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SUMMARY

In application domains that do not have a test oracle, such as machine learning and scientific computing,
quality assurance is a challenge because it is difficult or impossible to know in advance what the correct
output should be for general input. Previously, metamorphic testing has been shown to be a simple yet
effective technique in detecting defects, even without an oracle. In metamorphic testing, the application’s
“metamorphic properties” are used to modify existing test case input to produce new test cases in such a
manner that, when given the new input, the new output can easily be computed based on the original output.
If the new output is not as expected, then a defect must exist. In practice, however, metamorphic testing can
be a manually intensive technique for all but the simplest cases. The transformation of input data can be
laborious for large data sets, and errors can occur in comparing the outputs when they are very complex.
In this paper, we present a tool called Amsterdam that automates metamorphic testing by allowing the
tester to easily set up and conduct metamorphic tests with little manual intervention, merely by specifying
the properties to check, configuring the framework, and running the software. Additionally, we describe
an approach called Heuristic Metamorphic Testing, which addresses issues related to false positives and
non-determinism, and we present the results of new empirical studies that demonstrate the effectiveness of
metamorphic testing techniques at detecting defects in real-world programs without test oracles.
Copyright c© 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Despite advances in formal methods and static analysis techniques, software testing still remains
the primary mechanism by which software defects are found. This involves identifying the pieces of
code to test, deriving test inputs, executing the code with those inputs, and then using a “test oracle”
[1] to determine whether (or to what extent) the output matches what was expected. The tester
assumes that this test oracle is reliable, in that it is both sound and complete. While certain defects,
such as those leading to crashes or infinite loops, are easily observed, the creation of reliable test
oracles to indicate that the program output is correct is a problem that researchers have investigated
for many years [2].

Additional challenges arise in testing applications in the fields of scientific computing, simulation,
optimization, machine learning, etc. because often there is no reliable test oracle to indicate what
the correct output should be for arbitrary input. In some cases, it may be impossible to know the
program’s correct output a priori; in other cases, the creation of an oracle may simply be too hard.
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2 C. MURPHY AND G. KAISER

These applications typically fall into a category of software that Weyuker describes as “Programs
which were written in order to determine the answer in the first place. There would be no need
to write such programs, if the correct answer were known.” [2] The absence of a test oracle clearly
presents a challenge when it comes to detecting subtle errors, faults, defects or anomalies in software
in these domains.

As these types of programs become more and more prevalent in various aspects of everyday
life, the dependability of software in these domains takes on increasing importance. Machine
learning and scientific computing software may be used for critical tasks such as helping doctors
perform a medical diagnosis [3] or enabling weather forecasters to more accurately predict the
paths of hurricanes [4]; hospitals may use simulation software to understand the impact of resource
allocation on the time patients spend in the emergency room [5]. Clearly, a software defect in any
of these domains can cause great inconvenience or even physical harm if not detected in a timely
manner.

Without a test oracle, it is impossible to know in general what the expected output should be for
a given input, but it may be possible to predict how changes to the input should effect changes in
the output, and thus identify expected relations among a set of inputs and among the set of their
respective outputs. This approach, introduced by Chen et al., is known as “metamorphic testing”
[6]. In metamorphic testing, if test case input x produces an output f (x), the function’s so-called
“metamorphic properties” can then be used to guide the creation of a transformation function t,
which can then be applied to the input to produce t(x); this transformation then allows us to predict
the expected output f (t(x)), based on the (already known) value of f (x). If the new output is as
expected, it is not necessarily right, but any violation of the property indicates that one (or both) of
the outputs is wrong. This essentially creates a “pseudo-oracle” [7]: though it may not be possible
to know whether an output is correct, we can at least tell whether an output is incorrect.

Although metamorphic testing has been presented as a simple approach to software testing, to
date there is no out-of-the-box automated testing framework to help testers apply the technique in
practice. In the same way that JUnit [8] provides a set of core functionality so that testers need
not reinvent the wheel each time they perform unit testing, there is a need for a framework that
automates the tasks performed by testers when they conduct metamorphic testing. Moreover, unlike
JUnit, in which the testers still need to produce test code, a metamorphic testing framework would
allow the testers to merely specify the metamorphic properties to be used in testing via a simple
notation, with the option of writing more complex test code as necessary.

The need for automation of the metamorphic testing process is particularly clear in the cases
in which slight variations in the outputs appear to indicate violations of metamorphic properties,
but are not actually the result of errors in the code. This may come about due to imprecisions in
floating point calculations that arise during additional executions of the code under test, and may
lead to false positives (thinking that there is a defect when there actually is not). In such cases,
the results need to be compared to within some threshold, or checked for semantic similarity. Non-
deterministic applications also present a challenge, in that it may be necessary to run the program
multiple times to get a variety of test outputs, which may then need to be inspected and analyzed
in order to construct a profile of the outputs, look for outliers, calculate the distribution or range,
etc. Clearly these cases all would require tool support. To date, there has been very little work in
investigating the application of metamorphic testing to non-deterministic applications, and yet many
applications without test oracles in domains such as machine learning and discrete event simulation
may rely on randomization, making them even more difficult to test.

In this paper, we investigate the automation of the metamorphic testing process, and demonstrate
that metamorphic testing advances the state of the art in detecting defects in applications without
test oracles. This paper makes the following contributions:

1. We introduce the model and architecture of a testing framework called Amsterdam, which
automates system-level metamorphic testing by treating the application as a black box and
checking that the metamorphic properties of the entire application hold after execution. This
simplifies the process of conducting metamorphic testing, but also allows for metamorphic
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AUTOMATIC DETECTION OF DEFECTS IN APPLICATIONS WITHOUT TEST ORACLES 3

testing to be conducted in the production environment without affecting the user, so that real-
world input can be used to drive the test cases.

2. We describe a technique called Heuristic Metamorphic Testing, in which the results of
multiple invocations are compared according to a domain-specific heuristic to ensure that
outputs that are expected to be similar (but not exactly the same) are actually “close
enough”. This automated technique can be used to avoid false positives that come about
from imprecisions in floating point calculations, in which outputs are considered erroneous
even though no defect actually exists. It can also be used when applying metamorphic
testing to applications that use non-determinism. Although we have previously introduced
the Amsterdam framework and Heuristic Metamorphic Testing technique elsewhere [9], this
paper describes them in significantly more detail.

3. We provide for the first time the results of new empirical studies conducted on real-world
programs (both deterministic and non-deterministic) that have no test oracles to demonstrate
the effectiveness of metamorphic testing techniques. These studies show that metamorphic
testing is more effective than approaches such as runtime assertion checking and partial
oracles.

The rest of this paper is organized as follows. We begin with some background on metamorphic
testing in Section 2, then in Section 3 we further motivate the need for automation of the process
by which metamorphic testing is conducted in practice. In Section 4, we describe the design and
implementation of the Amsterdam framework for automating system-level metamorphic testing. In
Section 5, we discuss the Heuristic Metamorphic Testing approach, and describe how Amsterdam
applies it to non-deterministic applications. The results of our empirical studies are detailed in
Section 6. We then describe related work in Section 7, discuss possible directions for future work in
Section 8, and conclude in Section 9.

2. BACKGROUND

2.1. Metamorphic Testing

Metamorphic testing was not originally devised as a solution to testing applications without test
oracles. Rather, the concept was presented as a way of generating additional test cases from an
existing set, particularly by suggesting that test cases that did not reveal defects did not necessarily
have to be considered “failures”, since they could be used to generate more test cases that may have
fault-revealing power [6]. Metamorphic testing sought to extend the use of the algebraic properties
of software [10, 11] to demonstrate that such properties could be used to create additional test cases.

As a simple example, consider a function that calculates the standard deviation of a set of
numbers. Certain transformations of the set would be expected to produce the same result:
for instance, permuting the order of the elements should not affect the calculation; nor would
multiplying each value by -1, since the deviation from the mean would still be the same.
Furthermore, other transformations will alter the output, but in a predictable way: if each value
in the set were multiplied by 2, then the standard deviation should be twice that of the original set.
Thus, given one set of numbers, we can create three more sets (one with the elements permuted, one
with each multiplied by -1, and another with each multiplied by 2), and get a total of four test cases;
moreover, given the output of only the first test case, we can predict what the other three should be.

It was quickly noted that metamorphic testing could be applied to situations in which there is
no test oracle [12, 13]: regardless of the values that are used in the test cases, if the relationships
between the inputs and between their respective outputs are not as expected, then a defect must
exist in the implementation. That is, even if there is no test oracle to indicate whether the outputs
are correct, if the new output is not as expected, and the metamorphic property is sound, then the
property is considered violated, and therefore a defect must exist.

As an example of how metamorphic testing can be used for applications without test oracles in the
domain of machine learning, anomaly-based network intrusion detection systems build up a model
of “normal” behavior based on what has previously been observed. This model may be created, for
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4 C. MURPHY AND G. KAISER

instance, according to the byte distribution of incoming network payloads (since the byte distribution
in worms, viruses, etc. may deviate from that of normal network traffic [14]). When a new payload
arrives, its byte distribution is then compared to that model, and anything deemed anomalous causes
an alert. For a particular input, it may not be possible to know a priori whether it should raise an
alert, since that is entirely dependent on the model. However, if while the program is running we take
the new payload and randomly permute the order of its bytes, the result (anomalous or not) should
be the same, since the model only concerns the distribution, not the order. If the result is not the
same, then a defect exists. Besides machine learning [15], other recent research into metamorphic
testing has focused on applying it to specific domains of programs without test oracles such as
bioinformatics [16] and network simulation [17].

2.2. Metamorphic Properties

An open issue in the research on metamorphic testing is, “how does one know the metamorphic
properties of the function or application?” Although others have looked into test case selection in
metamorphic testing [18], i.e., choosing the test cases most likely to reveal defects, previous work
assumes that the tester or developer will have sufficient knowledge of the system or function under
test to identify its metamorphic properties, using application- or domain-specific properties.

Many programs without test oracles rely on mathematical functions (i.e., those that take numerical
input and/or produce numerical output), since the point of such programs is to implement an
algorithm and perform calculations, the results of which cannot be known in advance; if they could,
the program would not be necessary. In Table I, we categorize different classes of metamorphic
properties that are common in mathematical functions. The classes are not meant to imply that the
output will not be changed by such transformations, but rather that any change to the output would
be predictable given the change to the input.

additive Increase (or decrease) numerical values by a constant
multiplicative Multiply numerical values by a constant
permutative Permute the order of elements in a set
invertive Take the inverse of each element in a set
inclusive Add a new element to a set
exclusive Remove an element from a set
compositional Create a set from some number of smaller sets

Table I. Classes of metamorphic properties

A simple example (for expository purposes only) of a function that exhibits these different classes
of metamorphic properties is one that calculates the sum of a set of numbers. Consider such a
function Sum that takes as input an array A consisting of n real numbers. Based on the different
classes of metamorphic properties listed in Table I, we can derive the following:

1. Additive: If every element in A is increased by a constant c to create an array A’, then Sum(A’)
should equal Sum(A) + n*c.

2. Multiplicative: If every element in A is multiplied by a constant c to create an array A’, then
Sum(A’) should equal Sum(A) * c.

3. Permutative: If the elements in A are randomly permuted to create an array A’, then Sum(A’)
should equal Sum(A).

4. Invertive: If we take the inverse of each element in A, i.e., multiply each element by -1, in
order to create an array A’, then Sum(A’) should equal Sum(A) * -1.

5. Inclusive: If a value t is included in the array to create an array A’, then Sum(A’) should equal
Sum(A) + t.

6. Exclusive: If a value t is excluded from the array to create an array A’, then Sum(A’) should
equal Sum(A) - t.
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7. Compositional: If the array is decomposed into two smaller arrays A’ and A”, then Sum(A)
should equal Sum(A’) + Sum(A”).

These are admittedly very trivial examples and do not fall under the category of programs without
test oracles, but more complex numerical functions that operate on sets or matrices of numbers - such
as sorting, calculating standard deviation or other statistics, determining distance in Euclidean space,
etc. - tend to exhibit similar properties as well. Such functions are good candidates for metamorphic
testing because they are essentially mathematical, and demonstrate well-known properties such as
distributivity and transitivity [19].

