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Abstract

Many valuable text databases on the web have non-crawlable contents that are
“hidden” behind search interfaces. Metasearchers are helpful tools for searching over
many such databases at once through a unified query interface. A critical task for a
metasearcher to process a query efficiently and effectively is the selection of the most
promising databases for the query, a task that typically relies on statistical summaries
of the database contents. Unfortunately, web-accessible text databases do not gen-
erally export content summaries. In this paper, we present an algorithm to derive
content summaries from “uncooperative” databases by using “focused query probes,”
which adaptively zoom in on and extract documents that are representative of the topic
coverage of the databases. Our content summaries are the first to include absolute doc-
ument frequency estimates for the database words. We also present a novel database
selection algorithm that exploits both the extracted content summaries and a hierarchi-
cal classification of the databases, automatically derived during probing, to compensate
for potentially incomplete content summaries. Finally, we evaluate our techniques thor-
oughly using a variety of databases, including 50 real web-accessible text databases. Our
experiments indicate that our new content-summary construction technique is efficient
and produces more accurate summaries than those from previously proposed strategies.
Also, our hierarchical database selection algorithm exhibits significantly higher precision
than its flat counterparts.

1 Introduction

The World-Wide Web continues to grow rapidly, which makes exploiting all useful infor-
mation that is available a standing challenge. Although general search engines like Google
crawl and index a large amount of information, typically they ignore valuable data in text
databases that are “hidden” behind search interfaces and whose contents are not directly
available for crawling through hyperlinks.



Example 1: Consider the medical bibliographic database CANCERLITY. When we issue
the query [lung AND cancer|, CANCERLIT returns 68,430 matches. These matches corre-
spond to high-quality citations to medical articles, stored locally at the CANCERLIT site.
In contrast, a query? on Google for the pages in the CANCERLIT site with the keywords
“Iung” and “cancer” matches only 23 other pages under the same domain, none of which
corresponds to the database documents. This shows that the valuable CANCERLIT content
1s not indexed by this search engine. O

One way to provide one-stop access to the information in text databases is through
metasearchers, which can be used to query multiple databases simultaneously. A meta-
searcher performs three main tasks. After receiving a query, it finds the best databases
to evaluate the query (database selection), it translates the query in a suitable form for
each database (query translation), and finally it retrieves and merges the results from the
different databases (result merging) and returns them to the user. The database selection
component of a metasearcher is of crucial importance in terms of both query processing
efficiency and effectiveness, and it is the focus of this paper.

Database selection algorithms are traditionally based on statistics that characterize each
database’s contents [GGMT99, MLY 98, XC98, YLI7]. These statistics, which we will
refer to as content summaries, usually include the document frequencies of the words that
appear in the database, plus perhaps other simple statistics. These summaries provide
sufficient information to the database selection component of a metasearcher to decide
which databases are the most promising to evaluate a given query.

To obtain the content summary of a database, a metasearcher could rely on the database
to supply the summary (e.g., by following a protocol like STARTS [GCGMP97], or possibly
using Semantic Web [BLHLO1] tags in the future). Unfortunately many web-accessible text
databases are completely autonomous and do not report any detailed metadata about their
contents to facilitate metasearching. To handle such databases, a metasearcher could rely
on manually generated descriptions of the database contents. Such an approach would not
scale to the thousands of text databases available on the web [Bri00], and would likely not
produce the good-quality, fine-grained content summaries required by database selection
algorithms.

In this paper, we present a technique to automate the extraction of content summaries
from searchable text databases. Our technique constructs these summaries from a biased
sample of the documents in a database, extracted by adaptively probing the database with
topically focused queries. These queries are derived automatically from a document classifier
over a Yahoo!-like hierarchy of topics. Our algorithm selects what queries to issue based
in part on the results of the earlier queries, thus focusing on the topics that are most
representative of the database in question. Our technique resembles biased sampling over
numeric databases, which focuses the sampling effort on the “densest” areas. We show
that this principle is also beneficial for the text-database world. We also show how we can

!The query interface is available at http://www.cancer.gov/search/cancer_literature/}
2The query is lung cancer site:www.cancer.gov.
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exploit the statistical properties of text to derive absolute frequency estimations for the
words in the content summaries. As we will see, our technique efficiently produces high-
quality content summaries of the databases that are more accurate than those generated
from a related uniform probing technique proposed in the literature. Furthermore, our
technique categorizes the databases automatically in a hierarchical classification scheme
during probing.

In this paper, we also present a novel hierarchical database selection algorithm that
exploits the database categorization and adapts particularly well to the presence of incom-
plete content summaries. The algorithm is based on the assumption that the (incomplete)
content summary of one database can help to augment the (incomplete) content summary
of a topically similar database, as determined by the database categories.

In brief, the main contributions of this paper are:

e A document sampling technique for text databases that results in higher quality
database content summaries than those by the best known algorithm.

e A technique to estimate the absolute document frequencies of the words in the content
summaries.

e A database selection algorithm that proceeds hierarchically over a topical classification
scheme.

e A thorough, extensive experimental evaluation of the new algorithms using both “con-
trolled” databases and 50 real web-accessible databases.

The rest of the paper is organized as follows. Section 2| gives the necessary background.
Section |3 outlines our new technique for producing content summaries of text databases,
including accurate word-frequency information for the databases. Section 4 presents a novel
database selection algorithm that exploits both frequency and classification information.
Section |5 describes the setting for the experiments in Section |6, where we show that our
method extracts better content summaries than the existing methods. We also show that
our hierarchical database selection algorithm of Section 4 outperforms its flat counterparts,
especially in the presence of incomplete content summaries, such as those generated through
query probing. Finally, Section |8 concludes the paper.

2 Background

In this section we give the required background and report related efforts. Section 2.1 briefly
summarizes how existing database selection algorithms work. Then, Section 2.2/ describes
the use of uniform query probing for extraction of content summaries from text databases
and identifies the limitations of this technique. Finally, Section 2.3 discusses how focused
query probing has been used in the past for the classification of text databases.



CANCERLIT CNN.fn

NumDocs: 148,944 NumDocs: 44,730
Word af Word af
breast 121,134 breast 124
cancer 91,688 cancer 44

Table 1: A fragment of the content summaries of two databases.

2.1 Database Selection Algorithms

Database selection is a crucial task in the metasearching process, since it has a critical
impact on the efficiency and effectiveness of query processing over multiple text databases.
We now briefly outline how typical database selection algorithms work and how they depend
on database content summaries to make decisions.

