
Detecting Traffic Snooping in Anonymity
Networks Using Decoys

Sambuddho Chakravarty, Georgios Portokalidis, Michalis Polychronakis, and
Angelos D. Keromytis

Columbia University, NY, USA
{sc2516,porto,mikepo,angelos}@cs.columbia.edu

Abstract. Anonymous communication networks like Tor partially pro-
tect the confidentiality of their users’ traffic by encrypting all intra-
overlay communication. However, when the relayed traffic reaches the
boundaries of the overlay network towards its actual destination, the
original user traffic is inevitably exposed. At this point, unless end-to-
end encryption is used, sensitive user data can be snooped by a malicious
or compromised exit node, or by any other rogue network entity on the
path towards the actual destination.
We explore the use of decoy traffic for the detection of traffic interception
on anonymous proxying systems. Our approach is based on the injection
of traffic that exposes bait credentials for decoy services that require
user authentication. Our aim is to entice prospective eavesdroppers to
access decoy accounts on servers under our control using the intercepted
credentials. We have deployed our prototype implementation in the Tor
network using decoy IMAP and SMTP servers. During the course of
six months, our system detected eight cases of traffic interception that
involved eight different Tor exit nodes. We provide a detailed analysis
of the detected incidents, discuss potential improvements to our system,
and outline how our approach can be extended for the detection of HTTP
session hijacking attacks.

1 Introduction

Internet users often place trust in various systems that are not directly under
their control. With the emergence of cloud computing, and the continuously
increasing number of services migrating to the cloud, it is more so today than
ever. Anonymity and privacy-preserving systems like Tor [13], Anonymizer [1],
and many others [23,17,2,16,6,11] are such systems. They operate by routing user
traffic through a single or multiple proxies to achieve a twofold goal. First, they
preserve user anonymity, and second, they enable users to access services and
content which might otherwise be restricted to them. For example, anonymity
networks enable users to avoid being tracked by governments and Internet service
provides (ISPs) when accessing restricted content [3,30].

Users of such anonymous communication systems are able to conceal infor-
mation such as their IP address by the provider of the end-service. In exchange,



they place their trust in components of the communication system they are us-
ing. In all cases, user data are at some point (for instance, before being relayed
to the end-service) available in their original form. Even if encryption is uti-
lized by the system internally, end-to-end encryption is imperative to ensure the
confidentiality of user communications. In practice, users frequently confuse the
anonymity and privacy guarantees offered by these systems with data confiden-
tiality, and use them without employing end-to-end encryption, revealing their
data to the proxies relaying them.

In this paper, we explore the use of decoy traffic to detect eavesdropping in
proxying architectures, and in particular anonymous communication systems.
We introduce decoy credentials for various services, like SMTP, in the Tor
anonymity network, and use them to detect snooping exit nodes. The use of
fake information or honeytokens [25] is not new. Decoy information has been
previously used to to detect eavesdropping on unprotected wireless networks [8],
and warn of insider threats [7]. The idea behind their use is that eavesdroppers
will probably try to use the collected information in some way. By injecting lo-
gin credentials for services that we control, we are able to detect the use of a
particular decoy, and trace it back to the Tor exit node that it was used with.

Tor is one of the most popular anonymity networks, based on onion rout-
ing [12] and Chaum’s mixes [10]. Tor clients form virtual circuits consisting of
two or more Tor nodes, which relay client traffic to the intended server. Their
data is encrypted multiple times before being transmitting over the Tor network,
so that the original data are available only at the exit node (that is, the last node
in the circuit). As such, unless end-to-end encryption between a client and a ser-
vice is used, the confidentiality of the data can be potentially undermined. For
instance, data could be eavesdropped by a malicious or compromised exit node,
or even by the ISP of the exit node. In fact, all proxying architectures face the
same threat, unless end-to-end encryption is used. We evaluate our approach
using the Tor network exactly because Tor has a considerable user base, and
because its users frequently fail to use end-to-end encryption.

McCoy et al. [19] also investigated eavesdropping in the Tor network. How-
ever, their methodology significantly differs from ours. In their setup, a client
performs a connection to a network domain under their control, and eavesdrop-
ping is detected by monitoring the DNS server of that domain for reverse lookup
queries. The authors reported that they detected eavesdropping by one Tor exit
node, but the methodology does not offer conclusive results, nor can it accurately
detect the exit node responsible for the information leak.

Our prototype uses multiple decoy credentials for an IMAP and an SMTP ser-
vice under our control. We use these decoys to connect to these services through
Tor, using every publicly available exit node. The decoys are transmitted in
plain-text, and each decoy is only sent through a single exit node, allowing us
to pair the use of a particular decoy with an exit node. It has been operational
for about six months, and has so far detected eight cases of eavesdropping by
public Tor exit nodes.

In summary, the main contributions of this paper are the following:

2



– We present a generic method for the detection of traffic interception in
anonymity networks and proxy servers in general, based on the transmis-
sion of decoy user credentials.

