
Baseline:
Metrics for setting a baseline
for web vulnerability scanners

Huning Dai, Michael Glass, and Gail Kaiser

Department of Computer Science,
Columbia University,

New York, NY 10027 USA
{dai,mgg2102,kaiser}@cs.columbia.com

http://www.cs.columbia.edu

Abstract. As web scanners are becoming more popular because they
are faster and cheaper than security consultants, the trend of relying on
these scanners also brings a great hazard: users can choose a weak or
outdated scanner and trust incomplete results. Therefore, benchmarks
are created to both evaluate and compare the scanners. Unfortunately,
most existing benchmarks suffer from various drawbacks, often by testing
against inappropriate criteria that does not reflect the user’s needs. To
deal with this problem, we present an approach called Baseline that
coaches the user in picking the minimal set of weaknesses (i.e., a baseline)
that a qualified scanner should be able to detect and also helps the user
evaluate the effectiveness and efficiency of the scanner in detecting those
chosen weaknesses. Baseline’s goal is not to serve as a generic ranking
system for web vulnerability scanners, but instead to help users choose
the most appropriate scanner for their specific needs.

Keywords: web vulnerability scanner; benchmark; weakness; vulnera-
bility; finite state machine; baseline

1 Introduction

As the Internet has grown in popularity, security testing is becoming a cru-
cial part of the life cycle for software systems, especially for web service appli-
cations and websites. Web vulnerability scanners, both commercial and open-
source (e.g., Rational AppScan1, WebInspect2, Nikto3, etc.), were developed
to automatically scan web applications to detect potential vulnerabilities. As
these scanners are becoming more popular because they are faster and cheaper
than security consultants, the trend of relying on these scanners also brings a
great hazard: users can choose a weak or outdated scanner and trust (sometimes

1 http://www-01.ibm.com/software/awdtools/appscan/
2 http://www.hp.com/webinspect
3 http://cirt.net/nikto2

2 Baseline: Metrics for setting a baseline for web vulnerability scanners

highly) incomplete results. Fortunately, there have been assessment benchmarks
that make comparisons between these scanners in order to determine which ones
are better. Most of these benchmarks use the scanners to scan a manually crafted
website with a number of known vulnerabilities, and rate the scanners based on
the percentage of successful detection. These benchmarks are only capable of
judging which scanner is better in the matter of how well the scanners can de-
tect the fixed set of vulnerabilities the benchmarks picked with static selection
criteria. They suffer from drawbacks by neglecting the critical questions: Does
the benchmark properly reflect the user’s security requirements; does it reflect
the user’s actual deployment environment? In helping the users choose the right
scanners, answering these questions is as crucial as evaluating the effectiveness
and efficiency of the scanners.

In this paper, we propose an approach called Baseline that addresses all
of these problems: We implement a ranking system for dynamically generating
the most suitable selection of weaknesses4 based on the user’s needs, which
serves as the baseline that a qualified scanner should reach/detect. Then we
pair the ranking system with a testing framework for generating test suites
according to the selection of weaknesses. This framework maps a weakness into
an FSM (Finite State Machine) with multiple end states that represent different
types/mutations of exploitations of the weakness and each transition from state
to state determined by scanner behavior, the framework then combines the FSMs
of the selected weaknesses into a mimicked vulnerable website. When a scanner
scans the “vulnerable” website, the transitions between the states are recorded
and thus we are able to evaluate the scanner by looking at which end states
were visited (effectiveness), in how much time, and over how many transitions
(efficiency).

The rest of this paper is organized as follows. Section 2 proposes the Baseline
approach and divides it into a weakness ranking system and a testing framework.
Section 3 introduces the dynamic ranking system for weaknesses and provides
some results of the ranking system. Section 4 looks at the testing framework,
explains the idea of mapping a weakness to a finite state machine and shows
the results of our case studies. Related work is then discussed in Section 5. We
address the system’s limitations in Section 6, and finally summarize our findings
in Section 7.