A database selection algorithm attempts to find the best databases to evaluate a given
query, based on information about the database contents. Usually this information includes
the number of different documents that contain each word, to which we refer as the docu-
ment frequency of the word, plus perhaps some other simple related statistics [GCGMP97,
MLY 798, XC98], like the number of documents NumDocs stored in the database. Table [1
depicts a small fraction of what the content summaries for two real text databases might
look like. For example, the content summary for the CNN.fn database, a database with
articles about finance, indicates that 44 documents in this database of 44,730 documents
contain the word “cancer.” Given these summaries, a database selection algorithm esti-
mates how relevant each database is for a given query (e.g., in terms of the number of
matches that each database is expected to produce for the query):

Example 2: bGIOSS [GGMT99] is a simple database selection algorithm that assumes
that query words are independently distributed over database documents to estimate the
number of documents that match a given query. So, bGIOSS estimates that query [breast

AND cancer] will match |C] - df (br 87515) 4 (cc‘zglcer) > 74,569 documents in database
CANCERLIT, where |C| is the number of documents in the CANCERLIT database, and

df (-) is the number of documents that contain a given word. Similarly, bGIOSS estimates
that a negligible number of documents will match the given query in the other database of
Tablel1. O

bGIOSS is a simple example of a large family of database selection algorithms that rely
on content summaries like those in Table [1. Furthermore, database selection algorithms
expect such content summaries to be accurate and up to date. The most desirable scenario
is when each database exports these content summaries directly (e.g., via a protocol such
as STARTS |[GCGMP97]). Unfortunately, no protocol is widely adopted for web-accessible
databases, and there is little hope that such a protocol will be adopted soon. Hence, other
solutions are needed to automate the construction of content summaries from databases



that cannot or are not willing to export such information. We review one such approach
next.

2.2  Uniform Probing for Content Summary Construction

Callan et al. [CCD99, [CCO01] presented pioneer work on automatic extraction of document
frequency statistics from “uncooperative” text databases that do not export such metadata.
Their algorithm extracts a document sample from a given database D and computes the
frequency of each observed word w in the sample, Sample DF (w):

1. Start with an empty content summary where Sample DF'(w) = 0 for each word w, and
a general (i.e., not specific to D), comprehensive word dictionary.

2. Pick a word (see below) and send it as a query to database D.
3. Retrieve the top-k documents returned.

4. If the number of retrieved documents exceeds a prespecified threshold, stop. Otherwise
continue the sampling process by returning to Step 2.

Callan et al. suggested using & = 4 for Step 3 and that 300 documents are sufficient
(Step 4) to create a representative content summary of the database. Also they describe
two main versions of this algorithm that differ in how Step 2 is executed. The algorithm
RandomSampling-OtherResource (RS-Ord for short) picks a random word from the dictio-
nary for Step 2. In contrast, the algorithm RandomSampling-LearnedResource (RS-Lrd for
short) selects the next query from among the words that have been already discovered dur-
ing sampling. RS-Ord constructs better profiles, but is more expensive than RS-Lrd [CCO1].
Other variations of this algorithm perform worse than RS-Ord and RS-Lrd, or have only
marginal improvements in effectiveness at the expense of probing cost.

These algorithms compute the sample document frequencies SampleDF(w) for each
word w that appeared in a retrieved document. These frequencies range between 1 and
the number of retrieved documents in the sample. In other words, the actual document
frequency ActualDF (w) for each word w in the database is not revealed by this process and
the calculated document frequencies only contain information about the relative ordering
of the words in the database, not their absolute frequencies. Hence, two databases with the
same focus (e.g., two medical databases) but differing significantly in size might be assigned
similar content summaries. Also, RS-Ord tends to produce inefficient executions in which
it repeatedly issues queries to databases that produce no matches. According to Zipf’s
law [Zip49], most of the words in a collection occur very few times. Hence, a word that is
randomly picked from a dictionary (which hopefully contains a superset of the words in the
database), is likely not to occur in any document of an arbitrary database.

The RS-Ord and RS-Lrd techniques extract content summaries from uncooperative text
databases that otherwise could not be evaluated during a metasearcher’s database selection
step. In Section 3 we introduce a novel technique for constructing content summaries with



absolute frequencies that are highly accurate and efficient to build. Our new technique
exploits earlier work on text-database classification [IGS01lal], which we review next.

2.3 Focused Probing for Database Classification

Another way to characterize the contents of a text database is to classify it in a Yahoo!-like
hierarchy of topics according to the type of the documents that it contains. For exam-
ple, CANCERLIT can be classified under the category “Health,” since it contains mainly
health-related documents. Ipeirotis et al. [[GSOla] presented a method to automate the
classification of web-accessible databases, based on the principle of “focused probing.”

The rationale behind this method is that queries closely associated with topical cate-
gories retrieve mainly documents about that category. For example, a query [breast AND
cancer/ is likely to retrieve mainly documents that are related to the “Health” category.
By observing the number of matches generated for each such query at a database, we can
then place the database in a classification scheme. For example, if one database generates
a large number of matches for the queries associated with the “Health” category, and only
a few matches for all other categories, we might conclude that it should be under category
“Health.”

To automate this classification, these queries are derived automatically from a rule-based
document classifier. A rule-based classifier is a set of logical rules defining classification
decisions: the antecedents of the rules are a conjunction of words and the consequents are
the category assignments for each document. For example, the following rules are part of a
classifier for the two categories “Sports” and “Health”:

jordan AND bulls — Sports
hepatitis — Health

Starting with a set of preclassified training documents, a document classifier, such as RIP-
PER [Coh96] from AT&T Research Labs, learns these rules automatically. For example, the
second rule would classify previously unseen documents (i.e., documents not in the training
set) containing the word “hepatitis” into the category “Health.” Each classification rule
p — C can be easily transformed into a simple boolean query ¢ that is the conjunction of all
words in p. Thus, a query probe ¢ sent to the search interface of a database D will match
documents that would match rule p — C' and hence are likely in category C'.

Categories can be further divided into subcategories, hence resulting in multiple levels
of classifiers, one for each internal node of a classification hierarchy. We can then have one
classifier for coarse categories like “Health” or “Sports,” and then use a different classifier
that will assign the “Health” documents into subcategories like “Cancer,” “AIDS,” and
so on. By applying this principle recursively for each internal node of the classification
scheme, it is possible to create a hierarchical classifier that will recursively divide the space
into successively smaller topics. The algorithm in [IGS01a] uses such a hierarchical scheme,
and automatically maps rule-based document classifiers into queries, which are then used
to probe and classify text databases.



To classify a database, the algorithm in [IGS01a] starts by first sending the query probes
associated with the subcategories of the top node C of the topic hierarchy, and extracting
the number of matches for each probe, without retrieving any documents. Based on the
number of matches for the probes for each subcategory Cj, it then calculates two metrics, the
Coverage(C;) and Specificity(C;) for the subcategory. Coverage(C;) is the absolute number
of documents in the database that are estimated to belong to C;, while Specificity(C;)
is the fraction of documents in the database that are estimated to belong to C;. The
algorithm decides to classify a database into a category C; if the values of Coverage(C;)
and Specificity(C; ) exceed two prespecified thresholds 7. and 7, respectively. Higher levels
of the specificity threshold 75 result in assignments of databases mostly to higher levels
of the hierarchy, while lower values tend to assign the databases to nodes closer to the
leaves. When the algorithm detects that a database satisfies the specificity and coverage
requirement for a subcategory Cj, it proceeds recursively in the subtree rooted at C;. By
not exploring other subtrees that did not satisfy the coverage and specificity conditions,
we avoid exploring portions of the topic space that are not relevant to the database. This
results in accurate database classification using a small number of query probes.

