and recently published by Aistleitner), then tloaibd [35, (22)], a version
of (27), is still better than (8) for at < 1.5-€°d. Actually, we may use the upper
bound in (24) to reprove (8) without using Haussler’s resualtcovering numbers
of Vapnik-éervonenkis classes—a version of Talagrand’s large dewiabund for
empirical processes holds under the condition thadteacketing number of the
set system under consideration is bounded from abou€by*)? for some con-
stantC not depending o or d, see [86, Thm. 1.1]. (As we discuss at the end of
this subsection, Aistleitner’s approach to prove (8) witboastantc < 10 indeed
uses the upper bound (24).)

For other discrepancy notions similar approaches, relgimgniformly and in-
dependently distributed random points, were used to proseapymptotic bounds
with explicitly given constants. This was done, e.g., fashme-quadrant discrep-
ancy[47], discrepancies with respectediipsoids stripes andspherical capsn RY
[59], theextreme discrepand5], and theweighted star discrepand$0].

One can modify the probabilistic experiment by using, dlge,variance reduc-
tion techniquestratified samplinglf, e.g.,n = v9, then one can subdivid®, 1]°
into n subcubes of the same size and distribute in each subcub@orepiformly
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at random (and independently from the other points). Thiearment was used in
[20, Thm. 4.3] (a preprint version of [21]) to derive

dz(n,d) < K'dn~ 23 In(n)Y/2. (28)

(Again, we have essentiallf ~ /2. The proof used th&-coverlz from (16).)

For the discrepancy dilted boxesand ofballs with respect to probability mea-
sures on0,1]¢ which are absolutely continuous with respecttg a similar ap-
proach relying on a stratified sampling technique was useBlidak in [3] to prove
asymptotic probabilistic upper bounds. But these boundsiatoexhibit the de-
pendence on the dimension; in particular, the involved tomis are not explicitly
known.

We will discuss a further random experiment in more detaBéction 3.3.

Let us finish this subsection with the discussion of the result of Aistleitner,
who proved in [1] that the constaatn (8) is smaller than 10. As in the probabilistic
proof scheme stated above, his approach starts by disogetize star discrepancy
at the cost of an approximation errér= 2K, whereK ~ —log,(d/n)/2. The
underlying probabilistic experiment is to distribut@ointsp¥,. .., p( uniformly
and independently if0,1]%. An important observation is now that for measurable

subsetsA of [0, 1]¢ the variance of the random variab&g' := Aq(A) — |{pV} N A,
i =1,...,n, depends strongly on the volumg(A) of A:

var(£\)) = Aq(A)(1— Ag(A)).

Now Hoeffding’s large deviation bound gives good bounddtffierfailing probabil-
ities P{|1 57, EV| > 5} for 8a > 0 if Ag(A) ~ 1/2. But if Aq(A) is much smaller
or larger than 12, then Hoeffding’s bound cannot exploit the fact that thearece
of the random variablé,g') is small. A large deviation bound which can exploit this
fact isBernstein’s inequalityvhich reads as follows (see, e.g., [90]):

Let X,...,X, be independent random variables with zero means and bounded
ranges|X;| <M for alli. Then forallt> 0

t2/2
P{ - t} = Zexp( ST Var(X) +Mt/3> |

Aistleitner uses Bernstein’s inequality and thgadic chainingechnique, which
can be seen as a “multi-cover” approach:

For allk = 1,2,...,K consider a 2X-coverl, «, and putx?) := 0. From the
definition of ad-cover it follows that for anx(®) e I,-« one recursively finds points
x® er, , k=K-1,...,1, such thalxﬁK) > xﬁKil) > > xgl) for j=1,...,d,
and

Ac=A(X9) 1= 0.x)\ Jox)

n
X
)
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has volume at most 21, We have[o, x<K>) = UK, A and, if P denotes the set
{pW,....p"},

a(xp )’Sg ZEAK

If for k=1,...,K we define = {Ak (X(K)) Ix(K) e I'sz}, then || < |F«|.
Using a 2 %-bracketing cover as constructed in [35], we obtain via é.3)k-cover
I,-« satisfying|l,«| < (2€)4(2%+1)9, see (24) and (14). Choosing a suitable se-
quencecg, k=1,...,K, one essentially obtains with the help of a union bound,
Bernstein’s inequality, and the estimate (24)