– We deployed a prototype system for the Tor anonymity network, which de-
tected eight cases where decoy credentials were used by a third-party to log
in to decoy servers under our control.

– We discuss how our method can be extended to detect HTTP session hijack-
ing attacks, which can be used to take over active user sessions on websites
where encryption is not used throughout a session [14]. Note that such at-
tacks are possible even when a user transmits his credentials using encryption
(for example, over HTTPS), but accesses a website in plain-text thereafter.
As is the case with websites like Facebook and Twitter.

The next section provides some background information on the Tor anonymity
network, and presents the threat model we are considering. Section 3 describes
the design and implementation of our decoy transmission and eavesdropping de-
tection engine. We present the results obtained by deploying our prototype in
Section 4. In Section 5, we discuss limitations, and possible extensions to our
system, including the detection of HTTP session hijacking. Finally, related work
is discussed in Section 6, and conclusions are in Section 7.

2 Background

In this section we briefly describe the architecture of the Tor anonymity network,
and present the threat model assumed in this work.

2.1 Tor Anonymity Network

Tor [13] is one of the most widely used low latency anonymity networks, with
an estimated user base of more than 150,000 users as of January 2011 [5]. Tor
aims to protect the anonymity of Internet users by relaying user-generated TCP
streams through a network of overlay nodes run by volunteers. Tor can be used
for both initiator and responder anonymity. Initiator anonymity hides the true
identity (IP address) of user-initiated connections from the actual destination,
while the identity of network servers can also be kept secret from their clients
through the use of hidden services.

The Tor overlay network consists of hundreds of proxies known as onion
routers, which are mostly operated by volunteers around the world. User traffic
is relayed through circuits, which are formed by persistent connections between
different nodes. By default, Tor circuits consist of three nodes: the first one is
known as the entry node, the second one as the middleman, and the third one as
the exit node. A Tor client uses the public keys of the onion routers on the circuit
to encrypt transmitted messages in multiple layers of encryptions, starting with
the public key of the exit node. Each of the nodes then first “peels off” one layer
of encryption and then forwards the message to the next node on the circuit.

3



1

D

Tor client

Directory Service

Co
m
m
un

ic
at
io
n 
to

di
re
ct
or
y 
se
rv
ic
e

Network
service

2

3

Tor circuit establishment
via TLS encrypted link

Exit
 No

de c
onn

ects
 to 

req
ues

ted
  se

rvic
e

Tor Node

Unencrypted Link

TLS Encrypted Link

Entry Node

Middleman

Exit Node

Fig. 1. Basic steps for communicating through Tor. The client obtains a list of the
available Tor relays from a directory service 1©, establishes a circuit using multiple Tor
nodes 2©, and then starts forwarding its traffic through the newly created circuit 3©.

The exit node decrypts the final layer of encryption, which reveals the original
plain-text message of the user, and forwards it to its actual destination through
a regular TCP connection.

Figure 1 presents the basic steps for the creation of a new Tor circuit con-
sisting of three onion routers.

1. The Tor client queries the directory service to obtain a list of the available
Tor relays.

2. The client uses a set of relays to create Tor circuits. By default, circuits are
created using three relays.

3. The client selects one of the circuits and creates a TCP connection to its
entry node. Traffic is forwarded through the circuit to the exit node, which
communicates directly with the actual destination.

2.2 Threat Model

Exit nodes act as proxies between the user and the actual destination. This places
them in a powerful position that allows malicious exit node operators to take
advantage of their access to the user’s original network traffic. Consequently, the
trust that the users place on an anonymous communication service like Tor can
be affected by misbehaving or compromised overlay nodes. A rogue exit node
can capture all the incoming and outgoing user traffic between the exit node

4



and the actual destinations. We expect the attacker to sift through the captured
user traffic and extract user credentials from clear-text application protocols.
This can be easily achieved using custom tools built on top of libpcap [18],
or through the use of existing tools like dsniff [24]. Of course, the attacker
might be eavesdropping for a particular kind of private information, such as the
content of email messages [4], which can then be misused in other, non-obviously
detectable ways.

Credentials such as user names and passwords or sessions cookies can be
reused by the attacker on the same destination server. These might allow him to
take over the user’s account for that service or hijack an ongoing session. Note
that the attacker’s connections using the stolen credentials can be launched
either from the same host that runs the malicious Tor node, or any other host
on the Internet.

Besides unencrypted traffic, even properly encrypted user connections such
as HTTPS sessions to banking or webmail sites can be compromised by malicious
exit nodes. For example, an attacker can mount a man-in-the-middle attack and
intercept the traffic of SSL connections [21]. Attacks of this kind can be easily
detected [21,29], an thus are out of the scope of this work.

