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Abstract

We extend the notion of L2-B-discrepancy introduced in [E. Novak, H. Woźnia-
kowski, L2 discrepancy and multivariate integration, in: Analytic number theory.
Essays in honour of Klaus Roth. W. W. L. Chen, W. T. Gowers, H. Halberstam,
W. M. Schmidt, and R. C. Vaughan (Eds.), Cambridge University Press, Cam-
bridge, 2009, 359 – 388] to what we want to call weighted geometric L2-discrepancy.
This extended notion allows us to consider weights to moderate the importance of
different groups of variables, and additionally volume measures different from the
Lebesgue measure as well as classes of test sets different from measurable subsets
of Euclidean spaces.

We relate the weighted geometric L2-discrepancy to numerical integration de-
fined over weighted reproducing kernel Hilbert spaces and settle in this way an open
problem posed by Novak and Woźniakowski.

Furthermore, we prove an upper bound for the numerical integration error for
cubature formulas that use admissible sample points. The set of admissible sample
points may actually be a subset of the integration domain of measure zero. We
illustrate that particularly in infinite-dimensional numerical integration it is crucial
to distinguish between the whole integration domain and the set of those sample
points that actually can be used by algorithms.

1 Introduction

It is known that many notions of L2-discrepancy are intimately related to multivariate
or infinite-dimensional numerical integration over corresponding normed function spaces,
see, e.g., [Zar68, Woź91, Hic98, SW98, HW01, NW01a, NW01b, NW09, DP10, NW10]
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and the related literature mentioned therein. In particular, Novak and Woźniakowski
introduced in [NW09] (see also [NW10, Chapter 9]) the quite general notion of L2-B-
discrepancy. Here B refers to a function that maps elements t from some measurable
Euclidean set D to measurable subsets B(t) of Rd. The L2-B-discrepancy of a point set
{t1, . . . , tn} and real coefficients a1, . . . , an is then taken with respect to the class of test
sets B = {B(t) | t ∈ D} and a probability density ρ on D,

discB
2 ({tj}, {aj}) =

∫
D

(
vol(B(t))−

n∑
j=1

aj1B(t)(tj)

)2

ρ(t) dt

1/2

,

where 1B(t) is the characteristic function of the set B(t) and vol(B(t)) is the d-dimensional
Lebesgue measure of B(t), see also Section 7.1. Novak and Woźniakowski showed that the
L2-B-discrepancy corresponds to multivariate numerical integration over a Hilbert space
with some reproducing kernel Kd related to the class of test sets B and the probability
density ρ.

Their notion of L2-B-discrepancy does not take into account the concept of weights to
model the different importance of distinct subsets of coordinates, which is often helpful to
overcome the curse of dimensionality. In the context of multivariate numerical integration
such weights were probably first studied by Sloan and Woźniakowski in [SW98].

In their new book [NW10] Novak and Woźniakowski posed the open problem to extend
the notion of L2-B-discrepancy to include weights and to find relations of the new dis-
crepancy notion to multivariate numerical integration over weighted reproducing kernel
Hilbert spaces (cf. [NW10, Open Problem 35]).

In this paper we introduce the even more general definition of weighted geometric L2-
discrepancy1, which allows not only to consider weights, but also admits measures that
may differ from the Lebesgue measure on domains that are not necessarily measurable
subsets of Rd. Especially, it covers discrepancies related to infinite-dimensional numerical
integration. We prove relations of this discrepancy notion to numerical integration over
corresponding weighted reproducing kernel Hilbert spaces and thus, in particular, settle
the open problem posed by Novak and Woźniakowski.

The paper is organized as follows: In Section 2 we introduce the setting we want to
consider and state the general assumptions we want to make throughout the paper. In
Section 3 we define the weighted geometric L2-discrepancy and in Section 4 we introduce
the numerical integration problems we want to study. We call the worst case error of
integration by linear algorithms “weighted numerical discrepancy”. With this notion the
central question of Section 5 can be put as “Under which conditions do weighted geometric
discrepancy and weighted numerical L2-discrepancy coincide?”. Of special interest is
the situation, where the test sets which are used to determine the discrepancy and the
measures on these classes of test sets exhibit a certain product structure, see Section
5.2. In Section 6 we prove an upper bound for the weighted geometric and the weighted

1The term “geometric discrepancy” has been used in the literature before, see, e.g., the title of the
monograph [Mat10], but, as far as we can see, this term has never been defined in a rigorous way.
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numerical L2-discrepancy. Stated in the setting of numerical integration, we prove that
there exist linear algorithms using n admissible sample points such that the integration
error is smaller than a constant divided by

√
n. By refining the standard quasi-Monte

Carlo averaging proof technique, we get this result also for sets of admissible sample points
which may form a subset of measure zero of the actual integration domain. In Section 7
we discuss several examples.

2 General Assumptions

Let (M, Σ, µ) be a measure space. We assume M to be σ-finite, i.e., M can be written as
a countable union of sets of finite measure.