(U fsaf-ee}) sz o{hse

Recall that.«| < |I,-«| < Og(2¢%) and Va(E,fk)) < 2= n particular).<% | is of
the size of the finesi-coverrl, «, but, since the variance of aﬂf\i is small (hamely

at most 2 (K-1), Bernstein’s inequality ensures that we can choose a smalf,
on the other handk = 1, then it may happen thaiy(A;) ~ 1/2, so Bernstein’s
inequality gives us no advantage over Hoeffding’s bound the size of< is
relatively small, namely at mo€dy(29). In general, the largek is, the more we

can exploit the small variance of aflf\k but the larger is the size afj. Aistleitner

proved that this “trade off” ensures that one can chdogg_; such thatyf_; cx <
8.65 holds. Thus the approximation property (see Lemma 2kleathe estimate

P{d;z(P) > <1+ % ck> 2K} g]P’{d;izK(P) > %csz}
k=1
) - 300}
P> ) o2
x(K)gl' K kgl “
o[y Ofrgele))
(K)gr Kk l

gkiP(Aka{ ZEAk > 2 })

showing that there exists arpoint setP in [0, 1]¢ that satisfies the estimate (8) with
¢ = 9.65. (For the technical details we refer, of course, to [1].)

Ad ——|PﬂAk|‘

> g2 }gzk.
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3.2.2 Infinite dimensional infinite sequences

So far we have discussed the existence of point sets thafysediasonably good
discrepancy bounds. In practice it is desirable to havgmaten points that can be
extended in the number of points, and preferably also in timedsiond. This al-
lows to achieve higher approximation accuracy while séihg able to reuse earlier
calculations.

In [14] the probabilistic bounds stated in the previous sghien were extended
by Dick to infinite sequences of infinite dimensional poiftst an infinite sequence
P of points in[0, 1), let us denote b, the sequence of the projections of the points
of P onto their firstd components, and b, 4 the firstn points ofPy. Then in [14]
the following results were shown:

There exists an unknown constahtsuch that for every strictly increasing se-
quencenm)men in N there is an infinite sequené&an [0,1)" satisfying

d5(Popnd) <Cv/d/nmy/In(m+1)  forallmd e N.

(We add here that with the help of Aistleitner’s approachlihdne can derive an
upper bound fo€.)

Furthermore, there exists an explicitly given const@htsuch that for every
strictly increasing sequendem)men in N there is an infinite sequenéesatisfy-

ing

d
A (Pod) < C’\/(m+d+dln (1+ W\/ﬁ)) /nm forallmdeN. (29)

The results from [14] show that there exist point sets thatlma extended in the
dimension and in the number of points while bounds similgfi®) or (27) remain
valid.

A disadvantage of (29) is nevertheless that in the case whaayen,, = mfor all
mit is not better than the trivial bourdf,(Pnq) < 1.

By using the bound (24), another result for infinite sequemta [0,1)N was
presented in [19]: There exists an explicitly given cons@hsuch that for every
strictly increasing sequencem)men in N there is an infinite sequen&esatisfying

Az (o) < C”\/dln (1+ %) /nm  forallmd e N. (30)

This bound is an improvement of (29), which in particularti gseful in the case
nn = m for all m. Moreover, it establishes the existence of infinite seqegRdn
[0,1)" having the following property: To guarantdg (P, 4) < € for a givene, we
only have to taken > c.d, wherec; is a constant depending only ensee [19, Cor.
2.4]. Note that this result cannot be deduced directly fromresults in [14]. As
mentioned above, it is known from [45, 49] that we have to takkastn > c,d
if € is sufficiently small. (Here, depends again only on) In this sense [19, Cor.
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2.4] shows that the statement “the inverse of the star diserey depends linearly
on the dimension” (which is the title of the paper [45]) exdsto the projections of
infinite sequences if0, 1). To make this more precise, the notion of theerse of
the star discrepancy of an infinite sequencis ihtroduced in [19], given by

