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ABSTRACT

Protocols and System Design, Reliability, and Energy Efficiency in Peer-to-Peer

Communication Systems

Salman Abdul Baset

Modern Voice-over-IP (VoIP) communication systems provide a bundle of services to their

users. These services range from the most basic voice-based services such as voice calls and

voicemail to more advanced ones such as conferencing, voicemail-to-text, and online address

books. Besides voice, modern VoIP systems provide video calls and video conferencing,

presence, instant messaging (IM), and even desktop sharing services. These systems also

let their users establish a voice, video, or a text session with devices in cellular, public

switched telephone network (PSTN), or other VoIP networks.

The peer-to-peer (p2p) paradigm for building VoIP systems involves minimal or no use

of managed servers and is therefore attractive from an administrative and economic per-

spective. However, the benefits of using p2p paradigm in VoIP systems are not without

their challenges. First, p2p communication (VoIP) systems can be deployed in environ-

ments with varying requirements of scalability, connectivity, security, interoperability, and

performance. These requirements bring forth the question of designing open and standard-

ized protocols for diverse deployments. Second, the presence of restrictive network address

translators (NATs) and firewalls prevents machines from directly exchanging packets and

is problematic from the perspective of establishing direct media sessions. The p2p com-

munication systems address this problem by using an intermediate peer with unrestricted

connectivity to relay the session or by preferring the use of TCP. This technique for address-

ing connectivity problems raises questions about the reliability and session quality of p2p

communication systems compared with the traditional client-server VoIP systems. Third,

while administrative overheads are likely to be lower in running p2p communication sys-



tems as compared to client-server, can the same be said about the energy efficiency? Fourth,

what type of techniques can be used to gain insights into the performance of a deployed

p2p VoIP system like Skype?

The thesis addresses the challenges in designing, building, and analyzing peer-to-peer

communication systems. The thesis presents Peer-to-Peer Protocol (P2PP), an open proto-

col for building p2p communication systems with varying operational requirements. P2PP

is now part of the IETF’s P2PSIP protocol and is on track to become an RFC. The thesis de-

scribes the design and implementation of OpenVoIP, a proof-of-concept p2p communication

system to demonstrate the feasibility of P2PP and to explore issues in building p2p commu-

nication systems. The thesis introduces a simple and novel analytical model for analyzing

the reliability of peer-to-peer communication systems and analyzes the feasibility of TCP

for sending real-time traffic. The thesis then analyzes the energy efficiency of peer-to-peer

and client-server VoIP systems and shows that p2p VoIP systems are less energy efficient

than client-server even if the peers consume a small amount of energy for running the p2p

network. Finally, the thesis presents an analysis of the Skype protocol which indicates that

Skype is free-riding on the network bandwidth of universities.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Modern Voice-over-IP (VoIP) communication systems provide a bundle of services to their

users. These services range from the most basic voice-based services such as establishing

voice calls and storing and retrieving voicemail to the more advanced such as conferencing,

voicemail-to-text, and online address books. Besides voice, modern VoIP systems provide

video calls and video conferencing, presence, instant messaging (IM), and even desktop

sharing services. These systems also let their users establish a voice, video, or a text session

with devices in cellular, public switched telephone network (PSTN), or other VoIP networks.

Client-server (c/s) is one way to architect modern VoIP systems [Rosenberg et al., 2002].

The idea is that clients (or user agents) can establish a media session1 with the assistance

of managed servers. In these systems, the user agents store their reachable network address

with a managed registrar using a session establishment protocol such as Session Initiation

Protocol (SIP) [Rosenberg et al., 2002]. The user agents typically run on hardphones,

mobile devices, or desktop machines. When a user desires to establish a media session

with another user, its user agent sends the signaling (call establishment) message to the

proxy server which is co-located with the registrar. The proxy server locates the network

address of the callee user agent and forwards the call establishment message to the callee

user agent. The user agents then directly exchange the media traffic such as voice, video, or

IM. However, the presence of middle boxes such as restrictive network address translators

1we refer to voice, video, or IM session as a media session.
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SIP registrar / 
proxy / presence / 
server

User agent User agent

(1) signaling

(1) signaling
(2) media

(voice, video, IM)

(UDP or TCP)

media server

NAT / firewall

NAT / firewall

IP-PSTN 
gateway

Figure 1.1: A client-server communication system.

(NATs) [Audet and Jennings, 2007] and firewalls may prevent them from directly exchanging

packets. Therefore, in addition to the proxy server for signaling, the user agents also have

to rely on a managed relay server that relays the media traffic between them. Moreover, the

user agents may also use managed servers for establishing an audio or a video conference

since they may not have sufficient uplink or downlink network capacity to establish a full-

mesh conference [Lennox and Schulzrinne, 2003]. Further, if a user agent desires to establish

a media session with a device outside the client-server system such as a PSTN or mobile

phone, it must do so through a designated server or a gateway.

Using designated servers to provide directory service, media relaying due to NATs and

firewalls, conferencing, and presence creates a network and administrative overhead for the

provider. Such overheads have associated economic costs which grow with the number

of users. Figure 1.1 shows an instance of a client-server communication system where

two user agents behind a restrictive NAT and firewall exchange media traffic through a

managed server. The figure also shows an IP-PSTN gateway that enables user agents in the

client-server system to establish media sessions with devices in PSTN and cellular networks.

The peer-to-peer (p2p) paradigm is another way to architect modern VoIP systems

and has been popularized by Skype [Skype, 2010a]. The idea is that the user agents or

nodes cooperate to provide the directory service (registrar), call establishment, and media

relaying services which are provided by managed servers in the client-server VoIP systems.

The user agents do so by running an overlay protocol which distributes the functionality
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of directory service, call establishment, and media relaying among the user agents. At the

heart of the overlay protocol lies the overlay algorithm2, which determines how a user

agent forwards messages to the intended user agent in a distributed manner. In the research

literature, user agents providing the distributed routing and storage services are known as

super nodes [Liang et al., 2004; Baset and Schulzrinne, 2006] or peers [Bryan et al.,

2010]. Similar to client-server systems, the user agents run on hard phones, mobile devices

and desktop machines with heterogeneous network connectivity. Due to their hardware

and network capabilities, some user agents may not be able to provide registrar or media

relaying services. Such user agents may not run the overlay protocol, and instead connect

to one or more user agents running the overlay protocol. In the research literature, such

user agents are known as ordinary nodes [Liang et al., 2004], ordinary hosts [Baset and

Schulzrinne, 2006] or clients [Bryan et al., 2010].

To establish a media session in a p2p communication system, the caller user agent

launches a distributed search using the overlay protocol to discover the network address of

the callee user agent and then directly exchanges signaling and media traffic with the callee

user agent. However, since restrictive NATs and firewalls may prevent some user agents

from directly exchanging packets, the user agents involved in setting up a media session rely

on user agents with unrestricted connectivity to relay signaling and media traffic between

them. Typically, the user agents send real-time traffic such as voice and video over unreliable

protocol such as UDP, but may be forced to use TCP if the NATs or firewalls block UDP.

Since user agents may not have sufficient uplink and downlink network capacity to establish

an audio or a video conference, they may use other user agents as conferencing relays.

Further, user agents may also cooperate to provide voicemail, address book, and presence

service to other user agents. However, like the client-server communication systems, the

user agents must contact a designated server to establish a media session with devices in

cellular, PSTN, or other communication networks.

Figure 1.2 shows an instance of a peer-to-peer communication system. The nodes A-

E run the overlay protocol and provide distributed directory and media relaying services,

whereas nodes F and G are behind a restrictive NAT or a firewall device and connect to

2Chord [Stoica et al., 2003] is an example of an overlay algorithm.
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Figure 1.2: A peer-to-peer communication system.

nodes C and E, respectively, to establish a media session. The nodes A and B directly

exchange media traffic whereas nodes F and G use the node D for exchanging media traffic.

1.1 Problems and Challenges

The above characteristics of a p2p communication system give rise to the following unique

problems and challenges for designing, building, and analyzing these systems.

Protocol and System Design: How should open, standardized, and interoperable pro-

tocols for building peer-to-peer communication systems be designed so that these systems

can be deployed in ad hoc, enterprise, and Internet environments? How media sessions

can be established in the presence of restrictive NATs and firewalls and how to locate user

agents that can relay media sessions for user agents behind restrictive NATs and firewalls?
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Conferencing: How can audio and video conferences be established and scaled without

the use of managed servers since the network capacity of the participants is finite and they

may also be behind NATs and firewalls? How can non-participant peers help scale the

conference?

Reliability: What factors impact the reliability of a p2p communication system and how

do we analyze its reliability? What techniques can be used to improve the reliability of such

a system, especially the relayed media sessions?

Interference with the User Application: A user agent relaying a voice or a video

session shares network resources with other user applications. The relaying of a media

session can interfere with other user applications that require the network bandwidth, and

impair their performance. How can we characterize and minimize this interference, or

provide incentives to the user for relaying media sessions?

Session Quality: The user agents that are unable to exchange UDP packets due to

restrictive NATs and firewalls may be able to use TCP for establishing a media session.

What are the conditions under which sending real-time traffic such as voice and video over

TCP is feasible?

Energy Efficiency: Are p2p communication systems more energy efficient than c/s VoIP

systems? What is the total energy consumption of a VoIP system and what are the sources

of inefficiency in such a system? How can we alleviate those inefficiencies?

Measurement: How can the performance of peer-to-peer communication systems such

as Skype be measured? Is Skype free-riding on the network bandwidth of universities?

1.2 Overview and Contributions of the Thesis

This thesis focuses on the above mentioned problems and challenges in designing, building,

and analyzing peer-to-peer communication systems. The thesis is divided into three parts.

Part I (Chapter 3-5) presents protocols and systems for designing and building peer-to-peer
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communication systems, and for enabling video conferencing without managed servers. Part

II (Chapter 6-8) presents analysis of reliability, session quality, energy efficiency in these

systems. Part III (Chapter 9) focuses on devising measurement techniques to gain insights

into the workings of peer-to-peer communication systems, such as Skype. A brief overview

of the chapters and their contributions is as follows.

Chapter 3 discusses the requirements for designing a peer-to-peer communication pro-

tocol. It then presents Peer-to-Peer Protocol (P2PP), an open and interoperable protocol

for building p2p communication systems [Baset et al., 2007]. The protocol has been in-

corporated in the RELOAD protocol [Jennings et al., 2010] which is being standardized

in the Peer-to-Peer Session Initiation Protocol (P2PSIP) working group of the Internet

Engineering Task Force (IETF).

Chapter 4 presents OpenVoIP, a proof-of-concept system that demonstrates the fea-

sibility of P2PP and explores issues in building p2p communication systems [Baset and

Schulzrinne, 2008].

Chapter 5 presents a theoretical framework for peer assisted audio and video confer-

encing. The framework assumes that peers have finite uplink capacities, analyzes how to

add new participants without disrupting the existing participants, and the reliability of p2p

video conferences.

Chapter 6 formalizes the notion of reliability in peer-to-peer communication systems,

presents a simple model to analyze the reliability of relayed media sessions, and describes

techniques to improve the reliability of such media sessions [Baset and Schulzrinne, 2010].

Then, it discusses distributed techniques to find a user agent willing to relay media session

in O(1) hops such that the latency of a relayed call and its interference with the user

applications is minimized.

Chapter 7 characterizes the working region under which sending real-time traffic may

be feasible over TCP. It explores the impact of packet size and TCP protocol settings

on the TCP induced delay, provides guidance on setting playout buffers for TCP, and

introduces techniques to minimize the impact of delay variations due to the AIMD nature

of TCP [Brosh et al., 2008].

Chapter 8 presents a framework to compare the energy efficiency of p2p and c/s com-
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munication systems. It identify sources of energy inefficiency in these systems [Baset et

al., 2010], presents the economic cost per user per month of running such a system, and

provides recommendations to alleviate the inefficiencies.

Chapter 9 details measurement techniques for analyzing peer-to-peer communication

systems that use proprietary protocols. Skype is presented as the case study [Baset and

Schulzrinne, 2006]. The measurements indicate that Skype is free riding on the network

bandwidth of the universities [Kho et al., 2008].

1.3 Related Work

Singh [Singh, 2006] and Bryan [Bryan et al., 2005] proposed architectures for building peer-

to-peer Session Initiation Protocol (SIP) systems. Their work focused on the architecture

level issues and demonstrated the feasibility of distributing the registrar and proxy servers

defined by the SIP protocol to the user agents. This thesis focuses on designing, building,

and analyzing peer-to-peer communication systems and comprehensively explores issues

such as protocol and system design, reliability, relay selection, session quality, conferencing,

energy efficiency, and measurement. Related work relevant to these issues is discussed in

each chapter.
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Chapter 2

Definitions and Background

This chapter provides the definitions and background that are applicable throughout the

thesis. As mentioned in Chapter 1, network address translators (NATs) may prevent hosts

from directly exchanging packets. We provide an overview of different types of NATs, the

problems they cause, and the protocols for exchanging packets in the presence of NATs

directly or through an intermediary (Section 2.2). We then comment on the percentage

of VoIP calls in the Internet that may need an intermediary due to restrictive NATs and

firewalls (Section 2.3). The nodes or user agents can potentially use any structured or

unstructured overlay algorithm to form a p2p communication network. We provide a brief

overview of structured and unstructured overlay algorithms in Section 2.4.

2.1 Definitions

In this section, we define the terminology that is applicable throughout the thesis.

Peer-to-Peer or Overlay communication network is an overlay network that entities

(nodes) form by running a p2p/overlay protocol in order to establish media sessions

with minimal or no use of managed servers.

P2P or Overlay communication protocol defines the messages that nodes must ex-

change for the operation of the p2p network, includes mechanisms such as NAT traver-

sal and security, and allows devices with heterogeneous resources and capabilities to
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participate in the p2p network.

Overlay algorithm determines the next node in the overlay where a node should send the

message. Distributed hash tables and Gnutella [Chawathe et al., 2003] are examples

of structured and unstructured overlay algorithms.

Node is an entity that either runs the p2p protocol (peer) or connects to one or more

peers to use the services provided by the overlay (client). Depending on the context,

it is also referred to as an endpoint or user agent in the thesis.

Peer is node that fully participates in the p2p network, runs the p2p protocol, and provides

message routing and media relaying services.

Client is a node that connects to one or more peers to use the services provided by the

p2p network.

DHT is a form of structured overlay algorithm, that provides a lookup and storage service

similar to a hash table. The responsibility of locating and storing the key/value pairs

is distributed among the nodes.

Overlay operator or provider is an entity that enables node to run a p2p communica-

tion system.

2.2 Network Address Translators (NATs)

NAT devices [Egevang and Francis, 1994] are typically deployed at the edge of the network,

commonly referred to as an internal network, and present it as a single IP address to

the external network. The NAT devices have at least two IP addresses, an internal IP

address and an external IP address. The later is also referred to as the server-reflexive

address [Rosenberg, 2010]. When a device in the internal network needs to exchange packets

with a device in the external network, the NAT device assigns an external IP address and

port number for this exchange, so that the packets from the device in the external network

can be routed back to the NAT and onwards to the device in the internal network. The NAT

devices may also filter the packets that arrive at the external IP address and port number
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Figure 2.1: Machine X in the internal network exchanging packets with machines Y1 and
Y2 in the external network through a NAT device.

allocated by the NAT device. RFC 5128 [Srisuresh et al., 2008] refers to these behaviors

as the mapping and filtering behaviors of NATs. Together, these behaviors determine if

machines behind two different NAT devices can directly exchange packets or may require

the use of an intermediary. Next, we briefly elaborate the mapping and filtering behavior

of NAT devices. For a detailed description of these behaviors, we refer the reader to [Audet

and Jennings, 2007; Ford et al., 2005].

Consider Figure 2.1 where a machine with an IP address and port number X:x behind a

NAT device needs to exchange packets with machines Y1 and Y2 in the external network,

having IP addresses and port numbers Y1:y1 and Y2:y2, respectively. Assume that for the

packet exchange between X:x and Y1:y1 and X:x and Y2:y2, the NAT device allocates an

external IP address and port number X1’:x1’ and X2’:x2’, respectively.

2.2.1 Mapping Behavior of NATs

The mapping is known as endpoint-independent mapping, if the NAT reuses the map-

ping for subsequent packets sent from the same internal IP address and port X:x to any

external IP address and port such as Y1:y1 or Y2:y2. The mapping is known as address-

dependent mapping if the NAT reuses the mapping for subsequent packets sent from the

same internal IP address and port X:x to the same external IP address, regardless of the
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external port. That is, packets sent from X:x to any port on Y1 will use the same mapping

X1’:x1’. However, any packets sent by X:x to any port on Y2 will use a different mapping

X2’:x2’. The mapping is known as address and port-dependent mapping if the NAT

assigns a new mapping for packets sent from the same internal IP address and port X:x to

any external IP address and port number.

If the NAT behavior is not endpoint-independent, then it requires the hosts behind two

different NAT devices to correctly guess the mapping allocated by the NAT device in order

to directly exchange packets. An incorrect guess means that hosts behind two different

NATs must exchange packets through an intermediary or a relay.

2.2.2 Filtering Behavior of NATs

When a host in an internal network exchanges packets with a host in the external network,

the NAT stores a mapping between the internal host and the external host and assigns a

filtering rule. The rule is known as endpoint-independent filtering if the NAT device

forwards packets received from any host on this mapping. The rule is known as address-

dependent filtering if the NAT device only forwards packets from the external host for

which the mapping is maintained, regardless of the source port of the packet received from

the external host. The rule is known as address and port-dependent filtering if the

NAT device only forwards packets from the port of the external host with which the internal

host has exchanged packets.

The NATs with endpoint-independent mapping and filtering behavior are the least con-

strained types. The devices behind these NAT devices are able to establish a media session

without an intermediary. The NATs with address and port-dependent mapping and filtering

are the most constrained type.

2.2.3 Typical NAT Behavior

A survey of 1,787 unique NAT devices indicates that only 11% have an endpoint independent

mapping and filtering behavior [Müller and Klenk, 2010]. The rest of the NAT devices have

an endpoint dependent mapping and filtering behavior, which makes it difficult for hosts

behind these devices to directly exchange packets.
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2.2.4 Protocols for Traversing NATs

Session traversal utilities for NAT (STUN) [Rosenberg et al., 2008] is a protocol that can

be used by an endpoint to determine the IP address and port allocated to it by a NAT.

The protocol can also be used to check the type of NAT an endpoint is behind [MacDonald

and Lowekamp, 2010] and to check direct connectivity between endpoints that may be

behind different NAT devices. Traversal using relays around NAT (TURN) [Mahy et al.,

2010] is an extension of the STUN protocol that allows the endpoints behind two different

NATs or firewalls to exchange packets through an intermediary. Interactive connectivity

establishment (ICE) [Rosenberg, 2010] is a protocol that makes use of the STUN and

TURN protocol to establish connectivity between two endpoints directly or through an

intermediary.

STUN, TURN, and ICE do not require any special behavior from the NAT devices.

Therefore, we use these protocols in designing p2p communication protocols. Protocols

such as UPnP [UPnP Forum, 2010] require explicit signaling between applications and

NAT devices and will not work with the installed base of NATs that does not support these

protocols.

2.3 Percentage of VoIP Calls in the Internet Requiring a

Relay

The percentage of VoIP calls in the Internet that require a relay depends on the call arrival

patterns through restrictive NATs. The precise determination of this number is impossible

without access to call logs of the client-server or peer-to-peer VoIP providers which they

are reluctant to share. However, our conversation with people in the VoIP industry suggest

that the ball park range for the percentage of calls needing a relay is between 15-30%. A

recent survey of 1,787 NAT devices indicates that hosts behind approximately 30% of these

devices cannot traverse the NATs using UDP or TCP [Müller and Klenk, 2010] implying

that hosts behind two different such devices are not likely to directly exchange packets

without an intermediary. If the VoIP call arrival distribution follows this NAT distribution,

the percentage of calls requiring a relay falls within the range.
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Figure 2.2: Chord DHT.

2.4 Overlay Algorithms

The overlay algorithms determine how nodes store and locate data in the overlay network.

There are two types of overlay algorithms, structured and unstructured. Structured overlay

algorithms guarantee a deterministic way of storing and locating data. They are suitable for

finding a ‘needle’ in a hay-stack. On the other hand, the unstructured overlay algorithms

do not guarantee a deterministic storage and lookup mechanism. Consequently, they are

more suitable for grabbing hay from a hay stack, i.e., finding copies of a popular file in a

p2p file sharing network.

Next, we briefly describe distributed hash tables (DHTs) which are a type of struc-

tured overlay algorithms. DHTs allow nodes to form an overlay network and to provide a

distributed lookup and storage service similar to hash tables.

2.4.1 Distributed Hash Tables (DHTs)

We use Chord [Stoica et al., 2003] to explain the underlying concepts of distributed hash

tables. For a detailed survey of different overlay algorithms including DHTs, we refer the

reader to RFC 4981 [Risson and Moors, 2007]. Figure 2.2 illustrates a Chord network.

Each node in the Chord network has a fixed length identifier which is randomly chosen by

a node or by a central authority. Similar to a hash table, the key space in Chord ranges

from zero to the maximum value of the fixed length identifier. A node maintains two tables

for maintaining connectivity to the Chord network, the successor list, and the routing
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table. The successor list of a node X contains the IP addresses and port numbers of

nodes running the Chord protocol, that have numerically closest ID’s to X. We refer to the

successor list as the neighbor table of a node. The routing table of a node X contains

the IP addresses of log N Chord nodes, assuming there are N nodes in the system. A node

selects a node for its ith routing table row with an ID that lies between [X +2i, X +2i+1). A

node uses the successor list to maintain a consistent view of the overlay whereas it uses the

routing table to quickly send messages to other nodes in the Chord network. A message can

traverse log N hops on average. The nodes in the Chord network have to periodically check

the liveness of the nodes in their successor (neighbor) and routing tables. A node stores

any key value pairs whose keys are between its predecessor’s identifier and itself. When a

node joins the Chord network, it takes ownership of a portion of the data that its successor

stores. Similarly, when it leaves the Chord network, its successor must take ownership of

the data stored by this departing node.
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Chapter 3

Protocols for Building Peer-to-Peer

Communication Systems

3.1 Introduction

The research in peer-to-peer systems has focused on the design of structured or unstructured

protocols [Stoica et al., 2003; Ratnasamy et al., 2001; Rowstron and Druschel, 2001a; Rhea

et al., 2004; Maymounkov and Mazieres, 2002; Chawathe et al., 2003], file sharing [Rowstron

and Druschel, 2001b; Rhea et al., 2003], and streaming [Zhang et al., 2005] that distribute

the functionality of servers to nodes. The designers of these protocols, more often than not,

need to reinvent mechanisms for data model, message reliability, security, and NAT and

firewall traversal. Such reinvention increases the time to build and deploy a p2p system.

Further, many of the above referenced protocols ignore the issue of NATs and firewalls

altogether which is central to the deployment of a p2p communication system.

Skype [Skype, 2010a] is the first peer-to-peer VoIP application that enables user agents

to establish media sessions with minimal use of managed servers. It does so by distributing

the directory service, proxy server, and media relaying functions to the Skype user agents.

Specifically, the Skype user agents cooperate to provide a distributed directory service

for locating the network address of other Skype user agents, and for exchanging signaling

messages to establish a media session. They can then directly exchange media traffic such as

voice, video, or IM. However, restrictive NATs and firewalls may prevent them from directly
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exchanging packets. The Skype network enables media session establishment between these

user agents by using other Skype nodes with unrestricted Internet connectivity to relay the

signaling and media traffic between these user agents.

Although Skype works, it uses a proprietary and encrypted protocol and requires Inter-

net access to connect to the Skype’s p2p network. Consequently, it cannot work in envi-

ronments with no Internet connectivity. Further, our research has shown that the success

rate of Skype media sessions depends on the characteristics of a network connection such

as a NAT, and the selection of a Skype user agent to relay media traffic is suboptimal [Kho

et al., 2008]. Moreover, the relaying of media session consumes network bandwidth on the

machine running the Skype application. Our conversations with Skype users suggest that

at times they have become annoyed with the use of their machine’s resources by the Skype

application and decided to terminate it. This action can result in the failure of the relayed

media session.

The thesis devises an open, standardized, and interoperable protocol for building peer-

to-peer communication systems that is motivated by the desire to prevent the reinvention

of mechanisms for data model, message reliability, security, and NAT and firewall traversal

while at the same time, keeping the protocol extensible and flexible for non-VoIP uses. The

protocol facilitates the design and development of VoIP systems that require minimal or

no use of managed infrastructure and doing so under many different and often conflicting

requirements of network connectivity, scalability, resource and service discovery, reliability,

monitoring and diagnostics, and security. The protocol is extensible, allows incorporating a

p2p protocol (which we refer to as overlay algorithm (Section 3.2)) for file-sharing, stream-

ing, or VoIP, and reuses the same protocol machinery for data model, message reliability,

security, and NAT and firewall traversal for different overlay algorithms, thereby preventing

reinvention of this machinery for each overlay algorithm.

The rest of this chapter is organized as follows. In Section 3.2, we describe the require-

ments of designing such a protocol. In Section 3.3-3.6, we present Peer-to-Peer Protocol

(P2PP) that we have designed. The protocol can be used to build p2p communication

systems for ad hoc, enterprise, and Internet scale environments. In Chapter 4, we present

OpenVoIP, a p2p communication system that we have built using P2PP that implements
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three different DHTs. As shown in Section 4.4, 85% of the total lines of code (approxi-

mately 16,000) are independent of the overlay algorithm implemented using P2PP. This

result confirms our assertion of keeping the same protocol machinery for data model, mes-

sage reliability, security, and NAT and firewall traversal for different overlay algorithms.

3.2 Requirements

The goal of a peer-to-peer communication protocol is to enable media session establishment

with minimal or no use of managed servers. Below, we describe the main requirements for

designing an open, standardized, and interoperable p2p communication protocol for building

p2p communication systems that can be deployed in ad hoc, enteprise, and Internet scale

environments.

1. Incorporating Different Overlay Algorithms The p2p communication protocol

should allow to incorporate different overlay algorithms.

Description The p2p communication system can be deployed in enterprise and

home networks (SOHO), emergency and ad hoc situations, mobile devices, and over

the Internet. In the emergency and ad hoc situation, the quick establishment of the

communication is paramount; in mobile devices, the conservation of devices resources

such as battery is important; whereas in the Internet deployments, scaling to millions

of nodes is necessary. The diverse deployment and scalability requirements imply

that one overlay algorithm may not be suitable for all deployments. On the other

hand, many deployments of the p2p communication protocol need mechanisms for

NAT and firewall traversal, security, and connectivity. Further, we desire to keep the

protocol extensible for non-VoIP usages. Therefore, the p2p communication protocol

should have a mechanism to incorporate an appropriate overlay algorithm to meet

the diverse scalability requirements. At the same time, it should provide mechanisms

for NAT traversal, security, and connectivity that are independent of different overlay

algorithms.
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2. NAT and Firewall Traversal The p2p communication protocol should distribute

the functionality of NAT and firewall traversal servers to the endpoints or peers.

Further, the protocol should facilitate the discovery of peers providing the NAT and

firewall traversal service.

Description This requirement is one of the main reasons for designing a peer-to-

peer communication protocol for VoIP. A VoIP provider that uses managed servers to

relay media sessions between user agents that are behind restrictive NATs and firewalls

incurs an economic and administrative overhead. A p2p communication protocol and

system can reduce this overhead by distributing the functionality of these servers to

the endpoints.

A peer with NAT and firewall traversal capabilities should be selected such that it

does not increase the delay of the media session.

3. Resilience A p2p communication system must continue to function as peers arrive,

depart, and fail. The design of the protocol should not make any assumptions about

the uptime of the peers.

Description The peers will run on the machines of end users. These users can

turn off their machines or p2p application at anytime. The protocol should provide

mechanisms for dealing with the departing peers so that the functions performed by

them can be transferred to other peers in a seamless way.

4. Security The protocol should provide mechanisms for preventing fake identity cre-

ation of users and nodes, and for message confidentiality and data integrity.

Description When running p2p communication protocol in untrusted environments,

rogue users can prevent legitimate nodes from fully participating in the overlay by cre-

ating fake node and user identities. Such an attack is known as Sybil attack [Douceur,

2002]. The protocol should provide mechanisms to protect against Sybil attacks. Fur-

ther, to prevent the nodes from snooping in the traffic or modifying the stored data in
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the overlay, the protocol should provide mechanisms for message confidentiality and

data integrity. These mechanisms should be independent of the overlay algorithm.

5. Service Model The protocol should support the addressing, storage, and discovery

of heterogeneous data (resource) in the overlay. The overlay treats the stored data as

opaque; only the appropriate p2p application can interpret it. Further, the protocol

should be flexible to allow new resources to be stored in an existing p2p network.

Description NAT and firewall traversal servers, voicemail, address book, and con-

figuration storage are examples of heterogeneous resources and services which peers

can provide. However, even in a p2p communication system, managed servers can

provide these services. The protocol should provide mechanisms for addressing, stor-

ing, and discovering heterogeneous resources and services that are either provided by

peers or by managed servers.

6. Namespace The protocol should allow centralized and decentralized naming author-

ities.

Description A centralized naming authority is needed to guarantee a unique names-

pace for users, nodes, resources, or services. In the absence of any naming authority,

the protocol and the system should be able to determine if the identifiers of users,

nodes, resources, or services collide and how to resolve collisions.

7. Reusing Existing Protocols The p2p communication protocol should reuse existing

protocols where possible.

Description Session Initiation Protocol (SIP) [Rosenberg et al., 2002] is a protocol

for establishing a session between user agents. TLS [Dierks and Rescorla, 2008] and

DTLS [Rescorla and Modadugu, 2006] protocols can provide message confidentiality

over a reliable and unreliable transport. STUN [Rosenberg et al., 2008], TURN [Mahy

et al., 2010], and ICE [Rosenberg, 2010] are protocols for enabling connectivity be-

tween endpoints that may be behind NATs. The p2p communication protocol should
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reuse these protocols because they are well defined for accomplishing their respective

tasks and partially or completely reinventing them will result in a complex protocol

that is difficult to implement.

8. Protocol Overhead The byte and message overhead of the protocol should be min-

imal.

Description The protocol is envisioned to be run on low capability mobile devices

such as WiFi phones and wireless enabled cameras as well as more resourceful devices

such as desktop PC’s. A protocol which has a large byte and message overhead

can impact the device resources. Consequently, the user will be less inclined to run

applications based on such a protocol.

9. Interconnect with Other Communication Networks The p2p communication

protocol and system should facilitate interconnection with other p2p and client-server

VoIP systems, circuit switched PSTN, and cellular networks, and facilitate their dis-

covery in a distributed or a centralized manner.

Description A user of a p2p communication system may need to establish media

sessions with users in other communication networks such as PSTN. The protocol

should facilitate this interconnection.

10. Non-VoIP Usages The p2p communication protocol should be reasonably flexible

so that it may be used to implement other p2p systems such as content distribution

or streaming.

Description Any peer-to-peer protocol and system such as file sharing and stream-

ing needs mechanisms for data model, message reliability and confidentiality, data

integrity, and NAT and firewall traversal. If a p2p communication protocol provides a

flexible data model, and provides generalized mechanisms for message reliability and

confidentiality, data integrity, and NAT and firewall traversal, it can then be extended

to support non-VoIP usages such as file sharing and streaming.
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3.3 Peer-to-Peer Protocol (P2PP)

The thesis presents Peer-to-Peer Protocol (P2PP) [Baset et al., 2007], an application layer

request-response binary protocol that allows participating nodes to form an overlay using

any structured or unstructured overlay algorithms. The design of P2PP exploits com-

monalities in the existing peer-to-peer protocols (which we refer to as overlay algorithms

(Section 2.1)) such as Bamboo [Rhea et al., 2004], Chord [Stoica et al., 2003], CAN [Rat-

nasamy et al., 2001], Pastry [Rowstron and Druschel, 2001a], Kademlia [Maymounkov and

Mazieres, 2002], and Gia [Chawathe et al., 2003] thereby defining a protocol that does

not include details specific to any of these protocols and has mechanisms to incorporate

a protocol-specific feature. P2PP defines mechanisms for NAT and firewall traversal, uses

secure transport, and has mechanisms for exchanging node capabilities and diagnostic infor-

mation that are independent of any overlay algorithm. P2PP allows non-participant nodes

(clients) to use overlay services through participant nodes (peers).

In Section 3.4, we give a design overview of P2PP. In Section 3.4.3, we describe the key

components of a P2PP message. We then describe the P2PP operations in Section 3.6.

3.4 Design Overview of P2PP

This section describes the entities defined by P2PP (node model), how the nodes store

data (data model), the types of messages and their reliable delivery (message and reliability

model), the security mechanisms of P2PP (security model), and NAT and firewall traversal

mechanisms.

3.4.1 Node Model

P2PP defines two types of nodes, namely, peers and clients. A peer is a node participating

in an overlay that provides storage and routing services to other nodes in the overlay. A

client is a node that does not provide any storage or routing services. Instead, it commu-

nicates with one or more peers to use the storage and routing services provided by them.

A peer can participate in more than one overlay and a client can also communicate with

peers in different overlays. Each overlay is identified by a fixed length identifier which we
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refer to as overlay-id (see Appendix A.15 for bit-level details).

P2PP does not define a priori which nodes can act as peers or clients and leaves the

decision to the designer of the p2p communication system. The rationale is that P2PP can

be used to form an overlay of participating nodes in many different network environments

such as Internet, enterprise, and mobile networks. The nodes which are suitable candidates

for becoming a peer in one environment may not necessarily be suitable in the other envi-

ronment. The CPU and memory usage, uptime, and network connectivity of the machine

running the p2p application are some of the metrics which the designer of the p2p applica-

tion can use to determine whether a node should be a peer or a client. The classification

of a node as a peer or a client is not permanent; a client can join the overlay as a peer and

later be promoted to a peer after it has been online for sometime, or a peer can invite a

client to join the overlay. Similarly, a peer can leave the overlay and join as a client.

In P2PP, peers and clients are identified by a node-id (Appendix A.1). The length of

the node-id is fixed per overlay instance. The node-id for peers and clients is chosen from the

same identifier space. To some extent, the assignment of a node-id to a node depends on the

underlying overlay algorithm. For structured overlay algorithms such as DHTs, a node-id is

a randomly chosen identifier and its length depends on the hash function used in the DHT.

For unstructured protocols, the identifier can be chosen in any appropriate way. P2PP

allows a central naming authority to select node-id’s for peers and clients. Alternatively,

peers and clients can choose their own node-id’s; however, the possibility of collision arises.

Further, the lack of a central authority for selecting a node-id opens the system to Sybil

attack [Douceur, 2002]. To address these issues, P2PP defines an optional entity called an

enrollment and authentication (E&A) server. The E&A server ensures that node

identifiers are unique and verifiable, i.e., E&A issues a digital certificate for the node-id. In

addition, the E&A server can also authenticate the users running the p2p application. A

peer (typically, the first peer in the overlay) can also act as an E&A server.