It is also the case that entire applications exhibit such properties, particularly in the domains
of interest, such as machine learning [15], discrete event simulation, and optimization. These
applications and their metamorphic properties are discussed in our empirical studies below.

3. MOTIVATION

Although it has been demonstrated that it is possible to use metamorphic testing to reveal previously-
unknown defects in applications without test oracles [15, 20], the process by which the testing is
conducted can benefit from automation, so that testers can be more productive by reusing existing
testing frameworks and toolsets, and by running test cases in parallel whenever possible.

3.1. The Need for Automation

Without tool support, the manual transformation of the input data can be laborious and error-prone,
especially when the input consists of large tables of data, rather than just scalars or small sets.
Machine learning applications, for example, can take input files of thousands or tens of thousands
of rows of data; anything but the simplest transformations would need to be automated.

On a similar note, input data that is not human-readable (for instance, binary files representing
network traffic) certainly require tools for transformation. For instance, a network intrusion
detection system may take as input a collection of network packets represented as streams of bytes,
the format of which must adhere to the strict TCP/IP conventions. Any transformation of this input
would need to ensure that the new data set contains syntactically and semantically correct packets;
however, it is quite difficult to know which parts of the byte stream to modify without tool support.

Additionally, the manual comparison of the program outputs can also cause problems. As with
the input data, many applications for which metamorphic testing is appropriate produce large sets
of output, and comparing them manually can be error-prone and tedious. In fact, Weyuker includes
applications that produce a large amount of output in her definition of “non-testable programs” [2].

Another issue involves metamorphic properties for which changes to the output are to be
expected. For instance, in the field of machine learning supervised classifiers, if the input values
are multiplied by a constant, then it may be the case that the output values should also be multiplied
by the same constant. If the output is large and complex, it can be difficult to manually compare the
two outputs to make sure that they are as expected, and obviously a tool like “diff” is not sufficient
because the outputs are not expected to be exactly the same.

In all of these cases, one-off scripts could be created, but testers could clearly benefit from a
general framework that addresses different types of input transformations and output comparisons
for purposes of metamorphic testing. Such a framework would be even more beneficial if it did not
require testers to actually write test code; rather, they would only need to use a simple notation to
specify the metamorphic properties of the application under test, and let the framework do the rest.
More importantly, the testers’ productivity could further be increased if the framework automatically
handled running multiple invocations of the program in parallel, so that the tester need not wait the
entire duration of an additional program run to know the results of the test.
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6 C. MURPHY AND G. KAISER

3.2. Imprecision

The problem with comparing program outputs - regardless of how it is done - is exacerbated by
the fact that imprecisions in floating point operations in digital computers could cause outputs to
appear to deviate, even if the calculation is actually correct programmatically. Although errors due
to floating point imprecision are not the types of defects that we have set out to discover, comparing
the outputs based on an expectation of equality may lead to a false positive, i.e., thinking that there
is a defect when there actually is not [21].

Consider the simple case of the sine function, and the metamorphic property sin(α) = sin(α +
2π). In practice, a defect-free implementation may cause a failure of the metamorphic test, due to
imprecision in floating point calculations and the representation of π. For instance, the Math.sin
function in Java computes the sine of 6.02 radians and the sine of (6.02 + 2 * Math.PI) radians as
having a difference on the order of 10-15, which in most applications is probably negligible, but is
not exactly the same when checking for equality; thus, a metamorphic property based on checking
that the results are equal would lead to a false positive. It may be of interest to the tester to know
that the property was violated, of course, but this violation may not actually indicate a defect in the
implementation.

3.3. Non-Determinism

Non-deterministic programs may yield outputs that are expected to deviate between executions, and
thus it may be impossible in practice to know whether the output is one that is predicted according to
the metamorphic property, given the non-determinism. For example, ranking algorithms in machine
learning take sets of data and try to order the elements according to some learned relationship. Such
algorithms may rely on randomness, for instance to permute the order of the input data set so that
initial ordering does not influence the results, and then take the average ranking over a set of runs.
Depending on these permutations, though, the final result may not be deterministic. We may expect
the outputs to be “similar” to each other, however, and the degree of expected similarity would need
to either be specified by the tester or inferred automatically. In either case, tool support is required.

4. AUTOMATED TESTING FRAMEWORK

To automate the process by which system-level metamorphic testing is conducted, we propose that
the tester would simply need to follow these steps:

1. Specify the application’s metamorphic properties. The tester specifies the application’s
metamorphic properties using a simple syntax or scripting language. This specification should
describe how to transform the input, and what the expected change to the output should be
(Section 4.1).

2. Configure the framework. The testing framework is configured so that it knows where to
find the specification of the metamorphic properties, and how to run the program to be tested
(Section 4.2).

3. Conduct system testing. The framework is invoked using test input data, as specified by the
tester. The transformation of the input data, execution of the program, and comparison of
the output are all automatically performed by the framework. The tester is notified about any
violation of metamorphic properties, indicating that a defect has been found (Section 4.3).

Aside from facilitating metamorphic testing in the development environment, this technique can
conceivably also be used to continually test the application as it runs in the deployment environment,
as well. This must be done in such a manner that the end user only sees the results of the main
(original) execution, and not from any of the others that are only for testing purposes; Section 4.4
investigates this further.

Figure 1 shows the model of an implementation of such an automated approach. Metamorphic
properties of the application are specified by the tester and then are applied to the program input.
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AUTOMATIC DETECTION OF DEFECTS IN APPLICATIONS WITHOUT TEST ORACLES 7

The original input is fed into the application, which is treated completely as a black box; a modified
version of this input data is also produced, according to the metamorphic property. For each property
to be checked, the corresponding input data is then fed into a separate invocation of the application,
which executes in parallel but in a separate sandbox so that changes to files, screen output, etc. do
not affect the other process(es). When the invocations finish, their results are compared according to
the specification; if the results are not as expected, a defect has been revealed. Although not reflected
in Figure 1, it should be possible to execute more than two invocations of the program in parallel.

Figure 1. Model of Amsterdam testing framework

Ideally, the tester would not need to write any actual test code per se, nor any test scripts, but rather
would only need to specify the metamorphic properties of the application. This can be done by the
creator of the algorithm or by the application designer, and does not assume intricate knowledge of
(or even access to) the source code or other implementation details.

The rest of this section describes our implementation of a testing framework called Amsterdam,
which we have introduced previously [9] and discuss in further detail here. The Amsterdam
framework enables an application to be treated as a black box so that system-level metamorphic
testing can be automated without any modification to the code whatsoever. As described above,
multiple invocations of the application are run and their outputs are compared; however, the
additional invocations must not affect the original process (or each other) and thus must run in a
separate sandbox.

The current implementation of the Amsterdam framework assumes that: the program under test
can be invoked from the command line; system input comes from files or from command line
arguments; and, output is either written to a file or to standard out (the screen). This may limit the
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8 C. MURPHY AND G. KAISER

generality of this framework, but according to our preliminary investigations, these assumptions are
typically not restrictive in applications in the domains of interest (particularly machine learning, but
also discrete event simulation, optimization, etc.). Additionally, when input comes from database
tables, mouse clicks, keystrokes, incoming network traffic, etc., an analogous unit testing approach
can be used instead, so that metamorphic testing can be conducted at a more granular level [19].

4.1. Specifying Metamorphic Properties

When using the Amsterdam framework, the tester first specifies the metamorphic properties of the
application. In our current implementation, this can be done in a text file using a syntax similar to
plain English for some simple properties. For instance, if permuting the input to an application is not
expected to affect the output (i.e., the resulting output is equal to the output of the initial test case),
then the specification would simply be “if permute (input) then equal (output)”.
For more complex properties, an XML file is used for the specification (described below). The
examples in this section assume the specifications are written in XML (since the plain-English
properties are ultimately pre-processed into XML files), though the ideas and principles will remain
the same, regardless of the particular implementation.

The specification of a metamorphic property includes three parts: how to transform the input, how
to execute the program (e.g., the command to execute, setting any runtime options, etc.), and how
to compare the outputs. Multiple metamorphic properties can either be grouped together in one file,
or specified across multiple files.

For input transformation, the tester can describe how to modify the entire data set or only certain
parts, such as a particular row or column in a table of data. As described above in Section 2.2,
we have identified a variety of general categories of metamorphic properties, and the framework
supports out-of-the-box input modification functions to match each of these categories: adding a
constant to numerical values; multiplying numerical values by a constant; permuting the order of
the input data; reversing the order of the input data; removing part of the data; adding additional
data; and, composing a data set from smaller subsets.

For program execution, the tester needs to specify the command used to execute the program.
The program is completely treated as a black box, so the particular implementation language does
not matter, as long as the program is executable from the command line. Some metamorphic
properties may call for different runtime options to be used for the different invocations; those
would be specified here.

For output comparison, the tester describes what the expected output should be in terms of the
original output. In the simplest case, the outputs would be expected to be exactly the same. In other
cases, the same transformations described above (adding, multiplying, etc.) for the input may need
to be applied to the output before checking for equality. Additionally, the framework also supports
checking for inequality if a change to the input is expected to cause a change to the output, even
if that output cannot be precisely predicted. Last, if the output is non-deterministic, a statistical or
heuristic approach can be used, as described in Section 5.

Figure 2 demonstrates an example of a metamorphic property for system testing as specified in an
XML file. On line 2, the name of the program to be run is specified, and on lines 3-5 the names of
the command-line parameters are given. For the purposes of metamorphic testing, the input is given
the placeholder name “training data” and the output is given the name “model”; other parameters
specific to the execution of the program are also specified on line 4. On lines 7 and 10, the types of
files for the input and output are given, respectively.

The metamorphic properties to be tested are declared in lines 12-28. On line 13, we say that
there is to be a “main” execution, the output of which will be shown to the user. On lines 14-16,
we specify a test case called “test1” in which the input is to be permuted. On lines 17-19, we also
specify another test case in which the elements of the training data should all be multiplied by 10.
Lines 22 and 25 specify how to compare the outputs for the two metamorphic properties: in both
cases, the new output (as a result of the test case) is expected to be the same as the original from the
“main” execution.
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AUTOMATIC DETECTION OF DEFECTS IN APPLICATIONS WITHOUT TEST ORACLES 9

1 <TESTDESCRIPTOR>
2 <EXECUTION>/usr/bin/c-marti</EXECUTION>
3 <PARAMETERS>
4 @input.training data @output.model --no-permute --no-prob-dist
5 </PARAMETERS>
6 <INPUT>
7 <VAR TYPE="csv file" NAME="training data" />
8 </INPUT>
9 <OUTPUT>
10 <VAR TYPE="text file" NAME="model" />
11 </OUTPUT>
12 <POST TEST>
13 <BRANCH NAME="main" />
14 <BRANCH NAME="test1">
15 @op permute(@input.training data)
16 </BRANCH>
17 <BRANCH NAME="test2">
18 @op multiply(@input.training data, 10)
19 </BRANCH>
20 <PROPERTY>
21 <ASSERT>
22 @op equal(@main.output.model, @test1.output.model)
23 </ASSERT>
24 <ASSERT>
25 @op equal(@main.output.model, @test2.output.model)
26 </ASSERT>
27 </PROPERTY>
28 </POST TEST>
29 </TESTDESCRIPTOR>

Figure 2. Example of specification of metamorphic property for system-level testing

Note that with minimal modification, the metamorphic properties specified in this XML file could
also be applied to any other program that exhibits the same properties.

1 <TESTDESCRIPTOR>
2 <EXECUTION>/usr/bin/c-marti</EXECUTION>
3 <PARAMETERS>
4 @input.training data @output.model --no-permute --no-prob-dist
5 </PARAMETERS>
6 <INPUT>
7 <VAR TYPE="csv file" NAME="training data" />
8 </INPUT>
9 <OUTPUT>
10 <VAR TYPE="text file" NAME="model" />
11 </OUTPUT>
12 <FUNCTION NAME="switch" CLASS="MyOperators" METHOD="reverseDirection"
13 TYPE="transform"/>
14 <POST TEST>
15 <BRANCH NAME="main" />
16 <BRANCH NAME="test1">
17 @op multiply(@input.training data, -1)
18 </BRANCH>
19 <PROPERTY>
20 <ASSERT>
21 @op equal(@main.output.model, @op switch(@test1.output.model))
22 </ASSERT>
23 </PROPERTY>
24 </POST TEST>
25 </TESTDESCRIPTOR>

Figure 3. Example of specification of metamorphic property for system-level testing, with extended
functionality
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10 C. MURPHY AND G. KAISER

If the framework does not support a specific transformation or comparison feature as required
by the tester, functionality can be added by creating a separate component that can be invoked
by the framework, according to a specific programming interface (currently implemented in Java).
This would also allow the tester to automate the transformation of other input formats not currently
supported by the tool, or to compare other output formats.