Interestingly, this database classification algorithm provides a way to zoom in on the
topics that are most representative of a given database’s contents and we can then exploit
it for accurate and efficient content summary construction.

3 Focused Probing for Content Summary Construction

We now describe a novel algorithm to construct content summaries for a text database.
Our algorithm exploits a topic hierarchy to adaptively send focused probes to the database.
These queries tend to efficiently produce a document sample that is topically representative
of the database contents, which leads to highly accurate content summaries. Furthermore,
our algorithm classifies the databases along the way. In Section 4! we will exploit this catego-
rization and the database content summaries to introduce a hierarchical database selection
technique that can handle incomplete content summaries well. Our content-summary con-
struction algorithm consists of two main steps:

1. Query the database using focused probing (Section 3.1) in order to:

(a) Retrieve a document sample.
(b) Generate a preliminary content summary.
(c) Categorize the database.

2. Estimate the absolute frequencies of the words retrieved from the database (Sec-
tion [3.2).
3.1 Building Content Summaries from Extracted Documents

The first step of our content summary construction algorithm is to adaptively query a given
text database using focused probes to retrieve a document sample. The algorithm is shown



GetContentSummary(Category C, Database D)
o ’ (SampleDF, ActualDF, Classify = (0,0, 0) ‘
if C is a leaf node then return (SampleDF', ActualDF, {C})
Probe database D with the query probes derived from the classifier for the subcategories of C'

newdocs = ()
foreach query probe ¢

newdocs = newdocs U {top-k documents returned for q}

if ¢ consists of a single word w then ActualDF(w) = #matches returned for ¢
foreach word w in newdocs

SampleDF (w) = #documents in newdocs that contain w

Calculate Coverage and Specificity from the number of matches for the probes
foreach subcategory C; of C'

if (Specificity(C;) > 7« AND Coverage(C;) > 7.) then
.| (SampleDF’, ActualDF”’, Classif’) = GetContentSummary(Cj, D)
v Merge (SampleDF”, ActualDF’) into (SampleDF, ActualDF')

Classif = Classif U Classif’
return (SampleDF, ActualDF, Classif)

Figure 1: Generating a content summary for a database using focused query probing.

in Figure 1. We have enclosed in boxes the portions directly relevant to content-summary
extraction. Specifically, for each query probe we retrieve k documents from the database
in addition to the number of matches that the probe generates (box 3 in Figure [I). Also,
we record two sets of word frequencies based on the probe results and extracted documents
(boxes 3 and 7):

1. ActualDF (w): the actual number of documents in the database that contain word w.
The algorithm knows this number only if [w] is a single-word query probe that was
issued to the database”.

2. SampleDF (w): the number of documents in the extracted sample that contain word
w.

The basic structure of the probing algorithm is as follows: We explore (and send query
probes for) only those categories with sufficient specificity and coverage, as determined by
the 75 and 7. thresholds. As a result, this algorithm categorizes the databases into the
classification scheme during probing. We will exploit this categorization in our database
selection algorithm of Section 4l

Figure 2| illustrates how our algorithm works for the CNN Sports Illustrated database,
a database with articles about sports, and for a hierarchical scheme with four categories

3The number of matches reported by a database for a single-word query [w] might differ slightly from Ac-
tualDF (w), for example, if the database applies stemming [SM83| to query words so that a query [computers]
also matches documents with word “computer.”
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Figure 2: Querying the CNN Sports Illustrated database with focused probes.

under the root node: “Sports,” “Health,” “Computers,” and “Science.” We pick specificity
and coverage thresholds 75, = 0.5 and 7. = 100, respectively. The algorithm starts by issuing
the query probes associated with each of the four categories. The “Sports” probes generate
many matches (e.g., query [baseball] matches 24,520 documents). In contrast, the probes
for the other sibling categories (e.g., [metallurgy] for category “Science”) generate just a
few or no matches. The Coverage of category “Sports” is the sum of the number of matches
for its probes, or 32,050. The Specificity of category “Sports” is the fraction of matches
that correspond to “Sports” probes, or 0.967. Hence, “Sports” satisfies the Specificity and
Coverage criteria (recall that 75 = 0.5 and 7. = 100) and is further explored to the next level
of the hierarchy. In contrast, “Health,” “Computers,” and “Science” are not considered
further. The benefit of this pruning of the probe space is two-fold: First, we improve the
efficiency of the probing process by giving attention to the topical focus (or foci) of the
database. (Out-of-focus probes would tend to return few or no matches.) Second, we avoid
retrieving spurious matches and focus on documents that are better representatives of the
database.

During probing, our algorithm retrieves the top-k documents returned by each query
(box f in Figure [I). For each word w in a retrieved document, the algorithm computes
SampleDF (w) by measuring the number of documents in the sample, extracted in a probing
round, that contain w. If a word w appears in document samples retrieved during later



phases of the algorithm for deeper levels of the hierarchy, then all SampleDF (w) values are
added together (“merge” step in box 7). Similarly, during probing the algorithm keeps track
of the number of matches produced by each single-word query [w]. As discussed, the number
of matches for such a query is (a close approximation to) the ActualDF (w) frequency (i.e.,
the number of documents in the database with word w). These ActualDF(-) frequencies
are crucial to estimate the absolute document frequencies of all words that appear in the
document sample extracted, as discussed next.

3.2 Estimating Absolute Document Frequencies

No probing technique so far has been able to estimate the absolute document frequency of
words. The RS-Ord and RS-Lrd techniques only return the SampleDF(-) of words with
no absolute frequency information. We now show how we can exploit the ActualDF(-) and
SampleDF () document frequencies that we extract from a database (Section 3.1) to build
a content summary for the database with accurate absolute document frequencies. For this,
we follow two steps:

1. Exploit the SampleDF(-) frequencies derived from the document sample to rank all
observed words from most frequent to least frequent.

2. Exploit the ActualDF(-) frequencies derived from one-word query probes to poten-
tially boost the document frequencies of “nearby” words w for which we only know
SampleDF (w) but not ActualDF(w).

Figure [3 illustrates our technique for CANCERLIT. After probing CANCERLIT us-
ing the algorithm in Figure [1, we rank all words in the extracted documents according
to their SampleDF(-) frequency. In this figure, “cancer” has the highest SampleDF value
and “hepatitis” the lowest such value. The SampleDF value of each word is noted by
the corresponding vertical bar. Also, the figure shows the ActualDF(-) frequency of those
words that formed single-word queries. For example, ActualDF (hepatitis) = 20,000, be-
cause query probe [hepatitis/ returned 20,000 matches. Note that the ActualDF value
of some words (e.g., “stomach”) is unknown. These words appeared in documents that
we retrieved during probing, but not as single-word probes. From the figure, we can see
that SampleDF (hepatitis) = SampleDF (stomach). Then, intuitively, we will estimate Actu-
alDF (stomach) to be close to the (known) value of ActualDF (hepatitis).