3 System Architecture

In this section, we present the overall architecture of our traffic interception
detection system. We describe the design of the decoy traffic transmission mech-
anism and the corresponding decoy services, as well as the approach we used
for incident data collection and correlation. Finally, we discuss some interesting
implementation issues that we faced during the development of our prototype
system.

3.1 Approach

In general, network traffic eavesdropping is a passive operation without any
directly observable effects. However, the fact that some traffic has been inter-
cepted can be implied through potential uses of the intercepted data that have
detectable corollaries. For example, the eavesdropper can steal user credentials
for services that do not use application-layer encryption, such as user names
and passwords for websites with poor user authentication implementations, or
for servers that use clear-text sign-in protocols, such as FTP or IMAP. A later
attempt by the eavesdropper to access the user’s account is an observable event
that can be detected by the operator of the respective service.

Our approach is based on enticing a prospective snooper to use intercepted
decoy credentials for accessing a service under our control. The proposed system
transmits decoy credentials through network paths on which there is a possibility
of traffic eavesdropping. Each set of credentials is unique, has never been used
before, and is being transmitted solely through a specific network path. All
subsequent unsolicited access to one of the accounts on the decoy server are

5



Tor 
Client

Decoy Server

Rogue Exit 

 
Router

Benign
Exit RoutersTor

Decoy traffic

Server logClient log

Correlation

Fig. 2. Overall architecture of the proposed traffic interception detection system when
applied on the Tor network.

clear indications that the credentials tied to that accounts have been intercepted
during their transmission.

Figure 2 illustrates the overall design of our system when applied on the Tor
anonymity network. A client under our control periodically connects through
Tor to a decoy server, which uses a clear-text application-level protocol requiring
password authentication. As a result, the user name and password used in each
session are exposed to the exit node of the Tor circuit (and any other network
entity between the exit node and the decoy server).

In more detail, as the system is continuously running, the following steps
take place periodically:

1. The client connects and authenticates to the decoy server through the Tor
network. A new connection using a different set of credentials is made through
all available exit nodes by explicitly specifying the exit node of each Tor cir-
cuit.

2. The decoy server keeps a detailed record for each session, including the user
name and password used, the IP address of the connection initiator, and the
login time.

3. After a successfully completed session on the decoy server, the system at-
tempts to correlate it with a recently completed client session. If no matching
client session is found, then an unsolicited connection using stolen decoy cre-
dentials has been identified.

6



21 552
23 544
25 14
80 736

110 670
143 661
587 522

3128 519
3306 542
5060 543
5222 717
8080 614

0

100

200

300

400

500

600

700

800

21 23 25 80 11
0

14
3

58
7

31
28

33
06

50
60

52
22

80
80

Service port number

N
um

be
r o

f e
xi
t r
ou

te
rs
 th

at
 a
llo

w
 tr
af
fic

 re
la
yi
ng

  21 FTP
  23 Telnet
  25 SMTP‐relay
  80 HTTP
 110 POP3
 143 IMAP
 587 SMTP‐delivery
3128 Squid proxy
3306 MySQL
5190 ICQ/AOL‐IM
5222 XMPP
8080 HTTP‐alt

Fig. 3. Number of Tor exit routers that allow traffic relaying through different TCP
port numbers, for services that support clear-text protocols.

Each unique pair of user name and password is tied to a particular exit node
and is transmitted only through Tor circuits terminating at that node. Thus,
the exit node involved in a particular eavesdropping incident is known based
on the given set of credentials used in the unsolicited session seen by the decoy
server. At the same time, the server is aware of the IP address of the connection
initiator, which, as discussed in Section 4, may belong either to the rogue exit
node itself, or to a third-party host on the Internet.

3.2 Implementation

Although Tor can forward the traffic of any TCP-based network service, in prac-
tice not all exit routers support all application protocols. For example, SMTP
relay through port 25 is blocked by the majority of Tor exit nodes to prevent
spammers from covertly relaying their messages through the Tor network. Con-
sequently, the first important decision we had to take before beginning the im-
plementation of our prototype system, was to choose a set of services that are
supported by a large number of Tor exit nodes. At the same time, candidate ser-
vices should support unencrypted authentication through a clear-text protocol,
while the services themselves should be enticing for potential eavesdroppers.

Tor exit nodes are usually configured to allow traffic forwarding for only a
small set of TCP services. The supported services are defined by the operator of
the exit node through the specification of an exit policy. To determine the most
widely supported unencrypted application protocols, we queried the Tor direc-
tory servers and retrieved the number of exit nodes that allowed each different
protocol. Figure 3 presents the number of Tor exit nodes that at the time of the

7



experiment allowed the relaying of traffic through various TCP port numbers. In
accordance to the results obtained by McCoy et al. [19], widely used protocols
for applications like web browsing, email retrieval, and instant messaging are
allowed by the majority of exit nodes. Among the services that support user
authentication through unencrypted protocols, IMAP (port 143) and SMTP de-
livery (port 587) are allowed by the exit policies of a significant number of exit
nodes (661 and 522 nodes, respectively). In contrast to SMTP relay (port 25),
SMTP through port 587 is dedicated to message submission for delivery only for
users that have registered accounts on the server.