Bootstrapping is a fundamental issue in the overlay as the nodes must discover the

network address of other peers in order to join the overlay. There are many different

mechanisms for discovering a peer already in the overlay [Cooper et al., 2007]. P2PP

defines an optional entity called the bootstrap server which provides the joining peers
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and clients with the IP address of peers already in the p2p network. The bootstrap server

may be co-located with the E&A server. A peer can also act as a bootstrap server. P2PP

leaves it to the designer of the p2p communication system to decide how a bootstrap server

should maintain a [sub]set of online peers in the overlay. In Section 4.3.1, we describe the

mechanism that we have used in our OpenVoIP system.

For diagnostic purposes, an overlay operator may like to construct a ‘map’ of nodes.

Such a map allows the overlay operator to identify problematic hot spots in the overlay

and take remedial actions. P2PP defines an optional entity called the diagnostic server,

which can query diagnostic information from nodes in the overlay.

Purists can argue that the use of enrollment and authentication server, bootstrap server,

and diagnostic server violates the distributed nature of the overlay. While technically cor-

rect, the practical issues involved in running an overlay such as authenticating users, pre-

venting Sybil attacks, bootstrapping in a timely manner, and finding problematic hotspots

necessitate their usage.

3.4.1.1 P2PP Node Stack

The protocol stack of a P2PP node has three conceptual layers, namely, usage, overlay, and

transport layers. Figure 3.1 shows these three layers.

• Application Layer defines an asynchronous application-level API. An application

can use this API to perform overlay operations such as joining or leaving the overlay,

and storing and retrieving a resource-object.

• Overlay Layer is the ‘brain’ of P2PP protocol stack. It contains mechanisms for

message routing, overlay maintenance, NAT traversal, storage management, and repli-

cation. The message routing component in a peer includes the appropriate overlay

algorithm which determines how and where a peer should send the new or incoming

messages in the overlay.

The overlay layer receives API requests from the application layer and accomplishes

the requested function. The routing mechanism routes the requests in a recursive,

iterative, or parallel manner. The overlay maintenance mechanism strives to preserve
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Figure 3.1: Protocol stack of a P2PP peer.

the routing correctness and connectivity in the presence of churn. The replication

mechanism maintains the availability of resource-objects in the overlay. The NAT

traversal mechanism uses STUN [Rosenberg et al., 2008] and ICE [Rosenberg, 2010] to

traverse NATs and firewalls. A client does not provide routing, storage, or replication

services.

• Transport Layer is used by a P2PP node to send messages over an unreliable or

a reliable transport. A node prefers the use of reliable transport such as TCP. For

unreliable transports such as UDP, P2PP provides an ACK-based hop-by-hop reli-

ability mechanism. For reliable transports, reliability is provided by the underlying

transport protocol.

P2PP uses Transport Layer Security (TLS) [Dierks and Rescorla, 2008] and Datagram-

TLS (DTLS) [Rescorla and Modadugu, 2006] to provide message confidentiality.
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P2PP Node State: A P2PP node maintains the following state:

Overlay algorithm and its relevant parameters for the overlay to which a node is con-

nected.

Overlay-ID is the identifier of the overlay this node is part of.

Routing table contains the node-info objects (Section 3.5.3) of a subset of peers. It is

only maintained by a peer. Each node-info object in the routing table contains node-id

and host, server-reflexive, and relay IP addresses and port numbers of the other peer.

In addition, a peer may also store information about the round-trip time (RTT) and

uptime of peers in its routing table. A peer uses the routing table to quickly forward

the message to the peer responsible for handling a message.

Neighbor table contains a set of node-info objects for peers having an identifier that are

closest to the peer’s node-id in structured overlay algorithms. Like routing table, it is

also only maintained by a peer. This table ensures that a peer has a consistent view

of the overlay, and guarantees that the messages will be forwarded to their correct

destination. The neighbor table is known as successor list in Chord [Stoica et al.,

2003] and leaf set in Pastry [Rowstron and Druschel, 2001a].

Publish table contains the resource-objects (Section 3.4.2) that this node has published

in the overlay. Each resource-object has an expiration time. A peer must republish

the resource-object before its expiration time; otherwise, the peer storing the object

will remove it.

Resource table includes the resource-objects that a peer stores on behalf of other peers

to provide the distributed storage service. The clients do not store this table. A peer

should expunge the resource-objects from this table that an expired time.

Transaction table keeps track of in progress requests, responses, and indications (Sec-

tion 3.4.3). The retransmission of requests, responses, and indications is governed by

a state machine defined in Appendix B.

Number of clients connected to a peer.
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Figure 3.2: Resource-object.

Media relay flows include the number and bandwidth of media flows being relayed

through this peer.

3.4.2 Data Model

In P2PP, the data to be stored is defined as a resource-object (see Appendix A.6 for

bit-level details). A resource-object is identified by a resource-id, the type and sub-type

of the value being stored, and the value itself. The resource-id is an identifier for the object,

and the type and sub-type define a namespace, i.e., resource-objects having same resource-

id but a different type and sub-type belong to a different namespace. The value of the

object being stored depends on the type and sub-type. Examples of resource objects in a

p2p communication system include the network addresses where a user is reachable, contact

lists, and services such as NAT and firewall traversal. Among these examples, the reachable

address of a user can have the same resource-id (such as email address) but different types,

e.g., desktop phone, office phone. Figure 3.2 shows the relationship between the resource-id,

type, sub-type, and value.

A resource-object also includes an owner object (Appendix A.10) to correctly identify

the owner of the object (not shown in Figure 3.2). This object contains the node-id of

the node publishing the object. Lastly, each resource-object also includes a cryptographic

signature of the object to protect it against tampering. The mechanism for computing the

signature is defined in Appendix A.14. P2PP allows peers to store and search resource-

objects having the same resource-id, type and sub-type but different owners.
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3.4.3 Message Model

All P2PP messages begin with a common header followed by a sequence of type-length-

value (TLV) objects1. P2PP defines three types of messages, namely, request, response, and

indications. The requests always generate a response whereas indications do not require any.

Indications are useful in scenarios such as leaving the overlay or informing other peers about

a routing table change. The response messages contain a response code which indicates if

the request was successfully processed. The values of the response code are inspired by the

HTTP and SIP response codes.

P2PP allows nodes to forward the requests in a recursive or an iterative manner. In

recursive routing, a request is forwarded from one peer to the other until it reaches the peer

responsible for handling the request as determined by the overlay algorithm. The response

is then sent along the same path on which the request was received. If the request originator

desires to directly receive the response from the node generating the response, it can set

the D flag in the request-options object (Appendix A.16).

In iterative routing, if a peer determines that it is not the destination of the message, it

sends in its response the IP address and port number of the next hop. The request originator

then sends the request to the next hop. Peers never forward the indications. Figure 3.3 show

a conceptual diagram of request routing in a recursive and iterative manner. P2PP does

not mandate the use of recursive or iterative routing and leaves that decision to the designer

of the p2p communication application. The designer can choose to use either recursive or

iterative routing on a per overlay or a per message basis.

Note that the use of iterative routing in conjunction with a secure transport such as

TLS and DTLS can be expensive as the request originator may have to establish a TLS or a

DTLS connection with every next hop. The establishment of a TLS or a DTLS connection

incurs a round-trip time (RTT) overhead of 1.5-2 RTT. Also, if the nodes are behind a NAT,

then it may be necessary to perform connectivity checks before iterative routing, which also

have an overhead between 2-4 RTT’s. For these reasons, the nodes may prefer the use

of recursive routing because it minimizes the RTT overhead associated with connection

establishment and NAT traversal. On the other hand, the overlay can be constructed in a

1For simplicity, we refer to TLV objects as ‘objects’
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Figure 3.3: A conceptual diagram showing request routing in (a) recursive (b) iterative
manner.

way so that only nodes that are not behind NATs are selected as peers. In this way, the

peers do not have to perform the connectivity check before sending the message to other

peers, although, they still incur the DTLS/TLS connection establishment overhead.

3.4.4 Reliability Model

P2PP defines a hop-by-hop reliability model, i.e., nodes are only responsible for ensuring

the reliable delivery of the request, response, or indication to the next hop. In addition, the

request or response originators need to ensure that the messages are delivered in a reliable

manner. The reason for not using an end-to-end reliability model is that the intermediate

nodes may go offline at any instant which may impact the timely delivery of the message

since the request originator will only find it through retransmission timeouts. P2PP allows

nodes to send messages over a reliable and unreliable transport. For unreliable transports,

P2PP provides an acknowledgement (ACK) based mechanism for reliable message delivery

(see Appendix B).

P2PP does not support message fragmentation and instead makes use of the underlying

reliable transport such as TCP for sending messages larger than MTU. For recursive rout-

ing, the hop-by-hop reliability model allows the routing path to be a mix of reliable and

unreliable transports.

Since each request generates a response, P2PP allows the acknowledgements and re-

sponses to be combined when using unreliable transports. Figure 3.4 shows the unopti-

mized and optimized iterative request routing and response generation over an unreliable

transport.
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Figure 3.4: Request routing in an iterative manner over unreliable transport. (a) unopti-
mized forwarding (b) optimized forwarding.

3.4.5 Security Model

P2PP allows to create verifiable identities for nodes and users, and ensures message confi-

dentiality by using secure transport protocols. A verifiable identity contains an identifier

that is cryptographically signed by a trusted party. Without verifiable identities, the nodes

may launch a Sybil attack [Douceur, 2002]. To prevent this attack, P2PP allows using

an enrollment and authentication (E&A) server (Section 3.4.1) that assigns a unique and

verifiable node-id to each node participating in the overlay and to the human user of the

p2p communication system. It does so by issuing a certificate that binds the user and node-

id to the public key of the user. P2PP also allows nodes to operate without a managed

enrollment and authentication server. In such a scenario, nodes use self-signed certificates

and generate their own identifiers.

P2PP provides a hop-by-hop security model. The nodes in P2PP establish an unreli-

able or reliable secure channel with other nodes using TLS [Dierks and Rescorla, 2008] or

DTLS [Rescorla and Modadugu, 2006].

3.4.6 NAT and Firewall Traversal

P2PP enables any node with unrestricted connectivity to assist nodes behind restrictive

NATs and firewalls to use overlay services and to establish media sessions. It does so by

allowing nodes (peers and clients) to run STUN [Rosenberg et al., 2008], TURN [Mahy et

al., 2010], and ICE [Rosenberg, 2010] protocols (see Section 2.2.4). Unlike protocols such as

UPnP [UPnP Forum, 2010] which require explicit support from NATs, the STUN, TURN,
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Figure 3.5: Common header of a P2PP message.

and ICE protocols can function without such support. P2PP does not restrict which nodes

can provide the STUN and TURN service and leaves the decision to the system designer.

Further, P2PP also leaves it to the system designer to devise a suitable mechanism for

discovering nodes that provide the STUN and TURN service. As an example, a system

designer may only allow nodes that are not behind NATs to provide the NAT and firewall

traversal service.

3.5 Key Components of a P2PP Message

All P2PP messages begin with a common header, followed by a sequence of type-length-

value (TLV) objects. This section describes the common header of a P2PP message, the

general TLV object format, the node-info and the resource-object.

3.5.1 Common Header

The common header is a fixed length header which is part of every P2PP message. Figure 3.5

shows the bit fields of the common header. They are:

• V – Version (2 bits): A field specifying the version of the protocol.

• T – Message type (2 bits): A field which specifies the type of the message: a

request (00), a response (01), or an indication (10).
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• A – Acknowledgement flag (1 bit): If set (A=1), the message is an acknowledge-

ment to a request or a response.

• P – Peer or client (1 bit): A flag set by the originator of the message to indicate

whether it is a peer (P=1) or a client (P=0).

• R – Recursive or iterative (1 bit): A flag set by the message originator indicating

whether the message should be routed in a recursive or an iterative manner.

• Response code (9 bits): The response code of the message. It is set to zero in

requests and indications.

• Request type (8 bits): The type of the request or indication such as Join or Leave.

• TTL (time-to-live) (8 bits): The number of peers the request can traverse. It is

set by the request originator and decremented by hops in the path of the request.

• Magic cookie (32 bits): A field with a fixed value (0x596ABF0D) to differentiate

P2PP messages from other protocol messages such as STUN [Rosenberg et al., 2008].

• Transaction-ID (32 bits): A unique number set by the request originator to match

the responses with the originated requests. Together, with the source-ID, the tuple

can uniquely identify a message in the system.

• Message length (32 bits): The byte length of the message after the common header.

• Source-ID (variable): The node-id object of the peer or client sending the request.

The default length of this field is 160 bits. The overlays may use a different length

node-id. The length of this field is determined when a node sends an Enroll or Bootstrap

request. Since node-ids must be unique and nodes must choose a locally unique

transaction-ID, the combination of source-ID and transaction-ID can uniquely identify

a message.

• Response-ID (variable)): The node-id object of the peer or client sending the

response or an acknowledgement.
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Figure 3.6: Common header of a TLV object.

3.5.2 General Object Format

Each P2PP object begins with a fixed six-byte header which identifies the object type and

the length of the object. The header is followed by the variable length value of the object.

The bit-fields of the object header are defined as follows:

• Object type (8 bits): An identifier for the type of the object.

• AB: These bits are set by the message originator to specify how a node should process

the objects.

AB=00 “(Mandatory)”: If the object is not understood, the entire message containing

the object must be rejected with a 420 (Object Type Error) response.

AB=01 “(Ignore)”: If the object is not understood, it must be deleted and the rest

of the message processed as usual.

The combination AB=10 and AB=11 are reserved.

• Length (32 bits): The byte length of the object.

3.5.3 Node-Info

Each node sending the request, response, or an acknowledgement includes a node-info object

in the message (see Appendix A.2 for bit-level details). The node-info object contains a

fixed length node-id object (Appendix A.1) and a set of reachable IP address and port

numbers gathered using ICE [Rosenberg, 2010], which are encoded in the address-info object

(Appendix A.3). A node may include its uptime information and self-signed or signed

certificate objects (Appendix A.11) in the node-info object. The certificates can be used by
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other nodes to establish a TLS or a DTLS connection with this node. Additionally, a node

may also include information about the machine resources being consumed.

We use the following notation to define a TLV object and a P2PP method. The identifier

on the left of ‘=’ sign is the name of the TLV object or the P2PP method. The list of

identifiers on the right of ‘=’ sign are the concrete types and TLV objects contained in the

object or the message. The objects within square brackets imply that they are optional.

The ‘ext’ at the end of the object or the message implies that the object or message is

extensible. We use lower case to refer to the objects in the text.

Node-Info = Node-ID

Address-Info

[Uptime]

[Certificate]

[Node-Resource-Utilization]

[ext]

3.5.4 Resource-Object

A resource-object is a P2PP TLV object containing the information that the nodes store in

the overlay. As discussed in Section 3.4.2, a resource-object has a resource-id, content-type,

sub-type, and a value. The resource-object may have additional fields such as owner, the

node which published the object; expires, the time after which the node storing the object

can safely remove it; signature, the cryptographic hash over computed all the fields in the

resource-object and signed by the publisher of the object. The owner, expires, and signature

fields are defined in Appendix A.10, A.7, and A.14, respectively.

A resource-object is defined as follows:

Resource-Object = Cont-type

Sub-type

Resource-ID

Expires

Value
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[Owner]

[ext]

Signature

3.6 Overview of P2PP Methods

P2PP methods (or operations) are grouped into five categories. They are (1) enrollment

and bootstrap, (2) overlay maintenance, (3) data storage, (4) connection management, (5)

monitoring and bandwidth measurement.

The enrollment and bootstrap category includes methods for obtaining a signed certifi-

cate from a central authority and to discover the network address of peers already in the

overlay. The overlay maintenance category includes methods for joining and leaving the

overlay, and for maintaining connections to other nodes in the overlay. The data storage

category includes methods for storing and retrieving resource-objects in the overlay, and for

replicating and transferring the objects to the responsible nodes. The connection manage-

ment includes a method for setting up a connection for exchanging messages of application

layer protocols such as SIP. The bandwidth measurement describes a method for helping

peers determine their uplink and downlink network capacity by running a bandwidth test

with other peers. The measurement of link capacity is useful in relay selection.

Each request, response, indication or acknowledgement message contains a node-info

object which contains the node-id and address-info objects of the node sending the message.

3.6.1 Enrollment and Bootstrap

This section defines an Enroll method which a node uses to obtain a signed certificate and

a Bootstrap method to discover the network address of a peer already in the overlay.

3.6.1.1 Enroll

In P2PP, each node has a unique identifier known as node-id. Further, each user running

the p2p communication application also has a human readable user identifier such as an

email address, user name, or a SIP address-of-record (AoR) [Rosenberg et al., 2002]. The
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goal of the Enroll method is to have the user identifier, node-id, and the public key of the

node cryptographically signed by a trusted central authority. The trusted authority can be

an Enrollment and Authentication (E&A) server (Section 3.4.1); however, the first peer in

the overlay or any other peer can also act as this trusted authority.

To enroll in an overlay, a user chooses an identifier and a password. The node or user

agent then generates a public/private key pair, and embeds the user name in the distin-

guished name of a certificate signing request (CSR) [Nystrom and Kaliski, 2000]. The node

must securely store the private key. The CSR is encoded using PKCS#10 [Nystrom and

Kaliski, 2000]. The node then establishes a TLS connection with the E&A server (without

the client certificate authentication) and sends the CSR and the hash of the password to

the enrollment server in an Enroll request.

The node sending the Enroll request may not be aware of the length of the node-id or the

overlay algorithm. Since every request and response must contain the source-ID, response-

ID, and node-id field in the node-info object, P2PP specifies a default node-id of length 160

bits. When a node sends the Enroll request, it randomly chooses a 160 bit node-id and sets

it in the source-ID field of the common header and node-id field of the node-info object.

If the request is authenticated, the enrollment server creates a random node-id and

a signed X.509 [International Telecommunication Union (ITU), 2006] certificate encoded

using distinguished encoding rules (DER) [International Telecommunication Union (ITU),

1997]. It embeds the node-id in the common name (CN) of the certificate along with the user

identifier and sends this certificate in a 200 (Ok) response to the node that sent the Enroll

request. As discussed in Sections 3.4.2 and 3.4.5, the main reason for the server to choose a

node-id instead of the node randomly generating its own node-id is that it prevents the nodes

from launching a chosen location attack. The nodes can launch the chosen location attack

in structured overlays because the node-id determines the position in the overlay where a

node joins. If the request fails, the E&A server replies with a 450 (Request Unauthorized)

response.

A user may join the overlay from multiple devices such as a hardphone, a desktop phone,

and a mobile device. P2PP places no restriction on whether a user can enroll from multiple

devices. Therefore, for each device, the user agent generates a separate Enroll request,



CHAPTER 3. PROTOCOLS FOR BUILDING PEER-TO-PEER COMMUNICATION
SYSTEMS 37

and obtains a new certificate binding the user identifier to the node-id of that device.

Conceptually, there is a one-to-many relationship between user identifiers and node-id’s.

The objects contained in the Enroll request and its response are given below.

Enroll = Common-header

[Request-Options]

Node-Info

Certificate-Sign-Request

Password

Enroll (Resp) = Common Header

Node-Info

Certificate

[ext]

3.6.1.2 Bootstrap

To join an overlay, a joining node (JN) must determine the overlay algorithm used to

form the overlay, and must discover a peer that is already part of the overlay, thereafter

referred to as an admitting peer (AP). There are different mechanisms to discover a

node already in the overlay as specified by Cooper [Cooper et al., 2007]. Any node in the

overlay can provide the bootstrap functionality. Alternatively, the overlay provider may

maintain a bootstrap server which keeps track of a subset of peers already in the overlay,

and configures the nodes with the network address of the bootstrap server. As discussed

in Section 3.4.1, P2PP defines an optional bootstrap server that a joining node can use to

discover any node in the overlay. The bootstrap server can be co-located with the enrollment

and authentication server or it can be any peer in the overlay.

To discover the overlay algorithm and peers already in the overlay, P2PP defines a

Bootstrap method. The nodes may be preconfigured with the network address of the boot-

strap server. Alternatively, a JN may send a Bootstrap request to a multicast address. Upon

receiving a Bootstrap request, the bootstrap server or a node replies with a list of node-info

objects representing online peers in the overlay, and a p2p-options object (Appendix A.15).
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The p2p-options object contains information about the overlay algorithm being used. The

JN then sends the Join request to one of the peers in the list. If the list is empty, then the

joining peer is the first peer in the overlay.

If a JN has not sent the Enroll request before sending the bootstrap request, it may

not be aware of the length of node identifier (node-id object) used by peers in the overlay.

This situation arises when the nodes use the self-signed certificate security model. When

sending a bootstrap request, a JN randomly selects a 160-bit node-id and includes it in the

source-ID field of the common header and node-id of the node-info object. After it receives

the response to the Bootstrap request, it can determine the length of node-id used by peers

in the overlay. In the subsequent messages, the JN can randomly pick the same length

node-id.

The TLV objects contained in the Bootstrap request and its response are given below.

Bootstrap = Common-header

Node-Info

Bootstrap (Resp) = Common Header

Node-Info

P2P-Options

[Node-Info]*

[ext]

P2P-Options = Node-ID length

Overlay-ID length

Hash algorithm

Base

Overlay-ID

3.6.2 Overlay Maintenance

This section defines methods for joining and leaving the overlay (Join and Leave), for ex-

changing the routing and neighbor tables with other nodes (ExchangeTable), for exploring
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the overlay to find a routing table candidate (LookupPeer), and to maintain liveness with

other nodes (KeepAlive).

3.6.2.1 Join

A JN discovers the overlay protocol and existing peers in the overlay (thereafter referred

to as admitting peers (APs)) using the bootstrap mechanism described in Section 3.6.1.

It then sends a Join request to the APs in the overlay. Before sending the Join request,

a node may also send a LookupObject request (Section 3.6.3.2) to the APs to determine

the STUN [Rosenberg et al., 2008] and TURN [Mahy et al., 2010] port of AP. The JN can

then determine its server-reflexive and relay addresses by running connectivity checks using

STUN protocol with one of the APs. Conceptually, the overlay nodes are connected in a

graph, and a JN adds a new vertex to this graph and forms direct links with its immediate

neighbors2. The JN must correctly inform its neighbor peers that it is about to join, and

take ownership of any resource-objects from them. Overall, a node will likely follow the

steps below to join the overlay:

1. Optionally determine its reachable address (such as server-reflexive) by discovering

peers that provide the STUN [Rosenberg et al., 2008] and TURN [Mahy et al., 2010]

service and performing connectivity checks with them.

2. Discover the peer(s) where the node will join by sending the Join request to the

admitting peers.

3. Inform the neighbor peer(s) that JN will be their new neighbor or will join as a client.

4. Build the routing and neighbor tables if joining as a peer.

5. Obtain the resource-objects from its neighbor peers.

6. Publish any resource-objects in the overlay.

A JN can request the admitting peer to forward the Join request in a recursive or an

iterative manner. It does so by setting the appropriate value of the R flag in the common

2 we refer to immediate neighbors as neighbor peers.
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header. A peer receiving the Join request with the recursive routing flag set (R=1) forwards

it to the peer where JN will join (neighbor peer) or which might be closest to the peer where

JN will join. A peer receiving the Join request with the iterative routing flag set (R=0)

replies with a 302 (Next Hop) response if the JN will not be its immediate neighbor and

includes a node-info object of the next hop peer.

If a peer receiving the request determines that the JN will be its neighbor, it sends

a 200 (Ok) response to the node from which it received the request. The JN can then

send an ExchangeTable request to the neighbor peer to retrieve its neighbor table. The

neighbor table is a list of node-info objects and is only defined for structured overlays. As

discussed in Chapter 2, we refer to Chord’s successor list [Stoica et al., 2003] or Pastry’s

leaf set [Rowstron and Druschel, 2001a] as a neighbor table.

Once the JN receives the neighbor table, it sends the Join request with the S flag set

in the request-options object (Appendix A.16) to the peers in the received neighbor table.

The Join request with the S flag set indicates to the overlay peers that the JN will be their

new neighbor. It is up to the peer generating the 200 (Ok) response to decide, based on

the overlay algorithm being used, which neighbors a joining peer may contact to insert

itself appropriately in the overlay. The neighbors of this newly joining peer should update

their neighbor and routing tables appropriately. If the overlay protocol does not require a

neighbor table, then the JN does not send the Join request with the S flag set.

A JN may request to receive a copy of the routing table and neighbor table of the peers

that receive the Join request. It does so by setting the R, N, and E flags in the request-

options object (Appendix A.16). The nodes receiving the Join request with these flags set

include their routing-table (Appendix A.19) and neighbor table (Appendix A.20) objects

in the response. By receiving the routing or neighbor tables of the peers in the path of

the Join request, the JN can quickly build its view of the overlay by filling its routing and

neighbor tables. Once the JN has successfully joined the overlay as a peer, its neighbor peers

transfer it the ownership of appropriate resource-objects, using a TransferObject request

(Section 3.6.3.3).
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Rejecting or Deferring a Join Request: The peers in the overlay may decide to reject a

Join request with a 406 (Request Rejected) response because it does not satisfy the overlay

policy for peers. The network connectivity (such as NAT) and node resources (such as

CPU utilization) are examples of these policies. P2PP does not specify any policy for peer

admission and defers this decision to the overlay operator.

The peer(s) in the overlay may not be willing to admit a JN with no history about its

uptime. If so, they reply with a 407 (Join Request Deferred) response and an expires object.

The expires object contains the time in seconds after which the peer can resend the Join

request. The JN receiving this response should join the overlay as a client.

After the passage of time in the expires object, a client may attempt to join again as a

peer. Also, the AP or other peers may explicitly invite a client to join the overlay before

the passage of time in the expires object by sending an Invite request (Section 3.6.2.6).

Client Join: A client enrolls and authenticates itself and discovers a peer already in the

overlay by using mechanisms defined in Section 3.6.1. It gathers its reachable addresses by

discovering a peer providing the STUN and TURN service, and sends a Join request without

setting the P (peer) flag in the common header. The peer receiving the Join request may

immediately reply with a 200 (Ok) response if it can support a new client. It is up to the

overlay implementer to decide how many clients may connect to a peer. If an AP determines

that it already has a certain number of clients, it replies with a 302 (Next Hop) response

containing a list of peers to which a client may send the Join request.

After receiving a 200 response to its Join request, the client may establish a TCP con-

nection with the peer and periodically exchange KeepAlive messages (Section 3.6.2.5) to

check the liveness of its connected peer.

The objects contained in the Join request and its response are given below.

Join = Common-header

[Request-Options]

Node-Info

Join (Resp) = Common Header
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Node-Info

[Node-Info] //the next hop object

[Expires]

[Routing-table]

[Neighbor-table]

[ext]

Routing-table = Num-entries

[Node-Info]+

Neighbor-table = Num-entries

[Node-Info]+

3.6.2.2 Leave

A peer sends a Leave indication to gracefully inform its routing or neighbor peers about

its departure. It includes in the Leave indication a list of resource-objects that its neighbor

nodes should take over. The peers receiving a Leave indication must update their routing

or neighbor tables appropriately.

Leave = Common-header

Node-Info

[Resource-object]*

3.6.2.3 ExchangeTable

A peer sends the ExchangeTable request to retrieve the routing or neighbor table of another

peer. The peer receiving the request sends its routing table or neighbor table as routing-

table and neighbor-table objects in a 200 (Ok) response. Each table object contains a list

of node-info objects.

ExchangeTable = Common-Header

Node-Info
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Request-Options

ExchangeTable (resp) = Common-Header

Node-Info

[Routing-table]

[Neighbor-table]

3.6.2.4 LookupPeer

As discussed in Chapter 2, a peer maintains a routing and neighbor table which contains

the network addresses of other peers in the overlay. A peer selects the peers for its routing

and neighbor tables on the basis of the overlay algorithm being used. As an example, in

Chord [Stoica et al., 2003], a peer with an id X selects a peer for its ith routing table row

such that the id of the selected peer lies between [X + 2i, X + 2(i+1)). For unstructured

overlays, a peer may select peers for its routing and neighbor tables based on the capabilities

of the machines running those peers and their network connectivity [Chawathe et al., 2003].

P2PP defines a LookupPeer request which allows a peer to discover the correct peers

(based on the overlay algorithm) to fill its routing or neighbor table. The LookupPeer

request contains the plookup object (Appendix A.17), which specifies the criteria according

to which a peer searches for other peers. The LookupPeer method and the plookup object

is customized for every overlay algorithm.

A peer can issue a LookupPeer request to locate a single peer, multiple peers or range

of peers. The peer sending a 200 (Ok) response for the LookupPeer request includes a list

of node-info objects. The number of node-info objects are controlled by the ‘num’ field in

the plookup object. The R flag in the plookup object specifies that a peer is searching

for node(s) with node-id’s that lies within a range of ID’s. The range search is used for

structured overlays.

LookupPeer = Common-Header

[Request-Options]

Node-Info

PLookup
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LookupPeer (resp) = Common-Header

Node-Info

[Node-Info]*

[ext]

3.6.2.5 KeepAlive

P2PP defines a KeepAlive method which nodes can use to check the liveness of other nodes.

The KeepAlive, ExchangeTable and LookupPeer methods must be specified for any overlay

algorithm being used. By defining objects for these methods relevant to any DHT or

unstructured protocol, P2PP can potentially be used to implement them.

KeepAlive = Common-Header

[Request-Options]

Node-Info

[ext]

KeepAlive (resp) = Common-Header

Node-Info

[ext]

3.6.2.6 Invite

A peer in the overlay can send an Invite request to any client, requesting it to become a

peer. A peer may choose a client for sending the Invite request based on its uptime and its

network connectivity information.

Invite = Common-header

Node-Info

Invite (Resp) = Common-header

Node-Info
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3.6.3 Data Storage

P2PP defines PublishObject and LookupObject methods to store and retrieve data from

the nodes in the overlay. It also defines the TransferObject and ReplicateObject methods

to transfer the ownership of resource-objects to a newly joined peer, and to replicate the

resource-objects stored by a peer.

3.6.3.1 PublishObject

A node sends a PublishObject request to a peer already in the overlay to publish a new

resource-object or update an existing resource-object. A node typically sends a PublishObject

request in response to a application layer API call. The resource-object has a content-

type and a sub-type. The publish operation involves locating the peer responsible for the

resource-object and then storing the object on that peer.

The publisher of the resource-object must also include information about its owner in

the request. It is possible for multiple owners to publish or update a resource-object with

the same resource-id, and peer may be interested in retrieving the resource-object that is

published or updated by a certain owner. For example, a user logged in from different

phone devices (e.g., hardphone, desktop phone) may publish the network address of the

devices with the same resource-id, which is the user name. Moreover, other users may only

be interested in calling, say, the hardphone, of the user, and thus may only retrieve the

resource-object published by the user’s hardphone.

A publisher must ensure that the integrity of the resource-object is preserved. It does so

by computing a digital signature over all fields of the resource-object (except for the length

field in the object header), and attaches the computed signature and relevant certificates

as a signature object (Appendix A.14) at the end of the resource-object.

The peer responsible for storing the resource-object replies with a 200 (Ok) response

and includes an expires object in the response. The expires object indicates the time before

which the publisher must re-publish the object.

PublishObject = Common-header

[Request-Options]
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Node-Info

Resource-Object

PublishObject (Resp) = Common-header

Node-Info

[Expires]

3.6.3.2 LookupObject

P2PP defines a LookupObject method to retrieve a resource-object from the overlay. A node

issuing the LookupObject request specifies the resource-id of the object that it is searching

for, and the type and sub-type of the objects in the rlookup object (Appendix A.18).

Additionally, the node may specify the owner of the object by setting the owner object in

rlookup object.

If the peer receiving the request stores the object being searched, it replies with a

200 (Ok) response which contains the resource-object. If multiple owners had published

data under the resource-id being searched, and if the owner is not specified, the peer storing

the resource-object includes all objects in its response.

The resource-object size may exceed the MTU if the request was sent over an un-

reliable transport protocol. The node responsible for the resource-object replies with a

480 (Alternate Service) response. On receiving this response, the request originator sends

the LookupObject request over TCP to the peer responsible for the resource-object.

LookupObject = Common-header

[Request-Options]

Node-Info

RLookup

LookupObject (resp) = Common-header

Node-Info

Resource-Object
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3.6.3.3 TransferObject

A peer sends a TransferObject request to a newly joined peer to transfer the ownership of

the appropriate resource-objects to that peer. The resource-objects considered for transfer

are determined according to the overlay algorithm being used. For each resource-object

being transferred, the peer includes an elapsed object (Appendix A.8) at the end of the

resource-object after the signature object. The object indicates the time elapsed since

the node was storing the object. Together with the expires object in the resource-object,

a node receiving the resource-objects can determine how long to keep the objects before

safely removing them.

TransferObject = Common-Header

[Request-Options]

[Resource-object]+

TransferObject (resp) = Common-Header

Node-Info

3.6.3.4 ReplicateObject

A peer storing the resource-objects may decide to replicate them in case it may go offline.

P2PP defines a ReplicateObject method to replicate the objects on near-by nodes. P2PP

does not specify any replication policy and leaves the decision to the designer of the p2p

communication application. The reason is that it is impossible to determine a priori a

suitable replication for an environment in which P2PP will run. However, in practice,

simple replication strategies such as replicating the object on the adjacent neighbor of the

node storing the object may be sufficient.

ReplicateObject = Common-Header

[Request-Options]

Resource-Object

ReplicateObject (resp) = Common-Header
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Node-Info

3.6.4 Connection Management

3.6.4.1 Tunnel

In addition to exchanging P2PP messages, a node may desire to exchange other application

layer protocol messages with the overlay nodes. Since the other nodes may be behind

NATs and firewall, a node gathers its address candidates where it will receive the protocol

messages, encodes them in an address-info object, and exchanges them in a Tunnel method

with the destination node. The destination node also replies with its address candidates.

Then, the two nodes perform ICE [Mahy et al., 2010] connectivity checks and can exchange

the application layer protocol messages.

Tunnel = Common-header

[Request-Options]

Node-Info

Address-Info

Tunnel (Resp) = Common-header

Node-Info

Address-Info

3.6.5 Monitoring and Bandwidth Measurement

This section defines GetDiagnostics method for obtaining the diagnostic information from a

node and a MeasureBandwidth method which nodes can use to run bandwidth tests.

3.6.5.1 GetDiagnostics

The overlay operator may need to obtain diagnostic information from nodes, to construct

a geographical or logical map, and to identify problematic hotspots in the overlay. P2PP

defines a GetDiagnostic method which allows an overlay operator to query diagnostic in-

formation from nodes. The object-req (Appendix A.21) lists the type of the objects that a
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node should return. The node then returns the requested TLV objects.