To specify how to “propagate” the known ActualDF frequencies to “nearby” words with
similar Sample DF frequencies, we exploit well-known laws on the distribution of words over
text documents. Zipf |Zip49] was the first to observe that word-frequency distributions
follow a power law, which was later refined by Mandelbrot [Man88]. Mandelbrot observed
a relationship between the rank r and the frequency f of a word in a text database: f =
P(r +p)~B, where P, B, and p are parameters of the specific document collection. This
formula indicates that the most frequent word in a collection (i.e., the word with rank r» = 1)
will tend to appear in P(1+ p)~ P documents, while, say, the tenth most frequent word will
appear in just P(10 + p)~5 documents.

10
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Figure 3: Estimating unknown ActualDF' values.

Just as in Figure 13, after probing we know the rank of all observed words in the sample
documents retrieved, as well as the actual frequencies of some of those words in the entire
database. These statistics, together with Mandelbrot’s equation, lead to the following
procedure for estimating unknown ActualDF(-) frequencies:

1. Sort words in descending order of their SampleDF(-) frequencies to determine the
rank r; of each word wj.

2. Focus on words with known ActualDF'(-) frequencies. Use the Sample DF-based rank
and ActualDF frequencies to find the P, B, and p parameter values that best fit the
data.

3. Estimate ActualDF (w;) for all words w; with unknown ActualDF (w;) as P(r; +p)~ %,
where r; is the rank of word w; as computed in Step 1.

For Step 2, we use an off-the-shelf curve fitting algorithm available as part of the R-
Project*, an open-source environment for statistical computing.

Example 3: Consider the medical database CANCERLIT and Figure 3. We know that
ActualDF (hepatitis) = 20,000 and ActualDF(liver) = 140,000, since the respective one-
word query probes reported so many matches in each case. Additionally, using the Sam-
pleDF frequencies, we know that “liver” is the fifth most popular word among the extracted

“http://www.r-project.org/
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documents, while “hepatitis” ranked number 25. Similarly, “kidneys” is the 10th most
popular word. Unfortunately, we do not know the value of ActualDF(kidneys) since [kid-
neys| was not a query probe. However, using the ActualDF frequency information from
the other words and their Sample DF-based rank, we estimate the distribution parameters
to be P =8-10°, p = 0.25, and B = 1.15. Using the rank information with Mandelbrot’s
equation, we compute ActualDF g (kidneys) = 8 - 10°(10 + 0.25)~ %1% = 55.000. In reality,
ActualDF (kidneys) = 65,000, which is close to our estimate. O

During sampling, we also send to the database query probes that consist of more than
one word. (Recall that our query probes are derived from an underlying, automatically
learned document classifier.) We do not exploit multi-word queries for determining Actu-
alDF frequencies of their words, since the number of matches returned by a boolean-AND
multi-word query is only a lower bound on the ActualDF frequency of each intervening
word. However, the average length of the query probes that we generate is small (less than
1.5 in our experiments), and their median length is one. Hence, the majority of the query
probes provide us with ActualDF frequencies that we can exploit. Another interesting ob-
servation is that we can derive a gross estimate of the number of documents in a database
as the largest (perhaps estimated) ActualDF' frequency, since the most frequent words tend
to appear in a large fraction of the documents in a database.

In summary, we presented a new focused probing technique for content summary con-
struction that (a) estimates the absolute document frequency of the words in a database,
and (b) automatically classifies the database in a hierarchical classification scheme along
the way. We show next how we can define a database selection algorithm that uses the
content summary and categorization information of each available database.

4 Exploiting Topic Hierarchies for Database Selection

Any efficient algorithm for constructing content summaries through query probes is likely
to produce incomplete content summaries, which can affect the effectiveness of the database
selection process. Specifically, database selection would suffer the most for queries with one
or more words not present in content summaries. We now introduce a database selection
algorithm that exploits the database categorization and content summaries produced as in
Section 3| to alleviate the negative effect of incomplete content summaries. This algorithm
consists of two basic steps:

1. “Propagate” the database content summaries to the categories of the hierarchical
classification scheme (Section [4.1)).

2. Use the content summaries of categories and databases to perform database selection

hierarchically by zooming in on the most relevant portions of the topic hierarchy
(Section 4.2).

12
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Figure 4: Associating content summaries with categories.

4.1 Creating Content Summaries for Topic Categories

Sections 2.2 and [3 showed algorithms for extracting database content summaries. These
content summaries could be used to guide existing database selection algorithms, such as
bGIOSS [GGMT99] or CORI [CLC95]. However, these algorithms might produce inaccurate
conclusions for queries with one or more words missing from relevant content summaries.
This is particularly problematic for the short queries that are prevalent over the web. A
first step to alleviate this problem is to associate content summaries with the categories of
the topic hierarchy used by the probing algorithm of Section 3. In the next section, we use
these category content summaries to select databases hierarchically.

The intuition behind our approach is that databases classified under similar topics tend
to have similar vocabularies. (We present supporting experimental evidence for this state-
ment in Section [6.3.) Hence, we can view the (potentially incomplete) content summaries
of all databases in a category as complementary, and exploit this view for better database
selection. For example, consider the CANCERLIT database and its associated content sum-
mary in Figure 4. As we can see, CANCERLIT was correctly classified under “Cancer” by
the algorithm in Section [3. Unfortunately, the word “metastasis” did not appear in any of
the documents extracted from CANCERLIT during probing, so this word is missing from

13



the content summary. However, we see that CancerBACUP®, another database classified
under “Cancer”, has a high ActualDF.g (metastasis) = 3,569. Hence, we might conclude
that the word “metastasis” did not appear in CANCERLIT because it was not discovered
during sampling, and not because it does not occur in the CANCERLIT database. We
convey this information by associating a content summary with category “Cancer” that is
obtained by merging the summaries of all databases under this category. In the merged
content summary, ActualDF.s(w) is the sum of the document frequency of w for databases
under this category.

In general, the content summary of a category C with databases dby,...,db, classified
(not necessary immediately) under C' includes:

e NumDBs(C): The number of databases under C' (n in this case).

e NumDocs(C): The number of documents stored in any db; under C; NumDocs(C)=
Yoieq NumDocs(db;).

o ActualDF g (w): The number of documents in any db; under C' that contain the word
w; ActualDFegi(w) = D1 1 (ActualDEes (w) for db;).

By having content summaries associated with categories, we can treat each category as a
large “database” and perform database selection hierarchically; we present a new algorithm
for this task next.

4.2 Selecting Databases Hierarchically

Now that we have associated content summaries with the categories in the topic hierarchy,
we can select databases for a query hierarchically, starting from the top category. Earlier
research indicated that distributed information retrieval systems tend to produce better
results when documents are organized in topically-cohesive clusters [XC99, LCCO00]. At each
level, we use existing flat database algorithms such as CORI [CLC95] or bGIOSS [GGMT99).
These algorithms assign a score to each database (or category in our case) for a query, which
specifies how promising the database (or category) is for the query, based on its content
summary (see Example 2). We assume in our discussion that scores are greater than or
equal to zero, with a zero score indicating that a database or category should be ignored
for the query. Given the scores for the categories at one level of the hierarchy, the selection
process will continue recursively onto the most promising subcategories. There are several
alternative strategies that we could follow to decide what subcategories to exploit. In this
paper, we present one such strategy, which privileges topic-specific over broader databases.