Let I be a countable index set which may have finitely or infinitely many elements. For
ν ∈ I let (Mν , Σν , µν) be a σ-finite measure space, which is related to the measure space
(M, Σ, µ) in the following way: There exists a surjective measurable map Φν : M → Mν

such that µν is the direct image of µ under Φν , i.e., µν = µ ◦ Φ−1
ν . In particular, we have

µν(Mν) = µ(M).
Most important for us is the case where Φν is some kind of projection and thus

typically a non-injective function. Hence we understand Φ−1
ν not as a function on Mν ,

but as a function on the power set of Mν – it maps each subset A of Mν to its pre-image
Φ−1

ν (A) := {m ∈ M |Φν(m) ∈ A}.
Let Bν be a subset of Σν , consisting of sets of finite measure, endowed with a σ-algebra

Σ(Bν) and a probability measure ων . We put B := (Bν)ν∈I . We assume for all ν ∈ I that
the function

χν : Mν × Bν → {0, 1} , (xν , Bν) 7→ 1Bν (xν) (1)

is measurable with respect to the product σ-algebra Σν ⊗ Σ(Bν) on Mν × Bν . Due to
Tonelli’s theorem the function

Bν 7→ µν(Bν) =

∫
Mν

1Bν (xν) dµν(xν)

is measurable with respect to Σ(Bν). Additionally, we require that∫
Bν

µν(Bν)
2 dων(Bν) < ∞. (2)

Let γ := (γν)ν∈I be a family of non-negative weights, i.e., γν ∈ [0,∞) for all ν ∈ I.
Furthermore, we consider a subset S of M which we want to call set of admissible

sample points. For many discrepancies and numerical integration problems S will be equal
to M . But for some numerical integration problems, in particular for infinite-dimensional
integration as described in Sect. 7.4, S will be a proper subset or even a null set of M .
With regard to such applications it is particularly important to distinguish between S
and M in Sect. 6 and Theorem 6.1.

3



3 Weighted Geometric L2-Discrepancy

For ν ∈ I we define the local (geometric) discrepancy function of a multi-set of points
{t1,ν , . . . , tn,ν} in Mν for a multi-set of real coefficients {a1, . . . , an} and a test set Bν ∈ Bν

by

disc(Bν , {tj,ν}, {aj}) := µν(Bν)−
n∑

j=1

aj1Bν (tj,ν), (3)

and the weighted geometric L2-discrepancy for a multi-set {t1, . . . , tn} in M with respect
to B = (Bν)ν∈I and γ = (γν)ν∈I by

discB2,γ({tj}, {aj}) :=

(∑
ν∈I

γν

∫
Bν

disc(Bν , {Φν(tj)}, {aj})2 dων(Bν)

)1/2

. (4)

We suppress the attribute “weighted” if all weights except of one are equal to zero. We
deduce from (3)

discB2,γ({tj}, {aj})

=

(∑
ν∈I

γν

[∫
Bν

µν(Bν)
2 dων(Bν)− 2

n∑
j=1

aj

∫
Bν

µν(Bν)1Bν (Φν(tj)) dων(Bν)

+
n∑

i,j=1

aiaj

∫
Bν

1Bν (Φν(ti))1Bν (Φν(tj)) dων(Bν)

])1/2

.

(5)

We are mostly interested in the situation where discB2,γ({tj}, {aj}) is finite for any choice
of {tj}. Due to (5) and (2) this is always satisfied for finite I, and, if the weights γ decay
rapidly enough, also for infinite I, see the examples in Section 7. If, e.g., µ(M) is finite,
then it is sufficient that

∑
ν∈I γν < ∞.

Let us define the nth S-minimal weighted geometric L2-discrepancy discB2,γ(n, S) by

discB2,γ(n, S) := inf{discB2,γ({tj}, {aj}) | t1, . . . , tn ∈ S, a1, . . . , an ∈ R}.

4 Integration on Weighted Reproducing Kernel Hil-

bert Spaces

Let (K̃ν)ν∈I be a family of reproducing kernels K̃ν : Mν × Mν → R. That is, for each

ν ∈ I the function K̃ν is symmetric

K̃ν(xν , yν) = K̃ν(yν , xν) for all xν , yν ∈ Mν

and positive semi-definite

n∑
i,j=1

K̃ν(xi, xj)ξiξj ≥ 0 for all n ∈ N, x1, . . . , xn ∈ Mν , ξ1, . . . , ξn ∈ R.

4



In general, we denote the reproducing kernel Hilbert space of a reproducing kernel K
by H(K) and its scalar product by 〈 · , · 〉H(K). Our standard reference for the theory

of reproducing kernel Hilbert spaces and their kernels is [Aro50]. We assume that K̃ν is
measurable on M ×M for all ν ∈ I. For each ν ∈ I the function Kν , defined by

Kν(x, y) := K̃ν(Φν(x), Φν(y)) for all x, y ∈ M ,

inherits from K̃ν the properties of symmetry and of positive semi-definiteness, and is
therefore a reproducing kernel on M × M . Furthermore, Kν is measurable on M × M .
Let us assume that ∑

ν∈I

γνKν(x, x) < ∞ for all x ∈ M , (6)

which, of course, is trivially satisfied if I is a finite set. Since

|Kν(x, y)|2 ≤ Kν(x, x)Kν(y, y) for all x, y ∈ M,

the function Kγ defined by

Kγ(x, y) :=
∑
ν∈I

γνKν(x, y) for all x, y ∈ M , (7)

is well-defined. Kγ is a measurable map and a reproducing kernel on M ×M , see [Aro50,
Sect. I.9, Thm.II]. The corresponding Hilbert space H(Kγ) can be described as follows: If
we assume for convenience that I = N and γν > 0 for all ν ∈ I, we may define for n ∈ N
the Hilbert space Fn =

∑n
ν=1 H(Kν) with the norm

‖f‖2
n := min

n∑
ν=1

γ−1
ν ‖fν‖2

H(Kν),

where the minimum is taken over all decompositions f =
∑n

ν=1 fν , fν ∈ H(Kν). Put
F0 := ∪n∈NFn, endowed with the norm ‖f‖0 = limn→∞ ‖f‖n. (The limit exists, since we
have for n ≥ m and f ∈ Fm that ‖f‖n ≤ ‖f‖m.) Now f ∗0 : M → R is in H(Kγ) if and

only if there exists a Cauchy sequence (f
(n)
0 )n∈N in F0 with

f ∗0 (x) := lim
n→∞

f
(n)
0 (x) for all x ∈ M . (8)

The norm of f ∗0 in H(Kγ) is then given by

‖f ∗0‖H(Kγ) = min lim
n→∞

‖f (n)
o ‖0,

where the minimum is taken over all Cauchy sequences (f
(n)
0 )n∈N in F0 that satisfy (8).