GetDiagnostics = Common-header

[Request-Options]

Node-Info

[Object-Req]+

GetDiagnostics (Resp) = Common-header

Node-Info

[Objects]+

3.6.5.2 MeasureBandwidth

To determine if it can relay a voice or video session, a peer needs to be able to measure

its uplink and downlink network bandwidth. The idea is that peers help other peers mea-

sure their uplink and downlink capacity in addition to providing the routing, storage, and

media relaying services. If a peer wants to measure its uplink and downlink capacity, it

sends a MeasureBandwidth request to another peer. The request includes the bwtest ob-

ject (Appendix A.22), which describes the type of the test, the direction of the test (uplink,

downlink, both), the duration of the test, and the IP address and port numbers on which this

node listens for the test. P2PP currently defines two capacity measurement tests, namely,

TCP throughput and PathChar [Jacobson, 2010]. Other network capacity measurement

tests can be easily incorporated.

If the peer receiving the request is able to run the test, it replies with a 200 (Ok) response,

and includes the network address and port number on which it will run the test. The peers

can then run the test for the specified duration and measure their network capacity.

MeasureBandwidth = Common-header

[Request-Options]

Node-Info

BWTest

[ext]
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MeasureBandwidthTunnel (Resp) = Common-header

Node-Info

BWTest

[ext]

BWTest = Type

Direction

Duration

Address-Info

3.6.6 Response and Error Codes

P2PP defines three types of response codes. They are grouped as follows:

• 2xx (Success) response indicates that the request has been successfully processed.

• 3xx (Redirect) responses indicate that the request should be redirected to another

peer.

• 4xx (Request Failure) responses indicate that the request has failed.

3.6.6.1 2xx (Successful) Responses

• 200 (Ok) is a successful answer to the request.

3.6.6.2 3xx (Redirect) Responses

• 302 (Next Hop) response is only generated for iterative requests if the peer receiving

the request is not the final destination for the request.

3.6.6.3 4xx (Failure) Responses

• 400 (Bad Request) indicates that there was an error parsing the request.
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• 404 (Not Found) response is generated for a LookupObject request if the resource-

object being searched for is not found.

• 405 (Error Storing Object) specifies that there was an error storing the resource-object.

• 406 (Request Rejected) indicates that the request was understood but rejected by the

peer.

• 407 (Join Request Deferred) signals that the peer sending the Join request should retry

after the elapsed time.

• 410 (TTL Hops) specifies that the number of TTL hops traversed by the request have

exceeded the specified TTL value.

• 413 (Message Too Large) indicates that the response message size was too large. This

response is typically generated for unreliable transports.

• 418 (Timeout) signals that the request timed out. This response is generated by a

peer when request was forwarded in a recursive manner over UDP and no response

was received from the downstream peers.

• 420 (Object Type Error) response is generated when the node processing the message

cannot understand any of the TLV objects in the request.

• 450 (Request Unauthorized) signals that the enrollment and authentication server

cannot verify the Enroll request.

• 460 (Busy) indicates that the peer is busy and cannot provide the service.

• 480 (Alternate Service) specifies that the peer sending the message should try an

alternate transport service such as TCP.

3.7 Related Work

The research in p2p protocols has focused on designing structured and unstructured pro-

tocols [Stoica et al., 2003; Ratnasamy et al., 2001; Rowstron and Druschel, 2001a; May-

mounkov and Mazieres, 2002; Chawathe et al., 2003; Rhea, 2005], file sharing [Rowstron
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and Druschel, 2001b; Rhea et al., 2003; BitTorrent, 2010], and streaming [Zhang et al.,

2005]. A common issue facing these protocols is that they have to provide a data model,

and mechanisms for data integrity, message reliability and confidentiality, and NAT and

firewall traversal which they unfortunately have to reinvent. Moreover, the issue of NAT

and firewall traversal, which is central to the VoIP call establishment, is altogether ignored

by these protocols. As an example, OpenDHT [Rhea, 2005] only lets nodes with a public IP

address to be part of the overlay. The filesharing applications such as Bittorrent [Dessent,

2010] address the NAT and firewall traversal problem by reducing the download rate of files

for nodes that are behind NATs and firewalls and by instructing the user to enable port-

forwarding on NAT devices. Reducing the rate is not an option for VoIP systems because it

can impact the quality of the calls and it is unrealistic to expect ordinary users to configure

NAT devices for port-forwarding.

Dabek et al. [Dabek et al., 2003] were the first to propose a common API for structured

overlays which exploited the commonalities in DHTs. The core function of their proposed

API is a route() function which is responsible for delivering a message to the next hop.

They outlined how different DHT operations such as put() and get() can be implemented

using their API. However, they did not define a message format, nor did they specify any

mechanisms for data integrity, message reliability and confidentiality, and NAT and firewall

traversal.

Singh [Singh, 2006] and Bryan et al. [Bryan et al., 2005] proposed a peer-to-peer version

of the SIP protocol that uses SIP messages to implement a DHT. However, their approach

is inherently tied to SIP and is not easily extensible for non-SIP applications.

P2PP is the first protocol to exploit commonalities in existing structured and unstruc-

tured p2p protocols, and it not only provides an API similar to Dabek’s, but also provides

mechanisms for data model and integrity, message reliability and confidentiality, and NAT

and firewall traversal that are independent of any structured or unstructured protocol.

Thus, it can lower the barrier to design and implement a new p2p protocol and prevent the

reinvention of the above mechanisms in a new p2p protocol. This feature can enable P2PP

to be used for building p2p systems such as streaming and video-on-demand. P2PP is now

part of the RELOAD [Jennings et al., 2010] protocol which is being standardized in the
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IETF.

3.8 Conclusion

We have defined and described Peer-to-Peer (P2PP) protocol, an application layer protocol

for building peer-to-peer communication systems. P2PP allows to incorporate any struc-

tured or unstructured protocol as an overlay algorithm by defining a small set of methods

that implement the non-common aspects of these protocols. By explicitly defining a notion

of peers (nodes that fully participate in the overlay) and clients (that connect to one or

more peers), P2PP allows a system designer to build an arbitrary hierarchy of nodes. Peers

can provide the storage, routing, NAT traversal, and media relaying service. NAT traversal

is a fundamental feature of the protocol.

P2PP uses a hop-by-hop reliability model. It makes use of the TLS and DTLS as

the secure transport and provides integrity of the data being stored. These features are

independent of any structured or unstructured protocol. We believe that P2PP can not only

be used to build p2p communication systems for diverse deployment environments (such as

ad hoc or Internet scale), but can also be extended for building file-sharing, streaming or

video-on-demand systems.
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Chapter 4

OpenVoIP – A Peer-to-Peer

Communication System

4.1 Introduction

The thesis presents OpenVoIP [Baset and Schulzrinne, 2008], an open source peer-to-peer

communication system that has been deployed on the PlanetLab [PlanetLab, 2010]. The

goals of building this system are (1) to demonstrate the feasibility of using Peer-to-Peer

Protocol [Baset et al., 2007] for building p2p communication systems (2) to show that a

common protocol can be used to implement different overlay algorithms (3) to demonstrate

an Internet scale p2p communication system, (4) to establish media and IM sessions between

nodes in the presence of NATs and firewalls by using other peers as a relay, (5) to show a

diagnostic and monitoring mechanism for p2p communication systems.

The rest of the chapter is organized as follows. Section 4.2 describes the system archi-

tecture of OpenVoIP and the resource-objects it defines for the system function. Section 4.3

discusses the various functions performed by nodes in the OpenVoIP system, such as boot-

strap, call establishment, relay search, and monitoring and diagnostics. Section 4.5 discusses

related work.
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Figure 4.1: The OpenVoIP system.

4.2 System Architecture

OpenVoIP has four types of entities; a peer, which participates in the overlay, stores records,

routes requests, relays signaling and media traffic, and helps other nodes determine their

network capacity by running a bandwidth test; a client, which is connected to one or more

peers, does not route requests or store records, and may require a relay to establish a media

session; a bootstrap server, which stores and returns the IP addresses and port numbers of

a subset of peers in the overlay to the joining peers and clients; and a diagnostic server,

which monitors the status of the nodes in the system. The nodes behind NAT and firewalls

join the overlay as clients; otherwise, the nodes join the overlay as peers. The joining nodes

perform connectivity checks with the peers in the overlay to determine if they are behind

a NAT. Peers, client, bootstrap server, and diagnostic server run the Peer-to-Peer Protocol

defined in Chapter 3. Figure 4.1 shows the architecture of the OpenVoIP system. Node A

discovers the network address of node B by performing a search in the overlay for the user
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name of node B using the LookupObject request and then directly exchanges signaling and

media traffic (messages labeled (1)-(4)). The nodes F and G are behind a NAT/firewall

device and connect to the nodes C and E, respectively, which act as peers in the system.

The nodes C and E use node D (peer) for exchanging signaling and media traffic (messages

(a)-(d)). The peers and clients run as a stand alone executable on the PlanetLab machines.

Unlike OpenDHT [Rhea, 2005], where only PlanetLab nodes fully participate in the overlay

by providing the routing and storage services, any node running P2PP can fully participate

in the OpenVoIP as long as they are not behind a NAT. Note that P2PP does not place any

restriction on which nodes can be peers or clients. The choice of using only non-NAT nodes

as peers is a design decision of OpenVoIP and is motivated by avoiding the complexity of

having nodes behind NATs fully participate in the overlay.

We have also integrated the P2PP library with OpenWengo [OpenWengo, 2010], an open

source SIP phone (now known as Qutecom [Qutecom, 2010]). We refer to this application

as the Wengo-P2PP phone. Any user can run the Wengo-P2PP phone, which, depending

on the absence or presence of a NAT device, can join the OpenVoIP as a peer or a client,

respectively. The Wengo-P2PP phone uses the Session Initiation Protocol (SIP) [Rosenberg

et al., 2002] for session establishment and Real-time Transport Protocol (RTP) [Schulzrinne

et al., 2003] for exchanging media traffic. Figure 4.2 shows a snapshot of the Wengo-P2PP

phone. The user running the application, bob2, has established a voice session with user

alice. The voice packets go through a media relay (indicated by the ‘(relay)’ in the figure),

since their respective user agents are unable to directly exchange voice packets due to NAT

connectivity issues.

4.2.1 Resource-Objects for Operation

OpenVoIP defines two resource-objects (Section 3.5.4) for its operation, namely, SIP-CONTACT

and STUN-TURN. The SIP-CONTACT object contains the SIP address-of-record (AoR) of

a user (e.g., sip:bob@example.com) and the set of network addresses (host, server reflexive,

and relay) where a user can receive the signaling messages. The STUN-TURN object con-

tains the network address and port number where a peer listens for the STUN [Rosenberg

et al., 2008] requests. Next, we discuss these resource-objects in more detail.
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Figure 4.2: Wengo-P2PP phone relaying a media session through an OpenVoIP peer.

4.2.1.1 SIP-CONTACT

When starting Wengo-P2PP phone for the first time, the user chooses a SIP address-of-

record as its user identifier. The Wengo-P2PP phone then publishes the user identifier and

reachable network address of the phone in the overlay, so that other phones can locate it

and establish a media session. OpenVoIP defines a SIP-CONTACT resource-object, which

contains the SIP address-of-record of the user (e.g., sip:bob@example.com) as the resource-

id and the reachable network addresses gathered using ICE [Rosenberg, 2010] encoded in

an address-info object as the value of the resource-object. The content-type of the object is

SIP AoR. Other nodes can search for the user identifier using a LookupObject request, and

discover the resource-object containing the reachable address in order to establish a media

session using SIP.
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4.2.1.2 STUN-TURN

Each peer in the OpenVoIP system provides the NAT traversal and relaying service for

signaling and media traffic. The peers do so by running the STUN [Rosenberg et al., 2008]

and TURN [Mahy et al., 2010] protocols. An OpenVoIP node listens on the same port for

the incoming STUN and TURN control messages. Other nodes can discover the network

address and port number of the STUN and TURN service that a peer provides by sending a

LookupObject request. The resource-id object in rlookup object (Appendix A.18) contained

in the request is set to the node-id of the peer receiving the request and the content-type is

STUN-TURN. The node receiving the LookupObject request replies with a STUN-TURN

resource-object. The resource-id of this object is set to the node-id of the object sending

the response, the content type is STUN-TURN, and the value is an address-info object

containing the network address and port number on which the node listens for the STUN

and TURN requests.

4.3 System Functionality

We describe how a node discovers the network addresses of peers already in the overlay (Sec-

tion 4.3.1), the process it follows to join the overlay as a peer or as a client (Section 4.3.2),

the mechanism for call establishment (Section 4.3.3), the technique for finding a suitable

relay for establishing a media session (Section 4.3.4), and the mechanism for monitoring

and diagnostics (Section 4.3.5).

4.3.1 Bootstrap

To join OpenVoIP, a node must discover the network address of the peers already in the

system. OpenVoIP is designed to run on the public Internet where mechanisms such as IP

multicast for discovering a peer already in the overlay may not always work. Therefore, we

run a bootstrap server which maintains a list of the network addresses of a subset of peers

already in the overlay. In our implementation, the bootstrap server maintains a list of the

network addresses of ten peers, but the number is configurable. When a Bootstrap request

arrives at the bootstrap server, it selects those network addresses in a random order and
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returns them to the node that sent the Bootstrap request. The node can then send the Join

request to the first node in the list. The bootstrap server returns the peers in a random

order to equally distribute the load of Join requests over these nodes.

A key question is how does a bootstrap server determines which peers to maintain in

its list. Initially, we programmed the bootstrap server to maintain a list of most recent ten

nodes that had joined the overlay. However, this technique suffered from three problems.

First, in OpenVoIP, nodes behind NAT and firewall can only join as clients. However,

whether a node joins the system as a client or a peer is only determined after a node

runs connectivity checks with peers already in the overlay. Although the nodes can run

connectivity checks with the bootstrap server, we wanted to keep the functionality at the

server to a minimum. Second, since we have made available the source code and executables

online, potentially anyone can join OpenVoIP, thereby generating a Bootstrap request at

the server. During our operational experience, we observed that some times people tried

running our executables multiple times to connect to OpenVoIP and then went offline for

extended periods. Since the bootstrap server maintains a finite list of peers, all the peers

in the list can potentially be offline. Third, although it is possible for a bootstrap server to

periodically receive a KeepAlive request from the peers and then select suitable peers, such

mechanism requires additional functionality at the bootstrap server.

In our implementation, we have used a rather simple approach. The bootstrap server

maintains a list of ten peers referred to as bootstrap peers, and we ensure their availability.

These peers participate in the overlay in the same manner as other peers and run the same

protocol as other peers. By ensuring their availability, we avoid the problem that each

peer must inform the bootstrap server about its presence and also avoid the issue that

the bootstrap server may store a list of offline peers. The load on the bootstrap nodes

is distributed equally since the bootstrap server returns the list of bootstrap peers in a

random order to the joining node. Although not implemented in OpenVoIP, the load on

the bootstrap nodes can further be reduced if the joining nodes cache the peers they were

connected to in the last run and try sending them the Join request before contacting the

bootstrap server.
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4.3.2 Joining the Overlay

After discovering the reachable address of a peer already in the overlay thereafter referred

to as the admitting peer (AP), the joining node (JN) sends it a LookupObject request to

discover the STUN [Rosenberg et al., 2008] port this peer is listening on. The peer replies

with a 200 (Ok) response containing the STUN-TURN object (Section 4.2.1.2). On receiving

the 200 (Ok) response, the JN runs the ICE [Rosenberg, 2010] connectivity checks with this

peer to determine if it is behind a NAT. As mentioned in Section 4.2, all peers in the

OpenVoIP system run on machines with a public IP address and are not behind a NAT.

If the JN determines that it is not behind a NAT, it sends a Join request to the admitting

peer with the P flag set in the common header, indicating that it desires to join as a peer.

Otherwise, the JN sends the Join request without the P flag set in the common header,

indicating that it is joining as a client. The node sending the Join request can set the

recursive or iterative routing flag (R flag in the common header) based on the configuration

file; the default is iterative. When a peer in the overlay (neighbor peer) responds with a

200 (Ok) response to the Join request, the JN takes an appropriate action depending on

whether it joins as a peer or a client.

4.3.2.1 Peer Join

If a node is joining as a peer, it sends an ExchangeTable request to the neighbor peer, request-

ing for its neighbor and routing table. In structured overlays, the peers use the neighbor

table to maintain a consistent view of the overlay such as successor list in Chord [Stoica et

al., 2003] or leaf-set in Pastry [Rowstron and Druschel, 2001a]. The joining peer sends the

Join request with the S flag set in request-options object to indicate to the nodes received

in the neighbor table that it will be their new neighbor. The neighbors of this peer then

transfer any resource-objects to this peer using the TransferObject request (Section 3.6.3.3).

The JN then builds its routing table from the routing table it received in response to the

ExchangeTable request. Before inserting a peer in its routing table, JN checks its liveness

by sending a KeepAlive request. A peer then opens a listening port for the STUN protocol

and publishes a SIP-CONTACT object in the overlay using the PublishObject method.

Figure 4.3 shows the message flow between a node joining the OpenVoIP system as
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Figure 4.3: The message flow between a node joining as a peer, the bootstrap server, and
peers in the OpenVoIP system.

a peer, the bootstrap server, and peers in the OpenVoIP system. The messages are not

strictly ordered by time. The KeepAlive and PublishObject methods are not shown.

4.3.2.2 Client Join

When a node joining as a client receives the 200 Ok response from the responsible peer,

thereafter referred to as the connected peer, it connects to that peer. It then sends an

ExchangeTable request to this peer to retrieve its neighbor and routing table. The purpose

of retrieving these tables is twofold. First, they allow a client to build a list of backup peers

in case its connected peer goes offline; second, a node keeps track of the peers with the

smallest network latency from itself, in anticipation that it may use them or their close-by

neighbors (in terms of network latency) as relays for exchanging the signaling and media

traffic. The client publishes a SIP-CONTACT object in the overlay. For a client, the

SIP-CONTACT object contains the host, server-reflexive, and relay addresses where it can

receive the SIP signaling messages.
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4.3.3 Call Establishment

To establish a call, the Wengo-P2PP phone sends a LookupObject request to search for

the SIP-CONTACT object of the callee phone. If the caller node is a client, its connected

peer performs the search on its behalf. After discovering the SIP-CONTACT object of the

callee, the caller node performs connectivity checks with host, server-reflexive, and relay

addresses of the callee to determine the reachable addresses over which it can exchange the

SIP signaling traffic. The caller prefers the use of host and server-reflexive addresses for

SIP. Then, the caller Wengo-P2PP phone sends the SIP INVITE request to callee through

the network address determined by the connectivity checks. The INVITE request contains

the host, server-reflexive, and relay candidates on which a caller can receive callee’s media

traffic.

After the callee picks up the phone, its user agent replies with a 200 (Ok) SIP response,

and a media session is established. The nodes then perform connectivity checks to determine

if they can directly exchange the media traffic using a host or server-reflexive address, or if

they require the use of a relay.

4.3.4 Distributed Relay Search

OpenVoIP is a two level hierarchical system where peers provide the message routing,

storage, media relaying and bandwidth test measurements, and clients connect to one or

more peers. Each peer maintains a routing table containing the subset of peers in the

overlay that are selected according to the overlay algorithm being used. We used the above

two facts in designing a relay selection scheme which we refer to as the Threshold scheme.

Section 6.5.3 presents a detailed description of this scheme and evaluates its performance

using simulations. A brief description of this scheme is as follows.

Each peer maintains RTT information with peers in its routing table as part of liveness

checks. In addition, a peer also exchanges the uptime and spare network capacity infor-

mation with other peers in its routing table. A peer can determine its spare capacity by

running a bandwidth test with other peers as described in Section 4.3.4.1. Since relaying

a call utilizes the network link of a machine, it can interfere with other network centric

applications running on the relay machine. It is important to select a relay that minimizes
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this interference. We refer to this interference as user annoyance (Section 6.5.2). Since relay

calls consume network bandwidth, the spare network capacity of a machine is a useful met-

ric to quantify the impact of such interference. Section 6.5.2.1 discusses issues in estimating

network link capacity.

The goal of the relay selection is to quickly find a relay with acceptable network latency

and minimal user annoyance. Each client maintains a list of close-by peers in terms of

network latency. When a client needs a relay, it requests its close-by peer for a set of

relay candidates. If the peer cannot fulfill the relay request itself, it searches its routing

table for peers that have a network latency of less than 150ms from this peer, and have

the maximum spare network capacity. If the peer cannot find any relay that meets both

criteria, it randomly selects a peer providing the media relay service from its routing table.

The idea behind requesting a relay candidate from a close-by peer is that a client may not

have to perform latency measurements with relay candidates returned by a close-by peer

as the worst case latency (from a client to a close-by peer, and from the close-by peer to

peers in its routing table) may still be within acceptable latency bounds. Another benefit

of this scheme is that a client can find a relay in O(1) hops if relays are plenty. However,

the performance of this scheme starts to degrade as the percentage of relay requests reaches

more than 70% of the total relaying capacity of all peers (see Section 6.5.1).

4.3.4.1 Link Capacity Measurements

The peers periodically perform a bandwidth measurement test with other peers to determine

their uplink and downlink capacity. In our implementation, a peer performs the bandwidth

test every 15-30minutes, with the precise time selected on a random basis within this

interval. The bandwidth test comprises of sending dummy bulk data over a TCP connection

for a period of ten seconds. The peers do so by using the MeasureBandwith (Section 3.6.5.2)

method of P2PP. Using TCP throughput measurements is likely going to provide a lower

(or conservative) estimate of the network capacity of the node due to the AIMD nature of

TCP. However, such lower estimates are still useful from a user annoyance perspective. The

peers also monitor their network usage, and whether they are relaying any media sessions.

The peers then exchange the spare network capacity as part of KeepAlive messages.
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Figure 4.4: The OpenVoIP peers running on PlanetLab.

4.3.5 Monitoring and Diagnostics

OpenVoIP is an experimental peer-to-peer communication system running on PlanetLab.

Like many other distributed systems, it is difficult to get a quick feel of the system without

an appropriate user interface. The importance of a user interface for distributed systems

is more pronounced for the experimental systems, as a researcher will like to quickly gain

insights into the system operation and demonstrate the feasibility of the system to non-

technical users.

We have developed a Google map interface for OpenVoIP that displays the online and

offline peers running on a geographical map and allows a convenient way to interact with

the nodes running in the system. This geographical interface displays the peers as markers

at their geographic locations on the map. We use the MaxMind tool [Maxmind, 2010]

to translate the IP addresses of peer into latitude and longitude. We run a diagnostic

server (see Section 3.4.1) that periodically checks the liveness of peers in OpenVoIP. Due

to scalability reasons, we only check the liveness of peers that we run on the PlanetLab

and ignore any peers that may be run by other users. Figure 4.4 shows the OpenVoIP

peers running on PlanetLab as green and red markers, indicating if those peers are online

or offline.

The user interface also allows a user with a web browser to query the state of a node

and store and retrieve the information it stores. Under the hood, it uses the GetDiagnostics
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Figure 4.5: The routing table of a peer on PlanetLab.

Figure 4.6: Tracing a LookupObject request on the OpenVoIP’s Google maps visual inter-
face.

(Section 3.6.5.1) method of P2PP to query the node state, its routing, and resource table.

Figure 4.5 shows the routing table of a peer in OpenVoIP system. The figure also shows

the round-trip time to the peers in the routing table of this peer. The interface also allows

a user to retrieve and display the SIP-CONTACT object of a user. Figure 4.6 illustrates

the progress of a LookupObject request for the SIP-CONTACT resource object.

4.4 Lessons Learned

We have implemented three DHTs based on P2PP protocol for our OpenVoIP system.

These DHTs are Bamboo [Rhea et al., 2004], Chord [Stoica et al., 2003], and Kademlia [May-

mounkov and Mazieres, 2002]. We found that DHT-specific portions in our implementations

comprised 10-15% of the total lines of code, which were approximately sixteen thousand.

Our implementation of the P2PP library includes mechanisms for data model, message re-

liability, and NAT and firewall traversal. Overall, the lines of DHT specific code will likely
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comprise a smaller chunk (< 10%) since we did not implement the message confidentiality

and data integrity mechanisms. This outcome in terms of a smaller percentage of lines of

code for the DHT-specific part is a vindication of P2PP design decision which provided

common mechanisms for data model, data integrity, message reliability and confidentiality,

and NAT and firewall traversal.

4.5 Related Work

OpenDHT [Rhea, 2005] is an open source system that uses the Pastry DHT to build a

distributed storage system and has been deployed on PlanetLab. However, it has the

following limitations. First, it uses a custom protocol for building the distributed storage

system. While the custom protocols are useful in building experimental systems, they are

not appropriate for running interoperable systems. Second, OpenDHT as-is does not allow

nodes that do not run on PlanetLab to fully participate in the OpenDHT as a full peer.

Moreover, the system does not facilitate nodes behind NATs and firewalls to participate

in the overlay, nor does it allow OpenDHT nodes to provide the media relaying service.

Further, the system uses only one DHT (Pastry) and does not allow to incorporate any

other overlay algorithms.

Skype [Skype, 2010a] is a peer-to-peer communication system that enables establishing

media sessions between Skype nodes. However, Skype uses a proprietary protocol. Further,

a Skype application requires Internet access to connect to the Skype network. Consequently,

it cannot work in environments where access to the Internet may not be available.

4.6 Conclusion

We have designed and implemented OpenVoIP, an open source peer-to-peer communication

system and have deployed it on the PlanetLab. OpenVoIP demonstrates the feasibility of

using P2PP for building p2p communication systems. The system allows the nodes behind

NAT to join the overlay as clients; the rest of the nodes join as peers. We have also designed

and implemented a browser-based monitoring and diagnostic user interface for OpenVoIP.

The interface facilitates gaining quick insights into the workings of the system. We have
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also explored the practical feasibility of a relay selection scheme that minimizes the latency

of a relayed call and the interference of the call with other applications running on the relay

machine.
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Chapter 5

Peer-to-Peer Multiparty Video

Conferencing

5.1 Introduction

To establish a multiparty video conference in a peer-to-peer communication system, the

participants’ user agents can form a full mesh network [Lennox and Schulzrinne, 2003],

where each user agent sends its video stream to all the participant user agents and re-

ceives the video stream from each participant user agent. However, two factors may not

allow user agents to do so. First, the uplink capacity of participants is typically smaller

than the downlink capacity and varies across user agents, thereby limiting the number of

participants that can be accommodated at a desired bit rate. Second, some of the partici-

pants may be behind restrictive NATs and firewalls and unable to directly exchange packets

with other participants. Thus, the limited uplink capacity and the presence of NATs and

firewalls makes it challenging for the user agents to establish a full-mesh video conference

without helpers and intermediaries. In client-server communication systems, the helpers are

managed servers whereas in p2p communication systems, the helpers are non-participant

altruistic peers. Each participant user agent can use these helpers to construct an applica-

tion layer multicast tree for conferencing (ALMC) to deliver its video stream to all other

conference participants.

Video conferencing using altruistic peers (or helpers) is non-trivial because, like confer-
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ence participants, the helpers also have limited uplink bandwidth. Thus, multiple helpers

may be needed to forward a participant’s video stream to all other participants. Moreover,

these helpers can leave the p2p network at any time, thereby impacting the reliability of

p2p video conferences. In addition, the latency of a video stream passing through multi-

ple helpers may exceed the tight playout requirements for video conferencing. Also, the

naive forwarding of the video streams using helpers can significantly impair the network

performance of other applications running on the helper machines. To prevent such an

impairment while maintaining a desired bit rate for conferencing, more helpers are needed.

This chapter systematically explores the practical issues in constructing helper-assisted

ALMC trees to deliver a participant’s video stream to all other participants and outlines

a protocol for enabling peer-to-peer video conferencing. Throughout the chapter, we refer

to altruistic peers as helpers. As of June 2010, there were no commercial peer-to-peer

video conferencing applications. The popular p2p VoIP and IM application, Skype [Skype,

2010a], uses managed servers for video conferences involving three to five participants. For

two party video calls, the Skype application may use a helper if the user agents cannot

directly exchange packets. In Section 5.2, we provide the results of measuring the bit rate

of a helper-assisted two party video call in Skype, and contrast it with the bit rate of helper-

assisted video call in ooVoo [ooVoo, 2010], a client-server video conferencing application.

In Section 5.3, we describe two approaches for constructing helper-assisted ALMC trees,

namely tree and split, and discuss their impact on the number of helpers, reliability of

delivery, helper state, and latency. We then discuss if minimizing the number of helpers

is always a good idea from the perspective of the latency of a stream, whether helpers

should be selected close to the source or the recipient, if the helpers should also transcode

the video stream besides forwarding it, and if the participants can be used as helpers. In

Section 5.4, we outline a protocol for helper-assisted video conferences. Our hope is that

this protocol can be useful for the designers of p2p video conferencing applications and for

the standardization of a p2p video conferencing protocol.
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5.2 Helper Bandwidth Usage in Skype and ooVoo

As of June 2010, Skype, a popular peer-to-peer VoIP application, supports five party video

conferencing through managed servers but may use another Skype application as helper for

two party video calls. To check the former, we established ten video conference calls between

four Skype user agents running in June 2010. The user agents were running on machines in

our lab and were connected through 1 Gb/s Ethernet. The traffic was not blocked between

those machines. We found that each Skype user agent sent its video to the servers managed

by Skype, which forwarded the stream to all the other user agents. We also found either two

or three managed servers were used to forward the video stream of a user agent to all the

other user agents in the video conference. We observed the maximum upload bandwidth

from a Skype user agent to the managed server to be approximately 360 kb/s. Surprisingly,

the user agents did not exchange packets directly even though they were on the same LAN.

We have discovered that Skype uses other Skype peers as helpers for two party video

calls if the traffic between the two Skype user agents may be blocked. We measured the

bit rate of the calls involving a Skype peer as a relay. Our goal is to understand if Skype

limits the bit rate of a relayed video call. The video call was established between two Skype

applications (version 4.1.0.79) running on machines in our lab in February 2010. Skype

was forced to select a UDP relay (or a helper) for the video call because we blocked direct

traffic between the machines. We found that the bit rate of a video call through a relay

never exceeded 110 kb/s (or approximately 13 kB/s), whereas the bit rate of a call involving

no relay was 570 kb/s. These measurements suggest that Skype bounds the bit rate of a

relayed video call.

ooVoo [ooVoo, 2010] is a client-server video conferencing service and uses managed

helpers to relay video calls. We measured the bit rate of a relayed two party ooVoo video

call by using the same setup as the one used for Skype experiments. Unlike Skype, the relay

used was a machine managed by ooVoo and was not an altruistic peer. The bit rate of a

relayed video call through a ooVoo managed helper was as high as 320 kb/s, or three times

the bit rate of a two party relayed Skype video call. The difference between the two bit

rates highlights the tradeoff between receiving a high quality (high bit rate) stream through

an altruistic peer and the interference of the video stream with the applications running
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Participant od=3 Participant od=1
NP/HO 2 3 4 5 2 3 4 5

3 0 0 0 0 3 3 3 3
4 0 0 0 0 8 4 4 4
5 5 5 5 5 15 10 5 5
6 12 6 6 6 24 12 12 6
7 21 14 7 7 35 21 14 14
8 32 16 16 8 48 24 16 16
9 45 27 18 18 63 36 27 18

10 60 30 20 20 80 40 30 20

Table 5.1: Number of helpers needed for the tree approach as a function of number of
participants (NP) (first column) and helper outdegree (HO) (second row). The number of
helpers are calculated for participant outdegree (od) of 3 and 1, respectively.

on that peer. For these reasons, Skype limits the bit rate of a relayed video call. Besides

interference, relaying a high bit rate video call has an economic cost for users running these

altruistic peers if their ISP’s Internet plan either caps the network traffic or if the users

have to pay for every downloaded bit.

5.3 Practical Issues in Application Layer Multicast Tree (ALMC)

Construction

Two approaches for ALMC tree construction have been proposed in the application layer

multicast and video conferencing literature, namely, a tree (such as [Castro et al., 2003])

and a split approach (such as [Chen et al., 2008]). In the tree approach, each participant of

a video conference constructs a balanced tree of helpers to deliver its video stream to all the

conference participants. In the split approach, the participant splits its video stream among

helpers, and each helper directly forwards the split stream to all the conference participants.

Figure 5.1 shows an example of a nine-party video conference using both approaches. The

outdegree of each helper and participant in the figure is two and one, respectively.

Next, we discuss the practical issues for these schemes.
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Participant od=3 Participant od=1
NP/HO 2 3 4 5 2 3 4 5

3 0 0 0 0 3 3 3 3
4 0 0 0 0 8 4 4 4
5 5 5 5 5 10 10 5 5
6 12 6 6 6 18 12 12 6
7 14 14 7 7 21 14 14 14
8 24 16 16 8 32 24 16 16
9 27 18 18 18 36 27 18 18

10 40 30 20 20 50 30 30 20

Table 5.2: Number of helpers needed for the split approach as a function of number of
participants (NP) (first column) and helper outdegree (HO) (second row). The number of
helpers are calculated for participant outdegree (od) of 3 and 1, respectively.

od=2

1/4

1/4 1/4

1/1

1/4

Figure 5.1: Tree (left) and split (right) approach for video conferencing. The black nodes
are helpers. For the split approach, not all flows are shown.

5.3.1 How Many Helpers?

A question arises how many helpers are needed to scale a video conference as a function of

the number of participants n, for the tree and the split approach. For simplicity of analysis,

assume that each helper has an outdegree, k (k ≥ 2), and each participant has an outdegree

of one. The degree corresponds to a reasonable video stream bit rate such as 100 kb/s. The

upper bound on the number of helpers in a complete k-ary tree, assuming helpers are not

shared among different trees, is given by Equation (5.1):

dk
logk(n−1) − 1

k − 1
e (n > 2) (5.1)
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The upper bound on the number of helpers using the split approach when each participant

has an outdegree of one is given by Equation (5.2):

d(n− 1)
k

e (n > 2) (5.2)

Table 5.1 and Table 5.2 show the total number of helpers needed for the tree and the

split approach as a function of number of participants and helper and participant outdegree,

assuming there is no limit on the indegree of participants. The tables illustrate that as the

number of participants increase, the tree approach requires significantly more helpers than

the split approach. As an example, for 10 participants and helper outdegree of two, the

total number of helpers for the tree and the split approach is 80 and 50, respectively, or

eight and five helpers per ALMC tree rooted at every participant.

The split approach performs better than the tree approach in terms of number of helpers;

however, it still requires 50 helpers (or five per tree) for a 10 party conference when helper

outdegree is two. It is non-trivial to search for such a large number of helpers as these

helpers are altruistic peers. Although the number of helpers can be reduced if the sender

reduces its bit rate, this compromises the quality of the video stream. Moreover, with a

large number of helpers, the helper churn becomes a significant problem. Using a naive

approach for protecting against helper churn, in which each participant maintains a backup

for every helper becomes very costly in the number of backup helpers as the number of

primary helpers increases. The relatively large number of helpers highlights the limits of

scaling video conferences using altruistic peers as helpers.