No(g,d) :==min{n:¥Ym>n:d;(Png) < €}.
Then Corollary 2.4 of [19] states that there exist sequeRmsgch that
Ni(e,d) <O(de?In(1+¢71) foralldeN, g€ (0,1]. (31)

In fact even more holds: If we endow the $@11)" with the canonical probabil-
ity measuredy = ®;7 ;A1 and allow the implicit constant in the bi@-notation to
depend on the particular sequeriéhen inequality (31) holds almost surely for a
random sequende, see again [19, Cor. 2.4]. In [19, Thm. 2.3] bounds of the form
(30) and (31) with explicitly given constants and estimdtesthe measure of the
sets of sequences satisfying such bounds are provided.

3.2.3 Hybrid-Monte Carlo Sequences

A hybrid-Monte Carlo sequengcwhich is sometimes also called@xed sequenge
results from extending a low-discrepancy sequence in tiersion by choosing
the additional coordinates randomly. In several applicetiit has been observed
that hybrid-Monte Carlo sequences perform better than planrgte Carlo and pure
quasi-Monte Carlo sequences, especially in difficult peois, see, e.g., [83, 69, 71].

For a mixedd-dimensional sequences whose elements are, technically speak-
ing, vectors obtained by concatenating tiiledimensional vectors from a low-
discrepancy sequengavith (d —d’)-dimensional random vectors, probabilistic up-
per bounds for its star discrepancy have been providen, #ndq, denote the sets
of the firstn points of the sequences andq respectively, theDkten, Tuffin, and
Burago showed in [71] that

2
P(d;,(mn) —dy(gn) <€) >1— 2exp(%) for n sufficiently large.  (32)

The authors did not study how largeactually has to be and if and how this ac-
tually depends on the parametersinde. In the note [37] a lower bound far is
derived, which significantly depends drande. Furthermore, with the help of the
probabilistic proof scheme the probabilistic bound

Fda(m) - do(a) <2 > 1- N e2en(- ) @

was established, which holds without any restrictiomom this sense it improves
the bound (32) and is more helpful in practice, especialfysfoall samples sizas
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As we know from (25) and (14), for smadithe quantityN(d, £/2) grows exponen-
tially in d. As pointed out in [37, Remark 3.4] a factor depending exptiatty on
d has to appear in front of exp £2n/2) in the bound (33) if we want it to hold for
all n € N. Recall that we can use the bound (24) on the bracketing nuiolodtain
an upper bound faN(d, £ /2) with explicit constants.

Recently, there has been increasing interest in (detestiupdiscrepancy bounds
for (deterministic) mixed sequences, see, e.g., [63, 64].

3.3 Small Discrepancy Samples via Derandomization

Here we want to consider question (ii) from Section 1.2: H@am eve construct
point sets that satisfy the probabilistic bounds statedeictiSn 3.2? How can we
derandomize the probabilistic experiments to get detastiérpoint sets with low
discrepancy? The probabilistic experiment of distribgtirpoints uniformly at ran-
dom in[0,1]¢ was derandomized in [21]. We illustrate the derandomirdtiea for
a different probabilistic experiment used in [23], whichdes to a simpler and faster
algorithm.

3.3.1 Random Experiment

Let k € N be given and led be the largest value that satisfies- k(J,d), where
K(d,d)isasin (18). Lel” =I5 be the non-equidistant grid from (16). But1:=0
and let# = %; the set of all (half-open) grid cells, i.e., all boxgsyt) with y; =
y; for somej = j(i) € {1,...,k+1} andy;” = y;_1 for all i € d. Then obviously
Ir=12.

Letn e N be given. FoB € Z letxg :=n-A4(B), i.e.,xg is the expected number
of points insideB if we distributen points independently at random{iy 1]°.

Our aim is now toround randomlyfor eachB € % the real numbexg to an
integeryg such that the following two constraints are satisfied:

e Weak constraintEach sel with yg points inB for all B € % should have small
discrepancy with high probability.
e Hard constraint The equationY| = Sgc » Y8 = 5 e X8 = n should hold.

We saw in Section 3.2 that in the previous random experintbata/eak constraint
can be satisfied for independent random points with the hielgrge deviation in-
equalities. But if our rounding procedure has to satisfyhithed constraint our ran-
dom variableys, B € 4, are clearly not independent any more.