2 Baseline Approach

Instead of trying only to define a benchmark to compare scanners, we decided to
answer a more important question: whether the claims a scanner’s vendor makes
in terms of its coverage are valid in the first place. We propose an approach that
coaches the users in selecting a minimal set of weaknesses (i.e., a baseline) that
a qualified scanner should be able to detect. To achieve this, we maintain a
dynamic ranking of all weaknesses from the Common Weaknesses Enumeration

4 “weakness” as shorthand for “category of vulnerabilities”, in the style of the Common
Weakness Enumeration

Baseline: Metrics for setting a baseline for web vulnerability scanners 3

[8] (CWE) paired with vulnerability reports from the National Vulnerability
Database [6] (NVD). We rank the weaknesses based on their vulnerabilities’
average severity (using their CVSS5 scores from NVD) as well as their frequency
within a given date range specified by the user. In addition, since different users
might have different priorities, we have developed a formula that allows the user
to specify how they weight the relative importance of frequency versus severity.
After the user defines the baseline using our system, the testing framework maps
each weakness to a finite state machine (FSM) and combines these FSMs to
be the back end for a test website for the scanner. Each state within a FSM
represents a known type/mutation of a possible exploitation of the weakness.
Transitions between the states are recorded as the attempts the scanner made
in order to detect the vulnerability. These transition records serve as the criteria
for evaluating both the effectiveness (how many states were visited) and the
efficiency (in how many transitions/in what time did it take the scanner to
visit those states) of the scanner. The result provided by Baseline is then used
as guidance in helping the user choose the most appropriate scanner for their
specific requirements.

The baseline approach is composed of two parts: A weakness ranking system
and a test framework. Although we introduce these two parts separately later in
this paper, we would like to remind the readers that they are parts of the same
whole and the ranking system parameterizes the test framework.

3 Dynamic ranking system

3.1 Approach

The major question we want to solve is: which weaknesses should represent the
minimal set of vulnerabilities that a qualified web vulnerability scanner will
find. One idea is to collect all the claims made by commercial and open-source
scanners to find the most commonly detected vulnerabilities and categorize them
into weaknesses. However, a baseline generated by this metric might not be fair,
because many products tend to target specific weaknesses. Also when we try to
collect the claims from the Top 10 Web Vulnerability Scanners [9], 9 out of 10 do
not have a specified list of vulnerabilities that they are able to detect. This fact
shows that using the claims will impede the legitimacy of the baseline greatly.

In order to deal with these problems, we have created a dynamic ranking
system of all known weaknesses. To ensure its legitimacy, our system catego-
rizes vulnerabilities into weaknesses using the standardized Common Weakness
Enumeration (CWE) and pairs it with statistical data pulled from the National
Vulnerability Database(NVD). Our system automatically updates its ranking
criteria using the newest data from CWE and NVD: CWE updates their data
monthly and NVD adds more than 10 entries daily. A live ranking system of
the weaknesses has a lot of merits. First of all, it provides the users a more ex-
plicit view of the impact of different weaknesses (in terms of their severity and

5 The Common Vulnerability Scoring System (CVSS) - http://www.first.org/cvss/

4 Baseline: Metrics for setting a baseline for web vulnerability scanners

frequency). Second, it helps to find recent trends in vulnerability occurrence,
and can thusly be used to help guide web security development. Furthermore, it
serves as the most reasonable criteria in defining a baseline for vulnerability scan-
ners by using real world severity and frequency instead of what’s conceptually
popular or newsworthy.

3.2 Architecture

We cache the NVD and CWE database to efficiently generate rankings upon re-
quest. The database is easily updated whenever new data is available on CWE or
NVD. Our ranking system provides the option to omit system weaknesses (e.g.,
buffer overflows) because most web vulnerability scanners focus on weaknesses
that are web application related.

We maintain a table in the database for all weaknesses from CWE; the schema
is shown in Table 1. Because one weakness might belong to another weakness,
we keep its ParentID in the database. For NVD, we keep a table of all reported
instances of vulnerabilities together with the IDs of the weaknesses they belong
to, Table 2.