In addition to restricted uplink capacity, participants also have finite downlink capac-

ity. The downlink capacity of the participants can become saturated as the number of

participants increase, since a participant must receive the video stream from all other par-

ticipants. Although the participants may choose to receive the video of only currently active

participant, this solutions compromises the interactivity of the video conference. When the

downlink capacity of all participants is saturated and a new participant is added to the

conference, each participant must request the other participants to reduce their sending

rate in order to receive the video stream of the new participant. This reducing of rate
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frees capacity on existing helpers, which can be used to serve new participants without

adding any helpers. As an example, refer to the split approach shown in Figure 5.1 where

each helper has an outdegree of two for a complete video stream, where a complete video

stream implies a specific bit rate (e.g., 100 kb/s). Now consider that each participant has

an indegree of eight. Without an indegree limit, a conference of 17 participants will need

eight helpers using the split approach, since each participant must receive the video stream

from 16 sources. However, with an indegree limit of eight, each source must reduce its rate

by half, so that each participant can receive the video from 16 other participants. Each of

the four helpers which previously received a quarter of the video stream now receives one-

eighth of the original stream and can forward it to sixteen participants (assuming negligible

packet header overhead). This example shows an important practical consideration: when

a new participant joins, the old participants may not need to add additional helpers if the

downlink capacity of the existing participants is saturated.

5.3.2 Reliability

When a helper goes offline in the tree approach, the number of affected participants depend

on the level of the failed helper, whereas in the split approach, all participants are affected

unless error correction or erasure codes are used. We are interested in calculating the

reliability of the helper-assisted video conferences as a function of number of helpers, helper

lifetime, and video conference duration for the tree and split schemes. Specifically, what is

the probability that the video stream a participant receives from another participant will

not be disrupted due to helper churn? Let Xi denote the lifetime of a helper, Ri be its

residual lifetime, and Xi and Ri are i.i.d. The probability that a participant receiving the

video stream from another participant’s ALMC tree will not be disrupted due to helper

churn is given by Equation (5.3).

P (t) =
r∏

i=1

P (Ri > t) (5.3)

where r is the number of helpers a video stream passes through or is split across, before

a participant receives it.



CHAPTER 5. PEER-TO-PEER MULTIPARTY VIDEO CONFERENCING 75

The number of helpers along the path of a participant using the tree approach is given

by dlogk(n− 1)e] and is always less than or equal to the number of helpers using the split

approach, assuming both schemes employ helpers with the same outdegree. In Figure 5.1,

the number of helpers along the path of the tree are three, whereas the number of helpers

in the split approach are four. As mentioned before, a video stream is disrupted whenever

a helper in the path of a video stream goes offline. If the lifetimes are pareto distributed,

the residual lifetime distribution is given by F (x) = 1− (1 + x
b )(1−a), where a is the shape

parameter and b is the scale parameter [Leonard et al., 2005]. Figure 5.2 (left) shows

the probability that a video stream a participant receives from another participant is not

disrupted for various conference durations and number of helpers. The parameters a and

b were selected so that mean helper lifetime was 5 hours, a choice motivated by Skype

node lifetimes [Guha et al., 2006; Kho et al., 2008]. For the scenario shown in Figure 5.1,

the probability that the video stream at any participant is not disrupted using the tree

and the split approach, which use three and four relays, respectively, is 58% and 48%,

which is extremely low from a reliability perspective. The low probabilities suggest that

for video conferences involving a large number of helpers, it may be necessary to employ

a combination of reliability improvement and video coding techniques, explained below, to

minimize the video disruption due to helper churn.

Recently, Chen et al. [Chen et al., 2008] advocated the use of layered coding with the

split approach. However, the performance of layered coding using a split approach is poor

from a reliability perspective, as the failure of a helper forwarding the ith layer can render

the (i+1)th and higher layers useless. The alternative to a layered coding or a blind splitting

of a single description video stream is to use multiple description coding (MDC) [Goyal,

2001]. Although the bit rate of MDC is typically higher than layered coding, it is more

suitable for dealing with the helper churn in a multi-helper split scheme.

Besides helper churn, the video stream can also be momentarily disrupted when a partici-

pant joins the conference. In the tree approach, when a new participant joins the conference,

it may momentarily disrupt the video of at most one existing participant if a new helper

must be added to the tree to serve the new participant. In contrast, in the split approach,

a new participant join may momentarily disrupt the video at all other participants. This
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Figure 5.2: (Left) Probability that a video stream is not disrupted at a receiving participant
when it passes through or is split across 1, 3, or 4 helpers. (Right) Probability of video
disruption in a split scheme when multiple description coding (MDC) is used for 1, 3, or 4
helpers. Helper lifetime is pareto distributed with a mean of five hours.

happens if a video stream source adds a new helper to serve the new participant and thus

has to redistribute its video stream over this new set of helpers.

5.3.3 Helper and Participant State, and Latency of a Video Stream

In the tree approach, the state maintained by a helper is proportional to its outdegree

(assuming a specific bit rate of the stream), whereas in the split approach the helper state

grows with the number of participants. However, the video conference size is likely to be

small (10-15 participants) and can also be bounded by the application (five participants in

Skype, six participants in ooVoo [ooVoo, 2010]). As such, the increased state per helper for

small conference sizes does not present a problem.

In the tree approach, a source sends the video stream to a helper which forwards it to

the next helper and so on until it is forwarded to the recipient. The latency of the video

stream in the tree approach is the sum of these overlay hops. In the split approach, portions

of the split stream are received through multiple helpers, and the latency of the complete

stream received at a participant is the maximum of the latencies of the split streams through

one-hop helpers.
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Figure 5.3: One helper (left) tree approach (center), split approach (right). The tree and
split approach optimize for latency whereas one helper optimizes for number of helpers.
The black nodes are helpers.

5.3.4 Always Minimize Helpers?

Figure 5.3 shows the tradeoff between latency and number of helpers in ALMC tree con-

struction. The left tree uses only one helper but the latency from the source to the recipients

is 300 ms. The latency is relatively small for the center and right trees that use the tree

and split approach, respectively, but they use two helpers. This situation arises because

some helpers can forward more streams than other helpers and illustrates that for these

scenarios, minimizing helpers may not always result in a minimum latency tree.

5.3.5 Select Helper Close to the Source or Recipient?

Figure 5.4 shows the tradeoff between selecting a helper close to the source or one of the

recipient. Selecting helpers close to one of the recipient has the problem that the helper

may not be close to other participants in terms of network latency. As a consequence,

other participants receiving the video stream of a source from this helper may suffer from

increased latency. On the other hand, selecting helpers as close to the source as possible is

less likely to put any recipient at a latency disadvantage.

5.3.6 Transcoding a Video Stream?

So far we have assumed that helpers only forward the video stream to participants or

other helpers. In addition to this forwarding of a stream, a helper can also transcode a

stream to adjust the bit rate of the forwarded stream according to the downlink capacity

of the participants. Transcoding is likely needed in a single tree scheme to handle the
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Figure 5.4: Selecting a helper close to the source or one of the recipients.

heterogeneous downlink bandwidth of the participants; otherwise, the bit rate of the video

stream received by all the participants is constrained by the smallest downlink capacity

amongst the receiving participants. However, transcoding a video stream puts a processing

burden on the helper. If the helper is managed, this burden may be acceptable. However,

the users of peers providing the helper service may not tolerate the processing burden in

addition to the use of their network connection without proper incentives.

5.3.7 Sharing Helpers Across ALMC Trees?

In theory, helpers that have sufficient spare bandwidth can forward the video of several

participants to all other participants, i.e., a helper can be shared across several ALMC trees

of the same or different conference. However, as mentioned in Section 5.2, the designer

of a commercial p2p video conferencing system is likely to limit the bit rate of a video

stream through a helper (e.g., to 100 kb/s) to minimize the interference of the p2p helper

application with network centric applications running on the helper machine. Such cap on

the bit rate practically limits the use of helpers across different ALMC trees.

5.3.8 Participants as Helpers?

The participants can also be used as helpers if they have sufficient uplink bandwidth, as

proposed by [Chen et al., 2008]. However, Dischinger et al. [Dischinger et al., 2007] reported

in their measurement study of broadband hosts that the uplink network capacity of majority

of broadband hosts was less than 500 kb/s. For such uplink bandwidths, a participant

may only be used as a helper for small conference sizes (e.g., 3 or 4) assuming no other
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application requiring network bandwidth is running on the participant’s machine. However,

for moderately sized conferences (such as six) where some participants may require a helper,

it is practically difficult for a participant to be used as a helper. Also, the video stream of

a participant that uses other participants as helpers can be disrupted when the participant

acting as a helper leave or drop out of the conference.

5.3.9 Managed Helpers

A p2p communication system provider like Skype can scale video conferences by using man-

aged helpers in addition to altruistic peers. Using managed helpers has several advantages.

First, unlike altruistic peers, managed helpers are likely to have a reasonable uptime guar-

antee, so helper churn becomes less of an issue. When churn is less of a concern, participants

can use single description or layered coding instead of MDC. Moreover, helpers can also

combine the video stream from several sources and transcode the aggregated video stream

to accurately match the downlink bandwidth of a participant. However, the benefits of us-

ing managed helpers have an economic cost. As an example, Nationalnet dedicated hosting

service [NationalNet, 2010] used by ooVoo costs $559 per month for a 100 Mb/s dedicated

server (in February 2010). For a six party video conference, where each participant has an

uplink and downlink network capacity of 100 kb/s and sends its stream at 100 kb/s to the

server, the uplink and downlink bandwidth usage on the server is 3,000 kb/s and 500 kb/s,

respectively, assuming the server is able to encode video from all participants at 100 kb/s,

and distribute this encoded stream to each participant.

This analysis suggests that a server can at most support 33 simultaneous 6-party video

conferences for the scenario described. The cost per minute of using the server, assuming

50% utilization for the month, is approximately three cents per minute ($559 per month
12 hours∗60 ). For

million minutes per month of video conferencing, the cost is $30,000 per month.

5.4 Putting it All Together

We outline the salient features of a protocol for accomplishing p2p video conferencing that

strives to achieve the best quality for the video conference in terms of bit rate and latency,
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while at the same time minimizing the impact of helper churn.

5.4.1 Use Split Approach with Multiple Description Coding

When a conference participant needs more than one helper to distribute its video stream to

other helpers, it should use the split approach as it uses less helpers than the tree approach

and is likely to achieve lower latency for all the participants. Further, when using multiple

helpers in the split approach, a source should use multiple description coding (MDC) to

split the video across multiple helpers so that the failure of a helper does not completely

disrupt the video stream at the receiving participants.

5.4.2 Select Helpers Close to the Video Source

Each conference participant (or source of the video stream) should select helpers as close

to itself as possible (e.g., within a 30ms threshold or so) rather than finding a helper that

optimizes latency across all recipients. This heuristic is likely to work best when participants

are geographically scattered and helpers are plenty.

5.4.3 Prioritize Voice over Video

While each participant needs to receive video from all other participants for the best in-

teractive experience, it only needs to receive the voice of the active participant. A video

conferencing protocol should prioritize the transmission of voice over video. Further, the

helpers for voice should be distinct from those of video, and where possible, voice should

be delivered in a full-mesh manner.

5.4.4 Limit Bandwidth Usage at Helpers

To minimize interference with the network-centric applications running on helpers, a video

conferencing protocol should limit the bandwidth usage at a helper. Limiting the bandwidth

usage at a helper is also necessary from the perspective of the users of a p2p communication

application, who may desire to know about the maximum bandwidth usage on their machine.

A video conferencing protocol can also bound the number of helpers in use, or limit the

number of participants in a conference based on the availability of helpers in the system.
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5.4.5 Mitigate Helper Churn

As mentioned in Section 5.3.1, maintaining a backup for every helper may not be feasible as

the number of helpers per ALMC tree grows. Instead, we recommend that the conference

participants should maintain a common pool of helpers. The number of helpers in this

pool can be a function of number of participants and may be capped at an upper limit

(such as four). Each participant maintains liveness checks with all the helpers in this pool.

When a helper churns, a participant can select a helper from this pool that has the lowest

latency from itself and meets the desired bandwidth. The participating user agents should

collaborate to replenish the pool of helpers when the helpers fail.

5.4.6 Use IP Multicast Where Possible

Although IP multicast is not widely available for end hosts, the p2p video conferencing pro-

tocol should prefer the use of IP multicast where ever possible because it can help minimize

the use of helpers. Conference participants can check the support for IP multicast when

they join a conference, similar to NAT detection tests [MacDonald and Lowekamp, 2010]

performed by the p2p applications when they join the overlay [Baset and Schulzrinne, 2006].

Further, for optimal performance, video conferencing protocol should perform connectivity

checks to determine if other participants are within the same LAN.

5.5 Related Work

Narada [Chu et al., 2000] and NICE [Banerjee et al., 2002] were among the early ALM

protocols that focused on streaming from one source to many recipients without using any

non-participant helpers. Narada did not address the issue of participant churn whereas

NICE did not incorporate participant bandwidth for ALM tree construction. In a followup

work on Narada, Yang [Chu et al., 2001] focused on conferencing with only participant

nodes but did not address the issue of multiple sources sharing the same overlay mesh and

participant churn. To scale the video conferences, Luo et al. [Luo et al., 2007] used IP

multicast where possible in addition to the ALM tree, but such scaling is limited without

the use of non-participant helpers since IP multicast is not widely available. Further,
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they did not address the issue of participant churn. In an ALM tree, some receivers may

act as helpers which places an undue load on them as compared to receivers which only

receive the stream. SplitStream [Castro et al., 2003] addressed this problem by striping

the stream using multiple description coding (MDC) [Goyal, 2001] over multiple trees so

that each receiver forwards one stripe. Although their work can be extended for video

conferencing and to incorporate helpers, they use a Pastry DHT to construct the ALM

trees for forwarding stripes. The use of a DHT to construct ALMC trees may lead to

unnecessary tree transformations when participants join or leave the conference.

Shi et al. [Shi and Turner, 2002] were the first to consider the use of helpers (multicast

service nodes (MSNs)) for streaming and focused on optimizing their network utilization

(or residual degree), while keeping the tree diameter low. However, they assumed that

helpers were managed servers and thus did not consider the issue of dynamic memberships.

OMNI [Banerjee et al., 2006] assumed a client population attached to helpers and focused

on minimizing latency of the ALM tree based on client population. In contrast, in p2p

video conferencing, the clients can potentially be served by any helper, subject to latency

constraints. Recently, Wang et al. [Wang and Ramchandran, 2008] considered using helpers

for p2p live multicast for reducing load on the server but did not optimize the latency of

the ALM tree and did not effectively mitigate the impact of churn.

The work most related to ours is by Chen et al. [Chen et al., 2008], who considered

multi-party video conferencing at a single rate and extended their work to use scalable

video codecs [Ponec et al., 2009]. Their idea is to split a single or layered stream from

a conference participant across one or two-hop trees. The two-hop trees are constructed

using other participants or non-participants as helpers. They showed that two-hop delay tree

construction achieves the same rate as intra-session network coding. However, participants

usually do not have sufficient bandwidth and scaling the video conference is likely to have to

rely on non-participant helpers. They did not consider the issues in managing the reliability

of helper-assisted video conferences. Further, they did not consider the practical issues

of helper selection due to restrictive NATs and firewalls. Nevertheless, our work builds

on theirs and provides practical insights on constructing a holistic solution for p2p video

conferencing.
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Different vendors [Polycom Conferencing Infrastructure., 2010; Tandberg, 2010] provide

hardware based multipoint control units (MCUs) where the participants send the video

stream to a centrally located MCU which then transmits the streams to each participant

according to their downlink bandwidth. Although this solution works, the bandwidth re-

quirements at the server are proportional to the number of participants. Further, it may not

be economically feasible for a small organization to invest in the server bandwidth or pur-

chase costly MCU hardware. Luo et al. [Luo et al., 2007] developed a PCI card to replicate

the functionality of a centralized MCU but their approach supports only four participants.

Peer-to-peer video conferencing remains challenging as VoIP applications such as Skype [Skype,

2010a], Windows Live Messenger [Microsoft, 2010], and ooVoo [ooVoo, 2010] either support

video conferencing through managed servers or only support two party video calls.

5.6 Conclusion

We have systematically explored the practical issues involved in scaling peer-to-peer video

conferences using altruistic peers as helpers. Our analysis indicates that it is challenging to

scale video conferences using altruistic peers for moderately large conference sizes (e.g., 10

participants or more) without drafting a large number of altruistic peers or compromising

the quality of the video stream. We have outlined a p2p video conferencing protocol for

constructing helper-assisted application layer multicast tree for conferencing to deliver a

participant’s video stream to all other participants. The salient features of this protocol are

helper selection, helper churn mitigation, and bandwidth guarantees at the helper.
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Chapter 6

Reliability and Relay Selection

6.1 Introduction

Restrictive network address translators (NATs) and firewalls prevent hosts from directly

exchanging packets. A survey of 1,787 NAT devices indicates that hosts behind approx-

imately 30% of these devices cannot traverse the NATs using UDP or TCP [Müller and

Klenk, 2010] implying that hosts behind two different such devices are not likely to directly

exchange packets without an intermediary. Moreover, corporations are increasingly deploy-

ing firewalls to protect their networks from malicious traffic that originates both outside

and inside their networks. The restrictive NATs and firewalls pose a problem for IP commu-

nication systems because they prevent the user agents from directly exchanging signaling

and media traffic.

In a client-server (c/s) communication system, the caller user agent discovers the network

address of a callee user agent through a managed server and exchanges signaling information

with the callee user agent to establish a media session. The media traffic flows directly

between the user agents. To address the connectivity constraints due to restrictive NATs

and firewalls, c/s systems such as Vonage [Vonage, 2010] use managed servers for relaying

the media traffic between user agents with restrictive connectivity. In contrast, peer-to-peer

(p2p) communication systems try to minimize the number of servers. In these systems, the

user agents collaborate to discover the network address of the callee user agent. The caller

and callee user agents then directly exchange signaling and media traffic to establish a media



CHAPTER 6. RELIABILITY AND RELAY SELECTION 86

session. When the caller or callee user agents are behind restrictive NATs and firewalls and

cannot directly exchange packets, they rely on user agents (or peers) with unrestricted

connectivity for exchanging signaling and media traffic. Skype is an example of a peer-to-

peer communication system that uses this technique [Baset and Schulzrinne, 2006]. Suh et

al. [Suh et al., 2006] observed that hundreds of calls were being relayed by a single Skype

relay.

The above characteristics of a p2p communication system pose unique challenges for

a system designer. First, the lookup performance in p2p systems must at least be as

effective as the lookup performance of client-server systems. Additionally, a media session

may be prematurely terminated because a relay peer goes offline. This issue motivates a

formal analysis of the reliability of p2p communication systems and devising of techniques

to prevent dropped sessions. Moreover, since media sessions such as voice and video have

a tight playout requirement, the network latency of a media session involving a relay peer

should not exceed these tight requirements. Further, the relaying of a media session may

interfere with other user applications and impair their performance. A system designer must

either provide incentives for users to run relay peers or design techniques that minimize the

interference of relayed session with other user applications.

In this chapter, we present a framework to analyze the reliability of peer-to-peer com-

munication systems (Section 6.3). We then devise a simple analytical model that predicts

the smallest number of relays needed to achieve the desired reliability for relayed media

sessions (Section 6.4.1) and evaluate it on exponential, pareto, and observed Skype node

lifetimes. For a given node lifetime and call duration distribution, the model allows deter-

mining the minimum number of relays so that the percentage of successful relayed calls does

not fall below a desired threshold (e.g., 99.9%). Such an analysis can help characterize the

resources (relays) needed for improving the reliability of relayed calls. We then devise two

techniques to prevent dropped sessions, selecting k relay peers at the beginning of a call

with no-replacement and with-replacement and predict their reliability improvement using

reliability theory in Section 6.4.2 and 6.4.3. In Section 6.4.4, we analyze the reliability

improvement scheme used by Skype. Section 6.4.5 presents the experimental evaluation of

the model and discussion.
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In Section 6.5, we present a distributed technique to find a relay peer in O(1) hops and

compare the performance of this technique to a relay selection scheme that has global knowl-

edge of all the relays in the p2p network. Instead of designing incentives for users to allow

relaying of media sessions through their user agents, we aim to minimize the interference

of relayed session with the user applications. To capture the impact of the relayed media

sessions on the user applications, we introduce the notion of user annoyance (Section 6.5.2).

We augment our distributed search technique to select a relay that minimizes delay, user

annoyance, or both within a threshold. To the best of our knowledge, we are the first to

address the reliability issues in p2p communication systems, and to devise techniques for

finding a relay that optimizes the latency of a relayed call and user annoyance. Our analysis

and results are also applicable to media translation and conferencing in p2p communication

systems (see Chapter 5).

6.2 Problem Setting

We consider a peer-to-peer communication system that has N participating nodes. A node

is a machine with CPU, memory and disk and is connected to the Internet through a

dial-up, DSL, cable, fiber, or a wireless connection. Typically, a human user is associated

with each node or a machine and runs a peer-to-peer communication application(s) (also

referred to as user agents) and other applications. The p2p applications use any peer-

to-peer protocol to form a p2p network. There are two types of nodes in a peer-to-peer

communication network, peers and free-riders. In the literature, they are also referred to as

super nodes and ordinary nodes [Liang et al., 2004; Baset and Schulzrinne, 2006] or peers

and clients [Bryan et al., 2010]. A peer fully participates in the p2p network, collaborates

with other peers to discover the reachable network address of the callee user agent, and can

relay one or more media sessions. A free-rider does not collaborate in the discovery of the

callee user agent and does not relay any media sessions. However, this collaboration is not

always purposefully avoided. The presence of restrictive NATs and firewalls may hinder the

participation of a node in the overlay, thereby forcing it to act as a free-rider. The need

for relaying media sessions between caller and callee user agents arises precisely due to this
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reason. For ease of exposition, we refer to the caller and callee user agent as caller and

callee, relay peer as relay, and voice session as a call. Unless stated otherwise, we refer to

the p2p communication application as a p2p application.

6.3 Reliability of a P2P Communication System

Availability is the classical metric for modeling the reliability of a communication system

and is typically expressed by the number of nines after a decimal point. For example, a “3

nines” (99.9%) reliability means that the system is down only 0.1% of the time. In a p2p

communication system, availability implies the ability of the system to find the network

address of the callee, and also to find a relay for establishing the relayed call. However,

this notion does not fully capture the reliability of relayed calls because in addition to relay

search failure, calls can also fail due to relay churn since there is no guarantee about the

uptime of relays. Thus, a more accurate metric to capture the reliability of calls in a p2p

communication system is the number of successfully completed calls.

Psucc = PssFnorelay + PssFnorelayPrsP (R > D) (6.1)

Equation (6.1) formalizes the notion of reliability or percentage of successful calls in a

p2p communication system. The term to the immediate left of plus sign is the probability of

successfully finding the network address of the callee user agent, Pss, times the proportion

of calls that do not need a relay, Fnorelay. The term to the immediate right of plus sign is

the probability of successfully finding the relay, Prs, times the proportion of calls that need

a relay, Fnorelay, times the probability that the residual lifetime of a relay, R, is greater than

the call duration distribution D. This equation indicates that the proportion of successful

calls can be increased by enhancing the performance of lookup schemes using techniques

similar to [Rhea et al., 2004], by designing schemes that establish a media session between

user agents in the presence of NATs and firewalls without requiring a relay [Ford et al.,

2005], and by improving the success rate of distributed relay search and relay calls. We

focus our attention on analyzing the reliability of relayed calls and relay search since other

areas have seen related work [Rosenberg, 2010; Rhea, 2005].
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6.4 Modeling the Reliability of Relayed Calls

We present a simple model to calculate the minimum number of relays per call, k, so

that the success rate of relayed calls is above a desired reliability criteria such as 99.9%

(Section 6.4.1), analyze two reliability improvement schemes, namely, no-replacement (Sec-

tion 6.4.2) and with-replacement (Section 6.4.3), and present an evaluation of the model

and reliability improvement schemes (Section 6.4.5). Our analysis assume that the nodes

that need a relay to establish a call (ordinary nodes) can randomly select it from the set of

all relays, that relays are plenty, and the system has reached stationarity. In Section 6.5.1,

we discuss a distributed scheme to find a relay.

6.4.1 Number of Relays

Let Xi be a random variable (r.v) that denotes the lifetime of relay i, FXi be its CDF,

and Xi be independent and identically distributed (i.i.d). Let Ri be a random variable

that denotes the residual lifetime of relay i when it starts relaying the call and D denote

the distribution of call duration. When a relay fails, the call it is relaying is immediately

switched to a new relay j, having residual lifetime Rj . Since the new relay is selected

immediately when the old relay fails, the residual lifetime of the relays used are also i.i.d.

For simplicity, we assume that calls are not dropped during switch over to a new relay.

Leonard et al. [Leonard et al., 2005] note that if the system has reached stationarity, the

CDF of residual lifetimes is given as:

FR(x) = P (Ri < x) =
1

E[Xi]

∫ x

0
(1− F (z))dz (6.2)

We are interested in determining the minimum relays per call k, so that the number of

successfully completed relayed calls is above a desired criteria such as 99.9%, i.e.,

Desired reliability ≤ P (
k∑

i=1

Ri > D) (6.3)

Lemma 1 When X and D are exponentially distributed with parameters λ and ν, the r.h.s
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of Equation (6.3) has a closed form solution:

P (
k∑

i=1

Ri > D) = 1− (
λ

λ + ν
)k (6.4)

Proof:

For exponential distribution, Equation (6.2) can be solved to obtain FR(x) and its proba-

bility distribution function (pdf) fR(x), which are 1− e−λx and λe−λx, respectively. Using

conditioning:

P (D <
k∑

i=1

Ri) =
∫ ∞

0
F (D < m)× f(

k∑

i=1

Ri = m)dm

f(
k∑

i=1

Ri = m) is a k-fold convolution of exponential r.v’s

which have a gamma pdf.

=
∫ ∞

0
(1− eνm)× λe−λm(λm)k−1

(k − 1)!
dm

=
∫ ∞

0

λe−λm(λm)k−1

(k − 1)!
− λe−(λ+ν)m(λm)k−1

(k − 1)!
dm (6.5)

The left term of Equation (6.5) is 1 since it is an integral of gamma

pdf. Multiple and divide the right term by (λ + ν)k and

using Γ(n) =
∫ ∞

0
e−xxk−1dx = (k − 1)!

= 1− (
λ

λ + ν
)k (6.6)

For arbitrary lifetime and call distribution, the r.h.s of Equation (6.3) is difficult to

solve as convolution of k i.i.d random variables is non-trivial. Instead, we use the following

approximation which replaces the sum of k r.v’s with their maximum.

Lemma 2 The sum of k i.i.d r.v’s Ri being greater than another r.v D is greater than or

equal to one minus the kth exponentiation of the probability of R being less than D.

P (
k∑

i=1

Ri > D) ≥ 1− P (R < D)k (Ri are i.i.d) (6.7)
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a=2,b=5 (mean lifetime=5 hours) a=3,b=2 (mean lifetime=1 hour)
k=2 k=4 k=2 k=4

call duration sim (%) rel-e (%) sim (%) rel-e (%) sim (%) rel-e (%) sim (%) rel-e (%)
2.5 0.0074 8.5755 0 0.00 0.1544 0.2171 0.0003 21.3205

5 0.0251 3.6121 0 0.00 0.5517 0.2131 0.0027 6.9055
10 0.0961 1.7193 8e-5 20.0925 1.8179 0.1980 0.0319 3.8110
20 0.3553 1.3791 0.0011 14.7570 5.2869 0.1456 0.2772 0.2958
30 0.7171 0.4476 0.0053 1.9231 9.0853 0.0737 0.8292 0.2894
40 1.1567 0.4465 0.0137 1.7594 12.867 0.0233 1.6608 0.2589
50 1.6537 0.4349 0.0265 1.1979 16.464 0.0061 2.7106 0.0885
60 2.1895 0.1096 0.0482 0.8299 19.836 0.0303 3.9368 0.0585

Table 6.1: Simulated values of P (
∑k=2

i=1 Ri < D) and P (
∑k=4

i=1 Ri < D) for pareto lifetimes
are shown in the ‘sim’ column. The values indicate the percentage of dropped relay calls
in 107 runs. The relative error of the approximation P (R < D)k=2 and P (R < D)k=4 with
respect to the simulated values is shown in the ‘rel-e’ column. Call duration is exponentially
distributed.

Proof:

P (
k∑

i=1

Ri < D) ≤ P (max(R1, . . . , Rk) < D)

P (maxRi < D) = P (R1 < D, . . . , Rk < D)

= P (R < D)k since Ri are i.i.d

P (
k∑

i=1

Ri > D) ≥ 1− P (R < D)k

Observe that if node lifetimes are exponentially distributed, the equality holds in Equa-

tion (6.7) holds and Equation (6.4) is obtained. For non-exponential node lifetimes, the kth

exponentiation decreases much faster than the sum and intuitively, the bound is loose for

large values of k. However, the relative error of the bound depends on the lifetime and call

duration distributions. Next, we examine the relative error of Equation (6.7) for pareto dis-

tribution since the measurement studies of Skype node lifetimes suggest using heavy tailed

distributions as an approximation [Guha et al., 2006] and pareto is the most natural choice

for such an approximation.
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6.4.1.1 Pareto Node Lifetimes

The CDF of pareto lifetimes is F (x) = 1−(x
b )−a, where a is the shape parameter and b is the

scale parameter. For our analysis, we use the shifted pareto distribution F (x) = 1−(1+ x
b )−a

with mean b
a−1

[Leonard et al., 2005], because without the shift, a node is guaranteed to

be up for b units of time. Clearly, the mean of this distribution is only defined for a > 1

whereas variance is only defined for a > 2 which prevents the calculation of an an exact

analytical formula for sum of k pareto i.i.d r.v’s. Zaliapin et al. [Zaliapin et al., 2005]

describe methods for approximating the upper quantile (0.98), lower quantile (0.02), and

median of sum of k pareto i.i.d r.v’s. Their results indicate that although replacing the

sum with the maximum can reasonably approximate the quantiles around median, such

an approximation is poor for the lower and upper quantiles and for large values of k (e.g.,

> 10). The CDF of residuals of pareto lifetimes is F (x) = 1 − (1 + x
b )1−a [Leonard et

al., 2005]. Although, the approximation results by Zaliapin can be extended to the sum

of pareto residuals for arbitrary values of a, b, and k, such an effort is beyond the scope

of this thesis. Further, the utility of precise approximation may be limited due to the

difficulty in estimating the pareto parameters. Also, real node lifetimes do not follow a strict

pareto distribution and incorporate effects such as diurnal variations [Guha et al., 2006;

Kho et al., 2008]. Therefore, to obtain a bound on the minimum number of relays to achieve

desired reliability, we approximate the sum of k pareto residuals with their maximum, but

note that in doing so, it is necessary to get an estimate of the relative error of such an

approximation to determine its usefulness.

In Table 6.1, we show the simulated values of the sum of two and four pareto residual Ri

being less than exponentially distributed call holding times D and the relative error of the

approximation (maximum of Ri being less than D) with respect to the simulated values.

The simulated results are an average over 107 runs. The parameters a and b were chosen

so that the mean of the distribution was five and one hour, respectively. The choice of

mean uptime of five hours approximately reflects the median of the observed Skype node

lifetimes [Guha et al., 2006; Kho et al., 2008], whereas mean node lifetime of one hour is for

a relatively less stable system. The top two values in the fourth column are zero because

sum of four Ri was never observed to be smaller than D (with mean of 2.5 and 5 minutes)
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in 107 runs. For relayed calls, these values are interpreted as observing no call failure in 107

runs. Observe that the relative error is low (< 0.2%) when the value of the simulated sum

of Ri r.v’s being less than D is above 2% whereas the relative error increases for simulated

values smaller than 2% and the increase in number of summands from two to four. This

result is consistent with [Zaliapin et al., 2005] which notes that using the maximum of k

pareto r.v’s instead of their sum is not a good approximation for lower quantiles (< 0.02).

However, note that although the relative error increases as call holding times, D, decrease

relative to node lifetimes and the number of summands k increase, we are only interested

in the smallest value of k for which the call success rate is just above the desired reliability

such as 99.9% and not an arbitrary large value of k. In general, the approximation can be

applied to determine the smallest value of k that meets the desired reliability criteria, as

long as the relative error remains low (e.g., < 1%).

Next, we present two schemes for preventing the failure of relayed media sessions due

to relay churn.

6.4.2 No-replacement Scheme

In the no-replacement scheme, k relays are selected at the beginning of the call with one

relay acting as primary and k − 1 acting as backup. If the primary relay fails, the call

is switched to a backup relay. We assume that calls are not dropped during switch over.

A call fails when all k relays fail. Let Ri be a random variable that denotes the residual

lifetime of the relay i when it is drafted as a relay and D be a random variable that denotes

call duration. We are interested in the probability that at least one of the relay, that were

selected when call was established, is online before the call completes:

P (max(R1, . . . , Rk) > D)

= 1−
∫ ∞

0
P (R < z)kP (D = z)dz (Ri are i.i.d) (6.8)

We solved Equation (6.8) to determine the proportion of successful relay calls using two

or three relays when node lifetimes are exponentially distributed, and the corresponding

expressions are 1− 2ν
λ+ν + ν

2λ+ν and ( 1
2λ+ν− 1

3λ+ν ) 6λ2

λ+ν , respectively. For pareto node lifetimes,
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2 1 0

µ

2λ λ
-(λ+µ)-2λ

Figure 6.1: Markov chain for a 2-relay with-replacement scheme.

we numerically solved Equation (6.8) to obtain the proportion of successful calls using two

or three relays.

How many relays? Does adding more relays at the beginning of a relayed call result

in significant reliability improvement? Unfortunately, the proportional increase in the re-

liability diminishes with selecting more relays at the start of the call. For example, when

node lifetimes are exponentially distributed, the MTTF of a 2-relay, 3-relay, and 4-relay

schemes are 3
2λ , 11

6λ , and 25
12λ , respectively. The proportional increase in the MTTF for these

schemes is 50%, 22%, and 13%, respectively. Clearly, this is a case of diminishing returns.

Further, maintaining numerous backup relays exclusively for every call when relays are not

plentiful is likely to result in a poor performance from the perspective of successful call

establishment for relayed calls. Moreover, nodes in a media session also incur the overhead

of sending keep-alive traffic to many relays.

6.4.3 With-replacement Scheme

This scheme is similar to the no-replacement scheme in that k relays are selected at the

beginning of a call, and a call is switched to a backup relay if the primary relay fails.

However, when a caller or callee detects that one of the k relays has failed, it launches a

search to replace the failed relay. Suppose it takes µ time units to detect that a relay has

failed and find a new relay. If node lifetime and search time are exponentially distributed,

a Markov chain can be used to evaluate the reliability of this scheme [Birolini, 2004]. For a

single backup relay, the Markov chain is shown in Figure 6.1. In the reliability literature,

this scheme is referred to as 1-out-of-2 active redundancy with constant failure rate λ and

constant repair rate µ [Birolini, 2004]. This chain can be solved to obtain MTTF, i.e., the

time it spends in states (2) and (1), when two and one relays are operational. The failure
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rate is the reciprocal of MTTF, i.e.,

1
λWR

= MTTF =
3λ + µ

2λ2
(6.9)

The subscript WR denotes with-replacement. For λ << µ, this scheme approximately

behaves like a one relay scheme with constant failure rate λWR ([Birolini, 2004, page 190]).