For instance, Figure 3 shows the specification of another metamorphic property. In this one,
multiplying all of the values in the input data by -1 (as specified on line 17) would not produce the
exact same output, but rather a similar output but with slight differences. The Amsterdam framework
does not have a built-in function for comparing the outputs in such a manner, so the user needs to
extend its functionality by creating a new component.

On line 12, the user introduces a new function called “switch”. This function name is mapped to
a method called “reverseDirection” in a class called “MyOperators”, which the tester would have
implemented. The type of the function is specified on line 13 as a “transform” function, meaning
that the implementing method takes one argument, which is the data to be transformed. On line
21, when the outputs are to be compared, Amsterdam will invoke the method mapped to the name
“switch”, which produces a new output that can then be checked against the original.

Alternatively, the tester could have created a comparison function that takes the two files to be
compared and returns a boolean indicating whether or not they are as expected. In either case, it is
easy to add functionality to the Amsterdam testing framework, and such functions can conceivably
be reused for testing other applications as well.

4.2. Configuration

After specifying the metamorphic properties, the tester then configures the Amsterdam framework
to indicate the name of the XML file containing the specifications. Additionally, the tester can
also specify how the multiple invocations of the program should be executed. Typically, all of the
invocations would be run in parallel, and the outputs compared at the end of all executions, in
order to speed up the testing process. However, parallelism may be disabled if the tester wants to
also measure resource utilization (memory, CPU, etc.) during a single execution of the application.
Also, if the tests are run on a single core/processor, running the applications in parallel will actually
cause more overhead because of context switching, so the invocations can be run sequentially if so
desired (see Section 4.5 for more discussion of performance overhead).

Another reason to run the tests sequentially is if there needs to be some “build up” or “tear
down” actions before or after each invocation is run. This may be the case, for instance, if the tests
require the creation of a temporary database that will be modified during the program execution.
The user can specify “build up” or “tear down” scripts (which are assumed to be executable from
the command-line) in the specification of the metamorphic properties.

Sequential execution may also be necessary to support metamorphic properties such as
“ShortestPath(a, b) = ShortestPath(a, c) + ShortestPath(c, b) where c is some point in the path
from a to b”, i.e., properties that depend on the result of the initial execution of the program in order
to conduct the subsequent ones.

The configuration also includes declaring what action to take if a metamorphic test fails. The
tester can be notified that the test revealed unexpected behavior through an entry in Amsterdam’s
execution log file and/or by a pop-up window.

4.3. Execution of Tests

When the application is executed, the testing framework first invokes the original application with
the command line arguments provided in the property specification, so that the startup delay of
the framework is minimal from the user’s perspective. While the application is running, Amsterdam
then makes copies of the input files to use for the additional invocations of the program, then applies
the specified transformations to the input files. This is done after invoking the original application
because copying and modifying large files can take a long time, and there is no need for the
original application to wait. The framework provides out-of-the-box support for the transformation
of four different file formats: XML, comma-separated value (CSV), an attribute/value pair format for
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“sparse” data, and the attribute-relation file format (ARFF). These file formats are commonly used
in the domains of interest. Other file formats can be supported by building custom transformation
components, as described above.

The framework then starts additional invocations with the newly-generated inputs. When the test
processes are to be run in parallel with the main process, the sandbox for each process is provided
by simply creating copies of all the input files used by the test processes, and by redirecting screen
output to a file so that the user does not see the results of the additional invocations of the program.
To make the sandbox more robust, we have also integrated Amsterdam with a virtualization layer
called a “pod” (PrOcess Domain) [22], which creates a virtual environment in which the process has
its own view of the file system and process ID space and thus does not affect any other processes or
any shared files.

At this time, the framework sandbox does not include external entities such as the network or
databases, so that modifications made by a test may end up affecting the external state of the original
application. Although this appears to limit the usefulness of the tool, we note, however, that in our
experiments presented below in Section 6, the current sandbox implementation was sufficient for
the applications we tested: none of the applications used an external database or network I/O. For
database-driven applications, it may be possible to automate the creation of sandboxed database
tables using copy-on-write technology (as in Microsoft SQL Server †) or “safe” test case selection
techniques that ensure that there will be no permanent changes to the database state as a result of
the tests [23, 24]. This is left as future work.

Once all processes are complete, the output files are then compared according to the specification
of the metamorphic properties. If the output files are not as expected, then a defect has been detected,
and the appropriate action can be taken according to the configuration.

4.4. Testing in the Deployment Environment

The framework is also designed to be used in the production environment by the system’s end
users, so that metamorphic testing can continue even after deployment. Such “perpetual testing”
[25] approaches have been shown to be effective at revealing defects that may not have been found
before the software is deployed [26]. This addresses one of the practical issues of metamorphic
testing, which is “where does the test input come from?”

If the test invocations are run in parallel with the main one, the end user ideally would not even
know that the testing was being conducted. In such cases, the results of the tests can be sent back
to the development team for use in regression testing and program evolution [27]. The system
administrator can specify the following configurations:

• whether to send results of failed test cases or all test cases
• how frequently to send results (i.e., after how many test cases are executed)
• the email address(es) to which the results should be sent
• for failed tests, whether to send the entire input and output files, since sending the entire input

file may give rise to privacy issues, and the file may simply be too big to send anyway
• also for failed tests, the metamorphic property that was violated will be supplied

To date we have not investigated the mechanisms by which developers could actually use this
information when defects are discovered, but we point out that others have previously looked into
using similar field failure data to perform debugging and fault localization [28], or for regression
testing [29]. We expect that such techniques are applicable in our case, as well, and leave this as
future work.

When using Amsterdam to test a program as it runs in the field, it is assumed that the
software vendor would ship the application including the testing framework and specification of
the metamorphic properties as part of the software distribution. The customer organization using
the software would configure the framework, but aside from that would not need to do anything
special at all, and end users ideally would not even notice that the tests were running.

†http://msdn.microsoft.com/en-us/library/ms175158.aspx
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4.5. Performance Overhead

To demonstrate that the Amsterdam framework incurs limited overhead on the application being
tested, we conducted performance tests on a quad-core 3GHz CPU with 2GB RAM running Ubuntu
7.10. Our experiments showed that the performance impact on the main application process (the one
seen by the user) comes only from the creation of the sandbox, copying the files for the input, waiting
for the test processes to complete, and comparing the results: this was measured at about 400ms for
a 10MB input file when just copying the files, and 1.1s when using the “pod” virtualization layer.
After that, all other test processes execute on separate cores and do not interfere with the original
process (assuming that there are fewer test processes than cores, of course). Thus, the tests can be
run with minimal performance impact from the tester’s perspective. Note that, without automation,
if the processes were run in sequence, then the tester would have to wait for each to finish and the
overhead on the testing time would be 100% for each metamorphic property.

5. HEURISTIC METAMORPHIC TESTING

In metamorphic testing, false positives can be a problem if there are small deviations in the
results of calculations that are expected to yield the same result. Additionally, many applications
without test oracles rely on non-determinism, which limits the effectiveness of metamorphic testing
since it makes it more difficult to predict the expected outputs. To address this, we describe a
technique called Heuristic Metamorphic Testing, based on the concept of “heuristic test oracles”
[30]. This variant of metamorphic testing, which was introduced previously [9] and is described
in further detail here, permits slight differences in the outputs, in a meaningful way according to
the application being tested. By setting thresholds and allowing for application-specific definitions
of “similarity”, we can reduce the number of false positives and address some cases of non-
determinism.

5.1. Reducing False Positives

In Heuristic Metamorphic Testing, output values that are “similar” are considered equal, where the
definition of “similarity” is dependent on the application being tested. For instance, when the output
is numeric (as in the sine function example in Section 3.2), a threshold can be set to check that the
values are suitably close. As long as the difference between the values is below the threshold, then
the outputs are considered sufficiently “similar”, and no violation of the metamorphic property is
reported.

Consider the situation of the sine function, for which the the metamorphic property sin(α) = sin(α
+ 2π) may be violated in practice because of imprecisions in representing π and in calculating the
sine value. We did an experiment in which we checked this property for all values of α ranging
from 0 to 2π in increments of 0.0001. For the 62,832 values of α, 52,868 would violate the property
in Java if it were checked using equality to compare the outputs; this is a false positive rate of
84.1%. For the C implementation, using the constant M PI, all but one of the values of α violate
the property. However, if we check the outputs to within a tolerance of 10-10, then no value of α
violates the property in either C or Java. Although this is a very simple example, it demonstrates the
need in practice to use thresholds when checking metamorphic properties that involve floating point
numbers.

More complex cases may call for heuristics to check for semantic similarity. For example,
the Support Vector Machines [31] machine learning classification algorithm would be expected
to have the metamorphic property that permuting the input values should not affect the output.
However, many implementations do not strictly adhere to this metamorphic property because of
approximations used in the program’s quadratic optimization algorithm, and the outputs will vary
slightly if the inputs are permuted [15]. The output values could conceivably be compared using
a threshold, but this assumes that the tester knows in advance how close the results should be, and
assumes there is an easy and meaningful way to compare the outputs. Alternatively, we would expect
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the resulting outputs to be semantically similar to each other, in that the classification of previously-
unseen data should be the same when each output is applied, despite any slight differences. That is,
even if the outputs themselves are not exactly as expected, if they produce the same classification,
they can thus be considered semantically equivalent.

The Amsterdam framework supports techniques for considering such heuristics and either setting
thresholds in the comparison of outputs, or specifying how to check semantic similarity, with
the intent of reducing false positives. However, it has been argued that although the failure of
a metamorphic test in such cases may not necessarily indicate a defect per se, it does reflect a
deviation from expected behavior (albeit a very slight one), and thus it is useful to warn the user
[20]. Therefore, Amsterdam can be configured to generate such a warning if so desired.

5.2. Addressing Non-Determinism

Non-deterministic applications present a particular challenge to metamorphic testing because it may
not always be possible to know what the expected change to the output should be given the change
to the input, and then check whether the new test output is as predicted. Here, we describe how
Heuristic Metamorphic Testing can be applied to non-deterministic applications, starting with a
description of a statistics-based approach.

5.2.1. Statistical metamorphic testing. Guderlei and Mayer presented statistical metamorphic
testing [32] as a solution to testing non-deterministic applications and functions that do not have
test oracles. Consider a trivial example of a function r that takes two inputs x and y and returns a
random integer in the range [x, y]. And, of course, r(10x, 10y) would return a random integer in
[10x, 10y]. However, we cannot simply specify the metamorphic property that r(10x, 10y) should
equal 10r(x, y), because of the randomization that occurs each time r is invoked.

Statistical metamorphic testing points out that, over many executions of r(x, y), its output values
will have a statistical mean µ and variance σ. Even if we cannot know whether µ and σ are correct,
we would expect that many executions of r(10x, 10y) should produce a mean 10µ and variance 10σ;
of course, given a finite number of executions, they may not be exactly 10µ and 10σ, but a statistical
comparison (such as a Student T-test [33]) can be used. If the results are not statistically similar,
then the metamorphic property has been violated.

5.2.2. Limitations of statistical metamorphic testing. Statistical metamorphic testing is limited to
outputs that consist of a set of numbers whose statistical values, such as mean and variance, can
be calculated. The approach is not necessarily applicable in the applications of interest presented
here, for instance where the output could be a set in which the ordering is of prime concern, and the
values of the set elements are not important. For instance, a machine learning ranking application
may produce non-deterministic results when there are missing values in the input data set. Because
the output is a listing of elements, there is no mean and variance to calculate, since the values
themselves remain the same, but the ordering will be slightly different across multiple executions.