Figure |5/ summarizes our hierarchical database selection algorithm. The algorithm takes
as input a query ) and the target number of databases K that we are willing to search for
the query. Also, the algorithm receives the top category C' as input, and starts by invoking
a flat database selection algorithm to score all subcategories of C' for the query (Step 1),

Shttp://www.cancerbacup.org.uk
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HierSelect(Query @, Category C, int K)
1: Use a database selection algorithm to assign a score for @ to each subcategory of C'
2: if there is a subcategory C' with a non-zero score
3: Pick the subcategory C; with the highest score
if NumDBs(C;) > K //C; has enough databases
return HierSelect(Q,C;,K)
else // C; does not have enough databases
return DBs(C;) U FlatSelect(Q,C — C;,K-NumDBs(C}))
else // no subcategory C has non-zero score
return FlatSelect(Q,C,K)

Figure 5: Selecting the K most specific databases for a query hierarchically.

Query: [babe AND ruth]

Root
NumDBs: 136

Arts Computers Health Sports
NumDBs :35 NumDBs :55 NumDBs:25 NumDBs: 21

(score: 0.0) (score: 0.15) (score: 0.10) (score: 0.93)

|
v | | |

Baseball Hockey ESPN Soccer
NumDBs:7 NumDBs:8 NumDBs:5
score:0.68
(score:0.78) (score:0.08) ( ) (score:0.12)

Figure 6: Exploiting a topic hierarchy for database selection.

using the content summaries associated with the subcategories (Section [4.1). If at least
one “promising” subcategory has a non-zero score (Step 2), then the algorithm picks the
best such subcategory C; (Step 3). If C; has K or more databases under it (Step 4) the
algorithm proceeds recursively under that branch only (Step 5). As discussed above, this
strategy privileges “topic-specific” databases over databases with broader scope. On the
other hand, if C; does not have sufficiently many (i.e., K or more) databases (Step 6),
then intuitively the algorithm has gone as deep in the hierarchy as possible (exploring only
category C; would result in fewer than K databases being returned). Then, the algorithm
returns all NumDBs(C;) databases under Cj, plus the best K — NumDBs(C;) databases
under C but not in C}, according to the “flat” database selection algorithm of choice (Step
7). If no subcategory of C' has a non-zero score (Step 8), again this indicates that the
execution has gone as deep in the hierarchy as possible. Therefore, we return the best K
databases under C, according to the flat database selection algorithm (Step 9).

Figure |6 shows an example of an execution of this algorithm for query [babe AND ruth/
and for a target of K = 3 databases. The top-level categories are evaluated by a flat
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database selection algorithm for the query, and the “Sports” category is deemed best, with
a score of 0.93. Since the “Sports” category has more than three databases, the query is
“pushed” into this category. The algorithm proceeds recursively by pushing the query into
the “Baseball” category. If we had initially picked K = 10 instead, the algorithm would
have still picked “Sports” as the first category to explore. However, “Baseball” has only 7
databases, so the algorithm picks them all, and chooses the best 3 databases under “Sports”
to reach the target of 10 databases for the query.

In summary, our hierarchical database selection algorithm chooses the best, most-specific
databases for a query. By exploiting the database categorization, this hierarchical algorithm
manages to compensate for the necessarily incomplete database content summaries pro-
duced by query probing. In the next sections we evaluate the performance of this algorithm
against that of “flat” selection techniques.

5 Data and Metrics

In this section we describe the data (Section 5.1) and techniques (Section 5.2) that we use
for the experiments reported in Section 6.

5.1 Experimental Setting

To evaluate the algorithms described in this paper, we use two data sets: one set of “Con-
trolled” databases that we assembled locally with newsgroup articles, and another set of
“Web” databases, which we could only access through their web search interface. We also
report experiments involving the three databases used in [CCO01], to validate our comparison
further. We use a 3-level subset of the Yahoo! topic hierarchy consisting of 72 categories,
with 54 “leaf” and 18 “internal” topics.

Controlled Database Set: We gathered 500,000 newsgroup articles from 54 news-
groups during April-May 2000. Out of these, we used 81,000 articles to train document
classifiers over the 72-node topic hierarchy. For training we manually assigned newsgroups
to categories, and treated all documents from a newsgroup as belonging to the corresponding
category. We used the remaining 419,000 articles to build the set of Controlled Databases.
This set contained 500 databases ranging in size from 25 to 25,000 documents. 350 of
them were “homogeneous,” with documents from a single category, while the remaining
150 are “heterogeneous,” with a variety of category mixes (see [[GS0la] for details). These
databases were indexed and queried by a SMART-based program [SM97] using the cosine
similarity function with ¢f.idf weighting [SB&S].

Web Database Set: We used a set of 50 real web-accessible databases over which we
do not have any control. These databases were picked randomly from two directories of
hidden-web databases, namely InvisibleWeb® and CompletePlanet”. These databases have

Shttp://www.invisibleweb. com/
"http://www.completeplanet.com/
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Web Database URL

U. of Michican Cancer Center | http://www.cancer.med.umich.edu/search.htm
Java @ Sun.com http://search. java.sun.com

John Hopkins AIDS Service http://hopkins-aids.edu/index_search.html

Table 2: Some of the real web databases in the Web set.

articles that range from research papers to film reviews. Table [2 shows a sample of three
databases from the Web set.

5.2 Alternative Techniques

Our experiments evaluate two main sets of techniques: content-summary construction tech-
niques (Sections 2l and 3) and database selection techniques (Section [4)):

Content Summary Construction: We test variations of our Focused Probing tech-
nique against the two main variations of uniform probing, described in Section 2.2, namely
RS-Ord and RS-Lrd. As the initial dictionary D for these two methods we used the set
of all the words that appear in the databases of the Controlled set. For Focused Probing,
we evaluate configurations with different underlying document classifiers for query-probe
creation, and different values for the thresholds 75 and 7. that define the granularity of
sampling performed by the algorithm in Figure [1. Specifically, we consider the following
variations of the Focused Probing technique:

FP-RIPPER: Focused Probing using RIPPER [Coh96] as the base document classifier
(Section 3.1)).

FP-C4.5: Focused Probing using C4.5RULES, which extracts classification rules from de-
cision tree classifiers generated by C4.5 [Qui92].

FP-Bayes: Focused Probing using Naive-Bayes classifiers [DHT73] in conjunction with a
technique to extract rules from numerically-based Naive-Bayes classifiers [[GS01b].
FP-SVM: Focused Probing using Support Vector Machines with linear kernels [Joa98] in
conjunction with the same rule-extraction technique used for F'P-Bayes.