Let RWR be a random variable that denotes the reliability of this scheme. Since its failure

rate is constant, its CDF is RWR(t) = e−λWR(t). When call duration is exponentially

distributed with parameter ν, the probability that a call completes before the two relays

fail and a search for the replacement relay also fails is:

P (RWR > D) =
ν

ν + λWR
(6.10)

When the node failure rates are not constant, either non-homogeneous poisson processes

may be used to model the reliability of this scheme or node lifetime can be split into periods

where failure rate is constant. However, the difficulty in using such analysis lies in the fact

that for heavy tailed distributions, the shape parameter a is often not accurately known.

Therefore, we leave such analysis for future work.

6.4.4 Reliability of Relayed Calls in Skype

We performed experiments to determine if the Skype application employs a no-replacement

or a with-replacement scheme. We blocked direct traffic between two machines running

in our lab using NetPeeker [Net Peeker, 2010] and then ran Skype applications on them

and established a call. Since the traffic was blocked between the machines, the Skype

applications were forced to use a relay to exchange signaling and media traffic. Using

NetPeeker [Net Peeker, 2010], we blocked the media traffic between caller machine and

the relay, which is similar to emulating a relay failure. Within 2-4 seconds, the Skype

applications chose a new media relay. We then immediately blocked traffic between this new

relay and the caller Skype application which resulted into the call getting disconnected. The

experiment shows that when a call is established that requires a relay, the Skype application

chooses a backup relay at the start of the call. When both relays fail simultaneously, the
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Figure 6.2: (Left) CCDF of the node lifetimes and the pareto fit for Skype data set (right)
percentage of dropped calls through simulations on the Skype data set and using a pareto
model when only one relay is used.

call is disconnected.

To determine if a Skype application searches for a new relay when the primary relay

fails and the call is shifted to the backup relay, we gradually increased the time between

primary and backup relay failure from 30 s to two minutes. Our experiments indicated

that a Skype application approximately waits for a minute before searching for a new

relay. Thus, it employs a ‘periodic-recovery’ scheme for replacing a failed relay instead of

a ‘reactive-recovery’ scheme. We periodically failed the primary relay every 90 s for a call

lasting 15 minutes and found that the Skype application was able to find a backup relay

and the call did not get disconnected.

All the experiments were performed during the first week of December 2009 and more

than 70 calls were established over a period of seven days.

6.4.5 Evaluation and Discussion

We evaluated the analytical model for the number of relays, and reliability improving tech-

niques using simulations. We wrote an event driven simulator in which nodes form an

overlay network using Chord. All nodes running the Chord overlay can potentially provide

the relay service. The request for relaying a call randomly arrives on any of the nodes

in the Chord overlay. We used a relay selector which randomly selected a relay from the

pool of all online relays having sufficient network capacity. The inter-arrival time between
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requests for relayed calls was exponentially distributed and its mean was adjusted over the

course of the simulation so that the cumulative network load of relayed calls did not exceed

a target aggregate network utilization of the peers. In the results presented in this section,

the aggregate uplink network utilization of all the peers never exceeded 40%. Thus, in our

simulations, the relayed calls only failed due to relay failure and not due to the scarcity of

relays. We ran the simulation for 10 days of simulated time and repeated the experiments

until 107 call attempts had been made. The warm up period is excluded from the reported

results.

We used three node lifetime data sets. The first two data sets contained synthetically

generated exponential and pareto node uptime and downtime with a mean of 300 minutes.

The pareto parameters a and b were chosen as 2 and 5, respectively. The third data set

contained the uptime and downtime of 4,000 Skype super nodes measured for 25 days by

Guha [Guha et al., 2006]. The uptime of Skype nodes was measured by sending a specially

crafted Skype message to these nodes every 30 minutes. We randomly selected 1,740 nodes

from this data set of 4,000 nodes because this is the maximum number of nodes for which

all pair ping latency data is available [Gummadi et al., 2002]. In Section 6.5.3, we use

this data for designing a distributed relay search mechanism that minimizes the latency of

relayed calls.

At any instant during simulation, the online nodes amongst the 1,740 nodes ran the

Chord overlay and could potentially provide the relay service. The median and mean

uptime of these 1,740 nodes was 256 and 711 minutes, respectively. The pareto parameters,

a and b, computed using the method of maximum likelihood and Kolmogorov-Smirnov

statistic, were 1.4916 and 8.9833, respectively. Figure 6.2 (left) shows the CCDF of Skype

node lifetimes and the pareto fit indicated by a dashed straight line. Towards the end of

the tail, the measured lifetimes exhibit a knee of the curve. This happens because the node

lifetimes did not strictly exhibit a pareto behavior and the measurement is stopped after

T time units. For the Skype data set, Figure 6.2 (right) shows the percentage of dropped

calls when a call is assigned to one relay, through simulations and those predicted by the

model P (R < D). The relative error with respect to simulations was less than 15%. Wang

[Wang et al., 2009] suggested that there is an inherent inaccuracy in computing the exact
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Figure 6.3: Number of relays needed to maintain a 99.9% call success rate when node
lifetimes are distributed as exponential (top), pareto (middle), and Skype (bottom). The
mean node lifetime for exponential and pareto distributions was 300 minutes. The mean
and median node lifetime in the Skype data set was 711 and 256 minutes, respectively.

parameters of the node lifetime distribution when they are sampled every T time units.

We note that such a bias depends on the ratio of the mean node lifetime and the sampling

interval: the higher the ratio, the lower the inaccuracy and vice versa. Nevertheless, we

note that when the real lifetime data is used for churn simulations, such a bias will always

be present.

A key consideration is to realistically set the upload and download bandwidth of a relay

peer since it cannot relay an arbitrary number of calls. Dischinger et al. [Dischinger et

al., 2007] have measured the upload and download bandwidth for a range of broadband

hosts and we set the relay bandwidths according to their reported distribution. We assume

that a relay call needs an uplink and downlink bandwidth of 128 kb/s (using the G.711

codec). Modern codecs such as SILK [Skype, 2010c] which has a bit rate between 4-40 kb/s

can bring down the required bandwidth at a relay to 8-80 kb/s. To simulate the effect

of network traffic belonging to other applications, we randomly set the uplink network

utilization of a node between 10-30% of its uplink capacity at the start of the simulation.

Depending on its spare capacity, a relay peer can relay more than one call.

Figure 6.3 shows the number of relays for exponential, pareto, and Skype node life-
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times for a range of exponentially distributed call holding times. Guha [Guha et al., 2006]

showed that 95% of Skype relayed calls last less than an hour. The approximation from

Equation (6.7) is used to calculate the number of relays when pareto distribution is used to

model node lifetimes. For pareto node lifetimes (second graph in the figure from the top)

and call duration of 60 minutes, the relative error of the approximation was less than 1%.

The results from the simulation show that for the Skype data set and for call durations of

60minutes or less, three relays are sufficient to achieve a call success rate of 99.9%. Observe

that modeling the Skype node lifetimes as exponential and pareto resulted in a minimum re-

lay prediction of three relays which matches the simulations. For call duration of 30 minutes,

the pareto model under predicts the number of relays. However, this is expected as Skype

node lifetimes do not exactly follow the pareto model (Figure 6.2). Also, for the results

shown, note that although only three or four relays or less are needed to achieve call drop

rate of 0.1% or less for call duration of 60minutes, the number can be higher when node

lifetimes are smaller. As an example, when the node lifetimes are exponential with a mean

of one hour, at least ten relays per call are needed to achieve a success rate of 99.9% for

mean call duration of 60 minutes.

Figure 6.4 shows the reliability of a 2-relay and 3-relay no-replacement scheme for ex-

ponential, pareto, and Skype node lifetime data sets. As expected, there is a good match

between analytically computed (using Equation (6.8)) and simulated call success rates for

exponential and pareto node lifetimes. For the Skype data set, the simulations show that a

2-relay scheme achieves a 99.9% success rate for call durations of 10 minutes or less whereas

for call duration of 60 minutes, the success rate is 99.25%. For 2-relay no-replacement

scheme, using exponential and pareto node lifetimes to model Skype node lifetimes results

in over predicting and under predicting the number of dropped calls by approximately a

factor of two, respectively.

Figure 6.5 shows the reliability of a 2-relay with-replacement scheme for exponential,

pareto, and Skype node lifetime data sets. The time to detect if a relay has failed and

consequently to search a new relay is exponentially distributed with a mean of 60 s. As

expected, the Markov model accurately predicts the call drop rate when node lifetimes

are exponential. The results also indicate that the Markov model may be a reasonable
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Figure 6.4: Proportional of failed calls using simulations and model for exponential (top),
pareto (middle), and Skype (bottom) node lifetimes. The figures on the left and right are
for a 2-relay and 3-relay no-replacement scheme, respectively.

approximation for pareto node lifetimes. For Skype data set and for call duration of 60

minutes, this scheme achieves a call success rate of 99.65%, an improvement of 0.3% over

a 2-relay no-replacement scheme. The improvement is small because node lifetimes have a

large mean (711 minutes). When node lifetimes have a small mean, it may be necessary

to incorporate a with-replacement scheme to avoid dropped calls. Since Skype employs

a 2-relay with-replacement scheme having a relay search time of approximately 60 s, the

results from our simulations indicate that the drop rate of relayed calls is likely to be small.

However, Skype’s relay mechanism is not completely random and is biased towards low

latency and high bandwidth relays. Such a bias may result in higher drop rates for relayed

calls [Godfrey et al., 2006]. Nevertheless, an implication of the results is that for Skype

node lifetimes, simple schemes for reliability improvement such as two relay no-replacement

and with-replacement give reasonable reliability performance thereby obviating the need for
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Figure 6.5: Proportion of failed calls using simulations and Markov model for 2-relay with-
replacement scheme for exponential (left), pareto (middle), and Skype (right) node lifetimes.

a more sophisticated reliability improvement scheme.

6.4.5.1 Practical Implications of Reliability Improvement Schemes

In a k-relay no-replacement scheme, both caller and callee exchange information about

k relays at the time of call establishment. After a call has been established, they must

periodically check the liveness of all k relays. The liveness period should be adjusted so

that when the primary relay fails, there is a high likelihood that the new relay to be

incorporated is alive. However, the reliability returns of maintaining a large number of

backup relays at the start of the call are diminishing, especially under high churn. For

this reason, a with-replacement scheme is attractive. Such a scheme can potentially start

with 2 or 3 relays, and find a replacement for a failed relay. However, the caller and callee

must exchange information about the new relay in subsequent signaling messages. For a

no-replacement scheme, no such exchange is required.

6.4.5.2 Other Reasons for Call Failure

Relay failure is not the only reason why relayed calls may fail. Such calls can also fail

during call switching. Also, since nodes may use silence suppression, it may take more time

to correctly distinguish between silence periods and a failed relay because the frequency of

heart-beat messages is likely to be lower than real-time voice or video packets. If a search

for a relay is launched at the time when all relays have failed, the caller and callee will

perceive a silence gap in the conversation. If the duration of the perceived gap is long, the
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call participants may simply terminate the call.

6.5 Relay Selection

In this section, we devise distributed techniques to find a relay that address several practical

issues. The first issue is that the distributed relay search must find a relay in a timely

manner to minimize the call establishment time and to quickly recover from relay churn.

Also, the relaying of media session can interfere with the user applications and impair their

performance. It is important to select relays in a way that minimize this interference.

Besides minimizing interference, latency and increasing reliability are key objectives for

relayed calls. Addressing all these factors is a multi-objective optimization problem which

is NP-hard [Zaroliagis, 2005].

In Section 6.5.1, we devise a distributed relay selection technique that can find a relay

in O(1) hops and compare its performance to a scheme that randomly selects a relay from

the global pool of all relays. Section 6.5.2 introduces the notion of user annoyance. In

Section 6.5.3, we augment the distributed relay selection scheme to devise heuristics for

finding a relay that, for a relayed call, minimizes user annoyance or latency or both, and

evaluate their performance.

6.5.1 Distributed Relay Selection

We devise a relay selection scheme where a node requesting a relay can find a relay in O(1)

hops. As mentioned earlier, quickly finding a relay is necessary to reduce call establishment

time and to recover from relay churn. The key idea to accomplish this goal is to construct

a two tier peer-to-peer network. All peers in the top tier provide routing services and

can also potentially provide relay services. The peers form the top tier network using any

structured or unstructured p2p protocols. Each peer maintains a data structure called a

routing table to maintain connectivity with other peers in the overlay. Each entry in this

table contains the network address and round-trip time of a reachable peer in the overlay.

As part of keep-alive messages to check the liveness of entries in its routing table, a peer

also exchanges information with its routing table entries on how many relay calls they can
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Figure 6.6: Two-tiered overlay implementing a local-random scheme for relay selection. The
nodes shown in light blue color and connected by a circle form the top tier, whereas the
nodes in the lower tier, as shown by the orange color, connect to one of the nodes in the
top tier.

support, their uptime and the time for last user keyboard or mouse activity.

The nodes in the lower tier are typically behind a restrictive NAT or a firewall and are

connected to close-by peer(s) in the top tier in terms of network latency. These nodes may

need a relay need a relay peer for establishing a media session. Such nodes send a request to

their connected peer which consults its routing table and returns to the requesting node a

set of available relays. If none of the peers in the routing table can fulfill the relay request,

the peer forwards the request to a randomly selected peer in its routing table, which in

turn consults its routing table for available relay peers. The number of forwarding hops is

bounded by a constant such as four. As an example, if on average 30% of the nodes in a

peer’s routing table are busy routing a call, then the probability of not finding an available

relay after traversing four randomly selected hops is less than one percent (0.81%).

If the number of relay requests is low and uniformly distributed across all peers, this

scheme is likely to find a relay in O(1) hops. We refer to this scheme as local-random scheme

because it selects a relay by leveraging the local overlay view of a peer. This scheme is in



CHAPTER 6. RELIABILITY AND RELAY SELECTION 104

40 50 60 70 80 90
0

1

2

3

4

5

%
 s

ea
rc

h 
fa

ile
d

applied load / capacity (%)

local−random
global

40 50 60 70 80 90
0

0.5

1

1.5

2

%
 d

ro
pp

ed
 c

al
ls

applied load / capacity (%)

local−random
global

Figure 6.7: Performance of local-random scheme vs. global scheme as a function of system
load (left graph). Percentage of dropped calls when one relays fails (right graph).

contrast to a global random scheme, which has knowledge of all relays in the system and

randomly picks a relay from this global pool. Figure 6.6 shows an illustration of this scheme.

We evaluate the performance of this scheme through simulations. We use Chord [Stoica

et al., 2003] as the overlay protocol. Each Chord peer maintains a randomized routing

table [Godfrey et al., 2006] instead of a deterministic table, i.e., for the ith routing table

row, it picks any node with an ID in the interval [ID + 2i, ID + 2i+1). This is so because

Godfrey et al. [Godfrey et al., 2006] showed that the randomized scheme for populating

routing tables has a better performance under churn. The Chord network is run on 1,740

nodes that follow the Skype node lifetime distribution as discussed in Section 6.4.5. The

requests for relaying a media session arrive at any relay and are uniformly distributed across

relays. Intuitively, the local-random scheme may have poor performance when relay requests

are concentrated on few peers. However, this issue is easily addressed if a peer unable to

fulfill the relay request forwards it to a randomly selected peer in its routing table.

The metric for evaluating the performance of this scheme is its ability to find a relay

compared to a scheme with global knowledge of all relays for an increasing number of relay

requests. The inability to find a relay impacts the success rate of relayed calls (Equa-

tion (6.1)). The relay search is likely to fail when the number of relay requests is close to or

exceeds the network capacity of the peers. If the percentage of relay peers that are relaying

calls is low, then local-random scheme is likely to find a relay. However, this may not be the

case when the number of relay requests is close to the capacity of the system. Figure 6.7

plots the percentage of calls that fail to find a single relay. For the results shown, the
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local-random scheme did not forward the relay request to any peers. The x-axis is the ratio

of the applied load to the total relay capacity of all relays. The figure shows local-random

scheme is unable to find relays when there are few relays available. However, this scheme

gives comparable performance in terms of percentage of dropped calls due to relay failure

even under heavy relay request load because local relay selection is still random similar to

the global random selection scheme.

6.5.2 User Annoyance

A key difference between p2p file-sharing and communication systems is in their approach

to free-riders. The tit-for-tat mechanism for sharing file chunks in BitTorrent-like fileshar-

ing systems aims to minimize the impact of free-riders that are not willing to share files

or are behind restrictive NAT and firewalls. Such nodes can only download files at a re-

duced rate [Dessent, 2010]. Reducing rate may not be an option in p2p communication

networks because it can affect the quality of audio, video, and conference calls. Thus, in

contrast to a p2p file-sharing system, a p2p communication system must provide accept-

able service to nodes behind restrictive NATs and firewalls. This key requirement together

with the distributed nature of a p2p communication network implies that nodes in the p2p

network with unrestricted connectivity must relay calls for nodes with restrictive network

connectivity. Consequently, the relayed calls may interfere with user applications running

on these altruistic peers especially those that require network connectivity. We refer to any

interference (e.g., network, CPU, memory) with applications running on the relay machine

as ‘user annoyance’.

We focus on characterizing the user annoyance and augmenting the relay selection

scheme to minimize user annoyance. User annoyance for relayed calls can also be reduced

by providing incentives. However, in a system where proportion of relayed calls is much

smaller than the number of available relays, it may be possible to avoid peers where a relay

call is likely to cause a high interference with the user applications, and thus bypassing the

issue of providing incentives.

The question is how to measure user annoyance. Since relayed calls are network centric

and since it is difficult to accurately estimate the perceived impact of the relayed calls on
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user applications, we use a simple measure, i.e., the spare network capacity of the network

connection of the user’s machine to estimate the user annoyance. The higher the spare

network capacity, the smaller the likelihood of annoyance of a user whose machine would

be used as a relay. This simplistic measure may not accurately measure user annoyance;

however, it is more practical than the approaches which require instrumenting the user ap-

plications to determine the precise impact of relayed calls. A peer can periodically measure

its uplink and downlink capacity, say, every 30 minutes and by determining the current

network usage, gauge its spare network capacity which it can then advertise to peers in its

routing table. We use this technique in our PlanetLab implementation (Section 6.5.4).

6.5.2.1 Estimating Spare Network Capacity

Measuring user annoyance requires estimating of the capacity of the network link. Unlike

CPU, memory, and disk, it is non-trivial to estimate the network capacity. To an extent, this

depends on the type of network link. On point-to-point dial-up connections, the maximum

link speed is typically determined by the speed of the modem. As DSL and cable Internet

penetrates homes and the use of WiFi routers at home becomes common, a device no longer

directly connects to the ISP in a way similar to dial-up; rather, a device connects to a WiFi

router which connects to the DSL or cable modem, which in turn is connected to the ISP.

Using the link speed of the connected WiFi link will overestimate the machine-to-ISP link

capacity by a large margin.

We suggest three approaches for determining the machine-to-ISP link capacity in the

presence of intermediate devices such as WiFi routers, and cable or DSL modems. The first

approach uses the fact that link capacity is agreed upon between ISP and customer when

the latter purchases a broadband plan. The idea is to design protocols which allows ISP to

pass this link capacity to the cable or DSL modem which in turn passes this information to

downstream devices such as WiFi routers or laptops. This idea can be implemented as a

DHCP option, for example. The problem with this approach is that ISPs typically perform

statistical multiplexing on multiple flows, and the instantaneous capacity of the link may

be less than the purchased capacity. Also, this technique requires changing the already

deployed cable/DSL modems and WiFi routers, which is a non-trivial task. Nevertheless,
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Figure 6.8: The x-axis represents the ratio of bandwidth consumption of total number
of calls in the system to the total network capacity of all nodes. (a) 95th delay (ms) of
completed calls (b) 5th percentile of spare network capacity (c) percentage of failed calls due
to relay churn (d)(e) median and 95th percentile of number of jobs per relay (f) percentage
of calls that fail to find a relay.

it is a solution that does not require p2p applications to perform any network capacity

measurements. In the second approach, a p2p application can perform measurements to

estimate the link capacity by sending a train of packets to other peers in the p2p network

using tools such as LinkWidth [Chakravarty et al., 2008] or Pathchar [Jacobson, 2010].

Third, an operating system or the p2p application can keep track of the maximum data

rate seen on the machine’s network link within a recent time window and use it as an

estimate of link capacity. However, when multiple machines are connected to the same

network device such as WiFi router, using the capacity usage of a machine’s network link

will not reflect the total traffic flowing through the router. Therefore, we use the second

approach in our PlanetLab implementation.

6.5.3 Heuristics

Besides minimizing user annoyance, it is necessary to minimize the delay of a relayed call

and increase its reliability. In essence, this is a multi-objective optimization problem. We

devise heuristics to optimize these metrics and evaluate their performance.

In Section 6.5.1, we constructed a two tier overlay network and peers in the top tier
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maintain information about the round-trip time, spare network capacity, and uptime of

the nodes in their routing table. Peers can periodically exchange this information, perhaps

as part of keep-alive messages. A node searching for a relay then sends a request to its

connected peer which applies the heuristics and returns a set of candidate nodes.

Below, we discuss the heuristics for selecting a relay peer from a candidate set returned

by the local-random scheme.

• Random: Select a node randomly from the candidate set.

• NetMax: Select the node with the maximum spare network capacity.

• MinDelay: Select the node that has the smallest RTT.

• Threshold: Select the node that does not add more than 200 ms of delay on top of the

direct network latency between caller and callee, and has maximum spare bandwidth.

If no candidate meets the criteria, randomly select any node.

Figure 6.8 shows results for these heuristics. The results were obtained through simu-

lations on a 1,740 node Chord network, with node lifetimes taken from the Skype data set

as described in Section 6.4.5. We assume that the network latency between the clients and

their connected peers is very small (close to zero). This assumption is reasonable because

clients will likely connect to minimum latency peers to use overlay services. The heuristics

are evaluated according to several metrics. The first metric is the 95th percentile of the

total delay of a relayed call minus the direct network latency between session peers. A large

value of this latency indicates that relay selection is poor from the perspective of delay.

The second metric is the 5th percentile of the absolute spare capacity on relay nodes. A

larger spare capacity signifies that high capacity relays are selected. The third metric is the

percentage of calls that fail due to relay failure. The fourth metric is the median and 95th

percentile of the number of relayed calls per relay. If the relay selection is biased towards

relays with large spare network capacity, the percentage of relays with large spare network

capacity are few, and relayed calls are not plenty, then the relay jobs will be concentrated

on these high capacity peers with the result that the median number of jobs per relay is



CHAPTER 6. RELIABILITY AND RELAY SELECTION 109

likely zero whereas the 95th percentile of the number of jobs is significantly greater than

one. The last metric is the percentage of calls that cannot find a relay.

The results shows that MinDelay heuristic gives the best delay performance (Fig-

ure 6.8(a)). NetMax heuristic ensures that relays with large spare network capacity are

preferred over relays with small spare capacity and achieves the best performance for user

annoyance as indicated by a large value of 5th spare network capacity in Figure 6.8(b).

However, this scheme has a consequence that more calls are assigned to few high capacity

nodes, making these calls more vulnerable to node failure (Figure 6.8(c)). The Threshold

approach gives the best performance in terms of minimizing latency and user annoyance.

The Threshold scheme has a slightly high call drop rate due to failed relays but this can

be improved by biasing relay selection towards idle nodes, e.g., machines with no keyboard

or mouse activity within a time period. All heuristics have similar performance in terms of

their ability to find a relay under increasing load.

As mentioned in Section 6.5.2, spare network capacity is a simplistic measure to estimate

user annoyance. In addition to spare network capacity, machine idle time is a useful measure

for relay selection. The idea is to select a relay with spare capacity that has been idle for

sometime. The use of idle time as a relay selection metric is motivated by the SETI@home

project [SETI@home, 2010]. SETI@home runs compute jobs as a screen saver on idle

machines that are distributed around the world. When this approach is used in a p2p

communication network, peers participating in the top-level hierarchy inform peers in their

routing table how long they have been idle and whether they are in the screen saver mode.

A node in need of a relay then selects a peer that meets the delay constraint, has been idle,

and has the maximum spare capacity.

Figure 6.7 showed that search for relays starts to fail when the requests for relay calls

are close to or exceed the total network capacity of the relay nodes. This is unacceptable for

an overlay provider like Skype. The only solution for the overlay provider is to provision the

p2p applications with on-demand media relay servers that are hosted within a data center.

When nodes establishing a media session fail to find a relay peer, they send a request to

the media relay server to relay the media session. Such a hybrid solution is necessary for a

commercial p2p VoIP provider, if it needs to guarantee call establishment when there are
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not enough relays in the system.

6.5.4 PlanetLab Deployment

To examine the feasibility of relay selection schemes, we implemented the Random and

Threshold scheme in our OpenVoIP system Chapter 4). OpenVoIP is a two-level hierar-

chical overlay network deployed on PlanetLab that uses the Kademlia DHT [Risson and

Moors, 2007]. We successfully scaled the top-level network to 1,000 peers that run on 500

PlanetLab machines. Each peer in the top-level network fully participates in the overlay

and can act as a relay peer using the TURN protocol [Mahy et al., 2010]. Further, each peer

periodically performs uplink and downlink TCP throughput measurements and shares this

information with its routing table nodes. Using TCP throughput provides a more conser-

vative estimate of the link capacity than tools such as LinkWidth [Chakravarty et al., 2008]

or Pathchar [Jacobson, 2010]. In addition to sharing its uplink and downlink capacity mea-

surements, a peer also shares its uptime with its routing table nodes. We have integrated

p2p functionality with Wengo Phone, an open source SIP phone [OpenWengo, 2010] (now

known as Qutecom [Qutecom, 2010]). This P2PSIP phone fully participates in the overlay

if it is not behind a NAT or a firewall. Otherwise, it participates as a client. When two

P2PSIP phones behind a restrictive NAT cannot establish a media session directly, they

use a peer in the top-level hierarchy to relay the media session.

We have implemented the Random and Threshold scheme for relay selection. Our

implementation of the Threshold scheme uses delay and spare network capacity metric.

We do not use a SETI@home like technique for determining whether a machine is idle

as the PlanetLab machines are not user desktop machines. The results for the Threshold

scheme indicate that relay selection is biased towards nodes with maximum spare network

capacity and low latency. We note that these relayed calls are real voice calls between two

SIP user agents and are not emulated.
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6.6 Related Work

There has been extensive research on constructing proximity aware DHTs [Rhea, 2005] and

to minimize the impact of churn on DHT routing [Godfrey et al., 2006]. Ren et al. [Ren

et al., 2006] showed through measurements that many relay peer selections in Skype are

sub optimal, waiting time to select a peer can be quite long, and there are a large number

of unnecessary probes. They designed an autonomous system aware p2p protocol (ASAP),

which considers autonomous systems into peer relay selection. Their approach suffers from

three limitations. First, when using DHTs, the network address of all relay peers within the

same AS can get stored on a single node, creating a single point of failure. Second, their

techniques do not incorporate interference of a relay session with the user applications. This

is critical because users will not altruistically run a p2p application if it actively interferes

with their applications. Finally, they provide no guidance on how many relay peers are

needed to achieve desired reliability. Leonard et al. [Leonard et al., 2005] analyzed the time

to node isolation in DHTs for exponential and pareto residual lifetimes. However, our focus

is on characterizing the reliability of relayed calls. Godfrey et al. [Godfrey et al., 2006]

analyzed the impact of churn on the DHT routing performance and suggested techniques to

minimize such impact. Our relay selection techniques uses their random selection approach.

However, it is imperative to explicitly devise schemes to prevent dropped calls. Tan et

al. [Tan and Jarvis, 2007] presented an analysis to improve the reliability of DHT-based

multicast by improving its delivery ratio. However, delivery ratio is not an appropriate

metric to for analyzing reliability in peer-to-peer communication systems.

Connectivity issues due to NAT and firewalls also arise in p2p file sharing networks

such as Kazaa [Liang et al., 2004] and BitTorrent [BitTorrent, 2010]. BitTorrent allows

nodes behind restrictive NAT and firewalls to download file chunks, albeit at a lower rate.

To improve the download rate, the BitTorrent FAQ recommends that users configure the

‘port forwarding’ feature of NATs [Dessent, 2010]. Lowering rate is not an option in p2p

communication networks because it can impact the quality of a call. Further, a user of the

p2p communication may find it difficult to configure the NAT device and may abandon the

p2p application in favor of a configuration-less communication application.
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6.7 Conclusion

We have formalized the notion of reliability in peer-to-peer communication systems and

designed a simple analytical model that predicts the reliability of relayed calls as a function

of node lifetime and call duration distributions. Our analysis shows that for Skype node

lifetimes and for call durations of 60 minutes or less, at least 2-3 relays are needed to achieve

a 99.9% call success rate. We have presented two techniques for relay selection, namely,

no-replacement and with-replacement, and used reliability theory to analyze them. We

have observed that Skype follows a 2-relay with-replacement scheme, and it uses periodic

recovery to replace a failed relay, and the search period is more than a minute. Our results

indicate that exponential distribution, despite its limitations, is useful in analyzing the

reliability of relayed calls.

We also introduced the notion of user annoyance which measures the interference of a

p2p communication application relaying a call with other applications running on a machine.

We have devised a distributed technique to find a relay in O(1) hops. We augment this

technique to find a relay that minimizes the latency of a relayed call and user annoyance.

Finally, we have explored the feasibility of our relay selection schemes on a 1,000 node

peer-to-peer communication system deployed on PlanetLab.
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Chapter 7

Understanding TCP Behavior for

Real-time Traffic

7.1 Introduction

The popularity of real-time applications, such as VoIP and video streaming has grown

rapidly in recent years. The conventional wisdom is that TCP is inappropriate for such

applications because its congestion controlled reliable delivery may lead to excessive end-

to-end delays that violate the real-time requirements of these applications. This has led to

the design of alternative unreliable transport protocols [Handley et al., 2003; Kohler et al.,

2006] that favor timely data delivery over reliability while still providing mechanisms for

congestion control.

Despite the perceived shortcomings of TCP, it has been reported that more than 50%

of the commercial streaming traffic is carried over TCP [Guo et al., 2006]. Popular media

applications such as Skype [Baset and Schulzrinne, 2006] and Windows Media Services [Guo

et al., 2006] use TCP due to the deployment of NATs and firewalls that often block UDP

traffic. Further, TCP is by definition TCP-friendly [Handley et al., 2003] and is a mature

and widely-tested protocol whose performance can be fine tuned.

The gap between the perceived shortcomings of TCP and its wide adoption in real-

world implementations motivated us to investigate the delay performance of TCP. We seek

to address the following questions: (1) Under what conditions can TCP satisfy the delay
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requirements of real-time applications? (2) Can the performance of these applications be

enhanced using simple application-layer techniques? We address these questions in the

context of two real-time media applications that are characterized by timely and continuous

data delivery: VoIP and live video streaming.

We used a test-bed with configured drop-rates and a drop-tail router to study the

impact of TCP delay on the performance of real-time applications. We analyzed how

the delay depends on the congestion control and reliable delivery mechanisms of TCP.

The results obtained yield guidelines for delay-friendly TCP settings and may further be

used to compare the performance of TCP with alternative protocols [Handley et al., 2003;

Kohler et al., 2006] and experimental real-time enhancements for TCP [Goel et al., 2002;

Mukherjee and Brecht, 2000; McCreary et al., 2005]. We analyzed two application-level

schemes, namely, packet splitting and parallel connections, which we found to significantly

reduce the delay of live video streaming flows.

Our research reveals that real-time application performance over TCP may not be as

delay-unfriendly as is commonly believed. One reason is that the congestion control mech-

anism used by TCP regulates rate as a function of the number of packets sent by the

application. Such a packet-based congestion control mechanism results in a significant

performance bias in favor of flows with small packet sizes, such as VoIP. Second, due to

implementation artifacts, the average congestion window size can overestimate the actual

load of a rate-limited flow. This overestimation reduces the likelihood of timeouts and

consequently the resulting TCP delay.

The rest of this chapter is organized as follows. Section 7.2 describes the application

setting. Section 7.3 describes the experimental setup. Section 7.4 discusses the working

region of VoIP and live video streaming flows, the impact of packet size and byte-counting

on the delay performance, and playout buffer setting. Section 7.5 presents two techniques for

improving the delay performance of real-time traffic, namely, packet splitting and parallel

connections. Section 7.6 lists guidelines for setting the TCP, OS, and application parameters

for real-time traffic.
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7.2 Application Setting

We study a general real-time media application, with a Constant Bit Rate (CBR) source,

that sends data across the network using TCP. CBR is the most basic and dominant encod-

ing for media flows in the Internet [Wang et al., 2007]. Although our analysis is general, we

focus on CBR sources corresponding to VoIP and live video streaming, as detailed in Sec-

tion 7.3. The VoIP and live video streaming flows are application-limited, i.e., their sending

rate is a function of media encoding and not the underlying network. This is in contrast to

greedy flows, such as FTP, which are network-limited.

Throughout this section, we refer to the transmission unit of TCP as a segment and to

the TCP payload (i.e., the application-layer data unit) as a packet. The maximum segment

size, MSS, is determined by the maximum transmission unit of the network path [Stevens,

1994]. A common characteristic of real-time applications is their sensitivity to the end-to-

end delay which may vary from application to application. For live video streaming, there

is usually minimal interactivity involved, so the application can afford a startup delay in

the order of seconds [Guo et al., 2006]. For VoIP, the delay must not exceed 400 ms in

order to maintain acceptable interactivity [Goel et al., 2002]. To reduce end-to-end delays,

VoIP often uses small payloads (e.g., 160 byte packets) that correspond to 20 ms or 30ms

of audio. Thus, in the context of this study, the difference between VoIP and live video

streaming flows is their packet sizes and their tolerance of delay.

7.2.1 TCP Interaction with VoIP-like Flows

The performance of real-time applications that use small packets (e.g., VoIP) is directly

affected by whether the congestion control mechanism in TCP is byte or packet-based.

According to [Allman et al., 2009], there are two different issues at work. First, a TCP

sender can track the congestion control state in terms of outstanding bytes or outstanding

packets. Second, a TCP sender can update the congestion control state based on how many

bytes are acknowledged, a mechanism known as byte-counting, or by some constant for

each ACK arrival, a mechanism known as ACK-counting. We compare the performance

of ACK and byte-counting mechanisms (Section 7.4.3) and focus on the former due to its
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wide-deployment [Medina et al., 2005], as also verified by our measurements.

7.3 Experimental Setup

We studied the delay performance of TCP both in a controlled network environment and

via Internet experiments using PlanetLab and residential machines. We define TCP delay

as the time it takes the application to get a packet from source to destination through a

TCP connection. We use “CBR-TCP” to denote a TCP connection with a CBR source,

“FTP” for a TCP connection with bulk data transfer, and “web” for a TCP connection

with HTTP traffic.