In Heuristic Metamorphic Testing, however, the results of a non-deterministic ranking algorithm
can still be compared using some basic domain-specific metrics, such as the quality for each
ranking (measured using the Area Under the Curve [34], a common metric for comparing machine
learning results), the number of differences between the rankings (elements ranked differently),
the Manhattan distance (sum of the absolute values of the differences in the rankings), and the
Euclidean distance (in N-dimensional space). Another metric is the normalized equivalence (or
Spearman Footrule Distance), which explains how similar the rankings are (1 means exactly the
same, 0 means completely in the opposite order) [35].

Furthermore, in practice the user of the system may only be concerned with a small number of
elements in the ranking, presumably selected from the top of the list. For a parameterized value
X, it may be suitable to calculate the quality of only the top X% of each ranking, or calculate
the “correspondence”, which is simply the number of elements that appear in the top X% of both
rankings, divided by the total number of elements. These metrics, along with the other distance
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metrics described previously, can help decide whether a pair of rankings is similar in the ranges that
are most important, and thus can be used even when the result is non-deterministic.

The issue, of course, is knowing just how similar the results should be, so that the heuristic can
be applied. In Heuristic Metamorphic Testing, this can be inferred by observing multiple executions
with the original input, using the chosen heuristic to create a profile describing how they relate to
each other, and then checking that the executions with the new input (after applying metamorphic
properties) have a comparably similar profile using a statistical significance measure. The more
executions that are observed, the more accurate the profile, and thus the more confident the result.

5.2.3. Examples. Consider an example from the machine learning ranking application MartiRank
[36]. Like all supervised machine learning algorithms, MartiRank executes in two phases. The first
phase (called the training phase) analyzes a set of training data, which consists of a set of attribute
values and an associated label, or classification. The result of this analysis is a model that attempts
to make generalizations about how the attributes relate to the label. In the second phase (called the
testing phase), the model is applied to another, previously-unseen data set (the testing data) where
the labels are unknown. In MartiRank, the output of this phase is a ranking such that, when the labels
become known, it is intended that the highest valued labels are at or near the top of the ranking, with
the lowest valued labels at or near the bottom.

If the data set in the second phase contains any missing/unknown values, MartiRank will
randomly place the missing elements throughout the sorted list, making the output non-
deterministic. However, because the elements with known values should end up in approximately
the same spot over multiple executions, we know that the final rankings should always be somewhat
similar, and can use a heuristic (such as normalized equivalence) to measure that similarity. We also
know that there is a metamorphic property that if we multiply all values in the data set by 10, the
final ranking should still be approximately similar over multiple executions. This property can then
be used to conduct metamorphic testing: if the rankings are not similar, then a defect must exist.

To validate this approach, we ran a simple experiment in which we created a data set with missing
values and ran MartiRank 100 times, and then compared the similarity of the outputs. The average
normalized equivalence (i.e., how similar those rankings were to each other) was 0.996 with a
standard deviation of 0.011. We then multiplied all elements in the data set by 10, and ran MartiRank
100 more times. With this new data set, the normalized equivalence was 0.989 and the standard
deviation was 0.013. Using a Student t-test, we could determine that the difference between the
normalized equivalence values is not statistically significant (p < 0.05), meaning that the results
are “close enough”. That is, the rankings with the values multiplied by 10 were approximately as
similar to each other as those from the original data set. However, when we inserted a defect into
the sorting code so that the ordering would be incorrect, the normalized equivalence was 0.663 and
the standard deviation was 0.055, indicating that there is a statistically significant difference (i.e.,
the results are not sufficiently similar), thus revealing the error.

Note that just as metamorphic testing is essentially a pseudo-oracle approach, in that “expected
results” are not necessarily “correct results”, Heuristic Metamorphic Testing can only indicate
defects, not correctness: if the heuristic comparison is not as expected, that indicates that something
is amiss; but if the results are as expected, a defect may still exist but not be revealed.

6. EMPIRICAL STUDIES

To demonstrate the effectiveness of an automated metamorphic testing approach and determine how
well it can detect defects in software without test oracles, we conducted two empirical studies on
various real-world programs and compared the effectiveness of metamorphic testing against some of
the techniques suggested by Baresi and Young in their 2001 survey paper [37], which still represents
the state-of-the-art. In the first study, we investigated a variety of applications without test oracles
in domains such as machine learning and optimization; in the second study, we considered non-
deterministic programs.

The experiments presented in this section seek to answer the following research questions:
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1. Is metamorphic testing more effective than other techniques for detecting defects in
applications without test oracles, particularly in the domains of interest?

2. Is Heuristic Metamorphic Testing more effective than other techniques for detecting defects
in non-deterministic applications without test oracles?

3. Which metamorphic properties are most effective for revealing defects in the applications of
interest?

Although others have conducted similar studies (most notably Hu et al. [38], described further
in Section 6.4), the studies here are the first to consider applications in the particular domains of
interest (machine learning, discrete event simulation, and optimization), and the first to evaluate the
effectiveness of metamorphic testing when applied to non-deterministic programs.

6.1. Techniques Investigated

This section describes the testing techniques employed in the experiments, in addition to
metamorphic testing.

6.1.1. Partial Oracle. As previously discussed, it is impossible to know whether the output of these
programs is correct for arbitrary input, because there is no general test oracle to cover all cases.
However, in some trivial cases, it may be possible to know what the correct output should be, based
on analysis of the algorithm and understanding how it should perform under certain conditions. A
“partial oracle” [39] is one that will indicate correctness or incorrectness of the output program that
does not have a test oracle in the general case, but only for a limited set of test cases.

Determining the boundaries of such partial oracles (i.e., at what point does the program cease to
have an oracle) is outside the scope of this work, but we assume for each of the applications in our
studies that such oracles exist, either because the correct output can easily be calculated by hand, or
there is an agreed-upon correct output for the given input within the particular domain.

Weyuker points out that “Experience tells us that it is frequently the ‘complicated’ cases that
are most error-prone” [2], thus limiting the effectiveness of the partial oracle. However, we assume
that many developers of applications without test oracles would use such a technique, and as it is
relatively simple and cheap to implement, we choose to include it in our studies.

6.1.2. Assertion Checking. The use of assertions for fault detection has been employed since the
early days of software development [40], and modern programming languages such as ANNA [41]
and Eiffel [42], as well as C and Java, have built-in support for assertions that allow programmers to
check for properties at certain control points in the program. For instance, assertion checking may
be used for program safety, such as to ensure that pointers are not null, array indices are in bounds,
or that data structure integrity is maintained.

When used in applications without test oracles, assertions can ensure some degree of correctness
by checking that function input and output values are within a specified range, the relationships
between variables are maintained, and a function’s effects on the application state are as expected.
As a simple example, in a function to calculate the standard deviation of a set of numbers, the
assertions may be that the return value of the function is always non-negative, the values in the input
array never change, the size of the input array never changes, etc. While these statements alone do
not ensure correctness (many other functions would have the same properties), any violation of them
at runtime indicates a defect.

To aid in the creation of assertions, we used the Daikon invariant detection tool [43]. Daikon
observes the execution of multiple program runs and creates a set of likely invariants, which can
then be used as assertions for subsequent runs of the program. This has been shown to be effective
at detecting defects like the ones we use in our studies [44]. Although it is possible to customize the
types of invariants that Daikon can detect, in our experiments we only use its out-of-the-box features.
Note that the invariants created by Daikon only include function pre- and post-conditions, and do
not incorporate any assertions that are within the function itself; future work could consider the
effectiveness of runtime assertion checking when using in-function invariants, though these would
need to be generated by hand, as discussed in the Threats to Validity section below (Section 6.5).
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6.1.3. Approaches Not Investigated. Formal specification languages like Z [45] or Alloy [46] could
be used to declare the properties of the application, typically in advance of the implementation
to communicate intended behavior to the developers. However, Baresi and Young point out that a
challenge of using specification languages as oracles is that “effective procedures for evaluating
the predicates or carrying out the computations they describe are not generally a concern in the
design of these languages” [37], that is, the language may not be suitable for describing how
to know whether the implementation is meeting the specification. Although previous work has
demonstrated that formal specification-based assertions can be effective in acting as test oracles
[47], the specifications need to be complete in order to be of practical use in the general case [48].
Incomplete specifications can be used as partial oracles, though the extent to which this can be
controlled in an experiment may introduce additional threats to validity. Thus, we do not consider
formal specification languages in our evaluation.

Additionally, it may be possible to perform trace or log file analysis to determine whether or
not the program is functioning correctly, if for instance it is conforming to certain properties (like
a sequence of execution calls or a change in variable values) that are believed to be related to
correct behavior; or, conversely, to see if it is not conforming to these properties. We have, in fact,
investigated this technique previously [49], but noted that often the creation of an oracle to tell if
the trace is correct can be just as difficult as creating an oracle to tell if the output is correct in the
first place, assuming it is even possible at all. Therefore, we do not consider log file analysis in this
study either.

Last, a popular approach to testing such applications is to use a “pseudo-oracle” [7], in which
multiple independently-developed implementations of an algorithm process an input and the results
are compared: if the results are not the same, then at least one of the implementations contains
a defect. Despite the common use of the pseudo-oracle approach, and even though different
implementations existed for many of the applications we considered, we could not use the approach
in our study because none of the pseudo-oracles consistently produced the exact same output as
the versions that we used in the experiments. In some cases, this was by design; in others, it was
because of different interpretations of the algorithm. We note, though, that criticism of the pseudo-
oracle approach (and N-version programming) is well-documented from both a practical [50] and
theoretical [51] point of view, further justifying its omission.

6.2. Study #1: Programs without Test Oracles

In this study, we applied the testing techniques to six real-world programs without test oracles. The
goal of the study is to measure the effectiveness of each technique, and to understand why certain
approaches are more suitable than others for testing such applications.

6.2.1. Test Subjects. Three of the applications used in this study are from the domain of machine
learning. In this domain, programs are designed to detect previously unknown properties of data
sets, and thus have no test oracle for arbitrary inputs.

The Support Vector Machines (SVM) algorithm [31] is a classification algorithm used in
numerous real-world applications, ranging from facial recognition to computational biology.‡ We
tested the SVM implementation in the Weka 3.5.8 toolkit for machine learning [52], written in Java.
C4.5 [53] is another classification algorithm, which uses decision trees. In our experiment, we tested
C4.5 release 8, implemented in C. Last, MartiRank [36] is a ranking algorithm that is used as part
of a prototype application for predicting electrical device failures, developed in C by researchers at
Columbia University’s Center for Computational Learning Systems.

We also tested the simulation tool JSim [54], developed by members of the Laboratory for
Advanced Software Engineering Research at the University of Massachusetts-Amherst. Discrete
event simulators can be used to model real-world processes in which events occur at a particular
time and affect the state of the system [55], and do not have a test oracle because the output is not

‡http://www.clopinet.com/isabelle/Projects/SVM/applist.html
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Application Comparison Math Off-by-one Total
C4.5 8 15 5 28
MartiRank 20 23 26 69
SVM 30 24 31 85
JSim 0 1 5 6
Lucene 0 4 11 15
gaffitter 15 19 32 66

Table II. Types of mutants used in Study #1.

known in advance. JSim is implemented in Java and has been used in the modeling of the flow of
patients through a hospital emergency room [5].

Another application we investigated is Lucene [56], an open-source text search engine library
that is part of the Apache project and is implemented in Java. When Lucene produces the results
of a search query, each item is given a relevance score, and the results are sorted accordingly. With
a known, finite set of documents to search, it is trivial to check whether the items in the query
result really do contain the query keywords (and that documents not in the result do not contain the
keywords), but the relevance scores and the sorted ordering cannot be known in advance (if they
could, there would be no need to have the tool).

The final application investigated in this study is gaffitter [57], which is an open-source
application implemented in C++ that uses a genetic algorithm to arrange an input list of files
and directories into volumes of a certain size capacity, such as a CD or DVD, in a way that the
total unused (wasted) space is minimized. This is an example of optimization software, specifically
for solving the “bin-packing problem,” which is known to be NP-hard.§ Solutions to optimization
problems in the domain of NP-hard qualify as programs without test oracles: after all, by definition,
verifying whether a solution is correct is just as hard as finding the solution in the first place.