Recall that due to the reproducing kernel properties we have

Kγ(·, y) ∈ H(Kγ) for all y ∈ M

and
f(x) = 〈f, Kγ(·, x)〉H(Kγ) for all f ∈ H(Kγ), x ∈ M

(and the same holds, of course, if we substitute all γs by any fixed ν ∈ I).
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Lemma 4.1. For all x ∈ M and all ν ∈ I we have Kν(·, x) ∈ H(Kγ). Furthermore,

Kγ(·, x) =
∑
ν∈I

γνKν(·, x), (9)

where the sum converges unconditionally to Kγ(·, x) in H(Kγ).

The lemma follows again from [Aro50, Sect. I.9, Thm.II].
We assume that H(Kγ) consists of integrable functions with respect to µ and that the

integral

I(f) =

∫
M

f(x) dµ(x)

is a bounded linear functional on H(Kγ), i.e, that the function

hγ :=

∫
M

Kγ(x, ·) dµ(x) ∈ H(Kγ). (10)

Note that
I(f) = 〈f, hγ〉H(Kγ) for all f ∈ H(Kγ);

the function hγ is called the representer of I in H(Kγ).
From Lemma 4.1 follows for all y ∈ M that Kν(·, y) is integrable with respect to µ

and ∫
M

Kγ(x, y) dµ(x) = 〈hγ, Kγ(·, y)〉H(Kγ) =
∑
ν∈I

γν〈hγ, Kν(·, y)〉H(Kγ)

=
∑
ν∈I

γν

∫
M

Kν(x, y) dµ(x).

(11)

Furthermore, hγ ∈ H(Kγ) implies that hγ is integrable with respect to µ and

‖hγ‖2
H(Kγ) =

∫
M

(∫
M

Kγ(x, y) dµ(x)

)
dµ(y) < ∞. (12)

Notice that ‖hγ‖H(Kγ) is the operator norm of I. Since we are only interested in non-
trivial integration problems, we assume ‖hγ‖H(Kγ) > 0. Furthermore, we assume that the
kernel functions

Kγ and Kν , ν ∈ I, are integrable on M ×M (13)

and ∫
M

∫
M

Kγ(x, y) dµ(x) dµ(y) =
∑
ν∈I

γν

∫
M

∫
M

Kν(x, y) dµ(x) dµ(y). (14)

In the important case where for each ν ∈ I the kernel Kν takes only non-negative values
(see Sect. 5), (12) and Tonelli’s theorem already imply the integrability of Kγ on M ×M
which in turn, together with the dominated convergence theorem, ensures the integrability
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of the Kνs and (14). For convenience, we want to call weights γ that ensure that all
assumptions made above are satisfied admissible weights.

Let Qn be a linear algorithm given by

Qn(f) =
n∑

j=1

ajf(tj) with t1, . . . , tn ∈ S and a1, . . . , an ∈ R. (15)

Then
I(f)−Qn(f) = 〈f, hγ,n〉H(Kγ) for all f ∈ H(Kγ),

where

hγ,n := hγ −
n∑

j=1

ajKγ(·, tj).

If we want to approximate the functional I by the linear algorithm Qn, then the worst
case error of the approximation taken over the norm unit ball of H(Kγ) is given by

ewor(Qn, H(Kγ)) = sup
‖f‖H(Kγ )≤1

|I(f)−Qn(f)| = ‖hγ,n‖H(Kγ). (16)

In the case of finite-dimensional integration of functions defined on [0, 1]d whose mixed
first partial derivatives are square integrable, the quantity ‖hγ,n‖H(Kγ) was called gener-
alized L2-discrepancy in [Hic98]. In the case of infinite-dimensional integration of func-
tions defined on [0, 1]N it was simply called L2-discrepancy in [HW01]. To distinguish
it clearly from the weighted geometric L2-discrepancy defined in (4), we prefer to call
ewor(Qn, H(Kγ)) = ‖hγ,n‖H(Kγ) the weighted numerical L2-discrepancy of the linear algo-
rithm Qn (or of the corresponding multi-sets {t1, . . . , tn} of sample points and {a1, . . . , an}
of coefficients). As in the case of the weighted geometric L2-discrepancy, we drop the at-
tribute “weighted” if all weights γν except of one are equal to zero.

We obtain

ewor(Qn, H(Kγ))
2

=‖hγ‖2
H(Kγ) − 2

n∑
j=1

aj〈hγ, Kγ(·, tj)〉H(Kγ) +
n∑

i,j=1

aiaj〈Kγ(·, ti), Kγ(·, tj)〉H(Kγ)

=

∫
M

∫
M

Kγ(x, y) dµ(x) dµ(y)− 2
n∑

j=1

aj

∫
M

Kγ(x, tj) dµ(x) +
n∑

i,j=1

aiajKγ(ti, tj).

Thus we have

ewor(Qn, H(Kγ))
2

=
∑
ν∈I

γν

[∫
M

∫
M

Kν(x, y) dµ(x) dµ(y)− 2
n∑

j=1

aj

∫
M

Kν(x, tj) dµ(x) +
n∑

i,j=1

aiajKν(ti, tj)

]
,

(17)

where in the case of infinite I the identity follows from (11) and (14).
Let us also define the nth S-minimal worst case error ewor(n, S, H(Kγ)) by

ewor(n, S, H(Kγ)) = inf{ewor(Qn, H(Kγ)) |Qn as in (15)}.
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5 Relation between Weighted Numerical Integration

and Weighted Geometric L2-Discrepancy

We are interested in the question when do weighted numerical L2-discrepancy and weighted
geometric L2-discrepancy coincide, that is, under which conditions does the identity

ewor(Qn, H(Kγ)) = discB2,γ({tj}, {aj}) (18)

hold?