Table 1. CWE table

Column Name Description

ID Corresponding to the weakness ID from CWE

Name Weakness name

Type System related or Web application related

Count Number of vulnerabilities found in the NVD table of
this weakness, including vulnerabilities of descendant weaknesses

Score Average CVSS score of the vulnerabilities in the NVD table of
this weakness, including vulnerabilities of descendant weaknesses

ParentID Corresponding to the ID of its parent weakness

Table 2. NVD table

Column Name Description

ID Corresponding to record ID from NVD

WeaknessID Corresponding to the ID of the weakness it belongs to from CWE

Score CVSS score of this instance of vulnerability

Published Published timestamp

Modified Modified timestamp

After the database is populated, we can easily generate a frequency ranking
of weaknesses based on the number of occurrences of related vulnerabilities from

Baseline: Metrics for setting a baseline for web vulnerability scanners 5

NVD and a severity ranking using the average CVSS score of these vulnera-
bilities. With these two rankings, we designed a formula that allows the users
weight frequency and severity to calculate which weaknesses should be included
in their baseline.

Assume that we want to take a set of N representative weaknesses as the
baseline, and T is the total number of weaknesses in the CWE table. We define a
frequency score for each weakness in CWE. The frequency score for the weakness
can be calculated with:

frequency score = frequency rank ∗ 10/T (1)

In which the frequency rank of the weakness with the least number of occurrences
is 1 and the frequency rank of the most common weakness is T. We multiply
frequency rank by a constant, 10, because the CVSS score is 10-based and we
want to map the frequency score to that.

Using the frequency score together with the severity score (average CVSS
score from NVD of all vulnerabilities associated with the weakness as well as
all vulnerabilities associated with its descendant weakness) and the frequency
versus severity weights decided by the user, we can derive the final score of a
weakness in CWE with this formula:

final score = frequency weight ∗ frequency score

+severity weight ∗ severity score (2)

Note frequency weight+ severity weight = 1.

Finally, our system ranks each weakness ordered by the final score and takes
the top N weaknesses as the set representing the baseline. It is worth pointing
out that our sysyem also allow the users to omit certain weaknesses or reorder
their priority in the baseline.

3.3 Case study

We tested the ranking system by requesting the top 10 web application related
weaknesses from Jan 1st 1996 to May 7th 2010 with different weights on fre-
quency score and severity score. Applying the formula with frequency weight =
0.5 and severity weight = 0.5 gives us Table 3. It is worth mentioning that the
frequency weight and severity weight are adjustable by the user. Imagine that a
government server might treat severity more seriously than frequency of attack
in order to defend against fatal attacks while a high traffic portal website might
care more about preventing the most common attacks, so they would use differ-
ent weights to generate different baselines. Table 6 in the appendix shows the top
10 most common web weaknesses by applying the formula with frequency weight
= 1 and severity weight = 0 and Table 7 in the appendix is the top 10 most dan-
gerous web weaknesses generated with frequency weight = 0 and severity weight
= 1.

6 Baseline: Metrics for setting a baseline for web vulnerability scanners

Table 3. The Top 10 web weaknesses from 1996-2010 by Baseline (order by final score
with equal weights)

Weakness Name Avg.Score Count Final score

Improper Sanitization of Special Elements 7.37405 2528 8.687025
used in an SQL Command (‘SQL Injection’)

Failure to Control Generation of Code 7.69732 1083 7.79616

Permissions, Privileges, and Access Controls 6.33941 1251 7.380205

Improper Input Validation 6.51184 1030 6.93992

Failure to Preserve Web Page Structure 4.24536 2218 6.85918
(‘Cross-site Scripting’)

Improper Limitation of a Pathname to 6.44464 943 6.64332
a Restricted Directory (‘Path Traversal’)