6.2.2. Methodology. In this experiment, we used mutation testing to systematically insert defects
into the source code and then determined whether or not the mutants could be killed (i.e., whether
the defects could be detected) using each approach. Mutation testing has been shown to be suitable
for evaluation of effectiveness, as experiments comparing mutants to real faults have suggested that
mutants are a good proxy for comparisons of testing techniques [58]. These mutations fell into
three categories: (1) comparison operators were mutated, e.g., “less than” was switched to “greater
than or equal”; (2) mathematical operators were mutated, e.g., addition was switched to subtraction;
and (3) off-by-one errors were introduced for loop variables, array indices, and other calculations
that required adjustment by one. Based on our discussions with the researchers who implemented
MartiRank, we chose these types of mutations because we felt that these represented the types of
errors most likely to be made in these types of applications. All functions in the programs were
candidates for the insertion of mutations; each variant that we created had exactly one mutation
(i.e., we did not create any program variants with more than one mutation).

In our experiments, we did not consider mutations that yielded a fatal error (crash), an infinite
loop, or an output that was clearly wrong (for instance, that violated the output syntax or simply
was blank), since any of the considered approaches or even simple inspection would be able to
detect such defects.

Table II shows the number and type of mutants that were suitable for our experiment for each
of the six applications. The variation in the number of mutants for each application is due to the
different sizes of the source code, the different number of points in which mutations could be
inserted, and the different number of mutants that were excluded because of fatal errors or obviously
wrong output.

6.2.3. Creating Partial Oracles. As the SVM and C4.5 algorithms are popular in the machine
learning community, there exist sample data sets for which the correct output is actually known;

§http://en.wikipedia.org/wiki/Bin packing problem

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe



18 C. MURPHY AND G. KAISER

these are used by developers of SVM and C4.5 implementations to make sure there are no obvious
defects in their code. Of course, producing the correct output for these inputs does not ensure that
the implementation is error-free, but these data sets can be used as simple “partial oracles”. We
used the “iris” and “golf” data sets from the UC-Irvine machine learning repository [59] for both
SVM and C4.5, since the data sets are relatively small in size and the correct output can easily be
calculated by hand. We created four variants of each data set, using different values or different
ordering of inputs, so that the output would still be predictable, for a total of eight data sets.

For MartiRank, we hand-crafted two data sets for which we could predict what the expected
output should be, and confirmed our expectation using the “gold standard” implementation (with no
mutants), which we assumed to be error-free. As with the SVM and C4.5 data sets, we created four
variants of each one, each of which would yield a predictable output, to produce eight data sets in
total.

For JSim, the partial oracle was based on test cases that were created by the developers of the
program. These include simple processes that exercise only particular parts of the simulator, such
as executing steps in sequential order.

For the Lucene partial oracle, we manually created a simple document corpus in which the first
file consisted of only the word “one”, the second contained “one two”, the third contained “one two
three”, and so on. Thus, we could easily predict not only the results of queries like “one AND three”
but also know the expected relevance ranking. Note that we could not predict the relevance scores
themselves, only their relative values, as the scores do not have any meaning on their own.¶

To create a partial oracle for gaffitter, we generated a set of files, each of which had a size that was
a power of two (i.e., one byte, two bytes, four bytes, eight bytes, sixteen bytes, etc.). For any given
target size, there would be exactly one optimal set of files to reach that value. As an example, if the
target were 11 bytes, then a collection including the files of size one, two, and eight bytes would be
the only optimal solution. Thus, it would be possible to know what the correct output should be.

Note these data sets for the partial oracle were selected so that the percentage of line coverage
was approximately the same for the different applications and the different testing approaches,
thus removing any bias due to the number of data sets used. That is, we do not expect that the
partial oracles would be significantly more effective if additional data sets were used, assuming the
percentage of line coverage did not likewise increase significantly.

6.2.4. Conducting Metamorphic Testing. For the three machine learning applications (SVM, C4.5,
and MartiRank), we devised metamorphic properties using the classification described above in
Section 2.2. Each property was verified with the default version to make sure that the property was,
in fact, expected to hold. The properties are defined in Table III.

(1) Permuting the order of the examples in the input data
should create a semantically-equivalent output.
(2) Multiplying each attribute value in the input data by
a positive constant (in our case, ten) should create a
semantically-equivalent output.
(3) Adding a positive constant (in our case, ten) to each
attribute value in the input data should create a
semantically-equivalent output.
(4) Negating each attribute value in the input data should
create a semantically-equivalent output, but with
all values negated.

Table III. Metamorphic properties used for testing machine learning applications

For the metamorphic testing of SVM and C4.5, we used six data sets from the UC-Irvine machine
learning repository [59]. These data sets could not be used for MartiRank because it requires

¶http://article.gmane.org/gmane.comp.jakarta.lucene.user/12076
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Property Description
romeo OR juliet == juliet OR romeo Commutative property of boolean operator
romeo julietˆ0.25 == romeoˆ4 juliet Boosting one term by a factor of 4 should be the

same as boosting the other term by a factor of 0.25
romeo OR foo == romeo Inserting an OR term that does not exist

should not affect the results
romeo NOT foo == romeo Excluding term that does not exist

should not affect the results
Table IV. Metamorphic Properties Used for Testing Lucene

numeric input, so we used 10 randomly-generated data sets that covered a variety of equivalence
classes, using a technique called “parameterized random testing” [60], to try to obtain line coverage
similar to the data sets used in the partial oracle experiment.

For JSim, we identified two metamorphic properties. First, because the event timings as specified
in the configuration have no time units, multiplying each by a constant value should effectively
increase the overall time to complete the process by the same factor. For instance, if there are N
events in the process, and the time to complete each step is t0, t1, t2... tN-1 respectively, and the
total time to complete the process is observed to be T, then changing the event timings to 10t0,
10t1, 10t2... 10tN-1 would be expected to change the overall process time to 10T. Second, we
considered the effect that changing the event timings would have on the utilization rates for the
different resources in the simulation. Specifically, if the event timings were increased by a positive
constant, then the utilization rate (i.e., the time the resource is used, divided by the overall process
time) of the most utilized resource would be expected to decrease, since the total increase in the
overall process time would outweigh the small increase in the resource’s time spent working. In
the metamorphic testing of JSim, we used the data sets from the emergency room simulation work
presented by Raunak et al. [5]

The metamorphic properties for Lucene are based on those presented by Zhou et al. [61], in which
the authors applied metamorphic testing to Internet search engines such as Yahoo!, Google, and
Microsoft Live Search. We also included others based on the specific syntactic features of Lucene,
as described in its user manual. The properties are listed in Table IV. The corpus used for Lucene
was the text of Shakespeare’s “Romeo and Juliet”, separated into five acts and 26 scenes.‖

For gaffitter, we were able to identify two metamorphic properties. First, if the number of
generations used in the genetic algorithm were to increase, the overall quality of the result (in this
case, the amount of unwasted space) should be non-decreasing. The intuition is that subsequent
generations should never reduce the quality, but rather only candidate solutions with better quality
should be included. Of course, we cannot say that increasing the number of generations will increase
the quality, since an optimal solution may have been reached, but there should not be any decrease
in quality. Second, if the sizes of the files were all multiplied by a constant, and the target size (“bin
size”) were also multiplied by the same constant, the results should not change, since there is no
notion of units in the algorithm.

In our metamorphic testing experiment with gaffitter, we used parameterized random testing [60]
to generate a collection of 84 files ranging in size from 118 bytes to 14.9MB, and set targets of
1kB, 1MB, and 100MB. The non-deterministic aspects of the genetic algorithm were controlled by
specifying a seed for the random number generator.

For all applications, for each data set, each mutated version was executed with both the original
and the data set modified according to each metamorphic property, and the results were compared:
if the outputs were not as expected, then the mutant was considered to be “killed” (i.e., the defect
was found).

‖http://shakespeare.mit.edu/romeo juliet/index.html
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6.2.5. Detecting Invariants. To create the set of invariants that we could use for runtime assertion
checking, we applied Daikon to the “gold standard” (i.e., with no mutations) of each application. We
executed the applications with each the different data sets described above. This was done in order
to reduce the number of “spurious invariants” that Daikon might produce. For instance, if a program
is only run once with an input called “input.data”, Daikon will detect that the variable representing
the input file is always equal to “input.data” and create an invariant as such; clearly this is spurious
because it only happens to be true in this one particular case.

Once the set of invariants had been created, we executed each mutated version with the same data
sets used for metamorphic testing and used Daikon’s invariant checker tool to ensure that none of
the invariants were being violated. If a violation occurred, then the defect had been found.

Note that in practice, it may not be possible to derive a complete set of invariants from the “gold
standard”: after all, if one knew that the implementation were the gold standard, testing it would not
be necessary. However, in this experiment, we wanted to create a set of invariants that would most
accurately reflect the correctness of the implementation, and this seemed the best way to automate
that. An alternative would have been to hand-generate a set of program invariants, but this would
have required more detailed understanding of the implementation details. Our aim was to compare
the techniques assuming that the tester only had an understanding of what the applications are meant
to do, and not how they are implemented.

Additionally, even though we took steps to reduce the number of spurious invariants created by
Daikon, some still remained, specifically invariants that asserted that a given variable could only
exist in a particular range of values. These invariants were ignored if, upon further analysis, these
ranges were deemed to be merely an artifact of the data sets that were used, and not an actual
property of the program implementation.

6.2.6. Results. Table V shows the effectiveness (percentage of distinct defects found in each
application) for the partial oracle, metamorphic testing, and assertion checking.

Overall, metamorphic testing was most effective, killing 80.6% of the mutants in the six
applications. Assertion checking found 69.8% of the 269 defects, and the partial oracle detected
65.4%.

Partial Metamorphic Assertion
App. # Oracle Testing Checking
SVM 85 78 (91.7%) 83 (97.6%) 68 (80.0%)
C4.5 28 22 (78.5%) 26 (92.8%) 28 (100%)
MartiRank 69 47 (68.1%) 69 (100%) 57 (82.6%)
JSim 6 4 (66.7%) 6 (100%) 6 (100%)
Lucene 15 11 (73.3%) 11 (73.3%) 9 (60%)
gaffitter 66 14 (21.2%) 22 (33.3%) 20 (30.3%)
Total 269 176 (65.4%) 217 (80.6%) 188 (69.8%)

Table V. Distinct Defects Detected in Study #1.

6.2.7. Analysis. C4.5. As opposed to the other applications, runtime assertion checking was more
effective than metamorphic testing at revealing the C4.5 defects, although only slightly so (28
mutants killed, compared to 26). Upon investigation, we realized that the mutants not killed by
metamorphic testing were both math mutants, in which a calculation was modified. In both cases,
this resulted in a violation of an assertion, but not a violation of a metamorphic property.

One of the two defects is found in the code in Figure 4, which comes from the “FormTree”
function used to create nodes of the decision tree. Lines 179-182 use a for-loop macro to initialize
the values of an array ClassFreq, which is used to calculate the frequency with which a class (or
“label”) appears in the input data. Line 183 then uses the macro to iterate values of i from Fp (the
first index of the array) to Lp (the last index). On line 185, the Class function is used to determine
the class of the item from the input data, and ClassFreq is updated with the corresponding weight.

If there is a defect on line 185, such that the addition of the weight is changed to subtraction,
the values in ClassFreq become negative, in violation of the invariant (detected by Daikon) that

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe



AUTOMATIC DETECTION OF DEFECTS IN APPLICATIONS WITHOUT TEST ORACLES 21

the values should always be greater than or equal to zero; thus, the defect is detected. However,
metamorphic testing does not reveal this defect: the changes made to the input data do not
affect the calculation, and even though the resulting output is incorrect, none of the metamorphic
transformations cause the properties to be violated.

179 ForEach(c, 0, MaxClass)
180 {
181 ClassFreq[c] = 0;
182 }
183 ForEach(i, Fp, Lp)
184 {
185 ClassFreq[ Class(Item[i]) ] += Weight[i];
186 }

Figure 4. Sample code in C4.5 implementation. A defect on line 185 causes a violation of the assertion
checking, but not of the metamorphic property.