5.1 The General Case

Let us first assume we have

Kν(x, y) =

∫
Bν

1Bν (Φν(x))1Bν (Φν(y)) dων(Bν) for all x, y ∈ M and all ν ∈ I. (19)

The function Kν defined by (19) is measurable on M ×M due to (1), the measurability
of Φν , and Tonelli’s theorem. It is indeed a reproducing kernel, since it is obviously
symmetric and also positive semi-definite: Let n ∈ N, x1, . . . , xn ∈ M , and a1, . . . , an ∈ R.
Then

n∑
i,j=1

Kν(xi, xj)aiaj =

∫
Bν

(
n∑

i=1

ai1Bν (Φν(xi))

)2

dων(Bν) ≥ 0.

We have to assume (6), which is now, e.g., satisfied if
∑

ν∈I γν < ∞. Furthermore, we
assume that H(Kγ) consists of µ-integrable functions and that integration is a bounded
linear functional on H(Kγ), i.e., that (10) holds. Then, due to the fact that the Kνs are
non-negative, condition (13) and (14) are also satisfied.

Under these assumptions (19) implies that identity (18) holds independently of the
choice of the finite sequences {tj}, {aj}, and the admissible weights γ = (γν)ν∈I . Indeed,
due to our assumptions µν = µ ◦ Φ−1

ν and the measurability of χν defined in (1), and to
the theorem of Fubini and Tonelli,∫

M

∫
M

Kν(x, y) dµ(x) dµ(y) =

∫
M

∫
M

∫
Bν

1Bν (Φν(x))1Bν (Φν(y)) dων(Bν) dµ(x) dµ(y)

=

∫
Bν

(∫
M

1Bν (Φν(x)) dµ(x)

)2

dων(Bν)

=

∫
Bν

(∫
Mν

1Bν (ξν) dµν(ξν)

)2

dων(Bν)

=

∫
Bν

µν(Bν)
2 dων(Bν).
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Furthermore,∫
M

Kν(x, tj) dµ(x) =

∫
Bν

(∫
M

1Bν (Φν(x)) dµ(x)

)
1Bν (Φν(tj)) dων(Bν)

=

∫
Bν

µν(Bν)1Bν (Φν(tj)) dων(Bν).

Hence identity (18) follows from identity (5) and (17).
A comparison of (5) and (17) reveals that condition (19) is not only sufficient, but

also necessary for (18) to hold for all choices of {tj}, {aj}, and γ. It is even necessary if
we restrict ourselves to the case n = 2, arbitrary a1, a2 > 0, t1, t2 ∈ M , and admissible
positive weights γ. This is easily verified by first varying the positive weights γ, which
shows that for each ν ∈ I the corresponding summands in (5) and (17) have to be equal,
and then, for fixed ν, t1, and t2, varying the coefficients a1 and a2.

Theorem 5.1. Let γ = (γν)ν∈I be a sequence of weights, and assume that (6) holds. Let
Kγ be the reproducing kernel defined by equation (7). Furthermore, assume that H(Kγ)
consists of µ-integrable functions and that (10), (13), and (14) hold.

If additionally condition (19) is satisfied, then the identity

ewor(Qn, H(Kγ)) = discB2,γ({tj}, {aj}) (20)

holds for all linear algorithms Qn(f) =
∑n

j=1 ajf(tj), a1, . . . , an ∈ R, t1, . . . , tn ∈ S.
Consequently, we have

ewor(n, S, H(Kγ)) = discB2,γ(n, S).

Condition (19) is also necessary for (20) to hold for all choices of sample points {tj},
coefficients {aj}, and admissible weights γ.

Corollary 5.2. Let the assumptions from Theorem 5.1 hold. If additionally (19) holds,
we have the following generalized Zaremba inequality∣∣∣∣∣

∫
M

f(x) dµ(x)−
n∑

i=1

aif(ti)

∣∣∣∣∣ ≤ discB2,γ({tj}, {ai})‖f‖H(Kγ)

for all f ∈ H(Kγ), t1, . . . , tn ∈ S, and a1, . . . , an ∈ R.

5.2 The Product Structure Case

Here we want to study a situation where condition (19) can be simplified reasonably. Let

us assume that there exists a set M̃ , and a class B̃ of subsets of M̃ , endowed with a
σ-algebra Σ(B̃) and a probability measure ω̃ such that the following holds:

Assumption 1. For each ν ∈ I exists a number n(ν) ∈ N such that

(i) Mν is the n(ν)-fold Cartesian product of M̃ , i.e., Mν =
∏n(ν)

i=1 M̃ ,
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(ii) each Bν ∈ Bν is an n(ν)-fold Cartesian product of sets in B̃, i.e.,

Bν = ×n(ν)
i=1 B̃ :=


n(ν)∏
i=1

Bi

∣∣∣∣Bi ∈ B̃

 ,

(iii) the σ-algebra Σ(Bν) on Bν is the n(ν)-fold product σ-algebra of Σ(B̃), i.e.,

Σ(Bν) = ⊗n(ν)
i=1 Σ(B̃),

(iv) the measure ων on Σ(Bν) is the n(ν)-fold product measure of ω̃, i.e., ων = ⊗n(ν)
i=1 ω̃.