Nevertheless, such a randomized rounding that satisfiagehk constraint with
high probability and respects the hard constraint can be.ddhere are two ap-
proaches known, due to Srinivasan [84] and to Doerr [18]. \\ssgnt here the
randomized rounding procedure of Srinivasan:

Randomized Rounding Procedure:
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e |Initialize yg = xg for all B € #.
e Repeat the following step until aj are integral:

Pair Rounding StepChooseys, yg not integral.
Chooseo € [0,1] minimal such thayg + o oryg — 0 is integral.
Chooser € [0, 1] minimal such thayg — T or yg + T is integral.
Set
+o0,yg—0 with probability =L,
Yovi) = {(ys Y — 0) p Yoz

(Ys—T,yg + 1) with probability 5%
e Output:(ys)gec%-

The pair rounding step leavgs. 4 ys invariant. Hence we have always

VB = z Xg = N.
Be# Be#

This shows particularly that if there is a varialgtgleft which is not integral, there
has to be another ongy, B # B', which is not integral. Thus the algorithm termi-
nates and the output sgi, B € 4, satisfies the hard constraint. Furthermore, the
pair rounding step leavé®yg) invariant, henc&(yg) = xg. Now letY be a set with

yg points inB for all B € . Then

E(nA(g,Y))E( (xByB)> =0 forallger.

Be#;BC[0,9)

Furthermore, a concentration of measure result holdsygh®e € %, are not inde-

pendent, but it can be shown that they satisfy certain negjatirrelation properties,
cf. [84]. As shown by Panconesi and Srinivasan, Cherno#éffdting-type bounds
hold also in this situation [74]. This result and the earbdservations yield the
following theorem, see [23].

Theorem 5.The randomized rounding procedure generates in tinfgZ0) ran-
domized roundingsgyof xg for all B € # such thaty gc Y8 = Y e # X8 = n and

2
P{|A(g,Y)|>A} < 2exp<—)\—3n> forallger.

If we now choosel = /3n~1In(2|I"|) andd =~ /d/ny/InIn(d), then the next
theorem can be proved by following the three steps of thefgioeme in Section
3.2.1, see [23].

Theorem 6. There exists a constant€ 0 such that
P {d;; (Y)<Cy/d /n\/ln(an)} >0, (34)

whereo = g(d) < 1.03tends to zero if d- co.
(Essentially we hav€ ~ v/6.)
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3.3.2 Derandomized Construction

Now we want to derandomize the random experiment, i.e., wa veaconstruct
ann-point setY deterministically that satisfies the bound (34) in Theoreil6re
precisely, we want to compute a roundifyg)sc# Of (Xg)se# that satisfies

Ys= ) Xg=n (35)
Be# Bez.%
and
; (X8 —YB)| < &-Nn-Ag([0,9)) forallgerl, (36)
BC[0,9)

where thedys are error tolerances fixed in the algorithm. If theis a set withyg
points inB for all B € %, we obtain]Y| =nand

Ja(0.9) - Y N[0.9)| < &-Au((0.9) forallger.

To compute such a rounding we follow Raghavan [75] and defgssimistic
estimators f,Py’, g€ I'. ForB € # let ps = {xg}, where{xg} denotes the frac-
tional part ofxg, and forg € I let lig := Y gcjog){Xs}. The pessimistic estimators
are defined as

—(1+8&)" (1+3g) |—| (14 &ypB)
BC[0,9)

Py = (1+ &)Wk (1+ (— - 1) pB) :
’ BCl0g) 140

With the help of the pessimistic estimators we can see whé8® is satisfied
or not. This is easily seen by making the following obseosatiForB € 4 let
ds € {0,1}, and forq € I' let Qj, Q, be the values oP;” andPy, respectively,
calculated on valuegg instead ofpg (with g unchanged). Then it is a simple
observation thaQq > 1 if and only if $gc (0,6 08 > (1+ &) Hg, andQy > 1 if and
only if Ygc(0,g) 08 < (1— J)Hg.