Resource Management Errors 6.7512 707 6.5336

Improper Authentication 7.10087 462 6.181935

Numeric Errors 7.50741 459 6.121705

Information Exposure 4.90841 523 5.99082

4 Weakness FSM

4.1 Approach

After a baseline is generated by our dynamic ranking system with the user’s
preference, the user might search for these weaknesses or related vulnerabilities
in the scanner’s vendor’s claim (if there is one). If indeed claimed by the vendor,
it at least means that the user has found a product targeting appropriate weak-
nesses. However, the question, “how well does the scanner actually do what it
claims?” remains unsolved. To answer this question, we developed a framework
that maps each weakness to a finite state machine (FSM) with multiple end
states as different successful exploitations. The FSMs for different weaknesses
can be dynamically combined to test multiple weaknesses simultaneously. The
FSM testing framework produces a website with each page representing a state
and the scanner behavior determines the transitions from state to state. Our
framework saves a scanner’s transition history in the database. With these tran-
sition records, we are able to evaluate the scanner by looking at which end states
were visited (effectiveness), in how much time, and over how many transitions
(efficiency).

4.2 Architecture

We used PHP’s Object Oriented features to build a library with multiple classes
for helping the programmers/testers create finite state machines for weaknesses.
Figure 1 shows the UML diagram of all the classes we created for mapping a
weakness into a FSM. Each Test object represents a weakness and it contains sev-
eral Transition objects and State objects. State objects represent HTML pages

Baseline: Metrics for setting a baseline for web vulnerability scanners 7

that contain input fields for the scanner, and the library has been designed with
various features to help generate states easily without touching HTML - for
instance, a state can have forms and links added programmatically. To verify
whether a transition is valid, we created an interface called iTestable with a
function run test(). Currently, we only implemented the RegExTester class that
verifies the transitions by checking the regular expression of three types of user
inputs - GET, POST parameters and URLs. However, other validation classes
that extend the iTestable class can be created to determine the transitions using
different methods. For example, better SQL injection testing can be achieved us-
ing real SQL parsing libraries instead of testing inputs against common regular
expression patterns of SQL statements.

Fig. 1. UML diagram for FSM classes

4.3 Case study

SQL injection. Here we show an example finite state machine we created using
our library that represents a very general SQL injection weakness [17]. The FSM
is illustrated in Figure 2. There are a total of three end states, namely blind,
simple and fancy. They stand for three levels/types of possible exploitations of a
SQL injection weakness as classified in the SQL Injection Cheat Sheet [10]. Blind
SQL injection is exploited by injecting logical statements into the legitimate SQL
statement; simple SQL injection is to bypass login screen with comment symbols

8 Baseline: Metrics for setting a baseline for web vulnerability scanners

or conditional statements; fancy SQL injection includes using stacking/union
statements, hex bypassing and string concatenation. We used the cheat sheet to
define the regular expression tests that make up the transitions between each
state.

Fig. 2. Finite State Machine for SQL injection weakness

After creating the FSM for SQL injection weakness, we used Scrawlr [7], a
SQL injection vulnerability scanner by HP Lab, to scan the test pages. HP Lab
claims that Scrawlr is capable of identifying SQL Injection vulnerabilities in URL
parameters. We did not expect Scrawlr to report that it finds any vulnerabilities
since our test pages are not designed to provide realistic feedback and they are
not really vulnerable. However, we can see the attempts it made while trying
to detect the vulnerability by looking at the transition records. Successful visits
of the end states imply that Scrawlr should be able to detect the vulnerability
when scanning a real vulnerable website. Table 6 shows the records of transitions
made by Scrawlr after scanning our test page.

The transition records in the database indicate that Scrawlr first submitted
the form with regular inputs, and then it appended “’+OR” and “’+AND+5%3-
d5+OR+’s’%3d’0” to the input fields, which would trigger an exploitation of
a simple SQL injection vulnerability in a vulnerable website. While we didn’t
expect Scrawlr to report that it finds any vulnerabilities, we did see attack-like
behavior. However, Scrawlr only managed to visit one out of three possible end
states, which made us suspicious of Scrawlr’s ability to actually detect most types
of SQL injection vulnerabilities. We verified this suspicion by testing Scrawlr
against two websites explicitly crafted with a number of known SQL injection
vulnerabilities: Free Bank Online [5] by HP and Altoro Mutual [3] by Watchfire.
Scrawlr announced that both websites were vulnerability-free after the scan.