We vary the specificity threshold 75 to get document samples of different granularity.
All variations were tested with threshold 75 ranging between 0 and 1. Low values of 7, result
in databases being “pushed” to more categories, which in turn results in larger document
samples. To keep the number of experiments manageable, we fix the coverage threshold to
7. = 10, varying only the specificity threshold ;.

Database Selection Effectiveness: We test variations of our database selection al-

gorithm of Section 4 along several dimensions:
Underlying Database Selection Algorithm: The hierarchical algorithm of Section 4.2 relies
on a “flat” database selection algorithm. We consider two such algorithms: CORI [CLC95]
and bGIOSS [GGMT99]. Our purpose is not to evaluate the relative merits of these two
algorithms (for this, see [FPCT99, [PFCT00]) but rather to ensure that our techniques behave
similarly for different flat database selection algorithms. We adapted both algorithms to
work with the category content summaries described in Section /4.1l
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Content Summary Construction Algorithm: We evaluated how our hierarchical database
selection algorithm behaves over content summaries generated by different techniques. In
addition to the content-summary construction techniques listed above, we also test QPilot, a
recent strategy that exploits HTML links to characterize text databases [SE00]. Specifically,
QPilot builds a content summary for a web-accessible database D as follows:

1. Query a general search engine to retrieve pages that link to the web page for D®.
2. Retrieve the top-m pages that point to D.
3. Extract the words in the same line as a link to D.

4. Include only words with high document frequency in the content summary for D.

Hierarchical vs. Flat Database Selection: We compare the effectiveness of the hierarchical
algorithm of Section 4.2, against that of the underlying “flat” database selection strategies.

6 Experimental Results

We use the Controlled database set for experiments on content summary quality (Sec-
tion 6.1), while we use the Web database set for experiments on database selection effec-
tiveness (Section [6.2). We report the results next.

6.1 Content Summary Quality

Coverage of the retrieved vocabulary: An important property of content summaries

is their coverage of the actual database vocabulary. To measure coverage, we use the ctf
D wer, ActualDF (w)

Zwer ActualDF ()’ where T, is the set of terms
in a content summary and T} is the complete set of words in the corresponding database.
This metric gives higher weight to more frequent words, but is calculated after stopwords
(e.g., “a”, “the”) are removed, so this ratio is not artificially inflated by the discovery of

ratio metric introduced in [CCO1]: ctf =

common words.

We report the ctf ratio for the different content summary construction algorithms in
Figure [7(a). The variants of the Focused Probing technique achieve much higher ctf ratios
than RS-Ord and RS-Lrd do. Early during probing, Focused Probing retrieves documents
covering different topics, and then sends queries of increasing specificity, retrieving doc-
uments with more specialized words. As expected, the coverage of the Focused Probing
summaries increases for lower thresholds of 7, since the number of documents retrieved for
lower thresholds is larger (e.g., 493 documents for F'P-SVM for 7, = 0.25 vs. 300 documents
for RS-Lrd): a sample of larger size, everything else being the same, is better for content
summary construction. In general, the difference between RS-Lrd and RS-Ord is small.

8QPilot finds backlinks by querying AltaVista using queries of the form “link:URL-of-the-
database.” [SEQ0]
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Figure 7: The ctf ratio (a) and the Spearman Rank Correlation Coefficient (b) for different
methods and for different values of the specificity threshold ;.

Database | Category RS-Lrd | RS-Ord | FP-SVM | FP-RIPPER | FP-C4.5 | FP-Bayes
CACM Computers 0.79 0.82 0.89 0.82 0.83 0.9
WSJ88 Root 0.79 0.82 0.85 0.83 0.85 0.83
TREC123 | Root 0.68 0.69 0.67 0.67 0.69 0.69

Table 3: The SRCC metric for the three databases in [CCO1], for different content summary
extraction algorithms (75 = 0.25 for the FP-* algorithms).

RS-Lrd has slightly lower ctf values, due to the bias induced from querying only using
previously discovered words.

Correlation of word rankings: The cif ratio can be helpful to compare the quality
of different content summaries. However, this metric alone is not enough, since it does not
capture the relative “rank” of words in the content summary by their observed frequency. To
measure how well a content summary orders words by frequencies with respect to the actual
word frequency order in the database, we use the Spearman Rank Correlation Coefficient
(SRCC for short), which is also used in |[CCO1] to evaluate the quality of the content
summaries. When two rankings are identical then SRCC=1; when they are uncorrelated,
SRCC=0; and when they are in reverse order, SRCC=-1. The results for the different
algorithms are listed in Figure[7(b). Again, the content summaries produced by the Focused
Probing techniques have much higher SRCC' values than for RS-Lrd and RS-Ord, hinting
that Focused Probing retrieves a more representative sample of documents.

Coverage and correlation for additional data sets: In addition to the Con-
trolled data set of Section 5, we evaluated content summary generation over the same
three databases used by Callan et al. in [CCO1]. Specifically, we computed the SRCC and
ctf metrics for the CACM, WSJ88, and TREC123 databases [CC01]. CACM is a collection
of titles and abstracts of 3,204 articles published in the Communications of ACM. WSJ88
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Database | Category RS-Lrd | RS-Ord | FP-SVM | FP-RIPPER | FP-C4.5 | FP-Bayes
CACM Computers 0.79 0.80 0.85 0.87 0.85 0.89
WSJ88 Root 0.85 0.88 0.88 0.89 0.89 0.90
TREC123 | Root 0.80 0.80 0.79 0.82 0.82 0.83

Table 4: The ctf metric for the three databases in [CCO1], for different content summary
extraction algorithms (75 = 0.25 for the FP-* algorithms).
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Figure 8: Comparison of different methods for different values of the specificity threshold
Ts.

is a collection of 39,904 newspaper articles published in 1988 by the Wall Street Journal.
TREC123 is a collection of 1,078,166 articles from the TREC CDs 1, 2, and 3. CACM is
a topically focused collection while WSJ88 and TREC are not. The results are summa-
rized in Tables 3 and 4. As expected, the focused probing algorithms work best for the
CACM database, which is a topically focused collection, classified under Computers by our
algorithm. For the other two databases, WSJ88 and TREC123, the uniform and focused
probing techniques perform similarly. Our technique correctly classifies these two topically
heterogeneous databases under the top Root category of the classification scheme, hence
the relative benefit of focused probing is not realized.

Accuracy of frequency estimations: In Section 3.2 we introduced a technique to
estimate the actual absolute frequencies of the words in a database. To evaluate the accuracy
of our predictions, we report the average relative error for words with actual frequencies
greater than three. (Including the large tail of less-frequent words would highly distort the
relative-error computation.) Figure 8(a) reports the average relative error estimates for our
algorithms. We also applied our absolute frequency estimation algorithm of Section (3.2
to RS-Ord and RS-Lrd, even though this estimation is not part of the original algorithms
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Figure 9: The ctf ratio (a), the Spearman Rank Correlation Coefficient (b), and the average
number of interactions per database for FP and RS methods when they retrieve the same
number of documents.

in [CCO1]. As a general conclusion, our technique provides a good ballpark estimate of the
absolute frequency of the words.