Credentials for accessing user messages that may contain sensitive private
information, or for sending emails through verified user addresses, can be of
high value for a malicious eavesdropper. This led us to choose the IMAP and
SMTP protocols for our prototype implementation. However, our technique is
not restricted to these two services, and can easily be extended to include bait
traffic for various other unencrypted TCP-based services like FTP, Telnet, and
instant messaging. In Section 5 we also discuss how our technique can be ex-
tended to detect the interception of user login credentials and cookies for various
web services.

Decoy Traffic Transmission and Eavesdropping Detection.

Our decoy traffic transmission subsystem is based on a custom client that sup-
ports the IMAP and SMTP protocols. The client has been implemented using
Perl, and service protocol emulation is provided by the Net::IMAPClient and
Net::SMTP modules. The client is hosted on a server equipped with an Intel
Xeon CPU running Ubuntu Server Linux v8.04.

Every day, for each service, the client creates one connection to the corre-
sponding decoy server through each and every Tor exit node that supports traffic
relaying for that service. This is achieved by establishing a new Tor circuit for
each connection, and forcing each circuit to use a particular exit node. Once
a connection has been established, the client authenticates on the server using
a unique set of credentials tied to the particular combination of exit node and
decoy server. In case some exit node is not accessible, the corresponding set of
credentials is skipped. Similarly, when a new exit node joins the overlay network,
a new set of credentials for each decoy service is generated for use only with that
exit node. After the client has successfully signed in, it generates some randomly
selected activity such as browsing through some folders in case of IMAP, or
sending a fake email message in case of SMTP, and then signs out.

For the decoy services we use Courier IMAP v4.6.0 and Postfix v2.7.0 running
on a different host. Under normal conditions, each decoy server should receive
one connection from each unique account per day. If an unsolicited successful
connection using some of the previously transmitted decoy credentials is ob-
served, then this connection is labelled as illegitimate. Illegitimate connections
are identified by correlating the connections generated by our client with all the
connections received by the server, based on the logs kept at the client and the
server.

8



Specifically, upon the completion of a successful connection, the decoy server
sends directly (not through Tor) to the client all the recorded information about
the recently completed session. The client then compares the connection details,
including the set of credentials used and the start and end times of the connec-
tion recorded by both the client and the server, against the recently completed
connections. In case no matching connection is found, the system generates a
report that includes the time of the last generated connection that used the in-
tercepted credentials, the time of the unsolicited connection to the server, the
IP address of its initiator, and the exit node involved in the incident.

Implementation Details.

During the implementation of our prototype system, we had to deal with various
issues related to improving the accuracy of our traffic interception detection
approach, or with cases where interesting design tradeoffs came up. We briefly
discuss some of these issues in the rest of this section.

Time Synchronization. Accurate time synchronization between the client and
the decoy server(s) is crucial for ensuring the proper correlation of the connec-
tions generated by the client with the connections received by the server, and
the correct identification of any unsolicited connections. Although the volume
of our decoy connections is very low, allowing any illegitimate connections to
easily stand out, the clocks of all hosts in our architecture are kept synchronized
using the Network Time Protocol. The sub-second accuracy of NTP allows the
precise correlation of the connection start and end times observed on both the
client and server.

Amount and Quality of Decoy Traffic. We deliberately chose to generate a con-
servatively small number of decoy connections instead of sending an increased
amount of decoy network traffic. On one hand, the probability that some of the
transmitted decoy credentials will be snooped increases with the number and
frequency of the generated decoy connections, e.g., in case of intermittent traffic
interception or opportunistic eavesdroppers. At the same time, as the amount of
decoy traffic increases, it can potentially become more distinguishable from the
production traffic. Although keeping the number of decoy connections to one per
day for each combination of exit node and decoy service may not provide the
higher possible exposure of the bait credentials to prospective eavesdroppers, it
makes the identification of the decoy traffic much harder.

The believability of the decoy traffic [8] is another crucial aspect of the effec-
tiveness of our approach. For instance, a decoy IMAP session using an account
that does not have a realistic folder structure, or that does not contain any real
email messages, might raise suspicions to an eavesdropper. Repeating the same
actions in every session, or launching new sessions at exactly the same time every
day, can also be indications that the sessions are artificially generated. In our
prototype system, we randomly vary the connection times and activity in each
session, we use realistically looking folder structures for the IMAP accounts, and

9



send legitimately looking email messages that are randomly selected from a pool
of existing messages.