Baseline: Metrics for setting a baseline for web vulnerability scanners 9

Table 4. Part of the transitions Scrawlr made scanning the test page

Transition name Source Destination Input (GET from Form) Timestamp

DO NOTHING START FAILED username=admin 2010-04-26
password=admin 17:45:25

DO NOTHING AGAIN FAILED FAILED username=admin 2010-04-26
password=admin 17:45:25

FAILED TO SIMPLE FAILED SIMPLE username=admin’+OR 2010-04-26
password=admin 17:45:27

STAY SIMPLE SIMPLE SIMPLE username=admin’+AND 2010-04-26
+5%3d5+OR+’s’%3d’0 17:45:27
password=admin

XSS. XSS (Cross-site Scripting) has become one of the most common and dan-
gerous weaknesses in the last decade [9] [1]. An exploited XSS vulnerability can
be used by attackers to bypass access controls. According to [19] and XSS Cheat
Sheet [11], there are three major types of XSS attacks: HTML Quote Encapsu-
lation (HQE), which is accomplished by injecting HTML tags with metadata;
URL String Evasion (USE), which is carried out by injecting URL hyperlinks;
and traditional Cross-Site Scripting (XSS), which is fulfilled by injecting scripts
with tricks to get around the filters [18]. Thus the FSM for XSS we created has
three end states as shown in Figure 3 with all possible transitions.

Fig. 3. Finite State Machine for XSS weakness

After we created the FSM for XSS weakness, we used it to test the free
edition of Acunetix Web Vulnerability Scanner [2], which is claimed to“identify
Cross Site Scripting (XSS) Vulnerabilities”. After the scan, the records reveal

10 Baseline: Metrics for setting a baseline for web vulnerability scanners

that Acunetix Web Vulnerability Scanner visited the XSS and HQE end states
multiple times. Part of the record is shown in Table 5.

Table 5. Part of the transitions Acunetix made scanning the test page

Transition name Source Destination Input (GET from Form) Timestamp

FAILED TO XSS FAILED XSS username=1<script> 2010-04-27
alert(41206)</script> 14:27:36
password=g00dPa$$w0rD

FAILED TO HQE FAILED HQE username=1<iframe/+ 2010-04-27
/onload=alert(41386)> 14:27:38
</iframe>
password=g00dPa$$w0rD

Acunetix Web Vulnerability Scanner was able to visit two out of three end
states and therefore should be able to detect most of the XSS vulnerabilities
when scanning a vulnerable website. We verified this by using Acunetix to scan
Free Bank Online and Altoro Mutual; Acunetix detected all vulnerable pages as
documented. However, since Acunetix failed to visit the USE state, it would not
be able to find the pages that are only vulnerable to URL string evasion attacks.
An example would be a web page that allows a malicious user to inject example.com w
here regular URLs are disallowed or filtered.

Due to space limitations, we only show two preliminary FSMs here. Eventu-
ally, we should have sophisticated FSMs for all known weaknesses and develop-
ers/testers can easily create new FSMs with the library we built. By having the
scanner scan the FSMs of the weaknesses within the baseline, one can evaluate
the scanners’ effectiveness by looking at how many end states were visited and
the efficiency by checking how much time was spent.

5 Related work

Many companies use web vulnerability scanners to assess the security of their
website, because scanners are faster and cheaper than security consultants. How-
ever, a user might pick a weak or outdated scanner and trust incomplete re-
sults. Therefore, researchers have created many benchmarks to both evaluate
and compare scanners. A great percentage of the benchmarks (e.g. [20] [12] [21])
use manually crafted websites with known vulnerabilities as criteria for judging
the scanners and present a ranking based on the percentage of vulnerabilities
successfully detected. However, the results certainly suffer from bias as most
benchmarks are created by scanner developers. This suspicion of bias seems to
be confirmed by other vendors’ responses to the results of benchmarks; most re-
sponses used or expressed the word “unfair” [14] [25]. In addition, using crafted
websites provides no guarantee of the coverage of the weakness space.