Efficiency: To measure the efficiency of the probing methods, we report the sum of
the number of queries sent to a database and the number of documents retrieved (“number
of interactions”) in Figure [§(b). The Focused Probing techniques on average retrieve one
document per query sent, while RS-Lrd retrieves about one document per two queries. RS-
Ord unnecessarily issues many queries that produce no document matches. The efficiency of
the other techniques is correlated with their effectiveness. The more expensive techniques
tend to give better results. The exception is FP-SVM, which for 7, > 0 has the lowest
cost (or cost close to the lowest one) and gives results of comparable quality with respect
to the more expensive methods. The Focused Probing probes were generally short, with a
maximum of four words and a median of one word per query.

Coverage, correlation and efficiency for identical sample size: We have seen
that the Focused Probing algorithms achieve better ctf ratio and SRCC' values than the RS-
Lrd and RS-Ord algorithms. However, the Focused Probing algorithms generally retrieve a
(moderately) larger number of documents than RS-Ord and RS-Lrd do. To test whether
the improved performance of Focused Probing is just a result of the larger sample size, we
increased the sample size for RS-Lrd to retrieve the same number of documents as each
Focused Probing variant (We pick RS-Lrd over RS-Ord because RS-Ord requires a much
larger number of queries to extract its document sample: most of its queries return no
results (see Figure 8(b)), making it the most expensive method.) Then, we measured the
ctf ratio and SRCC for the alternative versions of RS-Lrd (i.e., one per Focused Probing
variant); we refer to the versions of RS-Lrd that retrieve the same number of documents
as FP-Bayes, FP-CJ.5, FP-RIPPER, and FP-SVM as RS-Bayes, RS-C/.5, RS-RIPPER,
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Figure 10: The average number of interactions per database for FP and RS methods when
they retrieve the same number of documents.

and RS-SVM, respectively. The ctf ratio and the SRCC values for the alternative versions
of RS-Lrd are listed in Figure 9(a) and (b), respectively. We observe that the achieved ctf
ratio and SRCC values of the RS methods improve with the larger document sample, but
are still lower than the values for the corresponding Focused Probing methods. Also, the
average number of queries sent to each database is larger for the RS methods compared to
the respective Focused Probing variant. The sum of the number of queries sent to a database
and the number of documents retrieved (“number of interactions”) is shown Figure [10.

Overall, the Focused Probing techniques produce significantly better-quality summaries
than RS-Ord and RS-Lrd do, both in terms of vocabulary coverage and word-ranking
preservation. The cost of Focused Probing in terms of number of interactions with the
databases is comparable to or less than that for RS-Lrd, and significantly less than that
for RS-Ord. Finally, the absolute frequency estimation technique of Section 3.2 gives good
ballpark approximations of the actual frequencies.

6.2 Database Selection Effectiveness

The Controlled set allowed us to carefully evaluate the quality of the content summaries
that we extract. We now turn to the Web set of real web-accessible databases to evaluate
how the quality of the content summaries affects the database selection task. Additionally,
we evaluate how the hierarchical database selection algorithm of Section 4.2/ improves the
selection task.

Evaluation metrics: We used the queries 451-500 from the Web Track of TREC-
9 [Haw01]. TREC is a conference for the large-scale evaluation of text retrieval methodolo-
gies. In particular, the Web Track evaluates methods for retrieval of web content. TREC
provides both web pages and queries as part of its Web Track. We use the queries for our
database selection experiments over the Web database set described in Section 5.1, (We
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Content Summary CORI bGIOSS

Generation Technique | Hier. | Flat | Hier. | Flat
FP-SVM-Docs 0.27 | 0.17 | 0.163 | 0.085
FP-SVM-Snippets 0.2 | 0.183 | 0.093 | 0.090
RS-Ord - 0.177 - 0.085
QPilot - 0.052 - 0.008

Table 5: The average precision of different database selection algorithms for topics 451-500
of TREC.

ignored the “flat” set of TREC web pages since we are interested in evaluating algorithms
for choosing databases, not individual pages or documents.)

Our evaluation proceeded as follows for each of the 50 TREC queries. Each database
selection algorithm (Section 5.2) picked three databases for the query. We then retrieved
the top-5 documents for the query from each selected database. This procedure resulted in
(at most) 15 documents for the query for each algorithm. The relevance [SM83] of these
15 documents is what ultimately reveals the quality of each algorithm. We asked human
evaluators to judge the relevance of each retrieved document for the query following the
guidelines given by TREC for each query. Then, the precision of a technique for each query
q is:

|relevant documents in the answer]

 |total number of documents in the answerl|

q

We report the average precision achieved by each database selection algorithm over the
50 TREC WebTrack queries in Table [5, ignoring queries with no results. In particular, we
ignored 15 queries for which all database selection algorithms either selected only databases
that return zero documents or failed to select any database giving to all databases a zero
score.

Our database selection algorithm of Section [4.2] chooses databases hierarchically. We
evaluate the performance of the algorithm using content summaries extracted from FP-
SVM probing (Section [5.2) with specificity threshold 75 = 0.25: FP-SVM exhibits the best
accuracy-efficiency tradeoff (Section [6.1) while 74 = 0.25 leads to good database classifica-
tion decisions for web databases [IGS0la]. We compare two versions of the algorithm, one
using CORI [CLC95] as the underlying flat database selection strategy, and another using
bGIOSS [GGMT99]. Note that QPilot, RS-Ord, and RS-Lrd do not classify databases while
building content summaries, hence we did not evaluate our hierarchical database selection
algorithm over their content summaries. Table 5 shows the average precision of the hierar-
chical algorithms against that of flat database selection algorithms over the same content
summaries”. We discuss these results next:

9 Although the reported precision numbers for the distributed search algorithms seem low, we note that
the best precision score achieved in the TREC-9 WebTrack was 0.358 [Haw(01], with the use of centralized
search algorithms. A distributed search algorithm has lower performance given the lack of immediate access
to the documents.
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Effect of different content summaries: To analyze the effect of content summary
construction algorithms on database selection, we tested how the quality of content sum-
maries generated by RS-Ord, Focused Probing, and @QPilot affects the database selection
process. We picked RS-Ord over RS-Lrd because of its superior performance in the eval-
uation of Section 6.1. Also, rather than using the SampleDF(-) frequencies returned by
RS-Ord, we applied our technique of Section [3.2| for ActualDF estimation to the RS-Ord
summaries hence addressing a potential limitation of the original RS-Ord algorithm. In
Table 5l we can see that, surprisingly, the performance of the flat selection algorithms that
use FP-SVM-Docs and RS-Ord summaries did not reflect the gap in quality of the corre-
sponding content summaries (Section [6.1). All the flat selection techniques suffer from the
incomplete coverage of the underlying probing-generated summaries. A clear conclusion
is that @QPilot summaries do not work well for database selection because they generally
contain only a few words and are hence highly incomplete.