We see from Table II that C4.5 had a proportionally higher number of math mutants, compared
to the other applications; as the example in Figure 4 is a math mutant, as well, it may seem
that assertion checking is more effective for these types of defects. However, we observed in all
applications that metamorphic testing is approximately as effective for all three types of defects
(comparison operator mutations, math operator mutations, and off-by-one errors). The takeaway
from the C4.5 result is not that one testing technique is necessarily better than another, but rather
that there are cases when assertion checking is useful for detecting defects related to the value of
variables, whereas metamorphic testing addresses changes to those values.

MartiRank. All 69 of the defects in MartiRank were detected by metamorphic testing, making it
much more effective than the other two approaches, especially the partial oracle. One of the reasons
why the partial oracle was so ineffective is that the data sets we hand-crafted were necessarily much
smaller than the ones for metamorphic testing and runtime assertion checking: the partial oracle data
sets consisted of 10-20 values, whereas the data sets used with the other techniques had 200-20,000.
The small size of the data sets was necessary so that we could accurately and reliably calculate what
the correct output should be; anything much larger would be too complex to calculate, or would be
so trivial that it would not be of much interest.

Although this seems to put the partial oracle at a disadvantage, note that both the partial oracle
data sets and the data sets used for metamorphic testing were attaining approximately the same
overall line coverage (around 70%) regardless of their size, and we only considered mutants that
were on the execution path, to ensure that there was a possibility that they would affect the program
output. Upon analysis of the mutations that were missed by the partial oracle, we discovered that
often the defects only caused incorrect outputs when the data sets were large, as expected.

For instance, in one case there was an off-by-one defect in which an error in the allocation of
memory for an array meant that one of the elements could be overwritten, but this did not occur
when the input was “small” because there was no need for the creation of the additional arrays that
did the overwriting.

In another case, a defect in the “merge” step of the merge sort algorithm caused the indices that
delineated the sublists to be incorrect, making it possible for elements to be sorted in the wrong
order. This defect only affected the final output if the incorrectly sorted elements happened to be on
the boundary between two parts of the MartiRank output; this never occurred for the smaller partial
oracles, but was more likely to occur in the larger data sets used for the other approaches, primarily
because MartiRank continued to sort the larger data sets multiple times, whereas MartiRank had
already generated the correct output with the small data set after only a few rounds of sorting.

Recall that the definition of a “non-testable program” is not only limited to software for which an
oracle does not exist: it can also include software for which the creation of an oracle is too difficult
[2], and the partial oracle by its nature tends to address a smaller, simpler part of the input domain.
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This does serve to point out, though, that the metamorphic testing and runtime assertion checking
techniques can be used with arbitrary input data of any size, thus improving their effectiveness.

SVM. Metamorphic testing was more effective than the other two approaches for SVM,
particularly for off-by-one errors: all 31 were found by metamorphic testing, while assertion
checking missed seven and the partial oracle missed four.

Figure 5 shows a sample of the SVM code that was tested in this experiment. The array m class
identifies the classification, or “label”, for each data point in the input. This particular piece of code
attempts to segregate the data into those that have a label of 1 (into set m I1), and those that do not
(into set m I4). An off-by-one mutant has been inserted into line 524, such that the for loop omits
the final element of m class.

524 for (int i = 0; i < m class.length-1; i++) {
525 if (m class[i] == 1) {
526 m I1.insert(i);
527 } else {
528 m I4.insert(i);
529 }
530 }

Figure 5. Snippet of code from Weka implementation of SVM, with an off-by-one error in the for-loop
condition on line 524

Metamorphic testing detects this defect because, when the examples in the training data are
permuted, a different one is omitted in the loop, and thus it is possible that the contents of both
m I1 and m I4 are different (compared to the original invocation) when using the permuted set:
if element k had been in m I1 in the original execution, but ends up being omitted as a result of
permutation, and element k’ is placed into m I4, then both sets would be different. The result is
that, when the program later performs “validation” (i.e., using the training data as testing data to
determine the accuracy of the model), the element that was omitted is classified differently in each
of the two executions; since the results are expected to be the same, the defect is thus revealed.

On the other hand, when using the partial oracle, either m I1 is different or m I4 is different (but
not both, since an element is omitted from one but the other stays the same) in the execution with
the mutated version. For the small data sets we used, this did not affect the validation results. Larger
data sets would possibly be affected by this difference, but would no longer be useful as partial
oracles since the correct output would no longer be predictable.

Assertion checking fails to find this defect because the relevant invariants simply deal with sizes
of the sets (e.g., “m I1.size> 0”) and the fact that m class does not change. Despite the mutant
in line 524, these invariants still hold.

gaffitter. For gaffitter, none of the results are particularly impressive, though we do see again
that metamorphic testing is the most effective of the three. One of the reasons that gaffitter (and,
presumably, most other implementations of genetic algorithms) is fairly insensitive to the mutations
that we introduced is that many of the calculations have only a subtle effect on the output of the
program. This is actually by design, since the point of a genetic algorithm is to simulate small
changes to the candidate solutions with the hopes that they increase the quality of the result, but
any one particular change is unlikely to have a dramatic effect. This is why the partial oracle, in
particular, performed so poorly.

For instance, consider the pseudo-code in Figure 6, which summarizes lines 212-226 in
GeneticAlgorithm.cc and is typical in most genetic algorithms. This function takes two candidate
solutions (i.e., sets of items) called CS1 and CS2, and creates a child candidate solution, which
contains some items from CS1 and some from CS2. On line 2, a random number is used to determine
whether CS1 and CS2 should cross over at all. If so, on line 3, a crossover point (i.e., an index in
the list of items) is randomly chosen. In line 4, the first items (up to the crossover point) of CS1 are
merged with the last items (from the crossover point to the end) of CS2.
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1 crossover(CS1, CS2) {
2 if (rand() < crossover rate) {
3 crossover point = rand() * length(CS1);
4 Child = CS1[1, crossover point] +

CS2[crossover point + 1, length(CS2)];
5 return Child;
6 }
7 else return null;
8 }

Figure 6. Sample code from genetic algorithm

Considering the mutations such as those we inserted into gaffitter, it is clear that many of them
will indeed affect the output of this particular function, but are likely to have little or no effect on the
quality of the overall solution. For example, in line 3, an off-by-one mutant may change the value of
the crossover point, so that an item from CS1 may incorrectly be replaced instead with an item from
CS2 (or vice-versa), but including or excluding a single item is unlikely to have a dramatic effect on
the overall quality of the result when the number of items is relatively small, as in our partial oracle.
The same can be said of potential off-by-one or mathematical mutants on line 4 in which the items
from CS1 and CS2 are selected to create the child: if the wrong items are selected, the result of the
function will differ from what is “correct”, but if the incorrectly-created child candidate solution
does not have a quality that is much higher than what the correctly-created child would have, then
it will not be selected for inclusion in the next generation, and the fact that there is a defect is moot.

In cases like the partial oracle that we created for gaffitter, in which there is relatively small
number of possible combinations of the files to be packed into the bins, an optimal (and correct)
solution will eventually be found, even when there is a defect in the implementation. This explains
why the partial oracle was so poor at detecting defects.

Note that we were only able to identify two metamorphic properties for this application. This is
partly because for many of the inputs to a genetic algorithm, the effect of changing them cannot be
known in advance. For instance, one cannot predict the changes to the output based on changing
inputs like crossover rate, mutation rate, etc. After all, if it could be known that a particular value
would have a positive effect on the overall result quality, then there would be no need to vary that
input. The only inputs for which we could predict changes to the outputs were the list of files, the
target size, and the number of generations; these were all used in the metamorphic properties we
considered. If we were able to identify more, it follows that more mutants may have been killed by
further testing.

JSim and Lucene. Because of the small number of mutations used in the experiments for
JSim and Lucene, the results may not be statistically significant, but serve to demonstrate that
metamorphic testing is at least as effective as the other approaches. This may not be an important
finding in and of itself, but combined with the other results, indicates that metamorphic testing is no
less effective than the current state of the art at finding defects in a variety of applications without
test oracles.

6.3. Study #2: Non-Determinism

The challenge of testing applications without test oracles can be compounded by the fact that some
applications in these domains can be non-deterministic, in that multiple runs of the program with
the same input will not necessarily produce the same output. Note that being non-deterministic
does not necessarily imply that there is no oracle: a program that produces an equally distributed
random integer between 1 and 10 is non-deterministic, but has an oracle (specifically, that over many
executions, the number of times each integer is returned should be the same; and that no single
execution should return a result outside the specified range). However, some non-deterministic
applications that do not produce numerical output, or for which the distribution or range of results
cannot be known in advance, could be considered not to have an oracle, and thus we include some
of these applications in our study.
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6.3.1. Test Subjects. In our first study described above, all the applications were deterministic, or
were executed with runtime settings to force determinism. In our second experiment, we apply the
testing approaches to non-deterministic applications to measure the effectiveness of each technique.

The JSim discrete event simulator (described in the previous experiment) can be non-deterministic
depending on the system configuration. Specifically, the amount of time each step in the simulation
takes to complete may be random over a range, either using an equal distribution or using a
“triangle” distribution with an inflection point at a specified mode; thus, the time it takes for the
entire process to complete may be non-deterministic.

The MartiRank application described above also can be non-deterministic. In generating its final
output (i.e., the ranking of the input data), MartiRank performs sorting on the elements. If the
data set contains missing values (which is very likely to happen when using real-world data [15]),
MartiRank will randomly place the missing elements throughout the sorted list. Thus, subsequent
executions may yield different results, making the output non-deterministic. Note that in our first
study, the MartiRank data sets had no missing values, thus the output was deterministic.

6.3.2. Methodology. For JSim, we used mutation testing to insert defects that were related to the
non-deterministic parts of the application. To create defects that would affect these parts of JSim,
we systematically inserted 19 different off-by-one mutants related to the event timing, so that when
the configuration specified a timing range from A to B for a given event, the actual range would be
[A+1, B] or [A, B-1] or [A+1, B-1]. We could not use defects that had ranges starting at A-1 or ending
at B+1 because of checks that already existed within the code that would notice such out-of-range
errors and raise an exception.

For MartiRank, we were able to use mutation testing as described in the first study and inserted a
total of 59 defects (18 mathematical operator mutants and 41 off-by-one mutants). Note that these
are not the same set of mutants used in Study #1, since different parts of the program are used in
this phase of MartiRank.

6.3.3. Creating Partial Oracles. Although the applications being tested are non-deterministic, a
partial oracle can exist if it is possible to enumerate all of the possible “correct” outputs. For both
MartiRank and JSim, we created simple data sets for which we could know what all the possible
outputs would be, and confirmed this by using the gold standard version (without any mutations).
Then, we executed each mutated version up to 100 times; if it produced an output that was not one
of the possible correct outputs, the defect had been found.

Of course, it is possible that there would be false negatives in that the mutated version may
randomly not produce an erroneous output during the 100 executions. However, given that the input
was contrived so that there were only 2-3 possible correct outputs, the likelihood of this happening
is incredibly small (around 1 in 1017).

6.3.4. Metamorphic Testing Approaches. In this experiment, we used statistical metamorphic
testing (SMT), which has been proposed as a technique for testing non-deterministic applications
that do not have test oracles [32]. SMT can be applied to programs for which the output is numeric,
such as the overall event timing in JSim, and is based on the statistical properties of multiple
invocations of the program. That is, rather than consider the output from a single execution, the
program is run numerous times so that the statistical mean and variance of the values can be
computed. Then, a metamorphic property is applied to the input, the program is again run numerous
times, and the new statistical mean and variance are again calculated. If they are not as expected,
then a defect has been revealed.

For JSim, we specified non-deterministic event timing over a range [α, β] and ran the simulation
100 times to find the statistical mean µ and variance σ of the overall event timing in the process (i.e.,
the time to complete all the steps). We then configured the simulator to use a range [10α, 10β], ran
100 more simulations, and expected that the mean would be 10µ and the variance would be 10σ. Of
course, they results would not exactly meet those expectations, so we used a Student T-test [33] to
see if any difference was statistically significant; if so, then the defect was revealed. We validated
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this approach with the gold standard implementation (i.e., in which we had not inserted any defects),
and found that the resulting distributions were not significantly different, with p < 0.05.