Eavesdropping Incident Verification. Besides the accurate correlation between
the start and end times logged by the client and the server, we have taken extra
precautions to avoid any misclassification of our generated decoy connections as
illegitimate. For each connection launched by the client, the system also keeps
track of the circuit establishment times by monitoring Tor client’s control port.
Moreover, we have enabled all the built-in logging mechanisms provided by the
Tor software. On the server side, all incoming and outgoing network traffic is cap-
tured using tcpdump. In addition to the server logs, the captured traffic provides
valuable forensic information regarding the nature of illegitimate connections,
such as the exact sequence of protocol messages sent by the attacker’s IMAP or
SMTP client.

4 Deployment Results

Our prototype implementation has been continuously operational in the Tor
anonymity network since August 2010. During the course of six months, our
system has detected eight traffic interception incidents. In this section, we give a
detailed description of each incident and an analysis of the consequent activity
on the decoy server.

The observed eavesdropping incidents were related to eight different exit
nodes, and all the related illegitimate connections were received by our decoy
IMAP server. Based on the intercepted credentials used in each unsolicited con-
nection, we were able to identify the Tor exit node involved in each incident.
Detailed information about the detected incidents is presented in Table 1.

The first four incidents occurred within a short timespan of three days, and
involved four different exit nodes in the US, Hong Kong, UK, and The Nether-
lands. The connect-back attempts on the decoy server had a common pattern,
and in all four cases they originated from the same IP address of the exit node
on which the corresponding credentials had been exposed. Another similarity
among these incidents is related to time difference between the latest exposure
of the decoy credentials in the network and the corresponding connect-back to
the decoy server. Figure 4 presents this time difference for all eight incidents. The
first four incidents had a quite similar connect-back delay of a few hours, which
is significantly shorter compared to the rest of the incidents. Based on the above
facts, we speculate that the first four eavesdropping cases were coordinated by
the same person or group, who probably used the same tools or methodology in
each case.

The fifth incident occurred about three weeks after the previous group of
incidents. The decoy user name and password were exposed through an exit
router in South Korea, and a connection to the decoy server was attempted from
a different exit router in the US—an indication that the adversary probably used
Tor to hide the real origin of the connection. The sixth incident almost coincided

10



Incident Date Exit node Remarks

number location

1 Aug.’10 US Same pattern as in incidents 2, 3, and 4

Connect-back from the same exit node

2 Aug.’10 Hong Kong Same pattern as in incidents 1, 3, and 4

Connect-back from the same exit node

3 Aug.’10 UK Same pattern as in incidents 1, 2, and 4

Connect-back from the same exit node

4 Aug.’10 The Netherlands Same pattern as in incidents 1, 2, and 3

Connect-back from the same exit node

5 Sep.’10 S. Korea Connect-back from a different exit node

6 Sep.’10 Hong Kong Connect-back from a third-party host

Exit node not accessible upon detection

7 Sep.’10 India Connect-back from third-party hosts

Exit node not accessible upon detection

8 Jan.’11 Germany Connect-back from third-party hosts

Attempt to use SSL through the IMAP

STARTTLS command

Table 1. Observed traffic interception incidents during a six-month period. In all cases,
the eavesdropper connected to our decoy IMAP server using a set of intercepted decoy
credentials.

with the fifth one, and involved an exit router in Hong Kong. After more than
ten hours, the decoy IMAP server received six connections from a different IP
address belonging to a Chinese ISP.

In the seventh eavesdropping case, the decoy user credentials were exposed
through an exit router located in India. The credentials were then reused in five
connections originating from five different IP addresses within the same subnet of
an ISP in Canada. Interestingly, the exit router was not accessible when we dis-
covered the eavesdropping attempt. An analysis of the network traffic captured
on the decoy server revealed that in each session, there were multiple accesses to
default mail folders such as INBOX, INBOX.Sent, and INBOX.Template, although
some of them (e.g., INBOX.Template) didn’t exist in the decoy account. This is
an indication that the attacker probably used an email client that automatically
attempts to browse through some standard folders.

The latest incident occurred in the first week of January 2011 and involved
an exit node in Germany. Five unsolicited connections were received by the
decoy server from a host located in Ecuador. In all cases, upon successfully

11



1 5.6
2 2
3 3
4 3
5 21
6 11
7 10
8 14

0

5

10

15

20

25

1 2 3 4 5 6 7 8
Incident nuber

Ti
m
e 
de

la
y 
(h
ou

rs
)

Fig. 4. Time difference between the exposure of the decoy credentials and the first
connect-back attempt on the decoy server.

authenticating on the decoy server, the mail client of the adversary issued an
IMAP STARTTLS command, attempting to switch to an SSL connection.

The map in Figure 5 gives an overall view of the locations of the exit nodes
and the third-party hosts involved in the observed incidents. Tor and non-Tor
nodes are represented using different symbols. We used basic geo-IP address
lookup tools which provide only country-level accuracy, so the points on the
map denote only the country in which each host was located. The number next
to each point corresponds to the incident number, as presented in Table 1.

5 Discussion and Future work

Detection Confidence.