Hierarchical vs. flat database selection: For both types of evaluation the hier-
archical versions of the database selection algorithms gave better results than their flat
counterparts. The hierarchical algorithm using CORI as flat database selection has 50%
better precision than CORI for flat selection with the same content summaries. For bGIOSS,
the improvement in precision is even more dramatic at 92%. The reason for the improve-
ment is that the topic hierarchy helps compensate for incomplete content summaries. For
example, in Figure 4/ a query on [metastasis/] would not be routed to the CANCERLIT
database by a database selection algorithm like bGIOSS because “metastasis” is not in the
CANCERLIT content summary. In contrast, our hierarchical algorithm exploits the fact
that “metastasis” appears in the summary for CancerBACUP, which is in the same cate-
gory as CANCERLIT, to allow CANCERLIT to be selected when the “Cancer” category
is selected (the ActualDFegs (metastasis) frequency from CancerBACUP propagates to the
content summary of the “Cancer” category). To quantify how frequent this phenomenon
is, we measured the fraction of times that our hierarchical database selection algorithm
picked a database for a query that both produced matches for the query and was given
a zero score by the flat database selection algorithm of choice. Interestingly, this was the
case for 34% of the databases picked by the hierarchical algorithm with bGlOSS and for
23% of the databases picked by the hierarchical algorithm with CORI. These numbers sup-
port our hypothesis that hierarchical database selection compensates for content-summary
incompleteness.

Snippet vs. Full Document Retrieval: The algorithms that we have described as-
sume retrieval of full documents during probing to build content summaries. An interesting
alternative is to exploit the anchor text and snippets that often accompany each link to a
document in a query result. These snippets are short summaries of the documents that
are often query-specific. Using snippets, rather than full documents, yields more efficient
content summary construction, at the expense of less complete content summaries. We
measured the impact of using just the snippets rather than full documents during content
summary construction. We tested database selection over FP-SVM content summaries gen-
erated from full documents (FP-SVM-Docs), and from just snippets (F'P-SVM-Snippets)
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Figure 11: The ctf ratio (a) and the Spearman Rank Correlation Coefficient (b) for pairs
of database content summaries, as a function of the number of common categories in the
corresponding database pairs.

for the Web set. Interestingly, the performance of flat database selection algorithms for
FP-SVM-Docs and FP-SVM-Snippets was very similar (less than 0.01 difference in preci-
sion). An explanation for this is that snippets tend to contain highly-descriptive document
portions (e.g., title and sentences that are relevant to the query). Hence, by retrieving
only these parts it might be possible to create content summaries that are at least as good
as their flat counterparts. In contrast, the performance of hierarchical database selection
algorithms did suffer when we use the (less complete) summaries that result from only in-
specting snippets. In the hierarchical case the precision of the FP-SVM-Snippets was 0.18
with the flat database selection algorithm and it improved only to 0.20 in the hierarchical
version of the algorithm. On the other hand, for the FP-SVM-Doc algorithm we saw in
Table 5 that the improvement in precision was much larger for the hierarchical database
selection algorithm, with an increase from 0.18 to 0.27.

6.3 Content Summaries and Categories

A key conjecture behind our hierarchical database selection algorithm of Section 4.2]is that
databases under the same category tend to have closely related content summaries. Thus,
we can use the content summary of a database to complement the (incomplete) content
summary of another database in the same category (Section 4.1). We now analyze this
conjecture experimentally over the Controlled data set. For each pair of databases in the
Controlled set, classified using 75 = 0.25, we measured:

e The number of common categories numCategories.

e The ctf and SRCC metrics of their correct content summaries.
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Figure [11 reports the average ctf and SRCC metrics over all pair of databases in the
Controlled set, discriminated by numCategories. The figure shows that the larger the num-
ber of common categories between a pair of databases, the more similar their corresponding
content summaries tend to be according to ctf and SRCC. This conclusion supports the
conjecture behind our hierarchical database selection of Section 4.2.

7 Related Work

A large body of work has been devoted to the task of database selection. Many database
selection algorithms [GGMT99, MLY "98, XC98, [YLI7, [CLCI5, Fuh99] rely on content sum-
maries of the databases for this task. Some algorithms rely on hierarchical schemes [DAA99,
She95, [GGMTI9] to direct the queries to the appropriate nodes of the hierarchy. Some ap-
proaches rely either on access to all documents or on metadata directly exported by the
databases. Unfortunately, web-accessible databases rarely export such metadata. Recently,
Etzioni and Sugiura [SE00] proposed the QPilot technique, which uses query expansion to
route queries to the appropriate search engines (Section 5.2)). Callan et al. [CC01l, (CCD99]
suggested using query probes to extract document samples from databases for content sum-
mary construction. Craswell et al. [CBH00] compared the performance of flat database
selection algorithms in the presence of such content summaries.

Hawking and Thistlewaite [HT99] used query probing at query time to perform database
selection by ranking databases by similarity to a given query. Their algorithm relies on non-
standard query interfaces that can handle normal queries and query probes differently, with
smaller cost for query probes than for normal queries.

In [IGSOla] Ipeirotis et al. used focused query probing to automatically classify a
database in a hierarchical taxonomy (see [IGSOla] for more references on database clas-
sification). We have built on the results in [IGS0la] to create an effective algorithm for
content summary extraction that classifies databases while extracting document samples.
This classification is used in the hierarchical database selection algorithm that we proposed
in Section 4.

8 Conclusions and Future Work

In this paper we presented a novel and efficient method for the construction of content
summaries of web-accessible text databases. Our algorithm creates content summaries of
higher quality than current approaches and, additionally, categorizes databases in a classi-
fication scheme. We also presented a hierarchical database selection algorithm that exploits
the database content summaries and the generated classification to produce accurate results
even for imperfect content summaries. Experimental results showed that our techniques im-
prove the state of the art in content-summary construction and database selection. Finally,
we have implemented the content-summary construction algorithm described in this paper
as part of the SDARTS toolkit for metasearching [GIGO1]. The code with our implemen-
tation, plus some real content summaries extracted from real web databases are available
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from http://sdarts.cs.columbia.edu.

In Section 4 we used a “specificity-based” approach to locate the most topically-specific
databases for a query. As future work, we will study alternative hierarchy traversing tech-
niques. For example, an algorithm could treat databases and categories symmetrically and
perhaps “route” queries to multiple categories if appropriate. In contrast, the algorithm in
Figure |5 performs a depth-first search to find the most appropriate category for a query and
then picks appropriate databases. We also plan to examine the effect of absolute frequency
estimation (Section [3) on database selection. As discussed, absolute frequencies are helpful
to distinguish, for example, between small and large databases on related topics (e.g., the
word “cancer” appears in 1,416,852 documents in PubMed and in 1,291 documents in U. of
Michigan Cancer Center). In the future, we will experimentally quantify the actual benefit
of using absolute document frequency estimates for both flat and hierarchical database se-
lection. Finally, we plan to examine alternative methods for creating content summaries. In
particular, we will explore smoothing [Jel99] techniques to combine the content summaries
of all databases under a category into the summary for the category itself.
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