By updatingthe pessimistic estimators for some adjustmant— x, we shall
mean the operation of replacing the factbr- dgps) in Py by (14 dgx), and anal-
ogously forP;, for eachg € I such thaB C [0,g). (Again, lg stays unchanged.)

The derandomized rounding algorithm proceeds as follows.

Derandomized Rounding Procedure:

1. Initialize pg := {xg} for all B € Z.

2. Set the error tolerancég such that for eac € I we havePy Py < 1/(2|I).
LetU =y ger (Py +Py).

3. Let # ={Be XA|ps¢{0,1}}. While| 7| > 2:

a. PickB,B' € 7.
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b. Let(pg), pg,)), i =1,2, be the two possible outcomes of the pair-rounding step
of the randomized rounding procedure with respect to the gfavariables
(ps, Pe’)- LetU;, i = 1,2, be the sum of the pessimistic estimatdrepdated
according to the corresponding outcome.

c. Picki € {1,2} to minimizeU;. Let pg + pg), Pr pg,) and update 7, the
pessimistic estimators, ant

4. Outputys = |xg] + ps, B € A.

Note that in step 2 we haw¢ < 1. Furthermore, it was shown in [24, Sect. 3.1]
that the minimuny; of {U;,U,} appearing in step 3.c satisfids < U. After step
3 we have # = 0 andpg € {0,1} for everyB € Z. By our previous observation,
> Bc(0.g) PB > (14 dy)Hg if and only if Pg+ > 1, and analogously for the lower bound.
SinceU < 1 is maintained throughout the algorithm and since the pestc es-
timators are non-negative, this cannot occur. The prodess iroduces a round-
ing satisfying equation (36). Note that as in the randomipeohding, the value of
Y B PB IS kept constant throughout the process, thus (35) is satisfi

Although the order in which variables are picked in step 8.aat important for
the theoretical bound, numerical tests indicate that itéfgrable to use an order in
which the tree formed by the pairings is a balanced binagy fse that each value
pe is adjusted onlyO(log|I" |) times), see [24] for details.

Using the bounds on th&s derived by Raghavan [75] and choosihgf order
0 ~ +/d/ny/InIn(d), the derandomized rounding algorithm leads to the follgwin
theorem, see [23].

Theorem 7. There exists a deterministic algorithm which, on input n @naom-
putes in time @dIn(dn)(on)%) an n-point set Y [0, 1] with discrepancy

ds(Y) <Cy/d/n+/In(an);
here C< 2.44, ando = 0(d) < 1.03tends to zero if & co.

The output seY hasyg points in each grid ceB € %. Although the exact place-
ment of these points inside the box@gloes not affect the theoretical bound on
d; (Y) from Theorem 7, numerical experiments indicate that it isoadjidea to
place these points independently, uniformly at randoi.in

3.3.3 A Component-by-Component Derandomization

Another approach is presented in [19]. There a componemsbyponent (CBC)
construction ofh-point sets via derandomization is proposed. In parti¢wiarthis
approach given point sets can be extended in the dimensiene. tHe underlying
random experiment is as follows: Given mpoint setPy = {p®, ..., p™} in di-
mensiond’, we choose new componentd), ... . x(™ randomly from some one-
dimensional grid and receive timepoint setPy. 1 = {(p®,x1)), ..., (p(W,xM)}.
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We may repeat this procedure until we obtaimamoint set in the desired dimension
d. This probabilistic experiment can be derandomized withdlassical method of
Raghavan [75]. If we start the CBC-construction in dimensioe, the deterministic
output sePy of sizenin dimensiord satisfies the bound

di (Py) < O(d*2n~Y2In(1+-n/d)*/?). (37)
and the running time of the algorithm is bounded by
O(c?n@*3/2(dIn(14 n/d))~@+1)/2),

ca suitable constant independenhandd. Certainly the bound (37) is weaker than
the bound in Theorem 7, but the bound on the running time oCfA€ algorithm

is a reasonable improvement upon the running time guaraftbe derandomized
algorithm discussed before. The CBC-algorithm has thetimaddil nice feature that
it can calculate the exact discrepancy of the output setouttlessentially more
effort.