(Formally, the product σ-algebra ⊗n(ν)
i=1 Σ(B̃) is defined on the n(ν)-fold Cartesian

product
∏n(ν)

i=1 B̃, but as a measure space we simply identify ×n(ν)
i=1 B̃ with

∏n(ν)
i=1 B̃. As

long as, e.g., ∅ /∈ B̃, we have the canonical bijection
∏n(ν)

i=1 B̃ → ×n(ν)
i=1 B̃, (B1, . . . , Bn(ν)) 7→∏n(ν)

i=1 Bi; note that the empty set is irrelevant for discrepancy questions, since it always

leads to the trivial local discrepancy zero.) For j = 1, . . . , n(ν) let Φν,j : M → M̃
denote the jth component function of Φν , that is Φν = (Φν,1, . . . , Φν,n(ν)). Furthermore,

Assumption 1 and (1) ensure that B 7→ 1B(r) is a measurable map on B̃ for all r ∈ M̃ .
Under Assumption 1 condition (19) reads

Kν(x, y) =

n(ν)∏
i=1

∫
eB 1B(Φν,i(x))1B(Φν,i(y)) dω̃(B) for all x, y ∈ M and all ν ∈ I.

Thus, defining the reproducing kernel K̃ on M̃ × M̃ by

K̃(r, s) =

∫
eB 1B(r)1B(s) dω̃(B) for all r, s ∈ M̃, (21)

we get

Kν(x, y) =

n(ν)∏
i=1

K̃(Φν,i(x), Φν,i(y)) for all x, y ∈ M and all ν ∈ I. (22)

On the other hand, it is easily seen that under the assumption that (22) holds for some

function K̃ : M̃ × M̃ → R, the conditions (19) and (21) are equivalent (apart from the
fact that in the case where all n(ν) are even, we have the additional freedom to multiply
K̃ in (21) by a factor −1).

Note that (22) implies that the reproducing kernel Hilbert space H(K̃ν) is of ten-

sor product structure. More precisely, we have that H(K̃ν) is equal to ⊗n(ν)
i=1 H(K̃), the

complete n(ν)-fold tensor product Hilbert space of H(K̃), see, e.g., [Aro50, Sect. I.8].

Theorem 5.3. Let the assumptions of Theorem 5.1 hold, and let Assumption 1 be satis-
fied.
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(i) Condition (19) implies for all ν ∈ I that the reproducing kernel Kν is of product

structure (22) with K̃ as in (21), and the reproducing kernel Hilbert space H(K̃ν)

is the complete n(ν)-fold tensor product Hilbert space of H(K̃).

(ii) Let condition (22) hold. Then condition (19) is equivalent to condition (21). In par-
ticular, condition (21) is sufficient and necessary to ensure for all linear algorithms
Qn(f) =

∑n
j=1 ajf(tj), a1, . . . , an ∈ R, t1, . . . , tn ∈ S, and all admissible weights γ

that
ewor(Qn, H(Kγ)) = discB2,γ({tj}, {aj}).

(If all ν are even, this holds only modulo the restriction that we have the additional

freedom to multiply K̃ in (21) by −1.)

Notice that for Theorem 5.3 it is completely irrelevant whether the measure µ on M ,
or the measures µν on Mν , ν ∈ I, have product structure, see also the example given in
Subsection 7.2.

6 An Upper Bound for the Integration Error

Let us assume that condition (19) holds. Furthermore, we assume that (M, Σ, µ) is a finite
measure space, i.e., µ(M) < ∞, and that

∑
ν∈I γν < ∞. The set S ⊆ M of admissible

sample points should be measurable.
If additionally µ(M\S) = 0, then we can prove an upper bound on ewor(n, S, H(Kγ)) by

averaging over all properly normalized quasi-Monte Carlo algorithms that use admissible
sample points. Now, in some applications, we may not have µ(M \ S) = 0. Actually, in
infinite-dimensional integration under realistic assumptions we have rather µ(S) = 0, see
the example in Subsection 7.4. That is why we require the following weaker conditions:

There exists a sequence (νm)m∈N in I which satisfies

µνm(Mνm \ Φνm(S)) = 0 for all m ∈ N, (23)

and additionally, we find for all ν ∈ I an m0 ∈ N such that for all m ≥ m0 there exists a
measurable map

Ψm,ν : Mνm → Mν with Ψm,ν ◦ Φνm = Φν . (24)

(Indeed, these conditions hold if µ(M \ S) = 0, since we may formally extend I by some
index κ /∈ I, define (Mκ, Σκ, µκ) := (M, Σ, µ) and put γκ := 0 and νm := κ for all m ∈ N,
and Ψm,ν := Φν and Φνm := IdM for all m, ν ∈ N.)

If for νm and ν ∈ I condition (24) holds, we write ν � νm. Note that this relation
implies µν = µνm ◦ Ψ−1

m,ν , i.e., µν is the direct image of µνm under Ψm,ν . Recall that (19)

implies Kν(x, y) = K̃ν(Φν(x), Φν(y)) ∈ [0, 1] for all x, y ∈ M .
From (17) we get for all m ∈ N and all linear algorithms of the form

Qn(f) =
µ(M)

n

n∑
j=1

f(tj) , t1, . . . , tn ∈ S , (25)

11



the estimate

ewor(Qn, H(Kγ))
2 ≤ fm(Φνm(t1), . . . , Φνm(tn)) + 2µ(M)2

∑
ν 6�νm

γν ,

where

fm(τ1, . . . , τn) =
∑
ν�νm

γν

[ ∫
Mν

∫
Mν

K̃ν(xν , yν) dµν(xν) dµν(yν)

− 2µ(M)

n

n∑
j=1

∫
Mν

K̃ν(xν , Ψm,ν(τj)) dµν(xν) +
µ(M)2

n2

n∑
i,j=1

K̃ν(Ψm,ν(τi), Ψm,ν(τj))

]
for τ1, . . . , τn ∈ Mνm . For any m we can average for fixed n over fm(τ1, . . . , τn), τ1, . . . , τn ∈
Φνm(S). Due to (23) we get