Internet traffic crosses multiple network elements until it reaches its final desti-
nation. The encrypted communication used in anonymity networks protects the
original user traffic from eavesdropping by intermediate network elements, such
as routers or wireless access points, until it reaches the boundary of the overlay
network. However, the possibility of traffic interception is not eliminated, but is
rather shifted to the network path between the exit node and the actual destina-
tion. Consequently, the transmitted decoy credentials in our proposed approach
might not necessarily be snooped on the exit node of the overlay, but on any
other network element towards the destination. This means that in the inci-
dents detected by our system, the decoy credentials could have been intercepted
at some other point in the network path between the exit node and the decoy
server, and not at the exit node itself.

Although the above possibility can never be ruled out completely, we strongly
believe that in all incidents the decoy credentials were indeed intercepted at the

12



Fig. 5. Locations of the Tor exit nodes involved in the observed traffic interception
incidents, and the non-Tor hosts that connected back to the decoy servers. Numbers
refer to the corresponding incidents listed in Table 1.

involved exit node for the following reasons. The ease of installing and operating
a Tor exit node means that adversaries can easily set up and operate rogue exit
nodes, but also that exit nodes operated by honest individuals may be running
on systems that lack the latest software patches, or have poor security configu-
rations. This may enable adversaries to easily compromise them and misuse the
hosted Tor exit node. At the same time, most of the network elements beyond a
Tor exit node are under the control of ISPs or other organizations that have no
incentive to blatantly misuse intercepted user credentials by directly attempting
to access the user’s accounts. Furthermore, in half of the cases, the adversary
connected back to the decoy server from the same exit node involved in the par-
ticular eavesdropping incident, raising even more suspicion that the exit node is
rogue or has been compromised.

In our future work, we plan to use multiple replicas of the decoy servers
scattered in different networks around the world, and associate different sets of
credentials with each one. This can further increase the detection confidence for
incidents involving the same exit node, but different replicas of the same server.

Decoy Traffic Credibility.

Another aspect of our system that can be improved is the credibility of the gener-
ated decoy traffic. For instance, regarding the SMTP traffic, we plan to increase
the number and diversity of the innocuous email messages that we currently use,
and also create new variations based on message templates. Some of the messages
could also contain “bait” documents [9] that would ping back to our system in
case someone opened them. We can also use some of the techniques described

13



by Bowen et al. [8] to generate even more realistic decoy traffic. For example,
we can capture network traces of protocol interactions using various real IMAP
clients and servers, sanitize and modify them by inserting bait information, and
replay them as part of the decoy traffic.

Detection of HTTP Session Hijacking.

Besides snooping on users’ traffic, an adversary that has access to unencrypted
network data can also mount HTTP session hijacking attacks against users that
are logged in on social networking sites like Facebook or Twitter. Although e-
commerce and banking sites generally use HTTPS throughout the whole user
session, many popular sites by default use HTTPS only for user authentication,
and then switch to plain HTTP. In a session hijacking attack, the attacker can
steal the session cookie that is included in the HTTP requests of authenticated
users and use it to access the user’s account. The fact that social networking sites
are among the most frequently accessed websites through the Tor network [20],
combined with the ease of hijacking user sessions using tools like Firesheep [14],
makes the possibility of mounting session hijacking attacks on Tor exit nodes
quite attractive for adversaries.

In our future work, we plan to extend our system to detect HTTP session
hijacking attacks through the use of decoy accounts on popular social networking
websites. In this scheme, the decoy traffic will consist of generated random ac-
tivity using decoy accounts on websites like Facebook. This activity can include
actions such as viewing pictures, browsing through friends’ posts, or sending
fake messages. Instead of decoy credentials, our aim in this case would be to
entice a potential adversary to intercept the session cookie used in the decoy
HTTP requests and hijack the fake user’s session. The hijacking event can be
detected by closely monitoring all information contained in the decoy account
for potential changes that would indicate that someone has gained unauthorized
access. For instance, an attacker might use a hijacked Facebook account to post
links to malicious code or send spam messages to the friends of the user.

6 Related work

Our work is closely related to research efforts that involve the exposure of en-
ticing decoy information or resources to potential adversaries, with the aim to
observe who and how attempts to use it. One of the first uses of decoy informa-
tion for enabling the observation of real malicious activity has been documented
by Clifford Stoll [27]. In his book, The Cuckoo’s Egg [28], the author recounts his
efforts to trap an intruder that broke into the systems of the Lawrence Berkeley
National Laboratory. As part of his efforts to monitor the actions and trace the
intruder’s origin, he generated fake documents containing supposedly classified
information that would lure the intruder to come back and stay longer on the
compromised computer.

14



The use of decoy computers with the aim to lure prospective intruders and
monitor their actions is nowadays a popular approach among security adminis-
trators and researchers. These systems, widely known as honeypots [22,26], have
no production value other than being compromised, and subsequently track the
actions of the attacker. Honeypots have been extensively used for modeling,
logging, and analyzing attacks originating from sources external to an organiza-
tion [15,31], as well as internal attacks launched from within its perimeter [9].