Baseline: Metrics for setting a baseline for web vulnerability scanners 11

Some benchmarks, such as [15] [13], focus on one or several weaknesses that
they consider the most important, and compare the scanners based on their
performance in detecting the vulnerabilities of these “important” weaknesses.
Some of them [24] also focus on certain web technologies the websites use, such as
PHP and Ajax. These benchmarks often use the most common or most dangerous
weaknesses without considering the fact that different user might have different
view of which weaknesses are of the most importance, e.g. a portal website with
heavy traffic might worry more about the most common weaknesses while a
government website might care more about the dangerous ones.

Our Baseline approach includes a dynamic ranking system that coaches the
users to decide the minimal set of weaknesses that a qualified scanner should be
able to detect. The always up-to-date weakness ranking system together with the
weight-based formula provides flexibility in guiding the users in choosing their
desirable scanner. In addition, Baseline doesn’t address the website technology.
The idea is that vulnerabilities are triggered by improper and incomplete input
validation (via URL, POST/GET, etc.), and Baseline is designed to report what
transitions the scanners followed (what inputs the scanners provide) in order to
detect the vulnerabilities regardless of the technology being used.

A third type of benchmark scores the scanners in several categories and
evaluates each independently. For instance, [23] divides a scanner into three
components: getting all the pages, finding all the input vectors and providing
invalid, unexpected, or random data to all the input vectors. It, surprisingly,
discovered that a large portion of the scanners cannot even reach the vulnerable
pages via link traversal, and thusly, cannot even start to exploit vulnerabilities.
However, most scanner vendors claim the benchmark’s results are invalid since
a tester needs to provide credentials to help the scanner crawl all pages [16].

Our approach lets the user decide what is important, instead of a scanner
developer, while still making sure what the user decides is valid by leveraging
CWE and NVD. Furthermore, the open framework of Baseline allows users that
are interested specifically in testing a scanner’s crawling ability, for example,
to easily develop FSMs that map to that test criteria. Finally, by monitoring a
scanner’s behavior while scanning the webpage our Baseline system created, we
can evaluate both the scanner’s effectiveness in finding vulnerabilities as well as
its performance in getting to the end results.

6 Limitations & future work

A major limitation resides in the current implementation of validating the transi-
tions between the states. Our system now relies merely on searching for matches
of specific attack patterns in the input fields. However, some scanners might take
a different approach to detecting vulnerabilities other than trying to actively ex-
ploit them, such as using static analysis of the source code [22]. Our system will
not be suitable to evaluate those scanners yet. We are now investigating different
ways of identifying the scanners’ attempts to detect potential vulnerabilities and
create new extended classes of the iTestable class. By actually involving source

12 Baseline: Metrics for setting a baseline for web vulnerability scanners

from webpages in our iTestable classes, we will not only get more realistic test
results, but will also allow systems that scan source code for vulnerabilities to
still function and identify vulnerabilities. For instance, for an XSS vulnerability
scanner, we could implement an iTestable class that leverages a web framework,
like Drupal’s form parsing code [4]. A scanner that searches for vulnerabilities
in source code would have access to the source and individual attacks that it
selected would both a) be appropriately vulnerable in the original code and b)
could be caught/identified in the iTestable wrapper.

Another limitation of our implementation is that we haven’t built all the
FSMs for all known weaknesses. We have implemented the FSMs for generic SQL
injection, XSS and path traversal, respectively. Nevertheless, with the weakness
FSM library we built anyone can create FSMs for specific weaknesses with little
instruction. We will also continue working on writing more robust FSMs.

Finally, one limitation out of our hands is that the mapping of National Vul-
nerability Database (NVD) vulnerabilities to Common Weakness Enumeration
(CWE) categories is highly limited - the NVD uses only 19 of the 810 weaknesses
in CWE to categorize its vulnerabilities. This is useful, but more specific cate-
gorization would be more compelling. Effective selection of weaknesses would be
helped significantly with better NVD categorization.