1

µνm(Φνm(S))n

∫
(Φνm (S))n

fm(τ1, . . . , τn) dµνm(τ1) . . . dµνm(τn)

=
1

µνm(Mνm)n

∫
Mn

νm

fm(τ1, . . . , τn) dµνm(τ1) . . . dµνm(τn)

=
∑
ν�νm

γν

[ ∫
Mν

∫
Mν

K̃ν(xν , yν) dµν(xν) dµν(yν)

− 2

n

n∑
j=1

∫
Mνm

∫
Mν

K̃ν(xν , Ψm,ν(τj)) dµν(xν) dµνm(τj)

+
µ(M)

n2

n∑
i=1

∫
Mνm

K̃ν(Ψm,ν(τi), Ψm,ν(τi)) dµνm(τi)

+
1

n2

n∑
i6=j

∫
Mνm

∫
Mνm

K̃ν(Ψm,ν(τi), Ψm,ν(τj)) dµνm(τi) dµνm(τj)

]
=

1

n

∑
ν�νm

γν

[
µ(M)

∫
Mν

K̃ν(xν , xν) dµν(xν)−
∫

Mν

∫
Mν

K̃ν(xν , yν) dµν(xν) dµν(yν)

]
.

Due to (19) we have ∫
Mν

K̃ν(xν , xν) dµν(xν) ≤ µν(Mν) = µ(M).

For given n ∈ N we may choose m = m(n) ∈ N such that

2µ(M)2
∑
ν 6�νm

γν ≤
1

n

∑
ν�νm

γν

∫
Mν

∫
Mν

K̃ν(xν , yν) dµν(xν) dµν(yν).

(Recall that the sum on the right hand side converges to ‖hγ‖2
H(Kγ) > 0 for m →∞, see

(12), (14) and the following comment. Furthermore, we assumed that the weights (γν)ν∈I

are summable.)
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From this follows that there exists at least one normalized quasi-Monte Carlo algorithm
Qn that uses n admissible sample points with

ewor(Qn, H(Kγ)) ≤
µ(M)

√∑
ν∈I γν√

n
.

Altogether we have proved the following theorem.

Theorem 6.1. Assume that
∑

ν∈I γν < ∞, µ(M) < ∞, and that the set S of admissible
sample points is a measurable subset of M . Assume that (19) holds and let the weighted
reproducing kernel Kγ be defined by equation (7). Assume furthermore that (10) holds.

If µ(M \ S) = 0 or if the weaker conditions (23) and (24) hold, then there exists a
normalized quasi-Monte Carlo algorithm Qn as in (25) such that

ewor(n, S, H(Kγ)) ≤ ewor(Qn, H(Kγ)) ≤
µ(M)

√∑
ν∈I γν√

n
, (26)

or equivalently, there exists points t1, . . . , tn ∈ S and coefficients a1 = . . . = an = µ(M)/n
such that

discB2,γ(n, S) ≤ discB2,γ({tj}, {aj}) ≤
µ(M)

√∑
ν∈I γν√

n
.

Remark 6.2. In Theorem 6.1 we actually did not need condition (19) to prove the
estimate (26), but only the weaker condition that Kν takes only values in [0, 1] for all
ν ∈ I. In general, it is sufficient to get a (properly scaled) version of estimate (26) if all
the Kνs are non-negative and uniformly bounded.

7 Examples

Here we want to discuss some special cases of the quite general notion of weighted geo-
metric L2-discrepancy from Section 3 and relate them to numerical integration on corre-
sponding reproducing kernel Hilbert spaces.

7.1 L2-B-Discrepancy

We start with the L2-B-discrepancy as defined in [NW09], see also [NW10]. This dis-
crepancy fits in our more general definition if we make the following choices: Let M be
a measurable subset of Rd, Σ the Borel σ-algebra, and µ the d-dimensional Lebesgue
measure restricted to M . Furthermore, let I = {1}, γ1 = 1, and let Φ1 : M → M be the
identity mapping. Let B1 = B be a class of measurable subsets of M with ∪B∈BB = M .
For a given positive integer τ(d) let D ⊆ Rτ(d) be Borel measurable and ρ : D → [0,∞) a
probability density.

Let B : D → B, x 7→ B(x) be a parametrization such that the mapping (t, x) 7→
1B(x)(t) is measurable on M ×D with respect to the product σ-algebra. (The last impor-
tant measurability condition was actually forgotten in [NW09], but is added in the more
recent and more comprehensive exposition in [NW10, Chapter 9].)

13



Formally, we endow B with the σ-algebra

Σ(B) = {A ⊆ B |B−1(A) Borel measurable}.

Let the probability measure ω on B be induced by the probability measure ρ(x) dx, where
dx is the τ(d)-dimensional Lebesgue measure, that is,

ω(A) =

∫
B−1(A)

ρ(x) dx for all A ∈ Σ(B).

For these special choices the weighted geometric L2-discrepancy defined in (4) is nothing
but the L2-B-discrepancy

discB
2 ({ti}, {aj}) =

∫
B

(
vol(A)−

n∑
j=1

aj1A(tj)

)2

dω(A)

1/2

=

∫
D

(
vol(B(x))−

n∑
j=1

aj1B(x)(tj)

)2

ρ(x) dx

1/2

defined in [NW09]. In this situation Theorem 5.1 and Theorem 6.1 (under the additional
assumption S = M) were already proved in [NW09]. If KB

d denotes the reproducing
kernel corresponding to discB

2 , then condition (19) becomes

KB
d (y, z) =

∫
D

1B(x)(y)1B(x)(z)ρ(x) dx for all y, z ∈ M .