In [22] some more implementation details of the CBC-alduritare provided
and several numerical tests are performed. In particliarekperiments indicate
that the discrepancies of the output sets of the CBC-algyaribehave in practice
much better than predicted by the theoretical bound (37@yTepend rather linear
on the dimensiod than proportional tal®2. The numerical experiments reveal that
the discrepancies of the output sets, which are subsetstafrcéull d-dimensional
grids, are almost exactly equal to the discrepancies ofutgrids (for reasons ex-
plained in [22] we want to call the latter discrepanciesdgyaps”). For output sets
of sizen the corresponding full grid has size larger théf?/d!. We may interpret
this result in a positive way: The CBC-algorithm providegparse sample from a
completed-dimensional grid, which exhibits essentially the samermigancy as the
full grid.

To overcome the lower bound on the discrepancy given by thie ‘@gap”, we
also consider a randomized CBC-variant: After receivingatput sefy, we ran-
domize its points locally to receive a new output Bt For the randomized s&)
the theoretical discrepancy bound (37) still holds, andllithe numerical tests in
dimensiond = 10 its discrepancy was always much smaller than the corneipg
grid gap (which, as already said, is a lower bounddfp(Py)). (To be more precise,
an estimator fod, (P ), which majorizesi;, (P;) with certainty at least 95%, is al-
ways much smaller than the corresponding grid gap. We usestitimator, since
calculating the actual discrepancyRjf is a much harder problem than calculating
the discrepancy d?y.)

The star discrepancy of the output sets of both derandonaigedithms we pre-
sented here was compared in [23] to the star discrepancyhef tiw discrepancy
point sets. These experiments took place in dimensions fdm21 and indicate
that the first derandomized algorithm leads to superioft®Bithe dimensionis rel-
atively high and the number of points is rather small. (Wethsghrase “indicate”,
since for dimension 10 or more, we are not able to calculaexact discrepancy,
but can only use upper and lower bounds on it.) For detail§2:je
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4 Conclusion and Open Problems

In the previous sections we discussed question (i), (i}l @) and described in
particular how approaches based on bracketing entropgpraization, and deran-
domization lead to improvements on previously achievedltgs

The discussion shows that good bounds for the star discegpeith explicitly
known constants are available. Similar bounds hold alsth®star discrepancy of
point sets that are extensible in the number of points anderdimension, and the
statement that the inverse of the star discrepancy depeedsly on the dimension
d [45] can be extended to this situation: The inverse of thedisarepancy of infinite
sequences if0, 1) depends almost surely linearly on the dimension

Can we find even better bounds than (27) or (8)? A lower bounth#ostar dis-
crepancy that follows directly from (9) is of the fori (n,d) > min{&y, codn—}, co
andgp suitable constants [49, Thm. 1], and leaves some room foraugments of
(27) or (8). Also the bound (28) shows that some trade-offlben the dependence
on the number of points and on the dimension is possible.i&t¢ad of agonizing
over this intriguing question, let us state tt@njecture of Waniakowskisee [44],
or [66, Open Problem 7])f there exist constants,@ > 0 and a polynomial p such
that

ds(n,d) <Cp(d)n~® foralld,neN, (38)

then necessarilgr < 1/2.

The construction of point sets satisfying bounds like (8Y2#) can be done
with the help of derandomized algorithms [21, 19, 22, 23]fddiunately, these
algorithms exhibit running times that are exponential wéhpect to the dimension
d, a fact prohibiting their use in really high dimensions.

This is maybe not too surprising, since even the seemingdieearoblem of
calculating the star discrepancy of an arbitrary pointgeapproximating it up to a
user-specified error) can only be solved in exponential timeeso far. And indeed
the problem of calculating the star discrepancy is knowretbl B-hard.

Nevertheless, the discussed derandomized algorithms earsdxd in low and
modestly high dimensiod.

In light of the discussion above, it would be of interest tokeéurther progress
in designing algorithms that construct low-discrepancynpsets of small size and
algorihms that approximate the star discrepancy of aryitnepoint sets (which
would allow “semi-constructions” as described above).tirenmore, it would be
interesting to learn more about the dependence of the staregiancy of classi-
cal constructions on the dimensidrand the complexity of approximating the star
discrepancy of given point sets.
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