We wrote a tool that can send and receive bidirectional CBR over TCP flows with

different packet sizes and different packetization intervals, i.e., the gap between transmission

of real-time packets. We use CBR sources with packet sizes of 174, 724 and 1448 bytes, and

packetization intervals of 20 ms and 30ms, as these choices approximately reflect typical

one-way voice [Schulzrinne et al., 2003], low bit rate interactive video [Goel et al., 2002]

and live video streaming [Guo et al., 2006]. The size of the packet includes a 12 byte RTP

header [Schulzrinne et al., 2003] and two bytes for framing RTP packets over TCP [Lazzaro,

2006]. Hence, excluding the header size, the bit rate of the voice flows is 64 kb/s and 42 kb/s,

that of interactive video is 284 kb/s and 187 kb/s, and that of live video streaming is 573 kb/s

and 378 kb/s. Unless stated otherwise, we refer to the voice flow with a bit rate of 64 kb/s

as ‘VoIP’ and the live video streaming flow with a bit rate of 573 kb/s as ‘video’.

We abuse terminology and refer to the segment loss rate in the network as the packet

loss rate. These loss rates may differ for VoIP flows because TCP can assemble several

small packets into one segment during network-limited periods.

7.3.1 Configured Drop Rates

We measured the TCP delay of CBR flows on a test-bed that emulates a wide range of

network settings. The topology of the test-bed is shown in Figure 7.1(a). We consider a

single CBR-TCP flow going through a router running NIST Net [NIST Net, 2010], a network

emulation program which can introduce constant delay and can drop packets according to
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Figure 7.1: Experimental setup for analyzing the delay performance of TCP in a controlled
environment.

a configured loss process. We configured NIST Net to drop packets uniformly at random

with rates of 0.1%, 0.5%, 1%, 2%, 3%, 5% and 10%, irrespective of their size. We do not

consider loss rates greater than 10% because the average TCP throughput (i.e., the available

network bandwidth) does not satisfy the rate requirement of the CBR-TCP flow for the

RTTs considered. We used fixed propagation delays of 20 ms, 100 ms, and 300 ms.

7.3.2 Using Drop-Tail Routers

We used the test-bed from Section 7.3.1 and modified NIST Net to incorporate a drop-tail

queue. We devised a multi-flow setting in which five VoIP CBR-TCP flows compete with

five long-lived FTP and varying number of web flows. We repeated the experiment for

video flows. We used the SRI and ISI traffic generator [McKenney et al., 2010] to generate

exponentially distributed web traffic with a mean duration of 50ms and a constant packet

size of 512 bytes. The choice of the number of FTP and web flows, and packet size for web

flows was inspired by the configuration used to evaluate the performance of TFRC-small

packets [Floyd and Kohler, 2007]. The round-trip propagation delay was set to 100 ms

for all experiments. The link capacity was set to 3 Mb/s and 30Mb/s for voice and video

CBR-TCP flows, respectively, so that the ratio of cumulative bit rate of five CBR-TCP
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flows to link capacity was one to ten. The drop-tail queue was maintained in packets and

configured to hold 100 packets. For each configuration, we ran the experiment for five

minutes, repeated it five times, and present the average of the results.

7.4 Discussion

In this section, we explore the delay performance of real-time delivery over TCP. We exper-

imentally characterize the working region for VoIP and live video streaming applications

with bit rates of 64 kb/s and 573 kb/s, respectively. Then, we study the impact of various

mechanisms in TCP on its delay performance.

7.4.1 Working Region

Here we characterize the working region for VoIP and live video streaming applications,

i.e., the conditions under which the performance of these applications is satisfactory. In

general, the user perceived media quality is acceptable when the fraction of packets that

arrive beyond their playout time is low and the end-to-end delay is low.

For interactive applications, ITU G.114 recommends that the worst-case one-way delay

should be 400ms [International Telecommunication Union (ITU), 2003]. Studies show that

200ms is an acceptable one-way delay limit for VoIP applications [Na and Yoo, 2002]. The

choice of the delay limit for live video streaming is more flexible because people can usually

tolerate a few seconds of startup delay. For the analysis, we consider a 5 s startup delay

as suggested by [Guo et al., 2006]. While VoIP can usually tolerate up to 5% of packets

that miss their playout deadline without a significant effect on intelligibility [Na and Yoo,

2002], video viewing quality drops rapidly at 0.1% loss [Wang et al., 2004]. We follow these

guidelines and define the working region for VoIP and live video streaming as the range of

network loss rates and RTTs where the 95th percentile and maximum TCP delay is at most

200ms and 5 s, respectively. We explore how the performance varies with the delay limit.

Figure 7.2(a) plots the 95th percentile delay for various loss rates from 0.1% to 10%

and RTTs of 20 ms, 100ms, and 300ms for a VoIP flow with a bit rate of 64 kb/s. The

results shown were obtained empirically using the environment described in Section 7.3.1.
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Figure 7.2: Working region for VoIP and video streaming as a function of RTT and packet
loss rate.

Observe that when the RTT is 100 ms, the delay tolerance for VoIP is satisfied when the

network loss rate is at most 2%. However, when the RTT is only 20 ms, the results indicate

a tolerance of up to 5%. At the boundary of the working region, the delay added by TCP

causes 5% of the packets to miss their playback deadline. Figure 7.2(b) plots the maximum

delay for a live video streaming flow with a bit rate of 573 kb/s. When the RTT is 100 ms,

the streaming threshold is satisfied when the loss rate is at most 3%. For RTT of 300 ms,

it is satisfied at a network loss rate of 0.1%. The jump in the maximum delay at a network

loss rate of 0.5% and RTT of 300 ms occurs because the 5 s startup delay is no longer

sufficient to completely mask TCP delays. This knee of the curve typically occurs when the

achievable TCP throughput is close to the bit rate of the video flow. The bit rates of 64 kb/s

and 573 kb/s are the highest among the bit rates considered in Section 7.3 for VoIP and

video flows and therefore, they give the most conservative estimate of the working region.

However, the working region can be significantly constrained if the application does not use
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Figure 7.3: (a) The delay performance of two TCP flows having the same load in kb/s but
different load in pps, and a VoIP flow. (b) Delay breakdown: the portion of TCP-level
delays caused by the congestion control mechanism.

delay-friendly TCP settings.

7.4.2 The Effect of Packet Size on Performance

Our experiments indicate that under the same network conditions, VoIP flows perform

significantly better than video flows. Figure 7.3(a) plots the 95% delay for VoIP and video

flows with the same workload in packet per second (pps) but quite different workload in

terms of bits per second (kb/s), i.e., the VoIP flow has a bit rate of 64 kb/s whereas the video

flow has a bit rate of 573 kb/s. The figure clearly shows a performance bias towards the

VoIP flow. This happens because a video flow has a higher bit rate than a VoIP flow. Hence,

during network-limited periods, a TCP sender transmitting a video flow builds up a larger

packet backlog and consequently, it requires more time to drain this backlog. For VoIP

flows, the TCP sender groups several queued VoIP packets into one transmission packet as

permitted by the MSS. This further increases the queue drain rate, thereby reducing the

queuing delay at the TCP sender.

An interesting question to ask is that among two flows having the same workload in kb/s,

does TCP have a performance bias towards a flow with larger workload in pps? To address
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Figure 7.4: TCP delay and congestion window evolution for two flows with the same work-
load in kb/s but two different packet sizes, i.e., MSS (a-b) and half-MSS (c-d).

this question, we measured the delay performance of two flows having the same workload

in kb/s but different workload in pps. The results are shown by the curves labeled video

and video+split in Figure 7.3(a). Specifically, the packet rate of video+split flow is twice

of the video flow but the application-level workload rate in bytes is the same. Surprisingly,

there is a performance bias towards the flow with twice the packet rate of the other flow.

To illustrate the reason for this performance difference, we plot the TCP delay and

congestion window size for two flows with the same application-level workload in kb/s

in Figure 7.4. The flow in Figures 7.4(a) and (b) corresponds to an application that sends

100 MSS-sized packets per second. The flow in Figures 7.4(c) and (d) corresponds to an

application that sends 200 half MSS-sized packets per second. Both flows operate over a

symmetric network with 200 ms RTT and experience two close-by losses. Observe that the

flow with half MSS-sized packets experiences lower delay than the other one. This happens
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because the AIMD mechanism updates the congestion control state as a function of the

number of packets sent, rather than as a function of the number of bytes sent (see Sec-

tion 7.2.1). Since TCP adapts its congestion control state and hence its throughput based

on the number of packets sent, the magnitude of the throughput fluctuations (in bytes)

is smaller for the flow with smaller packet size and higher packet rate, resulting in lower

delays.

We analyze the breakdown of TCP-level delays by computing the time packets are

backlogged at the sender (i.e., the congestion control delay component) and the time it

takes the TCP sender to get a packet to the receiving application (i.e., the retransmission

and head-of-line delay components). Figure 7.3(b), shows the delay breakdown in terms of

these two components for VoIP and video flows. As shown, the delays of a VoIP flow over

TCP tend to be dominated by the loss recovery latency, whereas those of a video flow tend

to be dominated by the delays caused by the congestion control mechanism. Similar results

were obtained for CBR sources with other bit rates.

7.4.3 Sensitivity to Byte-counting

In order to provide a measured response to ACKs that cover only small amounts of data,

Allman [Allman, 2003] proposes to increase the congestion window based on the number of

bytes acknowledged by each incoming ACK rather than on the number of ACKs received.

This mechanism is known as byte-counting. Byte-counting is configured on a per-system

rather than per-connection basis in Linux, and is disabled by default. It is not implemented

in Windows XP. A question arises how does the performance of VoIP flows change when

TCP increases its congestion window by the number of bytes sent.

To answer this question, we measured the delay of five VoIP flows competing with five

long-lived TCP flows and varying number of web flows in a drop-tail queue environment

(see Section 7.3.2). Figure 7.5 shows 95th percentile and maximum delay for a VoIP flow

using ACK and byte-counting. It highlights the gain of a VoIP flow when byte-counting is

not used. On average, the use of byte-counting increases the TCP delay by 10-20%. The

delay increases because TCP with byte-counting increases its sending rate in proportion

to the number of bytes sent. Hence, a byte-counting TCP can be viewed as more fair
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Figure 7.5: 95% and maximum delay for a VoIP flow using ACK and byte-counting.

than ACK-counting TCP with respect to the congestion control behavior. The support for

byte-based congestion control mechanism must come from the underlying operating system.

However, since Linux and Windows XP use ACK-counting by default, VoIP flows implicitly

benefit from it.

7.4.4 Playout Buffer Size Setting

Real-time applications use a playout buffer to compensate for variable network delays. The

receiving application usually delays the playout of received media packets for some time

so that a large fraction of the packets is received before their scheduled playout times. A

question of interest is how should an application factor in the TCP-level delays in computing

the appropriate playout buffer size.

TCP is a reliable and in-order delivery protocol that deals with packet loss by introducing

delay. TCP needs at least RTT + 3/f to detect and recover a lost packet using a fast

retransmit, where 1/f is the packetization interval. The time TCP needs to detect a

lost packet using a retransmission timeout is at least the base timeout value. According

to [Handley et al., 2003], this value can be approximated by 4RTT . Setting the playout delay

below the sum of the one-way network delay L and the minimum of these two thresholds

will always cause the application to exhaust its playout buffer when a packet loss occurs.

In the considered environment shown in Figure 7.6, TCP can recover from a packet loss

using a fast retransmit within 1.5RTT + 60 ms, because the packetization interval is 20 ms

and the network is symmetric. As seen in the plot, setting the playout delay to the loss

recovery latency of TCP yields up to 5% of late packets for RTTs of up to 100ms and
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Figure 7.6: The required playout delay for VoIP and video flows and various RTTs and loss
rates.

network loss rates of up to 2%. From further experimentation, we find that a buffer with

a playout delay of L+RTT +3/f can mask out TCP delays for a large portion of the VoIP

working region. This setting, however, does not mask out TCP delays for the video working

region, because the delay of video flows is dominated by the packet backlog rather than by

the loss recovery latency.

Figure 7.7 shows the delays masked out by the proposed playout setting for VoIP and

video flows in a network with a 100 ms RTT and packet loss rates of 1% and 3%.

7.5 Delay Reduction Approaches

In this section we discuss application-level heuristics that can improve the performance of

real-time media applications without additional help from the network. We analyze whether

the delay reduction comes at the expense of other flows, in particular long-lived FTP flows.

In the following, we first discuss a packet splitting scheme and then consider the use of

parallel connections. We show that both schemes are effective for video flows but have only

a marginal impact on VoIP flows.

7.5.1 Packet Splitting

As described in Section 7.4.2, the congestion control mechanism of TCP results in a per-

formance bias in favor of flows with small packets. A question of interest is whether the
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delay performance of real-time applications can be improved by masquerading TCP flows

with large packets as flows with small packets. The application can split every large packet

into a few smaller ones, while maintaining the same workload in bytes per second. We call

this scheme split-N, where N is the number of small packets generated. Packet splitting,

however, may also backfire: if all CBR-TCP flows started using packet splitting, the net-

work could quickly become congested due to the TCP header overhead. Hence, a wide-scale

adoption of such an approach runs the risk of degrading the performance of all flows. Fur-

ther, reducing the packet size can increase instances of packet reordering [Medina et al.,

2005].

To understand the performance of split-N within a wide-scale deployment, we measured

the delay of a video flow (i.e., a 573 kb/s video source) in an environment with a drop-

tail queue, as described in Section 7.3.2. As shown in Figure 7.8(a), the split-2 scheme

reduces TCP delay by up to 30% under low and moderate loss rates, whereas schemes with
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Figure 7.8: (a) The reduction in the 95th delay percentile of a video flow using split-N
in a drop-tail queue environment (b) Throughput of background FTP flows in the same
environment.

higher split factors yield diminishing gains or even perform worse than a no-split scheme.

The performance degradation is partially due to the increase in the burstiness of the flow

with packet splitting. This burstiness can be reduced to some extent by evenly spacing

split-packets over the packetization interval. However, perfect pacing may be difficult to

achieve at the application layer due to the small packetization intervals (e.g., 20 ms) used

in practice.

During periods of high congestion (100 short-lived flows), a TCP sender using a split-N

scheme is heavily backlogged and hence is unable to improve performance using the split-N

scheme. We used the drop-tail queue environment to study the fairness implications of this

scheme. In particular, we measured the throughput of long-lived TCP flows that share a

congested link with video flows employing packet splitting. As shown in Figure 7.8(b), the

split-N scheme impacts the throughput of the long-lived TCP flows. For example, the use

of split-4 reduces the throughput of a background TCP flow by 27% on average. From the

plot, we observe that the throughput reduces quickly with the split factor.

7.5.2 Parallel Connections

A straightforward approach to improve the delay performance of a CBR-TCP flow is to

stripe its load across parallel TCP connections. The idea is that several TCP streams are

more aggressive than one TCP stream with respect to the congestion control behavior [Wang
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et al., 2007], which can result in lower TCP delays. Previous exploration of parallel TCP

connections for streaming and data-intensive applications has focused mainly on enhancing

the throughput. However, we focus on reducing the delay. Specifically, we provide insights

on the delay performance of parallel connection schemes for real-time applications.

Packet striping can be done in a delay-agnostic or delay-aware fashion. The simplest

approach is to use a delay-agnostic (‘blind’) parallel connection scheme that sends packets

over parallel TCP connections in a round-robin fashion. We propose a delay-aware (‘in-

telligent’) scheme which selects a connection for packet transmission that has the smallest

TCP send queue and is not in the timeout state and show the results in Figure 7.9(a). The

‘intel-2’ scheme outperforms the ‘blind-2’ scheme because it dynamically avoids connections

with large queues and in timeout states. Further, due to its dynamic nature, this scheme

copes better with connections with small congestion windows.

Observe that when the number of connections was increased to five, the performance

of ‘intel-5’ and ‘blind-5’ was comparable. This phenomena occurs because the increase in

the total number of TCP connections causes the back log at any connection to be reduced.

Similar to the ‘blind’ scheme, we observe that using more than five parallel connections

results in diminishing gains. We note that the parallelization spectrum ranges from a single

flow to having as many flows as the packet rate per RTT.

Similar to packet splitting, we study the fairness impact of these schemes on the back-
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ground traffic using a drop-tail queue environment. We present the results in Figure 7.9(b).

As shown, both ‘intelligent’ and ‘blind’ schemes have a negligible impact on the throughput

of the background long-lived FTP flows. The impact is negligible because these schemes do

not introduce additional traffic besides session setup and teardown. Though parallel TCP

streams are more aggressive than a single TCP stream, their aggregated throughput is still

limited by the rate of the CBR source.

7.6 Delay-Friendly Guidelines

We present delay-friendly guidelines for TCP-based VoIP and live video streaming ap-

plications. We categorize them into TCP and OS-level guidelines, and application-level

guidelines. In the following, we first provide a comprehensive set of guidelines for setting

TCP and OS parameters. While several settings such as disabling Nagle’s algorithm and

using large receive buffers are common practices in delay-sensitive applications, the impact

of others, specifically, window validation, byte counting and limited transmit is less obvious.

We then provide guidelines for setting application-level parameters.

7.6.1 TCP and OS-level guidelines

• Nagle’s algorithm should be disabled as it introduces transmission delays at the TCP

sender.

• CBR-TCP applications should set a large receive buffer and operate with non-blocking

sockets so that the transmission of TCP is not limited by its flow control mechanism.

• To increase the loss efficiency of TCP, SACK should be enabled [Chen et al., 2006]

and limited transmit be used. The latter is primarily applicable for a TCP connection

with small windows.

• Congestion window validation during application-limited periods [Handley et al., 2000],

and byte-counting should be disabled. These settings are disabled by default on Linux

and Windows XP systems.



CHAPTER 7. UNDERSTANDING TCP BEHAVIOR FOR REAL-TIME TRAFFIC 129

• The initial window size should be set to four segments as it can remove delays up to

three RTTs and a timeout during the initial slow-start period [Allman et al., 2002].

Some operating systems (e.g., Linux) inherit the ssthresh value from the last con-

nection for the current connection. This may cause the current connection to enter

congestion avoidance earlier even if it does not suffer from any loss, thereby incurring

additional start-up delay during initial slow-start. Therefore, we suggest that ssthresh

inheritance be disabled.

As a general rule, the above TCP-level configurations should be set on a per-connection

basis if the underlying operating system supports it. Note that these guidelines do not

require any change in the TCP stack.

7.6.2 Application-Level guidelines

• Playout buffer setting. As discussed in Section 7.4.4, a CBR-TCP application

with small packets can statically set the playout delay to the loss recovery latency

L + RTT + 3/f. This setting masks out TCP delay variations for a wide range of

environments, in particular, for a large portion of the VoIP working region.

• Video flows. The delay performance of video flows can be improved by parallelizing

the flow over multiple connections. If supported by the underlying operating sys-

tem, an application should preferentially send packets over the connection that has

the smallest send buffer size and is not in a timeout state (In Linux, an application

can check the send buffer size by invoking ioctl(,SIOCOUTQ,) system call). Split-

ting MSS-sized packets by half reduces delay for video flows if a single connection is

preferred.

• Idle periods. VoIP over TCP may have somewhat different properties than CBR over

TCP. In particular, VoIP with silence suppression has idle periods, requiring TCP to

ramp back up to the old sending rate after idle periods. We therefore suggest that an

application should continue sending minimal traffic during idle periods (e.g., 3 packets

per round-trip time, as suggested by [Mondal and Kuzmanovic, 2007]) to avoid having

very small congestion windows. The size of the packets sent during silence periods can
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be as low as one-byte if the TCP implementation uses ACK-counting. This is because

an ACK-counting TCP increases the congestion window size based on the number of

packets sent rather than the number of bytes sent.

• MSS to packet size ratio. We recommend that the ratio of MSS to packet size

should be an integer. This setting insures that the packet assembly capability of TCP

will give the lowest possible sending rate in packets per second when the TCP sender

is backlogged. The lower sending rate results in lower delays compared to a flow with

an equivalent load in kb/s and a non integer MSS to packet size ratio.

• Proactive packet drop. By examining the size of the TCP send buffer, an appli-

cation can potentially infer the delays a new packet will experience. Thus, it may

choose to drop packets at the sender, if the buffer size crosses a certain inferred delay

threshold.

• In-order delivery mechanism. As described in Section 7.4.2, the delays of TCP

flows with small packets tend to be dominated by the in-order delivery mechanism of

TCP. That is, packets are held in the receive buffer while waiting for a lost packet(s)

to arrive. A potential modification to the TCP operating system API can allow the

application to peek into its receive buffer and extract out-of-order packets. A similar

approach has been proposed by [McCreary et al., 2005]. Although this modification

requires changing the receive API to receive our-of-order packets, it does not change

the network semantics of TCP.

7.7 Related Work

Goel et al. [Goel et al., 2002] present an empirical study of kernel-level TCP enhancements

to reduce the delays induced by congestion control for streaming flows. The performance of

TCP for real-time flows has also been considered by [Mukherjee and Brecht, 2000; McCreary

et al., 2005]. However, unlike our study, these papers propose a modification to the TCP

stack, do not provide insights on the delay working region for VoIP flows, and provide no

guidelines for the playout buffer setting.
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7.8 Conclusion

We presented a study of delay incurred by the real-time traffic such as voice and live video

streaming when carried over TCP. We characterized the working region of TCP and studied

the impact of packet size on the delay performance of TCP. We presented guidelines for

setting the playout buffer of real-time traffic when carried over TCP and techniques for

improving the delay performance of this traffic. These techniques can be useful to the

designers of real-time applications.



CHAPTER 8. ENERGY EFFICIENCY OF VOIP SYSTEMS 132

Chapter 8

Energy Efficiency of VoIP Systems

8.1 Introduction

We aim to understand and analyze the energy efficiency of Voice-over-IP (VoIP) systems.

The core function of a VoIP system is to provide mechanisms for storing and locating

the network addresses of user agents and for establishing voice and video media sessions,

often in the presence of restrictive network address translators (NATs) and firewalls. These

systems also provide additional functionality such as voicemail, contact lists (address books),

conferencing, and calling circuit-switched (PSTN) and mobile phones. From the perspective

of energy efficiency, a VoIP system can broadly be classified according to two criteria:

whether it is a primary-line phone service replacing PSTN and whether it uses a client-server

(c/s) or a peer-to-peer (p2p) architecture. Vonage [Vonage, 2010] and Google Talk [Google,

2010] are examples of c/s architectures, while Skype [Skype, 2010a] is an example of a p2p

architecture. Of these, only Vonage is a primary-line phone service replacing PSTN.

We begin the chapter by describing the common configurations of deployed c/s and

p2p VoIP systems (Section 8.2). We then devise a simple model for analyzing the energy

efficiency of these common configurations (Section 8.3). This model enables a systematic

comparison of c/s and p2p configurations of VoIP systems. We then present measurements

for the c/s and p2p VoIP components of these systems (Section 8.4) which we apply to

the model developed for identifying the sources of energy wastage in these systems and the

incurred economic costs (Section 8.5). Based on our analysis, we provide recommendations
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to improve the energy efficiency of VoIP systems (Section 8.6). Finally, we present the

related work (Section 8.7).

8.2 VoIP System Architecture

We briefly explain the main functionalities of VoIP systems and describe how they are

typically implemented in c/s and p2p VoIP systems. We then describe in more detail

the architecture of a typical Internet telephony service provider (ITSP), an enterprise VoIP

system, a softphone based c/s VoIP system, and Skype. The first three are representative of

a client-server VoIP architecture, and the latter is representative of a p2p VoIP architecture.

8.2.1 Functionalities of a VoIP System

The main functionalities of a VoIP system are:

Signaling - storing and locating the reachable address of the user agents, and routing

calls between user agents.

NAT keep-alive - sending and processing user agent traffic to maintain state at the NAT

devices for receiving incoming requests and calls.

Media relaying - sending VoIP traffic directly between two user agents or through a relay.

Relaying is necessary when one or both of the user agents are behind a restrictive NAT

or a firewall which prevents establishment of a direct VoIP connection.

Authentication, authorization, accounting - verifying that a user agent is permitted

to use the system and tracking usage for billing purposes.

PSTN and mobile connectivity - establishing calls between VoIP clients, and PSTN

and mobile phones using managed gateways.

Other services - such as voicemail, contact list storage, video calls, and multiparty audio

and video conferencing.

Of the services listed above, signaling, NAT keep-alive, and media relaying lend them-

selves most easily to a p2p implementation. Consequently in the VoIP systems (including
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Figure 8.1: Client-server Internet telephony service provider (ITSP) architecture.

Skype) of which we are aware, all but signaling, NAT keep-alive, and media relaying func-

tionality are implemented on centralized servers. As we will see in Section 8.5, the relative

energy consumption of c/s and p2p VoIP systems will be determined by the relative effi-

ciency of c/s and p2p implementations of signaling, NAT keep-alive, and media relaying.

8.2.2 Client-server VoIP Architecture

We consider three types of client-server VoIP systems. The first type is an Internet telephony

service provider (ITSP) that provides telephony service to residential and business customers

as their primary voice service. The second type is representative of VoIP system deployment

in an enterprise. The third type represents softphone-based VoIP systems like Google Talk.

8.2.2.1 Typical ITSP (T-ITSP)

We surveyed three c/s ITSPs in February 2010 to obtain information about their server

systems, subscriber populations and characteristics of the network traffic. Based on this

survey, we present an overview of the largest of these whose architecture is typical for an

ITSP. We refer to this ITSP as T-ITSP in order to preserve its anonymity.

T-ITSP uses an infrastructure based on open protocols, namely SIP [Rosenberg et al.,

2002] for signaling and RTP [Schulzrinne et al., 2003] for media. It uses a SIP proxy and

registrar implementation based on SIP Express Router (SER) [SIP Router Project, 2010].

The SIP registrar stores the reachable address of user agents (phones), whereas the proxy
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server forwards signaling requests between user agents. Users place calls predominantly

through hardware SIP phones. Most such phones are audio-capable only, although some also

support video. The vast majority of hardphones are connected to the broadband Internet

through a broadband modem which in turn is connected to a home or an office router.

The router is typically configured to act as a NAT/firewall. Over 90% of SIP signaling is

carried over UDP. User agents connect to SIP servers, perform SIP digest authentication,

and register their reachable address every 50minutes to receive incoming calls, a process we

refer to as a registration event.

Because most existing NAT devices maintain UDP bindings for a short period of time [Ford

et al., 2005], hardphones behind NATs need to periodically refresh the binding in order to

reliably receive incoming calls. The hardphones achieve this by sending a SIP NOTIFY

request [Roach, 2002] every 15 s to the SIP server, which replies with a 200 OK response.

While wasteful, this method proved to be the only reliable way of maintaining NAT bind-

ings.

To establish a call, the user agents send the SIP INVITE requests to the SIP proxy

servers, which then forward these requests to the destination user agents. The vast majority

of hardphones are behind NATs/firewalls and a large proportion of these devices use default

settings that prevent them directly exchanging voice packets. Consequently, T-ITSP needs

to operate RTP relay servers to relay these calls, thereby consuming additional energy and

network bandwidth. T-ITSP also maintains a number of PSTN servers for calling phones

in the traditional telephone network. T-ITSP does not encrypt signaling or media traffic.

Figure 8.1 illustrates the architecture of T-ITSP.

Traffic T-ITSP has a total subscriber base of approximately 100,000 users. The peak

call arrival rate is 15 calls per second (CPS) and the systems see no more than 8,000 calls

at any instant. Approximately 60% (or 4,800) of the peak calls are to subscribers within

the ITSP; the rest are being routed to PSTN/mobile phones. Hardphones register their

network address with T-ITSP’s SIP registrar every 50 minutes and send a SIP NOTIFY

message every 15 s to maintain the NAT binding. For 100 k subscribers, these statistics

imply that the SIP registrar needs to process 33 registration events and 6,667 NOTIFY
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events per second. In Section 8.4, we extrapolate these peak numbers for a large subscriber

base.

8.2.2.2 Enterprise VoIP Systems

The enterprise VoIP system comprises of SIP proxy and registrar servers, hardphones, and

enterprise ethernet switches for connecting hardphones to the proxy server. In addition

to the VoIP phones, office computers are also connected to the same ethernet switch. In

some installations, the enterprise switches also provide power to the hardphones through

Power-over-Ethernet (PoE) [Power over Ethernet (PoE), 2010]. The enterprise VoIP system

is connected to the other VoIP, PSTN, or mobile telephony systems through gateways.

Typically, the IP address space in an enterprise is flat and the NAT devices are sporadic.

Consequently, unlike T-ITSP, the hardphones do not need to periodically send SIP NOTIFY

messages to keep the NAT bindings. Further, the enterprise VoIP system does not need to

maintain media relay servers. When the IP address space is not flat, the VoIP systems in

different departments are typically connected via gateways or call managers [Cisco, 2010b].

8.2.2.3 Softphone-based VoIP Systems

The softphone-based client-server VoIP systems such as Google Talk are similar in their

functionality to T-ITSP, except that the user agents mostly run as a software application

on a desktop or a mobile device. Such systems typically do not replace PSTN as the primary

phone service.

8.2.3 P2P VoIP Architecture – Skype

We present an overview of Skype [Skype, 2010a] which is representative of a p2p VoIP

system. Skype is not advertised as a primary-line phone service. There are two types of

nodes in a Skype network, super nodes and ordinary nodes. The super nodes form the Skype

overlay network, with ordinary nodes connecting to one or more super nodes. Super nodes,

which are chosen for their unrestricted connectivity and high-bandwidth, are responsible for

signaling, NAT keep-alive, and media relaying. Skype encrypts signaling and media traffic

to prevent super nodes from eavesdropping. Skype managed-servers provide functionality
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Feature T-ITSP Enterprise Google Talk Skype
User agents (UA) Hardphone Hardphone / Softphone Softphone

Softphone
UAs always on Yes Yes No No
Signaling Centralized Centralized Centralized P2P+

Centralized
NAT keep-alive Centralized None Centralized P2P
Media relaying Centralized None Centralized P2P
PSTN connectivity Centralized Centralized Centralized Centralized
Voicemail Centralized Centralized Centralized Centralized
Contact list Centralized Centralized Centralized Centralized

Table 8.1: Comparison of T-ITSP, enterprise VoIP, Google Talk, and Skype features. The
value of ‘None’ in the Enterprise column indicates that the user agents typically do not send
NAT keep-alives, nor do they require media relays for establishing calls with user agents
within the same enterprise.

Figure 8.2: P2P VoIP architecture.

for authentication, contact list and voicemail storage, and calling PSTN and mobile phones.

Figure 8.2 shows an illustration of a p2p VoIP system. Table 8.1 compares the distributed

and centralized features of the T-ITSP, enterprise VoIP systems, Google Talk, and Skype.

8.3 Power Consumption Model

We present a model for understanding the power consumption of c/s and p2p VoIP system

architectures. We focus on signaling, NAT traversal, and media relaying as they are accom-

plished using managed servers in the c/s but through super nodes in p2p VoIP systems.
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Let N be the total number of online subscribers of a VoIP system and let λINV be the peak

rate of calls per second these subscribers make and d be the average call duration. These

calls are either to other subscribers of the VoIP provider or to PSTN or mobile phones. Let

pv be the percentage of VoIP calls. Of these, let prelay be the proportion of calls that need

a relay.

8.3.1 Client-Server

As discussed in Section 8.2.2.1, a c/s VoIP architecture has dedicated servers for handling the

signaling, NAT traversal, and media relaying traffic. Signaling traffic includes registration

of user agent network addresses with the SIP registrar and call signaling for establishing

media sessions. Let λREG and λINV denote the peak number of SIP registration events

and calls per seconds, respectively, that N user agents generate. The NAT traversal traffic

(SIP NOTIFY in T-ITSP) is sent by the user agents to refresh NAT bindings and ensuring

reliable receipt of incoming calls. Let λNAT be the rate of these NAT traversal messages

per second. λNAT will be significantly lower for signaling over TCP than over UDP. In most

c/s VoIP systems, signaling and NAT traversal are handled on separate servers from those

of media-relaying.

Let S(λREG, λINV , λNAT , PROTO) represent the number of signaling servers needed

to handle the peak signaling and NAT traversal load under a particular transport protocol

PROTO. The PROTO may be UDP, TCP, or TLS. An advantage of using permanent

TCP connections between user agents and SIP servers is that it reduces the frequency of

the traffic to maintain NAT bindings. However, maintaining hundreds of thousands of TCP

or TLS connections on a server is costly in terms of the memory needed [Shen et al., 2010].

Let M(λINV , d, pv, prelay) represent the number of media relay servers needed to relay calls.

Let ws and wm denote respectively the wattage consumed by signaling and media servers at

the peak load. Let c be the system’s PUE and rs and rm be the redundancy factor used for

signaling and media servers. Then the power consumed by the signaling and media-relay

servers is given as follows:

wc/s = (Swsrs + Mwmrm)c (8.1)
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8.3.2 Peer-to-Peer

Recall from Section 8.2.3 that there are two types of nodes in a p2p communication system,

namely, super nodes that forward signaling and routing traffic from other nodes and relay a

call between nodes with restrictive network capacity, and secondly, ordinary nodes that do

not participate in the overlay routing and connect to one or more super nodes. Let NS be

the number of super nodes in the p2p system with a total population of N subscribers. In

contrast to c/s systems, where it is easy to attribute the energy consumption of signaling,

NAT traversal and relaying, it is non-trivial to do so for super nodes in p2p systems. We

consider two reasonable accounting strategies which apply as well to energy accounting on

phones and network devices:

• delta - count only the additional power drawn by the signaling and relaying func-

tions of the super node machine above that of the baseline power consumption of the

machine.

• prop - in addition to delta, attribute to p2p VoIP a fraction of the system baseline

power consumption that is proportional to the time the CPU is woken up to handle

signaling, NAT traversal and media relaying traffic.

For simplicity, assume that each super node sends and receives λMAINT messages to

maintain the overlay, and receives 1
NS

of the total registration, call invites, and NAT traver-

sal. Each super node relays at maximum one call at a time. A node may use a secure

transport protocol such as TLS or DTLS for non-media relaying traffic. Let wbase denote

the baseline wattage drawn by the super node machine. Let w∆ denote the wattage drawn

by the overlay maintenance, registration, signaling, NAT traversal, and media relaying func-

tionality. Let p be the proportion of time the CPU is woken up to serve super node requests

if prop accounting policy is chosen or zero for the delta policy. Then the power consumed

by p2p super nodes is

wp2p = (w∆ + wbasep)NS (8.2)

8.3.3 Comparison Issues in C/S and P2P VoIP Systems

In this section, we highlight the broader issues in comparing c/s and p2p VoIP systems.
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8.3.3.1 PSTN Replacement

The most important consideration for our comparison is whether the VoIP system replaces

the always-on PSTN system (e.g., Vonage). For such a system, the user agents must always

be reachable (or powered on) to receive incoming calls. The total energy consumed by such

systems is the sum total of the energy consumed by always-on user agents and servers, if

any.