More concrete examples for L2-B-discrepancies as, e.g., the centered discrepancy [Hic98],
the quadrant discrepancy [HSW04, NW09], the extreme discrepancy [MC94] or the periodic
ball discrepancy [CT09] are discussed in [NW09, NW10]. That is why we confine ourselves
in the rest of this section to present examples of (weighted) geometric L2-discrepancies
which are not covered by the notion of L2-B-discrepancy.

7.2 G-Discrepancy

The d-dimensional L2-G-discrepancy or L2-G-star discrepancy is defined as the L2-B-
discrepancy in the special case where M = D = [0, 1]d, the mapping B is given by
B(x) = [0, x) (where [0, x) = [0, x1) × · · · × [0, xd) for a vector x = (x1, . . . , xd)), and
ρ ≡ 1, except that µ = µG is in general not the d-dimensional Lebesgue measure, but
some probability measure given by a distribution function G via µ([0, x)) = G(x) for all
x ∈ [0, 1]d. Thus

discG
2 ({ti}, {aj}) =

∫
[0,1]d

(
G(x)−

n∑
j=1

aj1[0,x)(tj)

)2

dx

1/2

.
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The reproducing kernel KG
d of the corresponding Hilbert space of d-variate functions is

given by

KG
d (y, z) =

∫
[0,1]d

1[0,x)(y)1[0,x)(z) dx =
d∏

j=1

∫ 1

0

1[0,ξ)(yj)1[0,ξ)(zj) dξ =
d∏

j=1

(1−max{yj, zj})

and does actually not depend on G. Using the short hand K̃(ξ, η) = 1 − max{ξ, η}, we
see that

KG
d (y, z) =

d∏
j=1

K̃(yj, zj),

i.e., condition (22) is satisfied (and condition (21), too).
KG

d is the kernel of the Sobolev space anchored in 1, which is, e.g., described in
[NW09, NW10].

This example underlines that the choice of the measure µ = µG on M effects the form
of the discrepancy discG

2 , but not the kernel KG
d or the corresponding reproducing kernel

Hilbert space H(KG
d ) (but obviously the integration problem I(f) =

∫
M

f(x) dµG(x) we
want to solve).

Seemingly, the L2-G-discrepancy has not been studied so far, in contrast to the (L∞)-
G- or G-star discrepancy

discG
∞({ti}, {aj}) = sup

x∈[0,1]d

∣∣∣∣∣G(x)−
n∑

i=1

ai1[0,x)(ti)

∣∣∣∣∣ ,

which has applications in quasi-Monte Carlo importance sampling, see, e.g., [Ökt99].
Further results on the G-star discrepancy can, e.g., be found in [GR09].

7.3 Weighted L2-Star Discrepancy

Let d ∈ N, and denote the set {1, . . . , d} by [d]. For a family of weights γ = {γu}u⊆[d] the
weighted L2-star discrepancy of a multi-set {t1, . . . , tn} in [0, 1]d and coefficients a1, . . . , an

in R is defined as

disc∗2,γ({ti}, {aj}) =

∑
u⊆[d]

γu

∫
[0,1]|u|

(∏
j∈u

xj −
n∑

k=1

aj

∏
j∈u

1[0,xj)(tk,j)

)2

dxu

1/2

.

To get from our definition of the weighted geometric L2-discrepancy the special case of
the weighted L2-star discrepancy (which is sometimes also called weighted L2-discrepancy
anchored at 0), we just have to make the following choices:

Let M = [0, 1]d, Σ the Borel σ-algebra on [0, 1]d, and µ the restriction of the d-
dimensional Lebesgue measure to [0, 1]d. Let I = {u |u ⊆ [d]}. Let Mu = [0, 1]|u|, where
|u| denotes the cardinality of the set u, and let Σu be the Borel σ-algebra on [0, 1]|u|.
Furthermore, let

Φu : [0, 1]d → [0, 1]|u| , x = (xi)
d
i=1 7→ (xν)ν∈u.
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Then µu = µ◦Φ−1
u is nothing but the restriction of the |u|-dimensional Lebesgue measure

to [0, 1]|u|. Furthermore, let Bu = {[0, ξu) | ξu ∈ [0, 1]|u|}. As a measure space we identify
(Bu, Σ(Bu), ωu) via the mapping ι : [0, 1]|u| → Bu, ξu 7→ [0, ξu) with the measure space
(Mu, Σu, µu). (Note that for |u| > 1 the map ι is not injective, since ι(ξ) = ∅ for all
ξ ∈ {y ∈ [0, 1]|u| | ∃i : yi = 0}; but this is irrelevant for our purpose, since the latter set
has zero |u|-dimensional Lebesgue measure.)

Clearly, for each u ⊆ [d] the function

χu : [0, 1]2|u| → {0, 1} , (xu, yu) 7→ 1[0,yu)(xu)

is measurable, and we have∫
[0,1]|u|

µu([0, yu))
2 dµu(yu) = 3−|u| < ∞.

Condition (19) reads now as follows:

Ku(x, y) =

∫
Bu

1Bu(Φu(x))1Bu(Φu(y)) dωu(Bu)

=

∫
[0,1]|u|

1[0,ξu)(Φu(x))1[0,ξu)(Φu(y)) dξu

=
∏
j∈u

∫ 1

0

1[0,ξ)(xj)1[0,ξ)(yj) dξ

=
∏
j∈u

(1−max{xj, yj}).

This leads us to the weighted reproducing kernel

Kγ(x, y) =
∑
u⊆[d]

γuKu(x, y) =
∑
u⊆[d]

γu

∏
j∈u

(1−max{xj, yj}).

The resulting Hilbert space is the weighted Sobolev space with mixed partial derivatives
of order 1 anchored at 1, and is, e.g., discussed in detail in [NW09, NW10]. In that
situation identity (20) and Theorem 6.1, under the assumption S = M , were proved in
[SW98] for product weights. For general weights the corresponding results can be found
in [NW09].