Similarly to honeypots, honeytokens [25] are pieces of information with no
real production value other than being intercepted by an adversary. After their
release, any subsequent use of that information can clearly indicate unautho-
rized access. The decoy credentials used in our approach can thus be viewed as
particular instance of honeytokens. Bowen et al. [7] proposed the use of decoy
documents to detect misbehaving entities within the perimeter of an organi-
zation. The decoy documents contain embedded “beacons,” such as scripts or
macros, which are executed when the document is opened. The authors used
fake tax records bearing information appearing to be “sensitive” and enticing to
an adversary. In case a document has been leaked, the embedded beacon will
connect to an external host and notify its author whenever the document is
accessed.

There has been little effort in detecting misbehaving overlay nodes in anony-
mity networks. In a work most closely related to ours, McCoy et. al [19] attempt
to detect eavesdropping on malicious Tor exit routers by taking advantage of
the IP address resolution functionality of network traffic capturing tools. Packet
sniffing tools such as tcpdump [18], are by default configured to resolve the IP
addresses of the captured packets to their respective DNS names. The proposed
system transmits, via Tor exit nodes, TCP SYN packets destined to unused IP
addresses in a block owned by the system’s operator. When the packet capturing
program attempts to resolve the IP address of a probe packet, it will issue a DNS
request to the authoritative DNS server, which is also under the control of the
system’s operator. Thus, any observed unsolicited requests to this DNS server are
an indication that probe packets have been intercepted by some packet capturing
program, and can be traced back to the network host where they were captured.
However, when capturing traffic on disk, tcpdump by default does not resolve
any addresses, and in any other case the eavesdropper can trivially disable this
functionality, rendering the above technique ineffective.

7 Conclusion

Anonymous communication networks and proxying architectures offer an im-
portant service for users that want to protect their anonymity on the Internet.
Through the use of encryption, anonymity networks like Tor also protect the con-
fidentiality of the user traffic as it is being relayed across the overlay network.
This protects the original user traffic against surveillance by local adversaries, as
for example in the case where the user is connected through an unsecured public
wireless network. However, since these systems by design do not provide end-to-

15



end encryption, when the traffic reaches the final node of the overlay network,
it is being exposed to potential eavesdroppers.

In this paper, we apply the concept of decoy network traffic injection to
detect rogue nodes of anonymity networks engaged in traffic eavesdropping. Our
approach is based on the injection of bait credentials for fake services such as
IMAP and SMTP, with the aim to entice prospective snoopers to intercept
and actually use the bait credentials. The system can then detect that a set of
credentials has been intercepted, by monitoring for unsolicited connections to
the decoy servers that use a set of previously exposed bait credentials.

We have deployed our prototype implementation in the Tor network, where
it has been operational for more than six months. During this period, the system
detected eight incidents of traffic interception, involving eight different exit nodes
across the world. In all cases, the adversary attempted to take advantage of
intercepted bait IMAP credentials by logging in on the decoy server, in many
cases from the same exit node involved in the eavesdropping incident.

As part of our future work, we plan to use more decoy services and increase
the believability and diversity of our bait traffic, vary the location of the decoy
servers, and use multiple replicas of each service in different networks. We also
plan to extend our system to detect HTTP session hijacking attacks against
popular social networking websites.

References

1. Anonymizer, Inc. http://www.anonymizer.com/
2. Anonymouse. http://anonymouse.org/
3. Inside Net Neutrality: Is your ISP filtering content? http://www.macworld.com/

article/132075/2008/02/netneutrality1.html

4. Rogue Nodes Turn Tor Anonymizer Into Eavesdropper’s Paradise, http://www.
wired.com/politics/security/news/2007/09/embassy_hacks

5. Tor Metrics Portal. http://metrics.torproject.org/
6. Bennett, K., Grothoff, C.: GAP - practical anonymous networking. In: Proceedings

of the Privacy Enhancing Technologies Workshop (PET). pp. 141–160 (2003)
7. Bowen, B.M., Hershkop, S., Keromytis, A.D., Stolfo, S.J.: Baiting Inside Attackers

Using Decoy Documents. In: Proceedings of the 5th International ICST Conference
on Security and Privacy in Communication Networks (SecureComm). pp. 51–70
(September 2009)

8. Bowen, B.M., Kemerlis, V.P., Prabhu, P., Keromytis, A.D., Stolfo, S.J.: Automat-
ing the injection of believable decoys to detect snooping. In: Proceedings of the
third ACM Conference on Wireless Network Security (WiSec). pp. 81–86 (2010)

9. Bowen, B.M., Salem, M.B., Hershkop, S., Keromytis, A.D., Stolfo, S.J.: Designing
host and network sensors to mitigate the insider threat. IEEE Security and Privacy
7, 22–29 (2009)