In contrast, systems like Google Talk and Skype run as a software application on a

desktop, laptop, or a mobile device and do not replace PSTN as the primary-line voice

service. Therefore, it is not possible to directly compare them with systems like Vonage.

Moreover, Google Talk uses a c/s architecture whereas Skype uses a p2p architecture. When

comparing these two architectures, it is important that we examine the power consumed by

the machines providing the core functionality (servers in c/s, super nodes in p2p) and not

the difference in energy consumed by the user agents.

8.3.3.2 Network Costs

C/S and p2p communication systems have a different network footprint as in the latter,

nodes have to exchange data to maintain the p2p network. Edge and core routers likely

incur an energy cost for forwarding traffic for p2p and c/s communication systems. However,

these costs are harder to quantify as the edge and core routers are always on. Although

an analysis similar to [Nedevschi et al., 2008] can be used, we focus on quantifying the

energy usage of the system itself and not the network. However, we do incorporate the

energy costs of broadband modems and network switches to which VoIP user agents are

directly connected and that otherwise cannot be powered down without disconnecting the

user agent.

8.4 Measurements and Results

In this section, we describe a set of experiments for measuring the power consumption

of signaling and media relay servers, broadband modems and home routers, enterprise

ethernet switches, user agents (hardphones and softphones), and Skype super nodes. Our
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power measurements were taken using a Watts-up .NET power meter [Watts up?, 2010].

The meter provides 0.1 W precision and claims an accuracy of 1.5% of the measured value.

8.4.1 Signaling and Media Relay Servers

Based on the architecture and load information of T-ITSP, we set up a test bed consisting

of two servers, the first for handling signaling and NAT traversal workload, and the other

for handling media relaying. Our goal was to measure the power consumption of these

servers under peak load, and extrapolate the number of servers needed and the power

consumed based on peak workload, using the model developed in Section 8.3.1. Although,

this extrapolation may be considered an over simplification, it still provides useful insights

into the energy consumed by large scale c/s VoIP systems.

8.4.1.1 Testbed Overview

In our test bed, the SIP server machine was a Dell PowerEdge 1900 server [Dell, 2010]

with two quad-core 2.33 GHz Intel Xeon X5345 processors and 4GB of memory. It was

connected to load-generators with two Intel 82545GM Gigabit Ethernet controllers. The

machine had six fans. It ran Debian Squeeze (snapshot from 26th February 2010) with

Linux kernel 2.6.32. We installed the latest version of SIP-Router, an open source SIP

server [SIP Router Project, 2010] on the machine and configured it with all the features an

ITSP operating in the public Internet would need to use. The SIP server was configured

to use 2.5 GB of memory and 16 processes (2 per core). We used MySQL 5.1.41-3 (from a

Debian package) configured with 2GB of query cache. We used SIPp [SIPp, 2010] version

3.1.r590-1 to generate SIP traffic according to the model described in Section 8.2.2.1.

For RTP relay tests, we used an IBM HS22 blade server [IBM, 2010] with 5 blades

installed. One of the blades was used as an RTP relay server; the remaining four blades and

another two desktop-class PCs were used as RTP load generators. Each blade had two Intel

Xeon quad-core CPUs running at 2.9 GHz and a 10 GigE Intel NIC with multiple hardware

transmission and receive queues and ran a Linux 2.6.31 kernel. We used the latest version of

iptrtpproxy [iptrtpproxy, 2010], a kernel-level RTP relay. The software relays RTP packets

using iptables rules. We used a modified version of SEMS [iptel.org, 2010] to generate a
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large number of simultaneous RTP sessions.

8.4.1.2 SIP Server Measurements

We performed a number of measurements to figure out the maximum number of subscribers

that our SIP server can support. We wanted to determine the maximum load on this

server in three configurations: (1) signaling and NAT keep-alive (SIP NOTIFY) traffic

carried over UDP as described in Section 8.2.2.1; (2) signaling traffic over UDP but without

any SIP NOTIFY traffic; (3) signaling traffic over permanent TLS connections. The first

configuration allowed us to reason about the maximum ITSP-like workload a server can

handle. The second configuration provided insights into peak ITSP-like signaling workload

a server can handle, assuming there were no NATs. The third configuration was helpful

from the perspective of comparing T-ITSP to Skype, as Skype uses a TLS-like protocol to

encrypt signaling and media traffic.

Before running any tests, we provisioned the database of the SIP server with one million

unique subscribers. The baseline consumption of the server was 160 W. The machine had 6

fans; each fan consumed 10 W when running at full speed. The power consumption when

all fans were removed and the machine was idle was 145 W. To see how CPUs contributed

to the overall power consumption of the machine, we ran 8 cpuburn [Redelmeier, 2010]

processes (one per core). The machine consumed 332W when all cores were fully utilized.

For the first configuration, we found out that our server could handle T-ITSP’s traffic

mix for approximately half a million users. Under this load, the number of calls (λINV ),

registrations (λREG), and NAT keep-alives (λNAT ) events per second were 75 k, 166 k, 33 k,

respectively, and the server consumes (ws) 210W. For the second configuration, in which

there was no NAT traversal traffic, we found that our server could handle load for approx-

imately one million subscribers. ws was 190 W.

For the third configuration (signaling over TLS) there was no need to exchange frequent

keep-alive messages over TCP connections to keep NAT bindings open, so λNAT was 0. With

SIP over TLS, the SIP server used 61 kB of memory per connection and one connection was

needed per user agent. Consequently, memory became our bottleneck and a maximum of

43 k simultaneously connected user agents could be supported on a single SIP server. ws



CHAPTER 8. ENERGY EFFICIENCY OF VOIP SYSTEMS 143

Transport NAT keep-alive 100 k 1M 10M 100M
UDP YES 1 2 20 200

NOTIFY/s
UDP NO 1 1 10 100
TLS NO 3 25 250 2500

Table 8.2: Signaling servers needed by configuration.

% relayed calls 100 k 1 M 10 M 100M
0% 0 0 0 0

30% 1 2 10 96
100% 1 4 32 320

Table 8.3: Media servers needed when relayed calls are 0%, 30%, and 100% of ITSP-ITSP
calls.

was 209 W.

Based on these measurements, we extrapolate the number of servers needed for these

configurations in Table 8.2. Compared to the first configuration, observe that eliminating

the keep-alive traffic reduces the number of servers by half in the second configuration.

Although the number of signaling servers needed for the third configuration increases ap-

proximately by a factor of 12 as compared to the first configuration, we believe that such

limitation can be addressed by (1) tuning the SSL buffer, (2) increasing memory in our

server, and (3) using hardware SSL accelerators.

8.4.1.3 Media Relay Server

We managed to saturate the IBM blade with 15,000 simultaneous calls. Each call had a bit

rate of 64 kbit/s for an aggregate bit rate of 960Mbit/s. At this rate, the resource bottleneck

appeared to be a single CPU core overloaded by the ksoftirqd kernel thread. It is likely

that even greater call volumes could be relayed by optimizing the multi-core scheduling of

this machine using techniques such as [Dobrescu et al., 2009]. At this workload, the media

relay server consumed approximately 240W (wm). In Table 8.3, we extrapolate the number

of relay servers needed as a function of user population and the number of calls that need

relaying.
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8.4.2 Broadband Modems, Middleboxes and Ethernet Switches

A typical residential broadband user is connected to the Internet through a home router

(ethernet switch + WiFi) which in turn is connected to the broadband modem (cable,

DSL, or fiber). Our measurements indicate that the recent models of WiFi routers with

four ethernet switches consume, on average, 4-6W of power. Similarly, a broadband modem

also consumes 4-6 W of power. In our calculations, we use 5 W as an estimate for broadband

modem and home router power consumption.

In an enterprise, the VoIP hardphones are connected to an ethernet switch which is

typically PoE enabled. A 48 port Cisco switch model C2960S-48LPD-L consumes 70 W of

power at five percent throughput [Cisco, 2010a] and has 370 W of available PoE power or

7.70W per port.

8.4.3 User Agents

We performed measurements to determine the power consumption for a variety of user

agents that included hardware SIP phones and softphones. We also performed power mea-

surements for Skype super nodes.

8.4.3.1 Hardware SIP Phones

For a variety of SIP-based hardphones, we found that phones consume between 3 W to 6 W

of power. We also observed that the phone power consumption does not change when the

user is in a voice call.

8.4.3.2 Softphones

We used Skype and Google Talk as representative of softphones. For several desktop ma-

chines running Windows XP and Windows 7, we did not observe any discernible change in

the machine baseline power consumption when Skype and Google Talk were idle. The non-

discernible change in the power draw when these softphones are idle is partially attributed

to the power meter we used which can only measure power up to tenth of a watt with an

accuracy of 1.5%. When placing a voice call, we found that on average Skype and Google

Talk consumes between 6W to 8W on a Windows XP and Windows 7 desktop machine.
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Similarly, for a video call, Skype and Google Talk consumed between 10 W to 20W. For

laptop machines running Windows XP and Max OS X, we found that Skype and Google

Talk, on average, consumed between 1-2 W when placing a voice call. As with the desktop

machines, Skype and Google Talk did not cause any discernible power increase when idling.

We observed similar power draw behavior for other SIP-based software clients.

8.4.3.3 Skype’s Energy Consumption as a Super Node

Measuring Skype’s energy consumption as a super node is not straightforward. First, we

need a machine to transition to super node status. Since the Skype client itself decides

whether to become a super node, we can only encourage this decision to be made by ensuring

that the node has a public IP address, has sufficient bandwidth, and is lightly loaded which

we desired anyway given that we were trying to isolate what we assumed Skype’s relatively

low power consumption amidst the noise of the machine’s hardware and operating system.

To this end, we ran a Skype client for a few hours on a machine with a public IP address

and good network connectivity. To determine if the Skype is relaying a call, we performed

measurements using a traffic sniffer running on another machine which is connected to the

same hub as the Skype machine. We assumed a call is being relayed if the bit rate was

above a threshold [Suh et al., 2006]. Although, our meter readings indicated that there was

a non-zero power increase, the difference measured was smaller than the measurement error

reported by the power meter. Determining when a super node is handling signaling traffic

is even harder to detect, and the power draw per event lasts for a shorter interval and is

likely smaller in magnitude. We did find that the machine can go to sleep when Skype is

acting as a super node and relaying the call. The calls were either dropped or transferred

to another relay; however, it is impossible for us to ascertain the status of those calls due

to the closed nature of the Skype network.

8.5 Discussion

Our model and measurements allow us to answer the following questions, i.e., (1) what is

the total energy consumed by a VoIP system that may or may not replace PSTN as the
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Users 10 k 100 k 1M 10M 100M
Servers (NATs) 0.90 0.90 1.78 13.16 129.68
Servers (no NATs) 0.42 0.42 0.84 4.20 40.20
Broadband modems 50 500 5000 50,000 500,000
Home routers 50 500 5000 50,000 500,000
Hardphones 50 500 5000 50,000 500,000

Table 8.4: T-ITSP energy consumption as a function of number of users. All numbers are
in kilowatts. The wattage for servers includes the PUE factor ‘c’ of two.

primary line phone service, (2) where is energy consumed in such a system, (3) are p2p

VoIP systems more energy efficient than c/s?

To answer questions (1) and (2), we consider T-ITSP (Section 8.2.2.1), enterprise (Sec-

tion 8.2.2.2), and softphone-based c/s VoIP deployments (Section 8.2.2.3). Recall that for

the T-ITSP workload that include signaling and NAT keep-alive traffic over UDP, our SIP

server can handle this workload for 500 thousand subscribers, and consumes 209 W (wS)

under peak load. The RTP relay server under test consumed 240 W (wM ) and can relay

15 thousand calls, with each call having a bit rate of 64 kb/s. The number of active calls

in the system for 500 k users are 24 k (by extrapolating the number of active calls for 100 k

T-ITSP users), requiring two relay servers to handle this load (one server can handle 15 k

calls). Depending on the actual deployment, not all calls need relaying. Our conversa-

tions with various VoIP system providers suggest that using NAT traversal techniques like

ICE [Rosenberg, 2010] will likely bring down the relayed sessions under 30%. When relaying

30% of the 24 k calls, only one relay server is needed. We compute wc/s for both 100% and

30% relaying using our c/s model (Equation (8.1)). We plug c (PUE) as 2, and rS = 1

and rM = 1 in our model. For 100% and 30% relaying, the computed wS is 1.378 kW and

0.89 kW, respectively. Observe that these numbers are approximate for the peak load and

will be higher if the servers are under utilized.

Table 8.4 shows the energy consumed in kilowatts for running the servers, broadband

modems, home routers, and hardphones. Based on our measurements, we assign 5W for

running the broadband modem and 5W for the WiFi router with four ethernet ports.

These numbers will be higher for a WiFi router with more than four ports. Nevertheless,

the energy consumed by these devices cannot be solely attributed to VoIP because the



CHAPTER 8. ENERGY EFFICIENCY OF VOIP SYSTEMS 147

both VoIP and non-VoIP traffic share the same router. A reasonable assumption is that

on average, such sharing occurs only for 12 hours in a day. The rest of the time, these

devices must remain powered on so that a VoIP user can receive incoming calls. Using this

conservative assumption, we calculate the approximate power required to run a 100 million

VoIP system to be 1000.129MW. The number is calculated by using plugging 500 MW for

phones, 500MW for broadband modems and home routers (discounted by 50% because of

our usage assumption) and 129.68 kW for running servers. The monthly cost of running

such a system, at 11 cents per kWh [U.S. Energy Information Administration, Independent

Statistics and Analysis, 2010] is 79.2million dollars or 80 cents per user per month (rounded

up). The energy cost per month of running the servers is $10,270 or less than one thousandth

of a cent per user per month.

In enterprise VoIP systems, there are typically minimal or no NATs. Consequently, the

hardphones do not need to send SIP NOTIFY packets to the SIP proxy server for keeping

the NAT bindings alive nor do they will likely require any media relay servers. However,

VoIP hardphones must be connected to the ethernet switches. A 48-port PoE enabled

ethernet switch when connected with hardphones that require 5W per phone consumes

310W. For an organization with 100,000 hardphones, the total number of such switches

needed are at least 2,084. If only one half of the ports in each switch are used for VoIP

phones and the rest for non-VoIP usages such as Internet, then the number of switches

increases to 4,168. Assuming that switches solely serve VoIP traffic for one half of the

day (ignoring idle time on weekends and holidays), the monthly power consumption and

economic cost of an enterprise system with 100,000 users is approximately 465,033 kWh and

$51,153, respectively. The latter number when rounded up is 52 cents per user per month.

These results indicate always on VoIP phones are a major source of energy waste in

T-ITSP and enterprise VoIP systems. Further, the always on broadband modems, home

routers, and enterprise switches significantly add to the energy bill. In contrast, the servers

only consume a tiny fraction (<0.02%) of the total power consumed by a VoIP system

replacing PSTN. Table 8.4 also illustrates that restrictive NATs and firewalls are wasteful

in terms of server power consumption as they increase the total energy consumption of

servers by a factor of two and three for number of users below and above one million,
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respectively.

For softphone-based c/s systems such as Google Talk that do not replace PSTN as the

primary line phone service, their servers incur the same server energy usage for an equiv-

alent load as for the servers in VoIP systems that replace PSTN. However, the softphone

energy consumption is harder to quantify in these systems. This is because the softphones

typically run on PC’s which are powered on any way. If the softphones consume a small

fraction of the power consumed by the PC, it is likely that they will still dominate the total

power consumption of such a system; however, the relative power fraction of servers will

increase. On the other hand, if the users leave their PC’s powered on solely for the purpose

of receiving calls (such as magicJack [magicJack, 2010]), then the power consumption of

running these softphones will be much higher than hardphones, making such systems highly

energy inefficient. As such, a user study is needed to determine how long the users keep

their PC’s idle but powered on for receiving incoming calls.

To answer the third question whether p2p system is more energy efficient than c/s or vice

versa, we note this will only hold if the power consumed by all the super nodes assuming a

delta accounting policy is less than the total power consumed by the servers in c/s systems,

i.e.,

w∆NS < wc/s (8.3)

Observe that this equation does not include the power consumed by user agents, broad-

band modems, home routers, or ethernet switches because we assume that they consume

the same amount of power in c/s and p2p VoIP systems. To solve (3) for w∆, we need to

estimate the total number of super nodes in the system that can process signaling, NAT

keep-alive and media relaying traffic. We estimate the number of super nodes to be 1% of

the total user population, meaning that in a population of 500 k user agents, 5 k are super

nodes. This assumption is reasonable since if 30% of the 24 thousand active calls (7,200)

need a relay, a super node roughly relays one complete call at any instant. Further, in

Skype, a super node does not relay more than one call at any instant. Thus, the power

consumption per super node, w∆, is 0.89 k
5 k = 0.178W in order for c/s and p2p systems to be
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equivalent in terms of energy efficiency. When the servers are under utilized, say 50%, w∆

is twice its original value (0.356 W). The small value of w∆ suggests that if the super nodes

were to consume more power than this value in order to handle the signaling, NAT keep-

alives, and media relaying workload, a p2p system using super nodes will become energy

inefficient as compared to a c/s VoIP system.

Due to the low precision of our power meter, we are not able to ascertain if Skype super

node and relaying power consumption is close to w∆. However, we speculate that the power

consumed by super nodes and relays running on desktop machines may likely be close to

the w∆ calculated above. The reason is that the CPU of a relatively unloaded machine

running a Skype super node or relay may be woken often to service these requests, thus

incurring the small power draw to cause it to go above w∆. On the contrary, handling an

additional job on a loaded server causes almost no additional CPU wakeups.

The analysis reveals that in a VoIP system replacing PSTN, hardphones and switching

equipment consume 99.98% of the total energy consumed by the VoIP system. Thus, in

order to make VoIP system more energy efficient, we need to take advantage of techniques

that allow powering down these devices when idle. In the next section, we discuss the use

of these techniques.

8.6 Recommendations for Reducing the Power Consumption

of VoIP Systems

In this section, we discuss using a number of existing techniques that can potentially reduce

the energy consumption of hardphones, switches and middleboxes, and servers when these

devices are idle. As a result, the devices in a VoIP system will potentially only draw

power when making or receiving VoIP calls. Observe that unlike cloud-based systems where

services can be aggregated on a smaller number of servers to improve utilization and reduce

energy wastage, it is not possible do so in a VoIP system. The reason is simple: the users

want to receive and make calls through their telephones and it is simply not possible to

aggregate phones similar to aggregating compute jobs on a server.

Our analysis showed that hardphones, broadband modems, home routers, and enterprise
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switches comprise the biggest chunk of the total energy consumed in a VoIP system. To re-

duce the energy consumption of hardphones, the various components of the phone including

LCD display, processor, and ethernet jack should be powered down when not in active use.

The former two can be accomplished by turning off the LCD display and and by making use

of energy efficient processors, whereas the later can be accomplished using energy efficient

ethernet [Christensen et al., 2010]. If the phones were only used for eight hours a day and

were powered down or ran on minimal power (<0.1W) during the remaining 16 hours, it

will bring down the per user per month energy bill from 79 cents to 53 cents in T-ITSP like

systems, and from 52 cents to 32 cents in enterprise VoIP systems.

In T-ITSP like systems, the hardphones must send keep-alive messages over UDP every

15 s to keep the NAT bindings alive. Such wasteful traffic prevents the phones and home

routers from taking advantage of any sleep modes available on the device. To eliminate such

wasteful traffic, the phones can establish a permanent TCP connection with the SIP server.

Further, the ISP’s can setup a SIP phone on the broadband modem which is typically not

behind a NAT device. When the SIP user agent on the broadband modem receives an

incoming call, it can wake up the home router and the phone using techniques such as

Wake-on-LAN [Wake-on-LAN, 2010] to receive incoming call. This technique can further

bring down the per user per month energy bill for running VoIP phones.

Our analysis also indicated the number of servers needed to support a large VoIP user

base is fairly small; one SIP server can handle registration events and NAT keep-alive traffic

for 500 thousand users, and RTP relay server can relay calls for 15 thousand calls. By setting

up the VoIP user agents on cable modems, the NAT keep-alive traffic can potentially be

eliminated. By using advanced NAT traversal techniques, such as ICE [Rosenberg, 2010] to

allow user agents to detect network conditions, the use of RTP relay server can be further

minimized. Together, these techniques can significantly reduce the power consumption of

VoIP servers.
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8.7 Related Work

Nedevschi et al.[Nedevschi et al., 2008] have developed models describing the relative

power efficiency of c/s and p2p architectures for generalized network applications (e.g.,

file-sharing), and conclude that p2p approaches use system energy more efficiently than the

c/s ones. Similarly, Valancius et al.[Valancius et al., 2009] argue that building p2p nano-data

centers on the Internet gateway devices provides energy savings over traditional centralized

data centers. In both papers, the energy savings argument boils down to data center servers

(1) needing cooling, network, and other overheads measured by a multiplicative factor called

Power Utilization Efficiency - PUE and (2) having significant baseline power consumption

(i.e., power consumption when idling). Typical data center PUEs range from 1.2–2, while

the PUE of a peer is 1 (e.g., home air-conditioning is already running) and peers are on

anyway, so processes running on peers escape this baseline cost.

We examined the relative energy efficiency of c/s and p2p VoIP systems, and found,

intriguingly, that the energy consumption of a peer does not need to be very large in order

for a p2p architecture to be less energy efficient than a c/s one.

8.8 Conclusion

We identified the key components that are implemented on servers in a c/s VoIP system

and by super nodes in a p2p VoIP system. We presented a model for understanding power

consumption of c/s and p2p VoIP systems. We performed a number of experiments to

determine the power consumption of different components of c/s and p2p VoIP systems. Our

model, analysis, and measurements indicate that for VoIP systems used as a replacement for

always-on PSTN system, the power consumed by hardphones and connected network devices

(broadband modems, home routers, and enterprise switches) overwhelmingly dominate the

total power consumed by the VoIP system and the per user per month cost is less than a

dollar in such systems. Moreover, when comparing c/s and p2p VoIP systems, our results

show that even when super nodes consume relatively small power for system operation,

the p2p VoIP system can be less energy efficient than a c/s VoIP system. Further, we

demonstrated the presence of NATs as the main obstacle to building energy efficient VoIP
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systems.
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Chapter 9

Measurements – Skype

9.1 Introduction

Skype [Skype, 2010a] is a peer-to-peer (p2p) VoIP application developed by the organization

that created Kazaa [Liang et al., 2004]. Skype allows its users to place voice and video

calls, and send instant messages to other Skype users, similar to the MSN and Yahoo

IM applications. However, the underlying protocols and techniques it employs are quite

different.

Like its file sharing predecessor Kazaa, Skype is an overlay network of users running

the Skype application. There are two types of nodes in this network, namely, ordinary

nodes (ON) and super nodes (SN). Both ON and SN run the same Skype application. An

ordinary node is a Skype node that is behind a restrictive NAT or a firewall device and

connects to one or more super nodes. A super node is an ordinary node’s end-point on

the Skype network. Any node with a public IP address having sufficient CPU, memory,

and network bandwidth is a candidate to become a super node. The super nodes store

information about online users and provide media relaying services to the Skype nodes

that are behind a restrictive NAT or a firewall device. At startup, both ON and SN must

authenticate themselves with the Skype login server. Although not a Skype node itself, the

Skype login server is an important entity in the Skype network as it stores the user names

and passwords of Skype users. This server also ensures that Skype user names are unique

across the Skype name space. Starting with the Skype version 1.2, the contact list is also
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stored on the login server. Figure 9.1 illustrates the relationship between ordinary nodes,

super nodes and the login server.

Apart from the login server, there are SkypeOut [Skype, 2010f] and SkypeIn [Skype,

2010e] servers which provide PC-to-PSTN and PSTN-to-PC bridging. SkypeOut and

SkypeIn servers do not play a role in PC-to-PC call establishment and hence we do not

consider them to be a part of the Skype peer-to-peer network. Starting with version 5.0

beta, Skype supports five party video conferencing. However, it uses managed servers for a

video conference involving more than two participants.

Skype login 

server

Message exchange

with the login server

during login

ordinary host

super node

neighbour relationships in the 

Skype network

Figure 9.1: Skype Network. There are three main entities: supernodes, ordinary nodes,
and the login server.

We present the experimental setup to analyze the Skype functionality and then describe

the key functions of Skype in Section 9.2. We then describe our experiments to gain insights

into the Skype’s relay selection mechanisms in Section 9.3. For brevity, we refer to the Skype
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application as SA.

9.2 Functionality

We performed experiments for the Windows Skype version 1.4.0.84 and for the Linux Skype

version 1.2.0.18 in December 2005. We used traffic analysis, shared library and system call

interception techniques to analyze various functions of the Skype protocol such as login,

call establishment, search, NAT and firewall traversal, and conferencing.

We devised an experimental setup for analyzing the protocol of the Skype Windows

version. In the first setup, both SA’s were run on machines with public IP addresses; in the

second setup, one SA was behind a NAT with endpoint-independent mapping and address

and port dependent filtering (port-restricted NAT); in the third setup, both SA’s were

behind a port-restricted NAT and UDP-blocking firewall. The NAT was configured using

Linux ‘iptables’. We used Ethereal [Ethereal, 2010] to monitor the network traffic and used

NetPeeker [Net Peeker, 2010] to tune the available bandwidth to allow us to analyze the

Skype operation under network congestion.

For the Skype Linux version, we used shared library and system call interception tech-

niques to gain more insights into the Skype protocol. In Linux, when a program starts, it

dynamically loads the shared libraries pointed to by the LD PRELOAD environment variable

before loading any other shared library including libc [GNU C Library, 2010]. This feature

makes it possible to overload a libc function such as strcpy() or a system call such as

send(). When LD PRELOAD is set to a library containing an overloaded strcpy() function,

and the program which contains the strcpy() calls is executed, the overloaded strcpy()

is called. The parameters passed to this overloaded strcpy() function can be displayed or

any appropriate action can be taken. Also, the overloaded strcpy() function can then call

the strcpy() function defined in libc. Figure 9.2 shows the sample code for the overridden

strcpy() call.

Next, we briefly describe the key functions of the Skype protocol. A detailed description

of the experiments can be found in [Baset and Schulzrinne, 2006].
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char* strcpy(char* dest, const char* src) {
void *handle = NULL;
double (*mystrcpy)(char* dest, const char* src);
long temp;

handle = dlopen("/lib/libc.so.6", RTLD_LAZY);
mystrcpy = dlsym(handle, "strcpy");
temp = (*mystrcpy)(dest, src);
dlclose(handle);

return dest;
}

Figure 9.2: strcpy() overload

9.2.1 Search

Skype claims to have implemented a ‘3G P2P’ or ‘Global Index’ [Skype, 2010b] technology,

which is guaranteed to find a user if that user has logged in the Skype network in the last

72 hours. Skype allows wildcard search. Such a search mechanism is costly to implement

using DHTs in terms of number of messages as it requires the implementation of inverted

index. Therefore, it is unlikely that Skype uses DHTs for its peer-to-peer network, and for

searching a user name.

9.2.2 NAT Traversal

We believe that each SA uses a variant of the STUN [Rosenberg et al., 2008] protocol

to determine the type of NAT and firewall it is behind. We also believe that there is

no global NAT and firewall traversal server because if there was one, the SA node would

have exchanged traffic with it during the login and call establishment phases in the many

experiments we performed.

9.2.3 Overlay Connectivity

The Skype network is an overlay network and thus each SA needs to build and refresh a

table of reachable nodes. In Skype, this table is called host cache (HC) and it contains IP

address and port number of super nodes. Starting with Skype v1.0, the HC is stored in an

XML file. In the earlier versions, the host cache was stored in Windows registry.
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9.2.4 Call Establishment

Each SA uses TCP for signaling, and both UDP and TCP for transporting media traffic.

If the caller, callee or both are behind a restrictive NAT and firewall, the SA uses another

Skype node for relaying media traffic. Further, the caller and callee use TCP to exchange

media packets if firewalls block UDP.

9.2.5 Codecs

Skype uses wideband codecs [Skype, 2010c] which allows it to maintain reasonable call

quality at bandwidth as low as 8 kb/s.

9.2.6 Audio Conferencing

Skype does not do full-mesh audio conferencing [Lennox and Schulzrinne, 2003] and instead

uses one of the participants, which is typically the conference initiator, as the audio mixer.

9.2.7 Video Conferencing

As discussed in Section 5.2, Skype uses managed servers for video conferencing with three

or more participants. For one-to-one video calls, the SA’s in the session may use another

Skype user as a relay if they cannot directly exchange packets. The Skype application limits

the bandwidth of a video call involving another SA as a relay.

9.3 Skype Relay Calls

Skype addresses the issue of network connectivity between SA’s by using other Skype nodes

as relays. We performed experiments to gain insights in the Skype relay selection mecha-

nism, and to determine the characteristics of relay calls and machines relaying the Skype

calls, without modifying the Skype application. During a four month period, we attempted

over 38,000 Skype calls under three different network setups of which 18,000 were successful

calls. Our results show that although Skype exhibits geographical locality in relay selection,

the median one way call latency is not insignificant, suggesting the benefit of further tuning

of Skype relay selection mechanism. Second, we discuss factors impacting the success rate
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of Skype calls. Finally, we find that approximately 46% of the successful calls were through

relays run by users in universities. The result suggests that Skype is free-riding on the

network bandwidth of universities.

Section 9.3.1 describes the experimental setup and Section 9.3.2 discusses factors af-

fecting success rate of relay calls. In Section 9.3.3, we discuss the geographical, ISP, and

autonomous system distribution of relay nodes and relay calls and online presence of relay

nodes.

9.3.1 Experimental Setup

A key aspect of Skype’s robust connectivity is its ability to traverse NAT and firewalls by

routing a video or a voice call through one or more Skype relays. We refer to the node relay-

ing a Skype call as relay node (RN) and the call being routed as a relay call (RC). A relay

node is a SN that has sufficient bandwidth to relay a voice or a video call. To study Skype’s

robust connectivity, we devised an experiment in which a call was established between two

Skype clients running on machines in our lab at Columbia University. The RTT between

the two machines was less than one ms and both machines were connected to the same LAN.

The network conditions between the caller and callee machines were configured so that they

were forced to use a RN. Specifically, the experiment was performed under three different

network setups: unrestricted connectivity (Figure 9.3), caller and callee behind NATs with

address and port dependent mapping and filtering (Figure 9.4)1, and direct-blocked setup,

in which the caller and callee, having otherwise unrestricted connectivity, could not send

packets to each other (Figure 9.5). We refer to these setups as unrestricted, NAT, and

direct-blocked in this chapter. For the NAT and direct-blocked setup, we performed the

experiment with and without deleting the host cache. The experiments were performed

from March 27 to July 3, 2007. We used Skype v3.2 for Windows XP in our experiments.

We wrote a script using AutoIt [AutoIt, 2010] that used the Skype API [Skype, 2010d]

to automate the establishment of Skype calls, checked the call status, and collected the

relay data at caller and callee SA. The duration of a call was configured to be one minute

and during this time, the script gathered the number of packets sent by the caller and

1see Chapter 2 for background on NAT types
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Figure 9.3: Unrestricted

Figure 9.4: NAT: caller and callee behind address and port dependent NAT.

callee SA’s to the unique IP address and port number pairs using WinDump [Riverbed

Technology, 2010]. With a packetization interval of 30 ms (as used by Skype), the caller

machine should approximately send 1,800 packets to the RN within a minute and vice versa.

After terminating each call, we parsed the WinDump data and labeled the IP address and

port number that most frequently appeared in the WinDump data as the relay node.

We also found that the presence of host cache (a list of online Skype nodes) affected the

success rate of RCs. Throughout the experiment, we collected the IP addresses and port

numbers of Skype relay nodes and tracked their online status by sending a specially crafted

Skype message to them. We also calculated the geographical, ISP, and autonomous system

(AS) distribution of RNs and RCs using MaxMind [Maxmind, 2010] and AS number lookup

utility [Kondo, 2010] and measured the round trip time from our lab to the RNs. We used

the RTT data to gain insights into the efficiency of the Skype relay selection algorithm.

9.3.2 Factors Impacting the Success Rate of Skype Relay Calls

We established over 38,000 calls over a three month period for the three different network

setups described in Section 9.3.1. For 37,761 calls, the network was configured such that

Skype was forced to select a relay. Out of these calls, approximately 18,000 were successful

and the success percentage depends on the network setup. Seventeen percent (3,146) of the

successful RCs used a different relay from caller to callee and from callee to caller. There

was almost no difference between the call success rates of video and voice calls. Table 9.1

shows the detailed call statistics for the three network setups.
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Figure 9.5: Direct-blocked: packets between caller and callee are dropped.

Table 9.1: Statistics for Skype relay call experiments.
Experimental setups

AggregatedUnrestricted NAT Direct-blocked
HC HC HC HC

deleted not deleted deleted not deleted
Call trials 867 4,649 5,658 15,774 11,680 38,628
Successful calls 867 339 5,567 2,586 8,597 17,962
Success rate (%) 100% 7.3% 98.4% 16.4% 73.6% 46.5%
Relays found N/A 379 2,843 2,718 4,317 9,584
% of calls through
US relays

N/A 74% 81.2 91.6% 92.4% 88.2%

% of succ. calls
w/two relays

N/A 28.6% 17.7% 31.2% 14.6% 17.5%

One-way call la-
tency (ms)

N/A 29.1 95.7 8.8 13.3 43.6

We posed the following questions: how does the network and retention of host cache

from previous runs of Skype application impacts the success rate of relay calls. Observe

from Table 9.1 that the success rate of RCs for the direct-blocked setup that retains HC

after a call trial is lower than the unrestricted and NAT setups. We have observed that

when a SA comes online, it sends a notification to the Skype users in its contact list. Since

the direct-blocked setup will drop any packets between caller and callee, this notification

is dropped. When a caller initiates a call, it must search for the callee SA in the Skype

network. After finding IP address of the callee SA, the caller SA sends the signaling traffic

through another SA. Further, the caller and callee must find a Skype node for relaying

the media traffic. However, unlike the NAT setup, the relay search is initiated only during

call establishment, as both caller and callee had earlier assumed that they had unrestricted

connectivity. Thus, for the direct-blocked setup, an attempt to find a signaling and media

relay at the time of call establishment decreases the success rate of RCs in the direct-blocked

setup as compared to the NAT setup.

To check if the retention of host cache from the previous runs of SA impacts the success
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rate of relay calls, we deleted the HC after every trial for the three network setups and

measured the call success rate. In the absence of the HC, a SA uses bootstrap nodes

maintained by the Skype to join the Skype network. For experiments in the NAT and

direct-blocked setup where HC was deleted after every call trial, we observed a strange

phenomena with the call success rate. Initially, the call success rate was 100%, but as the

time passed, there was a drastic drop in the success rate, and ultimately all calls started

to fail. We experimented with different Skype user names for the caller and callee and

observed the same phenomena. Interestingly, we did not observe this phenomena for the

unrestricted setup. We offer a possible explanation below.