Due to the product structure of the sets Mu = [0, 1]|u|, of the classes of test sets

Bu =

{∏
j∈u

[0, xj)

∣∣∣∣∣ ∀j ∈ u : xj ∈ [0, 1]

}
,

of the σ-algebras Σu, of the measures ωu = dξu = ⊗j∈udξ, and of the kernels

Ku(x, y) =
∏
j∈u

K̃(xj, yj), with K̃(ξ, η) = 1−max{ξ, η},
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condition (19) is equivalent to

K̃(r, s) =

∫ 1

0

1[0,t)(r)1[0,t)(s) dt ∀r, s ∈ [0, 1], (27)

as described in Theorem 5.3.

7.4 Infinite-Dimensional Integration and Limiting Discrepancy

Quite recently, there have been several papers on deterministic infinite-dimensional nu-
merical integration on weighted reproducing or quasi-reproducing Hilbert spaces, see
[KSWW10, NHMR10, Gne10, PW10]. An earlier paper dealing with infinite-dimensional
integration and discrepancy is [HW01]. We want to discuss the setting studied in these
papers.

Let I = {u ⊂ N | |u| < ∞}. We consider here the setting described in [KSWW10] in
Sect. 5 “Generalization”:

Assume that there exists a Borel measurable set M̃ ⊆ R, a point a ∈ M̃ , and a
reproducing kernel K̃ : M̃ × M̃ → R with K̃(a, a) = 0. The last condition implies

f(a) = 0 for all f ∈ H(K̃). Assume further that the corresponding Hilbert space H(K̃)
is separable and define

K̃u(xu, yu) =
∏
j∈u

K̃(xj, yj) for u ∈ I and xu, yu ∈ Mu = M̃ |u|. (28)

Each fu ∈ H(K̃u) is a function defined on M̃ |u| which satisfies fu(xu) = 0 if at least one
component of xu is a. With

Φu : M = M̃N → Mu = M̃ |u| , (xj)j∈N 7→ (xj)j∈u,

let us write Ku(x, y) = K̃u(Φu(x), Φu(y)) for all x, y ∈ M̃N. We define

Hγ =

{∑
u∈I

fu

∣∣∣∣ fu ∈ H(Ku) ,
∑
u∈I

γ−1
u ‖fu‖2

H(Ku) < ∞

}

for a sequence of weights γ = (γu)u∈I . Under the assumption (6) Hγ is a reproducing
kernel Hilbert space with norm

‖f‖H(Kγ) :=

(∑
u∈I

γ−1
u ‖fu‖2

H(Ku)

)1/2

if f =
∑
u∈I

fu with fu ∈ H(Ku),

and reproducing kernel Kγ defined by (7), i.e., Hγ = H(Kγ). Then Hγ = ⊕u∈IH(Ku)
with orthogonal spaces H(Ku).

Let now ρ be a probability density on M̃ and µ̃(s) = ρ(s) ds. Let µ be the infinite-
dimensional product probability measure ⊗n∈Nµ̃.
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As in Section 4, we consider the integral

I =

∫
M

f(x) dµ(x).

By requiring that

A0 =

(∫
fM
∫

fM K̃(r, s)ρ(r)ρ(s) dr ds

)1/2

< ∞

and

A0,γ =

(∑
u∈I

γuA
2|u|
0

)1/2

< ∞ ,

it was ensured in [KSWW10] that (10) holds, i.e., that I is a bounded linear functional
on Hγ = H(Kγ), and its operator norm is given by A0,γ, see (12).

The set of admissible sample points is given by

S = {x ∈ M |xj = a for all but finitely many j ∈ N}.

Notice that S is actually a set of measure zero, i.e., µ(S) = 0. But, with ud = [d], we
have that the sequence (ud)d∈N satisfies the conditions (23) and (24) if we choose for all
u ⊆ ud

Ψd,u : Mud
→ Mu , (xj)j∈[d] 7→ (xj)j∈u,

hence in this setting the relation “�” is the inclusion relation.
If there exists a set system B̃ of measurable subsets of M̃ , a σ-algebra Σ(B̃) on B̃,

and a probability measure ω̃ on (B̃, Σ(B̃)) such that condition (21) holds, then, due to
Theorem 5.3 and Theorem 6.1, we know that for any n ∈ N there exists a normalized
quasi-Monte Carlo algorithm Qn of the form (25) such that

ewor(Qn, H(Kγ)) ≤
√∑

ν∈I γν√
n

. (29)

A similar estimate was proved in [HW01] in the case where M = [0, 1]N. There the

assumption that condition (21) holds was weakened to supr,s∈fM |K̃(r, s)| < ∞, see also
Remark 6.2. But the authors assumed that the set of admissible sample points is the whole
set M . In that case we are allowed to use sample points with infinitely many components
different from the nominal value a, an assumption which will in practice usually not be
realizable.

Let us have a look at the special case where M̃ = [0, 1] and K̃(r, s) =
∏

j∈u(1 −
max{r, s}). From the previous subsection we know that

K̃(r, s) =

∫ 1

0

1[0,x)(r)1[0,x)(s) dx,
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i.e., condition (21) holds. Formally, the discrepancy corresponding to the integration
problem is the weighted L2-star discrepancy with d = ∞, i.e.,

disc∗2,γ({tj}, {aj}) =

∑
u∈I

γu

∫
[0,1]|u|

(∏
j∈u

xj −
n∑

k=1

aj

∏
j∈u

1[0,xj)(tk,j)

)2

dx

1/2

.

In the case of product weights this discrepancy was baptized “limiting discrepancy” in
[SW98]. Here, we have the estimate (29).

For further bounds on the worst-case error of infinite-dimensional integration we refer
the reader to the articles [Gne10, HW01, KSWW10, NHMR10, PW10] and the literature
mentioned therein.
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