10. Chaum, D.L.: Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms. Communications of the ACM 24(2), 84–90 (February 1981)

11. Danezis, G., Dingledine, R., Mathewson, N.: Mixminion: A Type III Anonymous
Remailer. http://mixminion.net/

12. Dingledine, R., Mathewson, N., Syverson, P.: Onion Routing. http://www.

onion-router.net/

16

http://www.anonymizer.com/
http://anonymouse.org/
http://www.macworld.com/article/132075/2008/02/netneutrality1.html
http://www.macworld.com/article/132075/2008/02/netneutrality1.html
http://www.wired.com/politics/security/news/2007/09/embassy_hacks
http://www.wired.com/politics/security/news/2007/09/embassy_hacks
http://metrics.torproject.org/
http://mixminion.net/
http://www.onion-router.net/
http://www.onion-router.net/


13. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The Second-Generation Onion
Router. In: Proceedings of the 13th USENIX Security Symposium). pp. 303–319
(August 2004)

14. Firesheep. http://codebutler.com/firesheep
15. The Honeynet Project. http://www.honeynet.org/
16. Isdal, T., Piatek, M., Krishnamurthy, A., Anderson, T.: Privacy-preserving P2P

data sharing with oneswarm. In: Proceedings of the Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications (SIG-
COMM). pp. 111–122 (2010)

17. JAP. http://anon.inf.tu-dresden.de/
18. McCanne, S., Leres, C., Jacobson, V.: Tcpdump and Libpcap, http://www.

tcpdump.org/

19. Mccoy, D., Bauer, K., Grunwald, D., Kohno, T., Sicker, D.: Shining light in dark
places: Understanding the tor network. In: Proceedings of the 8th international
symposium on Privacy Enhancing Technologies (PETS). pp. 63–76 (2008)

20. Mulazzani, M., Huber, M., Weippl, E.R.: Tor HTTP usage and information leak-
age. In: Proceedings of the IFIP Conference on Communications and Multimedia
Security (CMS). pp. 245–255 (2010)

21. Nikiforakis, N., Younan, Y., Joosen, W.: Hproxy: client-side detection of ssl strip-
ping attacks. In: Proceedings of the 7th international conference on Detection
of Intrusions and Malware, and Vulnerability Assessment (DIMVA). pp. 200–218
(2010)

22. Provos, N.: A virtual honeypot framework. In: Proceedings of the 13th USENIX
Security Symposium. pp. 1–14 (Aug 2004)

23. Reiter, M.K., Rubin, A.D.: Crowds: anonymity for web transactions. ACM Trans.
Inf. Syst. Secur. 1, 66–92 (November 1998)

24. Song, D.: dsniff, http://www.monkey.org/~dugsong/dsniff/
25. Spitzner, L.: Honeytokens: The Other Honeypot. http://www.symantec.com/

connect/articles/honeytokens-other-honeypot

26. Spitzner, L.: Honeypots: Catching the insider threat. In: Proceedings of the 19th
Annual Computer Security Applications Conference (ACSAC) (2003)

27. Stoll, C.: Stalking the wily hacker. Communications of the ACM 31(5), 484–497
(1988)

28. Stoll, C.: The cuckoo’s egg: tracking a spy through the maze of computer espionage.
Doubleday, New York, NY, USA (1989)

29. Team Furry: TOR exit-node doing MITM attacks, http://www.teamfurry.com/
wordpress/2007/11/20/tor-exit-node-doing-mitm-attacks/

30. Weaver, N., Sommer, R., Paxson, V.: Detecting forged tcp reset packets. In: Pro-
ceedings of the 16th Network and Distributed System Security Symposium (NDSS)
(2009)

31. Yuill, J., Zappe, M., Denning, D., Feer, F.: Honeyfiles: Deceptive Files for Intrusion
Detection. In: Proceedings of the 2nd IEEE Workshop on Information Assurance
(WIA). pp. 116–122 (2004)

17

http://codebutler.com/firesheep
http://www.honeynet.org/
http://anon.inf.tu-dresden.de/
http://www.tcpdump.org/
http://www.tcpdump.org/
http://www.monkey.org/~dugsong/dsniff/
http://www.symantec.com/connect/articles/honeytokens-other-honeypot
http://www.symantec.com/connect/articles/honeytokens-other-honeypot
http://www.teamfurry.com/wordpress/2007/11/20/tor-exit-node-doing-mitm-attacks/
http://www.teamfurry.com/wordpress/2007/11/20/tor-exit-node-doing-mitm-attacks/

	Detecting Traffic Snooping in Anonymity Networks Using Decoys
	Introduction
	Background
	Tor Anonymity Network
	Threat Model

	System Architecture
	Approach
	Implementation

	Deployment Results
	Discussion and Future work
	Related work
	Conclusion