Heuristic metamorphic testing (HMT), described above in Section 5, is a similar approach that
is based on SMT but can be used for non-deterministic applications or functions that produce non-
numerical output, such as the ranking of elements in MartiRank. For such applications, certain
metamorphic properties can be applied so that the new output is expected to be “similar” to the
original. The issue, of course, is knowing just how similar they should be. This can be measured
by observing multiple executions with the original input, measuring their similarity (according to
some heuristic metric depending on the problem domain, as in the “heuristic oracle” approach for
general applications [30]), and then checking that the executions with the new input (after applying
metamorphic properties) are comparably similar.

In this experiment, we ran 100 executions of the program with a given input, which produced a
list of elements (i.e., the ranking of examples in MartiRank). We could then compare the similarly
of those lists of elements using the Spearman Footrule Distance [35], which yields a normalized
equivalence rating of how similar the lists are, given that they are always expected to contain the
same elements. We then permuted the input (by changing the ordering of the examples in the data set
for MartiRank), ran 100 executions with the new input, and calculated the normalized equivalence
of the new outputs. As with SMT, we again used a Student T-test to compare the results, and we
validated this approach using the gold standard implementation.

6.3.5. Detecting Invariants. As in the previous study, we applied Daikon to the applications and
had it observe multiple program executions of the “gold standard” implementation so that it could
create a list of invariants. The mutated versions of the software were then executed with the same
data sets to see whether any invariants were violated. Because of the non-deterministic nature of the
applications, each was run 100 times, since some invariants might only be violated occasionally.

6.3.6. Results. Table VI shows the number of defects found by the three techniques in this study.
The metamorphic testing approaches (heuristic for MartiRank, and statistical for JSim) were most

effective for both applications, detecting a total of 59 (75.6%) of the 78 total mutants.

Partial Metamorphic Assertion
Application # Oracle Testing Checking
MartiRank 59 15 (25.4%) 40 (67.7%) 27 (45.7%)
JSim 19 0 (0%) 19 (100%) 0 (0%)

Table VI. Defects Found in Study #2.

6.3.7. Analysis. MartiRank. Heuristic Metamorphic Testing was the most effective technique at
detecting the defects in MartiRank. When MartiRank is run repeatedly, the final result of the ranked
elements is expected to be more or less the same each time: even though MartiRank places missing
values randomly throughout the list, the other elements will stay in about the same place, so the
normalized equivalence (i.e., the heuristic used to measure the “sameness” of multiple lists) is high.
One of the metamorphic properties is that permuting the order of the elements should result in a
similar ranking (since sorting does not depend on original input order). However, if there is a defect
such that the known elements of the list are sorted incorrectly, then the resulting lists will not be
similar to the original (since the known elements are out of place and the normalized equivalence
will be lower), and the defect will be revealed.

As we observed in the first study, the MartiRank partial oracle data sets were too small to be
effective, as errors with sorting the known values only appeared in the larger data sets; of course,
once the data set got to be too large, the results were no longer predictable, and a partial oracle could
not be used.

One reason that runtime assertion checking was not as effective as it was for the deterministic
aspects of MartiRank is that Daikon only detected 1927 invariants in this study, compared to 3666
in the first one. We attribute this to the non-determinism: over multiple executions, it may not be
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true in every case that, for instance, one variable is always greater than another, and thus Daikon
disregards this as a likely invariant. With fewer invariants, it follows that there are likely to be fewer
violations.

JSim. Both the partial oracle and assertion checking techniques were unable to detect any of the
JSim defects related to event timing because each approach only considers a single execution of
the program, or of the function that produces the random number in the specified range. Consider
a function that is meant to return a number in the range [A, B], but has a defect so that the range is
actually [A, B-1]. No single execution will violate the invariant that “the return value is between A
and B”, so assertion checking does not reveal this defect. As for the partial oracle, if it is known that
the program calls the function 10 times, for instance, then we can know that the total overall timing
(i.e., the sum of the random numbers) should be a value in the range [10A, 10B]. Even with the
defect, though, this still will be true: no program execution will have a total overall timing outside
that range.

However, statistical metamorphic testing will detect this defect because over 100 executions of
the program (as in our experiment), the mean and variance show a statistically significant difference
compared to what is expected; the other approaches necessarily only run the program once, and do
not consider the trend of the program over a number of independent executions.

6.4. Efficiency

Although these experiments have shown metamorphic testing to be more effective at detecting
defects in applications without test oracles, the goal of the Amsterdam testing framework is to
improve the efficiency of the testers, so that they can conduct more tests in a shorter amount of time.

As described above in Section 4.5, the overhead for the current implementation of the Amsterdam
framework is on the order of a few hundred milliseconds per test case, which we observed in our
experiments to be similar to the overhead incurred by runtime assertion checking. Thus, from a tool
standpoint, the efficiency of the two approaches appears to be about the same.

However, the question then arises, “does it take less time to find and specify the metamorphic
properties than it does to identify program invariants?” We have not yet investigated this ourselves,
but Hu et al. [38] have conducted a study that measured the developer effort for deriving
metamorphic properties and program invariants. The subjects of the study were 38 graduate students
who had no prior knowledge of metamorphic testing or assertion checking, nor of the applications
to which they would apply the techniques. After approximately three hours of training on each
technique, and some background about the three applications that they would test, the subjects were
asked to identify metamorphic properties and program invariants. On average, for each application
the subjects were able to identify around the same number of metamorphic properties and program
invariants in a span of a few hours. More significantly, their study showed that these metamorphic
properties were actually more effective at revealing defects than the program invariants that the
subjects identified.

Thus, it can be concluded that with only a few hours of effort, a developer with no knowledge
of metamorphic testing - or even much knowledge of the application under test - can identify
metamorphic properties and effectively use a tool such as Amsterdam. Moreover, these results
indicate that both the efficiency and effectiveness of the tester using metamorphic testing will not
be less than that of one using program invariants.

6.5. Threats to Validity

The programs that were investigated in these studies may not be representative of all programs
without test oracles. However, these were selected so as to demonstrate that metamorphic testing
is applicable to a range of application domains that do not have test oracles: specifically,
machine learning (C4.5, MartiRank, SVM), discrete event simulation (JSim), information retrieval
(Lucene), and optimization (gaffitter). Moreover, within the domain of machine learning, we chose
applications from different subdomains, specifically decision tree classifiers (C4.5), linear classifiers
(SVM), and ranking (MartiRank). Given the number of test subjects and the breadth of application
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domains, plus the fact that many of these applications are (or are part of) industrial systems, we feel
that the results can safely be generalized.

Another issue is related to the types of defects that were planted in the applications via mutation
testing, and whether or not the ability to detect mutants is a fair metric for comparison of testing
approaches. As indicated above, though, mutation testing has been shown to be an accurate
approximation of real-world defects [58], and is generally accepted as the most objective mechanism
for comparing the effectiveness of different testing techniques [62, 63].

Another potential threat to validity involves the data sets that were used in the experiments. For
the partial oracles, the data sets were smaller than the data sets used for metamorphic testing and
runtime assertion checking. Of course, the data sets were smaller out of necessity because, for
larger data sets, the correct output could not easily be predicted, thus they could not be used as
partial oracles. Also, as noted, the line coverage of the data sets was approximately the same for all
the testing approaches, and variations of the original partial oracle data sets were generated to attain
a better mix of values. It is possible that the results may have been different had different data sets
been chosen, but with very few exceptions, we did not see any data set being particularly good (or
particularly bad) at revealing defects, and the results would not have changed significantly had any
data set been omitted.

In these studies, we used Daikon to create the program invariants that would be used in runtime
assertion checking. Although some researchers have questioned the usefulness of Daikon-generated
invariants compared to those generated by humans [64], Daikon is generally accepted as the state-of-
the-art in automatic invariant detection [65]. We chose to use the tool so that we could eliminate any
human bias or human error in creating the invariants, which would require a great deal of knowledge
of the source code, considering the complexity of the applications we evaluated. Although in
practice invariants may typically be generated by hand, we did not feel that such an approach would
scale to larger, more complex systems such as the ones investigated here, especially considering the
complications of deriving invariants after the software had already been developed.

Daikon can generate spurious invariants if there are not enough program executions, but we
mitigated this by running the programs multiple times with different inputs, and by ignoring any
invariants that were obviously only relevant to the data sets that were being used, and would not be
expected to hold in general. Note that even if some of the invariants that detected defects in the study
were, in fact, spurious, this would serve to increase the apparent effectiveness of runtime assertion
checking by increasing the number of defects it discovered. Given that our results indicate that
metamorphic testing is more effective, any experimental error related to spurious Daikon invariants
would, in fact, only strengthen that conclusion.

Last, the ability of metamorphic testing to reveal defects is clearly dependent on the selection
of metamorphic properties, and the results may have varied had we selected different ones instead.
However, we have shown that a basic set of metamorphic properties (described in Section 2.2)
can be used even without a particularly strong understanding of the implementation. Using this
approach, therefore, we are demonstrating the minimum effectiveness of metamorphic testing; the
use of application-specific properties may actually reveal even more defects [20].

7. RELATED WORK

7.1. Addressing the Absence of a Test Oracle

Baresi and Young’s 2001 survey paper [37] describes common approaches to testing software
without a test oracle. Each of the general approaches from that paper are discussed here. Although
other researchers have looked into domain-specific techniques for creating test oracles (e.g., for
testing GUIs [66] or web applications [67]), we are not aware of any other recent significant
advances in testing applications without test oracles, particularly in the domains of interest: machine
learning, scientific computing, simulation, and optimization.
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7.1.1. Embedded Assertion Languages. Programming languages such as ANNA [41] and Eiffel
[42], as well as C and Java, have built-in support for assertions that allow programmers to check
for properties at certain control points in the program [40]. In metamorphic testing, the tests can be
considered runtime assertions; however, approaches using assertions typically address how variable
values relate to each other, but do not describe the relations between sets of inputs and sets of
outputs, as we do here. Additionally, the checking of the assertions in those languages is not allowed
to have side effects; in metamorphic testing, the tests are allowed to have side effects (in fact they
almost certainly will, since the function or program is called again), but these side effects are hidden
from the user.

Others have reported on the effectiveness of runtime assertions in general [68, 69], and of the
invariants created by Daikon in particular [65, 64]. Although some have specifically considered
using invariants and assertion checking in place of test oracles [70], the empirical studies presented
in this paper, as well as studies independently conducted by Hu et al. [38], demonstrate that
metamorphic testing is more effective overall than runtime assertion checking in detecting defects
in programs without test oracles.

Note that the techniques described in this paper do not preclude the use of the embedded
assertions. As demonstrated by the experiments above, the combination of metamorphic testing and
runtime assertion checking is more effective than either technique alone. Additionally, we suspect
in practice that the identification of metamorphic properties (at the system level or function level)
would likely occur at the same point in the software development process as the identification of
invariants and assertions, making the approaches complementary.

7.1.2. Extrinsic Interface Contracts and Algebraic Specifications. One approach identified in
Baresi and Young’s paper is the use of extrinsic interface contracts, which are similar to
assertions except that they keep the specifications separate from the implementation, rather than
embedded within. Examples include languages like ADL [71] or techniques such as using algebraic
specifications [10].

Algebraic specifications often declare legal sequences of function calls that will produce a known
result, typically within a given data structure (e.g., pop(push(X, a)) == X in a Stack implementation)
[48], whereas metamorphic properties typically describe how the outputs of a single function should
relate when the input is changed in a particular way. Additionally, algebraic specifications are
typically used to formulate axioms that are then employed to create test cases for particular data
structures [72], but are not as powerful for system-level testing in general, since the system itself
may not have such properties. Although the tests that are generated do have oracles for the individual
cases, the approach cannot be used to create general oracles for arbitrary test cases, i.e., for program
operations that do not have associated algebraic specifications, or for the entire system. In this sense,
algebraic specifications and metamorphic testing could be considered complementary approaches.

The runtime checking of algebraic specifications has been explored by Nunes et al. [73] and by
Sankar et al. [48], though these previous works have considered the specification of only small parts
of the application, such as data structures, and do not consider properties of functions in general, nor
do they investigate mechanisms for using the properties to conduct system testing, as we do here.