We have studied that the intermediate SNs contacted by the caller during the callee

search process cache the results [Baset and Schulzrinne, 2006]. Since the HC is deleted

after every call trial, a caller SA must contact the same set of bootstrap peers during

login. It takes time, on the order of minutes, for Skype to build a new HC from scratch.

Moreover, a Skype callee behind a NAT and direct-blocked setup must publish a reachable

IP address, obtained through STUN [Rosenberg et al., 2008] and TURN [Mahy et al., 2010]

like mechanisms, in the Skype network. It is likely that for a new call trial, the callee’s

reachable address is not updated in the SNs cache and the caller SA always reaches the SNs

caching the old reachable address of callee.

Thus, we attribute the RC failures to (1) the stale IP address and port number of callee

and its SN in the cache of other Skype nodes and (2) the inability of Skype to find a relay

at the time of call establishment.

9.3.3 Characterization of Skype Relay Nodes

During our experiments, we found 9,584 unique relays. In this section, we classify the IP

address of these RNs according to their geographical, ISP, and autonomous-system (AS)

distribution, and present RTT and uptime measurements for them. We also present a

geographical distribution of relay calls and comment on the efficacy of the Skype relay

selection algorithm.
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Table 9.2: Top five organizations with relay nodes
.edu

Organization % of
RNs

% of
calls

Median
Uptime
(hours)

Median
RTT
(ms)

Columbia 2.7 15.1 3.3 0.3
Yale 2.1 5.1 3.9 9.8
Georgia Tech. 1.3 5.2 4.1 30.1
MIT 1.1 0.9 6.2 0.9
NYU 1.1 2.3 5.9 2.27

.com
Road Runner 9.8 7.2 4.6 15.5
AOL 4.0 4.5 4.2 95.6
Mindspring 2.6 1.6 3.4 58.6
Rogers 2.5 1.5 0.2 34.9
Charter 1.6 1.0 3.5 32.8

.net
Comcast 18.1 12.3 3.9 29.1
Optimum Online 9.2 6.1 3.8 14.9
Cox 2.6 1.4 2.2 81.8
SBC 2.5 1.5 6.7 38.3
Ameritech 1.5 0.7 6.2 40.7

9.3.3.1 Relay Distribution

We used MaxMind [Maxmind, 2010] to determine the geographical distribution of relay node

IP addresses and nslookup for reverse DNS lookup. Out of 9,584 RNs, 89.36% were present

in North America and 11.5% were in Europe. The US-based RNs comprised 82.64% (7,920)

of the total relay nodes and 21.18% of the total RNs were in New York state. We also classify

the RNs using their domain names obtained from reverse DNS lookup. Table 9.2 shows five

organizations with a .edu, .net, and .com suffix having the most number of unique RNs,

the percentage of calls routed, and median RTT. An interesting aspect is that 22.4% (2150)

RNs had a .edu suffix, which indicates their affiliation with universities. In Section 9.3.3.3,

we present the distribution of relay calls through nodes at educational institutions.

Besides geographical and domain name classification of 9,584 RN IP addresses, we also

used the aslookup [Kondo, 2010] utility to discover the AS number of the IP addresses

of RNs. The tool contacts one or more whois servers to obtain the AS number of an IP

address. The aslookup was successfully able to retrieve AS numbers of 7,954 (83%) IP

addresses that belonged to 336 unique autonomous systems. The statistics are summarized
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Table 9.3: Top ten AS with the largest number of unique RNs
Organization %

RNs
AS # %

succ.
calls

Median
RTT
(ms)

Organization %
RNs

AS # %
succ.
calls

Median
RTT
(ms)

Cable Vision 9.2 6128 6.1 15.3 AOL 3.9 1668 3.4 95.6
RR-NYC 7.3 12271 5.9 16.4 Comcast 3.7 33287 2.8 30.1
Rogers 4.5 812 2.5 52.1 Columbia

Univ.
3.1 14 17.4 0.28

SBC 4.4 7132 2.5 46.6 Cox 2.9 22773 1.7 65.6
Comcast 4.4 7015 3.6 16.2 Comcast 2.6 33657 2.0 34.5

in Table 9.3 and Figure 9.6. Out of 336 ASes, the top ten AS hosted 46% of RN IP addresses

while the top twenty percent covered 90% (8,627) of RN IP addresses. Note that New York

state had 21% of the total RN IP addresses and observe that a New York city ISP, RR-NYC

(Road Runner) and Columbia University in the city of New York have 10.4% of the total

RN IP addresses. This result gives an indication that a SA attempts to select a RN that is

geographically closer to caller and callee.

Observe from Table 9.3 that a higher percentage of RNs belonging to one organization

does not imply that more relay calls are routed through hosts in that organization. Cable

Vision, an ISP, has 9.2% of total RNs but they only relay 6.1% of the calls. Columbia

University has 3.1% of the total RNs but they relay 17.4% of the total RNs calls. This

result gives another indication that Skype is attempting to optimize the RN selection.

However, as we will discuss in Section 9.3.3.2, this selection is far from optimal.

Figure 9.7 shows the number of unique RNs found for the complete duration of the

experiment, i.e., from March 27 to July 3, 2007, and is a linearly increasing line. This result

indicates that the total population of RN candidates is likely much larger and there are

undiscovered Skype RNs which could have been found if the experiment was not stopped

on July third.

Guha et al. [Guha et al., 2006] had mined the HC of Skype to obtain a list of 2,081

Skype SNs. We compared our RN list to Guha’s SN list and found that the two lists had

only six IP addresses in common. One reason for such a minimal overlap is a time gap of

more than one year between the two studies. The other reason is that Guha mined SN list

from Skype client’s HC. Having a SN listed in the HC does not necessarily imply that those

nodes will be selected as a relay. Instead of mining the HC for SNs which may be selected
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Figure 9.6: Number of relays
nodes (RN) per AS.

Figure 9.7: Number of
unique RNs found.

Figure 9.8: CDF of one way
call latency from caller to
RN.

Figure 9.9: CDF of relay calls
(RCs) per unique RN.

Figure 9.10: Geographical
distribution of RCs.

Figure 9.11: CCDF of RNs
uptime.

as a relay, we established relayed Skype calls and tracked the selected RNs.

9.3.3.2 Packet Delay of Relay Nodes from Caller

To gain more insights in the efficacy of Skype relay node selection algorithm, we also

analyzed the network latency from our lab to the relay nodes. We measured the RTT of

RNs by sending especially crafted Skype messages to each RN. Figure 9.8 shows the CDF

of one way call latency. The average and median one way latency for RNs measured across

all experimental setups are 52.2 ms and 43.6 ms. Since both caller and callee machines were

located in our lab and have the same RTT to the RN, one-way median network latency for a

call is 43.6 ms. For the NAT setup, one way median network latency between our machines

in our lab running the caller and callee SA and RN is 95.6 ms and for direct-blocked setup,

it is 13.3 ms. The NAT setup is likely to be a common case on the Internet and a median

latency of 95.6 ms between two machines behind NATs, having otherwise a RTT of less

than one ms, is not insignificant. Moreover, one-way median latency for the NAT setup is

significantly higher than the direct-blocked setup. One could argue that for NAT setup, a
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SA will choose a relay at the time of login, whereas in direct-blocked setup a SA chooses a

relay at the time of call establishment. Thus, a SA would have more time to optimize relay

selection for the NAT setup, and consequently, one-way call latency should be lower for the

NAT setup. However, we did not observe low latencies for calls in the NAT setup and the

cause remains unclear.

9.3.3.3 Call Distribution per Relay

We characterize the distribution of relay calls per RN and determine whether there is any

temporal locality in the selection of a RN, i.e., for how many subsequent calls does a SA

uses the same relay.

As listed in Table 9.1, there are 9,584 RNs that relay 17,095 calls so on average each

RN relays two calls. Figure 9.9 and Figure 9.10 show the CDF of RCs per unique RN and

geographical distribution of RCs. Approximately, 6.3% (603) of the 9,584 nodes belonging

to 74 autonomous systems relayed 50% of the total calls. Clearly, a significant portion of

relay calls are routed through a small subset of RNs and this refutes any conjectures about

Skype relay algorithm selecting a random RN. The result will be clearer when we discuss

the uptime of RNs as some nodes are online for many days.

As listed in Table 9.1, 88.2% of successful RCs were routed through relays in US, and

3.7% and 6.93% through relays in Canada and Europe. Observe that for the NAT setup,

only 81.2% of the calls were routed through US-based relays as compared to 92.4% for

direct-blocked setup which indicates that there is room for improvement in Skype relay

selection algorithm. This is also highlighted in Figure 9.10 which shows an increase in the

use of European relay nodes during the month of June when NAT setup experiments were

performed. It is unclear why Skype relatively uses more non-US relays when both caller

and callee are behind address and port dependent NATs.

To understand if Skype is free riding on the network bandwidth of universities, we

performed a reverse lookup of RN IP addresses and group the results by edu, net and com

suffixes. In Figure 9.12, we plot the percentage of RN’s with edu, net, com, and other

suffixes that relay the calls. As shown, approximately 46% of the relay calls were through

RN’s that have a .edu suffix. The result is an indication that universities are implicity
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Figure 9.12: Percentage of successful relay calls through machines with a DNS suffix ending
in edu, net, com, and other.

helping towards the health of the Skype network. The reason why a significant percentage

of relayed calls is through relays in universities is because the universities typically charge

a flat rate for bandwidth and electricity provided to student dorms. Consequently, the

students running the Skype application in their dorms do not have any incentive to shut

down the Skype application.

Figure 9.13 shows the timeline of the number of times the top five RNs were selected as

a relay and their uptime. From our results we noted that the maximum number of times a

relay node was selected in consecutive trials was seven. These results indicate that Skype

is caching the RN lists. Surprisingly, the RN with the largest uptime of 42.5 days was only

once selected as a relay during the course of our experiments. It is possible that this node

was selected as a relay for calls placed by other users. However, it is difficult to obtain this

information due to the closed nature of the Skype protocol.

9.3.3.4 Uptime of Relays

We tracked the presence of RNs discovered in the three experimental setups. Every few

minutes, we sent a specially crafted Skype message, thereafter called Skype-ping, to RN

IP address and port number to which a Skype client across different versions is known to

respond. If there was no reply, we consider the Skype node to be offline. We conducted

this experiment from March 27 to July 3, 2007.

Our result shows that the uptime distribution of Skype relay nodes follows a diurnal
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pattern. This result is quite similar to the uptime distribution of supernodes found by

Guha [Guha et al., 2006]. The likely reason as also mentioned by Guha is that there are

more users in the Skype network during the day than during the night. Figure 9.11 shows

the CDF of the uptime of RNs. A relay node can be online at different times during the

study period. The CDF plot shows all the uptimes of a unique RN and not the cumulative

uptime. Over the course of our RN study, the maximum and median observed uptime of

RN was 42.5 days and 3.5 hours, respectively. The median uptime for RNs in .edu, .net,

and .com domains was 4.5 hours, 3.7 hours, and 2.5 hours, respectively. Note the relatively

longer uptime for RNs with a .edu suffix and this again raises the question whether university

networks are indirectly supporting the Skype peer-to-peer network.

The median uptime of SNs reported by Guha was 5.5 hours. Perhaps the difference

between our RN median uptime and the one reported by Guha is caused by the different

duration of the uptime study. We conducted our uptime study over a five month period

and discovered 9,584 unique RNs whereas Guha conducted his study over a period of one

month for 2,081 unique SNs.

An aspect of Skype which can impact our uptime statistics is that Skype does not have

a standardized listening port. SA picks a random port upon installation and additionally,

listens for incoming requests at port 80 and 443, the HTTP and HTTPS ports, respectively.

There is no guarantee that a SA will always use the same random port picked at installation.

Therefore, it is possible that a Skype-ping message may actually never be received by a SA

although it may be online. Thus, the uptime results may not accurately represent the

uptime of RNs. We tried sending a crafted Skype message to ports 80 and 443 in the hope

that a SA will respond since it always listens for incoming requests on these ports; however,

in our experiments, we never received a response for crafted Skype messages sent on ports

80 and 443.

9.3.3.5 Summary of Results

82.64% of the RNs were located in US and 6.3% of the total RNs relayed 50% of the

calls. This reuse of relay nodes suggests that Skype caches RN information. The median

one-way network latency was 43.6ms and is dependent on the experimental setup. Our
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Figure 9.13: Relay selection and uptime du-
ration of top five RNs.

results indicate that the mechanisms for relay selection can further be improved, especially

when both caller and callee are behind NAT. The RC failures in the absence of HC can be

reduced by quickly updating the SN cache for callee’s reachable address. Further, since 50%

(approximately 9,000) of the calls are relayed by nodes belonging to 74 autonomous systems,

it is possible to use AS number as an approximate metric to search for a relay closer to

caller or callee. However, using AS number as a metric to determine node locality depends

on the physical geography of AS. Our results also indicate that the machines running Skype

applications in universities greatly contribute towards the health of the Skype network.

9.3.4 Related Work

The closest study to ours was an experimental study of Skype SNs conducted by Guha et

al. in 2005 [Guha et al., 2006]. Guha monitored the HC of a SA and tracked the population

and presence of SNs. It was not certain if these SNs were also acting as relay nodes. We,

however, discovered the RNs by establishing and monitoring calls that were relayed through

these Skype nodes. Further, we studied the factors impacting Skype RCs success rate, the

presence information of RNs and their geographical distribution.

9.4 Conclusion

In this Chapter, we described the two tier architecture of Skype. We also gave an overview

of various functionalities in Skype such as search, call establishment, NAT traversal, and
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conferencing. We then performed experiments to gain insights in the Skype relay selection

mechanism. Our analysis indicates that a significant portion (approximately 46%) of the

Skype relay calls are routed through machines running in universities. We also observed

that for approximately 17.5% of successful relay calls, one relay is used for sending media

from caller to callee SA and vice versa. Finally, we observed that the success rate of Skype

relay calls depends on the network restriction and the host cache.
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Chapter 10

Conclusions

The peer-to-peer (p2p) paradigm for building VoIP systems involves minimal or no use

of managed servers and is therefore attractive from an administrative and economic per-

spective. However, the benefits of using p2p paradigm for building VoIP systems are not

without their challenges of protocols and system design, reliability, energy efficiency, and

measurement.

This thesis describes protocols and systems for building peer-to-peer communication sys-

tems. It defines Peer-to-Peer Protocol (P2PP) [Baset et al., 2007], an open and interoperable

protocol for building p2p communication systems. The protocol has been incorporated in

the RELOAD protocol [Jennings et al., 2010] which is being standardized in the P2PSIP

working group of Internet Engineering Task Force (IETF). The thesis presents the design,

implementation, and lessons learned from building OpenVoIP [Baset and Schulzrinne, 2008],

an open source peer-to-peer communication system. OpenVoIP has been deployed on Plan-

etLab. The system demonstrates the feasibility of P2PP and helps understand challenges

in building p2p communication systems. The thesis then presents a systematic exploration

of issues in designing and building peer-to-peer video conferencing.

The thesis presents an in-depth analysis of reliability in p2p communication systems, the

use of TCP for real-time traffic, and energy efficiency of p2p and client-server VoIP systems.

It presents a framework to understand the reliability of p2p communication systems and a

simple model to understand the reliability of media sessions that require a relay [Baset and

Schulzrinne, 2010]. The model can be used to answer questions about the reliability of p2p
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communication systems like Skype. An insight from the model is that Skype user agents,

that require a relay to exchange media traffic, need at least three relays to maintain a call

success rate of 99.9%. Due to the presence of restrictive NATs and firewalls, the user agents

may be unable to directly exchange UDP traffic but may establish a direct TCP connection.

The thesis presents a feasibility study of using TCP for sending real-time traffic such as

voice and video, explores where the delays occur in the TCP for real-time flows, and presents

techniques to mitigate the delay impact of TCP [Brosh et al., 2008]. A main observation

is that when TCP carries VoIP traffic, the delays due to packet retransmission and inorder

delivery mechanism of TCP dominate the total incurred delays, whereas in the case of

video flows over TCP, the congestion control mechanism of TCP is mainly responsible for

the delays incurred.

The thesis describes a model to compare the energy efficiency of peer-to-peer and client-

server communication systems and identifies sources of inefficiency in these systems [Baset

et al., 2010]. The model and measurements highlight that in VoIP systems replacing PBX

or PSTN, VoIP hardphones consume the largest part of the total energy consumed by the

VoIP system and p2p communication systems are less energy efficient than client-server

even if the peers consume a small amount of energy for the p2p network operation. Finally,

the thesis presents a set of techniques to understand the workings of Skype, a popular

p2p VoIP application. In particular, the thesis presents measurements which show that

Skype is free-riding on the network bandwidth of universities [Baset and Schulzrinne, 2006;

Kho et al., 2008].
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Appendix A

P2PP TLV Object Bit Fields

This appendix defines the bit fields for the P2PP TLV objects. The fields which either start

or end in // have a variable length. All the other fields have a fixed length.

A.1 Node-ID

The node-id object contains a fixed length identifier for a node.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// Node-ID //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

A.2 Node-Info

The node-info object contains a node-id (Appendix A.1) and an address-info object (Ap-

pendix A.3), and may include other objects such as uptime (Appendix A.9), certificate

(Appendix A.11), and node-resource utilization (Appendix A.4).

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// Node-ID //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// Address-Info //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
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// Additional Information //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

A.3 Address-Info

The address-info object contains the host, server-reflexive, and/or relay address of a node.

The server-reflexive and relay addresses are gathered using STUN [Rosenberg et al., 2008],

TURN [Mahy et al., 2010], and ICE [Rosenberg, 2010].

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Num |R|Resv.| IP-ver| Foundation | Component-ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Priority |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TT | HT | Port | Peer address //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Num (4 bits): The number of ICE candidates.

R flag (1 bit): If set, rel-addr and rel-port are included as defined in ICE [Rosenberg,

2010].

IP-Ver (4 bits): The IP version number, 4 or 6.

Foundation (8 bits): The foundation field as defined by ICE [Rosenberg, 2010].

Component-ID (8 bits): The component-ID field as defined by ICE. The values for various

components are defined in Table A.6.

Priority (32 bits): The priority of the address obtained through ICE.

TT (4 bits): The transport type of the address. One of UDP (0000), or TCP (0001).

HT (4 bits): The address type of the peer as defined in ICE. One of host (0000), server

reflexive (0001), peer reflexive (0010), or relayed candidate (0011).

Port (16 bits): The port on which this node listens for requests.
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Peer address (variable): The IP address of the peer. Its length depends on the IP-Ver

field.

A.4 Node-Resource-Utilization

The node-resource-utilization object contains the CPU, memory, disk, and network utiliza-

tion and total capacity. A flag at the beginning of the object indicates which of these fields

are included in the object.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|C|M|D|N| reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| CPU util | CPU id | CPU capacity (MHz) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Mem util | Memory capacity (MB) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Disk util | Disk capacity (GB) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Network util | Network capacity (kb/s) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

C flag (1 bits): If set, CPU utilization and capacity are included. For multicore processors,

this field in conjunction with the CPU id field determines whether to report the average

utilization across all cores (CPU id = 0), or of each core starting from the first core

(CPU id 1, 2, . . . ).

M flag (1 bit): If set, memory utilization and memory capacity of the node, measured in

megabytes, is included.

D flag (1 bits): If set, the disk utilization and the total disk capacity measured in gigabytes

(GB), is included.

N flag (1 bits): If set, the network utilization and the total network capacity, measured in

kb/s, is included.

CPU id (8 bits): If the value is zero, then the CPU capacity reports the average utilization

across all cores for multiprocessors. Otherwise, it reports utilization and capacity for

each core.
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CPU capacity (16 bits): The CPU capacity in MHz as determined by the CPU id field.

Mem util (8 bits): The memory utilization of the machine.

Memory capacity (24 bits): The memory capacity of the machine in megabytes.

Disk util (8 bits): The disk utilization of the machine.

Disk capacity (24 bits): The disk capacity of the machine in gigabytes.

Network util (8 bits): The network utilization of the machine.

Network capacity (24 bits): The network capacity in kb/s.

A.5 Resource-ID

The resource-id is an identifier for a resource-object.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// Resource-ID //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

A.6 Resource-Object

The resource-object is a unit of information stored in the overlay. It is extensible and

contains the following fields:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Cont-type | Sub-Type | Resource-ID //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Expires |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// Value //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Additional Information |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// Signature //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
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Cont-type (8-bits): An identifier for the type of the content in the resource-object. The

values for the existing content types are defined in Table A.5.

Sub-type (8-bits): An identifier which further qualifies the content type as defined by

cont-type.

Resource-ID (variable): The identifier of the resource-object.

Expires (32-bits): The expires object (Appendix A.7) denotes the timer after which the

object being stored can be safely removed.

Value (variable): The value of the object. It depends on the content-type and sub-type.

Signature: The cryptographic signature (Appendix A.14) over all the fields in the resource-

object.

A.7 Expires

The time in seconds after which the relevant information becomes invalid. It’s length is

32-bits.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Expire time in seconds |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

A.8 Elapsed

The time elapsed since the operation under consideration. It’s length is 32-bits.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Elapsed time in seconds |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
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A.9 Uptime

The time elapsed since the node has been online. It’s length is 32-bits.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Uptime |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

A.10 Owner

The owner (or publisher) of the resource-object. It is typically the node-id of the node

publishing the object but can also be an string identifier for the device publishing the

object such as “hardphone” or “desktopphone”.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// Owner //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

A.11 Certificate

An X.509 certificate [International Telecommunication Union (ITU), 2006] in DER encod-

ing [International Telecommunication Union (ITU), 1997]. It’s length depends on the size

of the certificate.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Certificate //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Type (8-bits): Self-Signed (0x00), Server-Signed (0x01).

Certificate: The certificate itself.
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A.12 Certificate-Sign-Request

A certificate sign request [Nystrom and Kaliski, 2000] encoded in ASN.1. Its length is

variable.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// Certificate-Sign-Request //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

A.13 Password

The cryptographic hash of the password and a 64-bit random number.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Random number (64-bit) |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Hash func | Hash length | reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// Password //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Random number (64-bits)): A 64-bit random number.

Hash func (8-bits): The hash function used. The codes for the hash functions are defined

in Table A.3.

Hash length (16-bits): The length of the hash function output.

Password (variable): The cryptographic hash of the password and 64-bit random number.

A.14 Signature

The signature computed over the information.
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0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Hash algo | Signature algo| Certificate hash //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// Signature //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// Certificate //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Hash algo (8-bits): The hash function used to compute the CertificateHash of the certificate

and to computer the hash over the data. The hash algorithm is defined in IANA TLS

HashAlgorithm registry [IANA, 2010]. The input to the hash function includes the

data to be signed, Hash Algo, Signature Algo, and Certificate Hash bit-fields.

Signature algo (8-bits): The signature algorithm to compute the signature over the hash

of data. It is defined in IANA TLS SignatureAlgorithm registry [IANA, 2010].

Certificate hash (variable): The hash of the node certificate as defined in the certificate

object.

Signature (variable): The cryptographic signature. It is computed as: Signature(Data,

Hash Algo, Signature Algo, H(Certificate))

A.15 P2P-Options

This TLV object defines the options associated with the overlay, including the overlay

identifier and the overlay algorithm being used.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Node-ID length | Overlay-ID length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Hash algorithm | Base | Overlay algorithm |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// Overlay-ID //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Node-ID length (16 bits): The length of the node-id.
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Overlay-ID length (16 bits): The length of the identifier for this overlay.

Hash algorithm (8 bits): An identifier for the hash algorithm being used. The hash

algorithm is used in structured overlay algorithms such as DHTs.

Base (8 bits): The base used in DHTs. It is set to zero for unstructured overlays.

Overlay algorithm (16 bits): An identifier for the overlay algorithm run by peers in this

overlay. The list of overlay algorithms is defined in Table A.4.

Overlay-ID (variable): The identifier of the overlay as determined by the overlay operator

or by the first user of the overlay. The example of former is “overlay.domain.com”;

the latter’s example is “bob’s overlay”.

A.16 Request-Options

A fixed 32-bit options for identifying the various options in the request.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|D|S|O|P|P|R|N|A|E| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

D (1 bit): If set (D=1), the node sending the request prefers to receive the response

directly. This flag is only checked, if the R flag (recursive routing) is set.

S (1 bit): If set (S=1), the request is being sent to the immediate neighbors of the newly

joining peer. The request must be a Join request.

O (1 bit): If set (O=1), and if R flag is also set, the nodes in the path of the request should

insert their node-info objects in the record-route TLV object.

P (1 bit): If set (P=1), designate one copy as primary for parallel lookups.

R (1 bit) request-routing-table: If set (R=1), send a copy of the routing table to the peer

issuing the request either in a response or in a separate ExchangeTable request. The
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transmission of the routing-table copy is governed by the in-separate-request (E flag)

and the partial-copy (A flag) flags.

N (1 bit) request-neighbor-table: If set (N=1), send a copy of the neighbor table to the

peer issuing the request in a response or ExchangeTable request. The transmission of

routing-table copy is governed by the in-separate-request (E flag) and the partial-copy

flags.

A (1 bit) partial-reply for routing or neighbor table: If set (A=1), the peer generating the

definite response sends a copy of the routing or neighbor table as determined by the

P and N flags in its response as permitted by the UDP MTU size. If E (in-separate-

request) is also set, the rest of the routing or neighbor table is sent in a separate

ExchangeTable request.

E (1 bit) in-separate-request: If set (E=1), the node sending the request desires to receive

a copy of the routing table of a node receiving the request in a separate ExchangeTable

request.

A.17 PLookup

The plookup object specifies the peers a node is searching for in order to maintain con-

nectivity with the p2p network. For structured overlays, a node may search for peers with

node-IDs that lie within a range. For unstructured overlays, the node-id’s can be replaced

with any appropriate metric such as free CPU or spare network capacity. Each overlay

algorithm can override this object.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Num |R| Node-IDa //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// Node-IDb //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// ext //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Num (7 bits): Number of peers to look for.
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R (1 bit): If set (R=1), then it is a range lookup.

Node-IDa (variable): Node-ID. The node-id specified by the peer sending the LookupPeer

request in order to find peers with a node-id that is closest to the specified id. It is

applicable only in DHTs.

Node-IDb (variable): Node-ID. The node-id specified by the peer sending the LookupPeer

request. It is only specified in structured overlay algorithms when the id of node being

searched must lie within a range.

A.18 RLookup

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Cont-type | Sub-Type | Resource-ID //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Additional Information |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Cont-type (8 bits): An identifier for the type of content contained in this resource-object.

Table A.5 specifies the identifiers for the defined content types.

Sub-type (8 bits): An identifier which further classifies the content type as defined by

cont-type.

Resource-ID (variable): The resource-id object that identifies the resource being searched

for.

A.19 Routing-table

The routing-table TLV object contains the list of peers in the routing table of a peer. Each

peer is encoded as a node-info object.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Num | [Node-info]+ //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
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Num (16 bits): The number of node-info objects in the table.

Node-info (variable): One or more node-info objects, each representing an individual entry

in the routing table of a peer.

A.20 Neighbor-table

The Neighbor-table TLV object contains the list of peers in the neighbor table of a peer.

Each peer is encoded as a Node-info object.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Num | [Node-info]+ //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Num (16 bits): The number of node-info objects in the table.

Node-info (variable): One or more node-info objects, each representing an individual entry

in the routing table of a peer.

A.21 Object-Req

The object-req object describes the type of the object that a node should return in response

to a GetDiagnostics request (Section 3.6.5.1).

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Object type | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

A.22 BWTest

The bwtest object defines the bandwidth test that nodes run to measure their uplink and

downlink capacity.
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0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Dir | Dur. | Address-Info /
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Type (8-bits): The type of the bandwidth test. A value of zero means that nodes run the

TCP throughput measurement test, whereas a value of one means that nodes run the

PathChar [Jacobson, 2010] test.

Dir (4-bits): The direction of the test. The node sending the request specifies if it wants

to measure its uplink or downlink capacity or both. A value of 1 means uplink only,

2 downlink only, and 3 both uplink and downlink.

Dur (4-bits): The duration of the test.

Address-Info: The address-info TLV object contains the host and server reflexive port

numbers on which a node listens for performing a bandwidth test.

A.23 Message and Object Identifiers

This section defines the identifiers for the messages, TLV objects, and other identifiers

defined and used by the Peer-to-Peer Protocol.

Message ID Message ID
Enroll 0 PublishObject 9
Bootstrap 2 LookupObject 10
Join 3 ReplicateObject 12
Leave 4 TransferObject 13
KeepAlive 5 Tunnel 14
LookupPeer 6 MeasureBandwidth 17
ExchangeTable 7

Table A.1: Message identifiers.
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Object Type ID Object Type ID
Node-ID 0 Signature 9
Node-Info 1 P2P-Options 10
Address-Info 2 Request-Options 11
Resource-ID 3 PLookup 12
Resource-Object 4 RLookup 13
Expires 5 Routing-table 14
Owner 6 Neighbor-table 15
Certificate 7 BWTest 16
Certificate-Sign-Request 8

Table A.2: Object identifiers.

Hash algorithm ID
None 0
SHA1 1
SHA-256 2
SHA-512 3
MD4 4
MD5 5

Table A.3: Hash algorithms

Overlay algorithm ID
Chord 0
CAN 1
Kademlia 2
Pastry 3
Bamboo 4

Table A.4: Overlay algorithms

Content-type ID
SIP-CONTACT 0
STUN-TURN 1

Table A.5: Content-type of resource-object

Component-ID ID
RTP 0
RTCP 1
SIP 2
P2PP 3

Table A.6: Component-ID
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Appendix B

P2PP Transport Layer

This section defines mechanisms for reliably delivering a message to the next hop. The

reliable delivery of a message constitutes a transaction. For requests, a transaction con-

sists of a single request followed by acknowledgements (ACKs) if any, and a response. For

responses, reponseACKs, and indications, a transaction consists of single response, respon-

seACK, or indication, followed by an ACK if an unreliable transport is used. Section 3.4.4

discussed the need for acknowledgements and responseACKs.

A transaction is identified by a source-ID, transaction-ID, and a transaction-type triple.

This triple is used to match acknowledgements (ACK) to requests, responses and indi-

cations. However, the responses and responseACKs are matched to requests using only

source-ID and transaction-ID tuple. A transaction can be of four types, namely, request,

response, responseACK, or an indication. The source-ID, transaction-ID, and transaction-

type must be preserved in the ACKs.

B.1 Transaction State Machine

This section defines the transaction state machine for unreliable and reliable transports.

B.1.1 State Machine for Unreliable Transports

For unreliable transports, the transaction state machine for requests is shown in Figure B.1

and state machine for responses and indications is shown in Figure B.2.
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The “Trans Msg” (abbreviation for transmit message) state is entered when a node

sends a request, response, responseACK, or an indication. When entering this state, the

transaction should set timer T1 and T2. Timer T1 governs retransmissions and is updated

after ith retransmission as follows: T1 = 2i ∗ T0. If the timer T2 fires, the state machine

transitions to “Failed” state and is terminated.

If a request was sent and an acknowledgement was received, the state machine transitions

to “Wait Resp” state. When entering this state, the transaction should set timer T3. If

timer T3 fires, the state machine transitions to “Failed” state and is terminated. If a

responseACK was received, the transaction sends an ACK and is terminated.

If a response, responseACK, or an indication was sent and ACK was received, the state-

machine immediately transitions to the “Terminated” state.

B.1.2 State Machine for Reliable Transports

For reliable transports, the transaction state machine for requests is shown in Figure B.3;

the state machine for responses and indications is shown in Figure B.3.

The “Trans Msg” state is entered when a peer sends or forwards the request, response, or

an indication. If the message was a response or an indication and was successfully sent, the

state machine transitions to the “Terminated” state. If the message was a request and was

successfully sent, the transaction sets Timer T3 and transitions to the “Wait Resp” state. If

a response is received, the transaction is terminated. No ACK is sent for requests, responses,

and indications sent over reliable transport. Similarly, no responseACK is generated for a

request.

If the request was forwarded in a recursive manner, the application must not terminate

the reliable-transport connection. If the request was forwarded in an iterative manner, an

application may terminate the reliable transport connection if it does not anticipate its

reuse.

B.1.3 Timers

This section defines timers and their default values for message state machines.

Timer Value
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----------------------
T0 500 ms
T1 T0
T2 5s
T3 5s
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+-----------+
| |
| Initial |
| |
+-----------+

|
| tx_Msg / set Timer T1 and T2

Timer T1 fires / |
T1=2^i*T0 V Transport Err. or
tx_Msg +------------+ Timer T2 fires

+------| | Inform App.
| | Trans_Msg |----------------->+
+----->| | |

+------------+ |
| | ACK received / |

+----------------------+ | set Timer T3 |
| | stop Timer T1, T2 |
| V |
| +-----------+ Transport Err. |
| responseACK rcvd / | | or Timer T3 fires |
| stop Timer T1, T2 | Wait_Resp |------------------>|
| send ACK | | |
| +-----------+ |
| | |
| | Resp received / |
| | send ACK |
| V |
| +------------+ |
| | | |
+------------------->| Terminated | |

| | |
+------------+ |

|
+-----------+ |
| | |
| Failure |<------------------+
| |
+-----------+

Figure B.1: Transaction state machine for requests sent over an unreliable transport proto-
col.
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+-----------+
| |
| Initial |
| |
+-----------+

|
| tx_Msg / set Timer T1 and T2

Timer T1 fires / |
T1=2^i*T0 V Transport Err. or
tx_Msg +------------+ Timer T2 fires

+------| | Inform App.
| | Trans_Msg |----------------->+
+----->| | |

+------------+ |
| |
| ACK received |
| stop Timer T1, T2 |
V |

+------------+ |
| | |
| Terminated |----------------->|
| | |
+------------+ |

|
+-----------+ |
| | |
| Failure |<------------------+
| |
+-----------+

Figure B.2: Transaction state machine for responses and indications sent over an unreliable
transport protocol.
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+-----------+
| |
| Initial |
| |
+-----------+

|
| tx_Msg
|
V

+------------+ Transport Err.
| | Inform App.
| Trans_Msg |----------------->+
| | |
+------------+ |

| Msg successfully sent / |
| set Timer T3 |
| |
V |

+-----------+ Transport Err. |
| | or Timer T3 fires |
| Wait_Resp |------------------>|
| | |
+-----------+ |

| |
| Resp received |
| |
V |

+------------+ |
| | |
| Terminated | |
| | |
+------------+ |

|
+-----------+ |
| | |
| Failure |<------------------+
| |
+-----------+

Figure B.3: Transaction state machine for requests sent over a reliable transport protocol.



APPENDIX B. P2PP TRANSPORT LAYER 195

+-----------+
| |
| Initial |
| |
+-----------+

|
| tx_Msg
|
V

+------------+ Transport Err.
| | Inform App.
| Trans_Msg |---------------+
| | |
+------------+ |

| |
| Msg successfully sent|
V |

+------------+ |
| | |
| Terminated | |
| | |
+------------+ |

|
|

+-----------+ |
| | |
| Failure |<---------------+
| |
+-----------+

Figure B.4: Transaction state machine for responses and indications sent over for a reliable
transport protocol.
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