7.1.3. Pure Specification Languages. Coppit and Haddox-Schatz [47] have demonstrated that
formal specification languages can be effective in acting as test oracles, by converting the
specifications into assertions that can be checked at runtime. Our empirical studies, however, have
shown that metamorphic testing is more effective than such an approach for non-deterministic
applications. For instance, consider the case in which a function should return a random number
in the range [a, b], but because of a defect actually returns a number in [a, b-1]. An invariant created
from the formal specification would not detect this defect because no single execution violates the
property that the result should be in [a, b]. However, statistical metamorphic testing would detect
this defect because, over many executions, the observed mean and variance differ from what is
expected.
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Richardson et al. [74] presented a technique for developing a test oracle (as state-based test
cases) from a specification, and others have looked into the generation of test oracles from program
documentation [75, 76], on the assumption that it represents a reasonable approximation of the
specification of the system. As mentioned earlier, though, the specifications used in these approaches
need to be complete in order to be effective [48]. Others have pointed out that specification
languages often must make a trade-off between expressiveness and implementability, such that
if the language is sufficiently expressive, it becomes hard to write an implementation [77], or to
automatically determine whether the software under test is actually adhering to that specification
[37]. Further investigation into this phenomenon could determine which, if any, specification
languages are most effective from a practical point of view at revealing defects in programs without
test oracles.

7.1.4. Trace Checking and Log File Analysis. Last, it may be possible to perform trace or log
file analysis to determine whether or not the program is functioning correctly, if for instance it is
conforming to certain properties (like a sequence of execution calls or a change in variable values)
that are believed to be related to correct behavior; or, conversely, to see if it is not conforming
to these properties. Some researchers have investigated the effectiveness of these techniques for
specific domains, such as network communication protocols [78] or graphical user interfaces [79].
However, others have demonstrated that the content of the log/trace files must be carefully planned
out, often by someone with great knowledge of the application, in order to be of use in the general
case [80], especially if it is necessary to learn a new specification or analysis language [81].

Trace checking approaches often assume that a model of correct execution already exists [82].
However, if the model cannot be known in advance, a related approach is to observe numerous
program executions that are assumed to be correct for a set of given inputs, and then look for
deviations or anomalies in subsequent executions with a different set of inputs. Such techniques are
common in the security domain, e.g., intrusion detection based on anomalous sequences or patterns
of system calls [83, 84], or virus detection based on anomalous access to the Windows registry
[85]. However, these approaches are likely not applicable to the problem of detecting the types of
calculation defects investigated in this paper.

7.2. Metamorphic Testing

The idea of applying metamorphic testing to situations in which there is no test oracle was first
suggested by Chen et al. [12], though that work only presented the idea in principle, considering
situations in which there cannot be an oracle for a particular application [86, 87], or in which the
oracle is simply absent or difficult to implement [88]. Others have applied metamorphic testing to
specific domains such as bioinformatics [16], network simulation [17], machine learning [20], and
graphics [32], using domain-specific or application-specific metamorphic properties. In our work,
we have attempted to identify general classes of metamorphic properties that can be used in many
different domains, including simulation and optimization (two areas to which metamorphic testing
had not previously been applied).

The study presented here is most similar to that of Hu et al. [38], in which they compare
metamorphic testing and runtime assertion checking. However, their study only compares
deterministic applications. To our knowledge, we are the first to compare metamorphic testing to
other approaches for testing applications that are non-deterministic and do not have a test oracle.
Also, in their study the assertions are created manually by graduate students, and not automatically
detected with a tool such as Daikon, as we do here. This stems from the fact that the programs used in
their experiments are considerably smaller than the applications we investigate; manually generating
the assertions would likely have been error-prone in our experiment, given the complexity of the
applications. Although this seems to reduce the novelty of our work, we point out that the authors
did not consider an approach based on simple inputs (i.e., the partial oracle) in their evaluation;
given the apparent ease of such a testing technique, it is an important contribution to empirically
show that metamorphic testing can actually reveal more defects, as we have shown here. It is worth
mentioning, though, that our results are consistent with theirs in that metamorphic testing is shown
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to be more effective than assertion checking at revealing defects in programs that do not have test
oracles.

Gotleib and Botella coined the term “automated metamorphic testing” [89] to describe how the
process can be conducted automatically, but their work focuses on the automatic creation of input
data that would reveal violations of metamorphic properties, and not on automatically checking
that those properties hold after execution. That is, for a specified metamorphic property of a given
function, they attempt to construct test data that would violate that property. Like most static
techniques, this approach has issues related to scalability, as it only is useful in practice for individual
functions and not for entire applications, and thus is complementary to the work presented here.

Beydeda [90] first brought up the notion of combining metamorphic testing and self-testing
components so that an application can be tested at runtime, as we do in Metamorphic Runtime
Checking, but did not investigate an implementation or consider the effectiveness on testing
applications without oracles. Our work extends that initial idea by providing implementation details
and evidence of feasibility and effectiveness.

Metamorphic testing is in a sense similar to fuzz testing [91] in that inputs are modified during
program execution, and then the function or program is re-run with the new inputs. However, in
fuzz testing, there is no expected relationship between the original output and the output that comes
from the modified input, unlike in metamorphic testing, in which there is an expected relationship
between the outputs, and a violation of that relationship is indicative of a defect. In fuzz testing, the
goal is to force erroneous behavior (e.g., a program crash), which is more appropriate for detecting
security vulnerabilities than for the types of defects investigated in this paper.

Outside of Guderlei and Mayer’s work on statistical metamorphic testing [32], we are not aware
of any other investigation of using metamorphic testing techniques for testing non-deterministic
applications. As noted in the description of Heuristic Metamorphic Testing, statistical metamorphic
testing can only be used for applications that produce outputs that have statistical properties, such as
mean and variance, whereas Heuristic Metamorphic Testing is applicable to the more general case of
non-deterministic applications in which profiles of outputs can expected to be “similar” (according
to some domain-specific definition of similarity) across multiple executions.

7.3. Domain-Specific Testing

The work we have presented in this paper is particularly applicable to domains in which there is no
test oracle, specifically machine learning, simulation, and optimization, but also areas of scientific
computing.

7.3.1. Machine Learning Although there has been much work that applies machine learning
techniques to software engineering in general and software testing in particular [92, 93, 94], we
are not currently aware of any work in the reverse sense: applying software testing techniques to
machine learning applications, particularly those that have no reliable test oracle. Orange [95] and
Weka [52] are two of several frameworks that aid machine learning developers, but the testing
functionality they provide is focused on comparing the quality of the results, and not evaluating the
“correctness” of the implementations. Repositories of “reusable” data sets have been collected (e.g.,
the UCI Machine Learning Repository [59]) for the purpose of comparing result quality, i.e., how
accurately the algorithms predict, but not for the software engineering sense of testing.

Testing of intrusion detection systems [96, 97], intrusion tolerant systems [98], and other security
systems [99] has typically addressed quantitative measurements like overhead, false alarm rates,
or ability to detect zero-day attacks, but does not seek to ensure that the implementation is free
of defects, as we do here. An intrusion detection system with very few or no false alarms could
still have bugs that prevent it from detecting many (or any) actual intrusions, making it completely
undependable.

7.3.2. Simulation and Optimization Researchers concerned with the verification of simulation
software often acknowledge the need for software testing, but typically do not present techniques
beyond what is common for all types of software [100, 101, 102], such as test-driven development or
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using code reviews. Others have focused on using formal specifications [103], as have researchers
investigating the verification of optimization software, as in compiler optimizations [104, 105].
However, as described above, the use of formal languages to act as an oracle can be challenging
from a practical point of view, given that the specification often needs to be complete in order to be
useful. Additionally, the creation of a formal specification can be fairly complex after the software
has already been developed, and requires intimate knowledge of the algorithm being implemented.
In the studies presented here, however, we showed that even with a basic understanding of the
simulation (JSim) and optimization (gaffitter) software, we were able to create metamorphic
properties that were more effective than other approaches at finding defects.

7.3.3. Scientific Computing Recent research presented at the 2009 ICSE Workshop on Software
Engineering for Computational Science and Engineering [106] addressed many of the issues
that arise in testing applications in domains without test oracles. Hannay et al. pointed out
that scientific computing software is often developed by scientists (as opposed to professional
programmers or software engineers) who understand that software testing is important, but generally
feel that they have insufficient understanding of software testing concepts [107]. Heroux and
Willenbring suggested a test-driven approach for developing such software [108]; as pointed out
above, the identification of metamorphic properties early in the specification phase would likely
enhance the effectiveness of metamorphic testing. Hook and Kelly described a testing approach for
scientific software that, aside from algorithm verification and scientific validation, calls for “code
scrutinization”, i.e., specifically looking for common defects such as off-by-one errors or incorrect
use of array indices [109]. As demonstrated by our empirical studies, metamorphic testing is also
effective at detecting such errors, and may be used in conjunction with code inspections.

8. FUTURE WORK

Potential areas for future work include:

• Supporting automatic fault localization. Although the approaches can record a test failure
and know which test failed, it may not be obvious what is the root cause of the failure
(invalid system state, invalid function arguments, configuration, environment, combination
thereof, etc.). Thus, the system could take a snapshot of the relevant parts of the state (i.e.,
the ones that could have affected the outcome of the test) and record those in the failure
log as well, for further analysis. If these logs are aggregated by the software developer,
a failure analysis technique (e.g., [110] or [111]) could be used to try to isolate the fault.
However, given that research into fault localization techniques is typically targeted at defects
that cause the application to crash, or assume the presence of an oracle, challenges will arise
in determining the source of the error in applications for which the correct output cannot be
known in advance.

• Automatically detecting properties that can be used to aid in the generation of tests.
Although prior work has been done in automatically determining algebraic specifications
[112] and in categorizing metamorphic properties [15], as of now it is necessary for the
software developer or tester to discover and specify the properties and/or write the tests
required for metamorphic testing. It may be possible to automate this process, using static
or dynamic techniques.

• Exploring the soundness of metamorphic properties. The violation of a metamorphic
property does not necessarily indicate a defect: it is possible that the property may not be
sound, i.e., not expected to hold in every case. Future work could investigate how a tester
would be able to tell the difference. Others have demonstrated that an unsound model (or,
in our case, unsound metamorphic properties) may reveal defects that more restrictive sound
properties would not [113], even though that raises the risk of false positives. For instance,
we previously pointed out a metamorphic property in the ML ranking algorithm MartiRank
that permuting the order of the input data should not affect the output, but only assuming that
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the values in the input are all distinct, since MartiRank uses stable sorting. However, we can
remove this assumption and concede that although this metamorphic property is not sound
(because for some inputs, it will not be true), it may reveal actual defects that may not be
detected if we included the original constraint that all values must be distinct. That is, there
may be a tradeoff of accepting false positives in the hopes of finding more errors.

9. CONCLUSION

In this paper, we have presented an automated approach to metamorphic testing applications that
do not have test oracles, and described a testing framework called Amsterdam, which addresses
some of the practical limitations of metamorphic testing so that it can be an efficient technique
for testing applications that deal with large, complex data sets. Amsterdam automates system-level
metamorphic testing by treating the application as a black box and checking that the metamorphic
properties of the entire application hold after execution. Testers do not need to write any test code,
but rather only need to specify the metamorphic properties using a simple notation. Additional
executions of the program are run in parallel with the original, in order to make the testing process
more efficient.

Additionally, we have introduced a new technique called Heuristic Metamorphic Testing, which
can be used to avoid false positives that come about from imprecisions in floating point calculations,
and can also be used in the testing of non-deterministic applications. In Heuristic Metamorphic
Testing, the application is run multiple times to build a profile of its outputs, using a domain-specific
heuristic, and then the metamorphic transformation is applied: the application is then run multiple
times again, and a measurement is taken to see if the profile of the new outputs is statistically similar
to what is expected. If not, then a defect has been detected.

Last, we conducted two empirical studies designed to measure the effectiveness of metamorphic
testing at finding defects in the domains of interest. In the first study, we investigated three
supervised machine learning classifiers, in addition to applications in the domains of discrete event
simulation, information retrieval, and optimization. In the second study, we applied the techniques
to non-deterministic applications. Both studies showed that metamorphic testing is more effective
than other approaches, specifically using partial oracles or runtime assertion checking.

Addressing the testing of applications without oracles has been identified as a future challenge
for the software testing community [114], and we hope that our findings here help others who are
also concerned with the quality of such programs.
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