7 Conclusion

In this paper, we explored an approach for setting a baseline for qualified web
vulnerability scanners in the domain of security testing, developed a dynamic
ranking system of all known weaknesses and a framework that maps weaknesses
into finite state machines so as to mimic vulnerable websites. Most existing
benchmarks for web vulnerability scanners suffer from bias by using arbitrary
static criteria that do not consider the user’s needs. Our proposed approach,
Baseline, deals with these problems by helping the user decide the minimal set
of weaknesses that a qualified scanner should be able to detect and evaluating
the effectiveness and efficiency of the scanner in detecting the vulnerabilities of
the chosen weaknesses. Baseline doesn’t serve as criteria in comparing between
the scanners but serves as guidance for the users to choose the suitable ones for
their needs. We are currently investigating different ways of identifying successful
scanner attacks, as well as improving our system by creating more realistic finite
state machines for more weaknesses. We believe that our work can both help
users choose an appropriate scanner for their websites and help developers build
better scanners.

Acknowledgements

The authors are members of the Programming Systems Lab, funded in part by
NSF CNS-0905246, CNS-0717544, CNS-0627473 and CNS-0426623, and NIH 1
U54 CA121852-01A1.

Baseline: Metrics for setting a baseline for web vulnerability scanners 13

References

1. 2010 CWE top 25 most dangerous software errors, http://cwe.mitre.org/top25/
2. Acunetix web vulnerability scanner (Free Edition)

, http://www.acunetix.com/cross-site-scripting/scanner.htm
3. Altoro Mutual, http://demo.testfire.net/
4. Drupal, http://drupal.org/
5. Free Bank Online, http://zero.webappsecurity.com/
6. National Vulnerability Database, http://nvd.nist.gov/
7. Scralwr by HP, https://h30406.www3.hp.com/campaigns/2008/wwcampaign/1-

57C4K/index.php
8. Common Weakness Enumeration, http://cwe.mitre.org/
9. OWASP top 10 for 2010, http://www.owasp.org/index.php/Category:OWASP To-

p Ten Project
10. SQL injection cheat sheet, http://ferruh.mavituna.com/sql-injection-cheatsheet-

oku/
11. XSS cheat sheet, http://ha.ckers.org/xss.html
12. Web vulnerability scanners evaluation (Jan 2009), http://anantasec.blogspot.com/
13. Bau, J., Bursztein, E., Gupta, D., Mitchell, J.: State of the art: Automated black-

box web application vulnerability testing. In: IEEE Symposium on Security and
Privacy (2010)

14. Ewe, L.: Web vulnerability scanner comparison, continued. The Cenzic Blog (April
2010), http://blog.cenzic.com/public/item/253998

15. Fonseca, J., Vieira, M., Madeira, H.: Testing and comparing web vulnerability
scanning tools for SQL injection and XSS attacks. Pacific Rim International Sym-
posium on Dependable Computing, IEEE 0, 365–372 (2007)

16. Forristal, J.: Analysis of Larry Suto’s Oct/2007 web scanner review (November
2007)

17. Halfond, W.G., Viegas, J., Orso, A.: A classification of SQL-injection attacks and
countermeasures. In: Proceedings of the IEEE International Symposium on Secure
Software Engineering. Arlington, VA, USA (March 2006)

18. Nava, E.V., Lindsay, D.: Our favorite XSS filters and how to attack them. BlackHat
USA (Aug 2009)

19. Spett, K.: Cross-site scripting. SPI Labs (2005)
20. Suto, L.: Analyzing the effectiveness and coverage of web application security scan-

ners (October 2007)
21. Suto, L.: Analyzing the accuracy and time costs of web application security scan-

ners (February 2010)
22. Wassermann, G., Su, Z.: Sound and precise analysis of web applications for injec-

tion vulnerabilities. In: PLDI ’07: Proceedings of the 2007 ACM SIGPLAN con-
ference on Programming language design and implementation. pp. 32–41. ACM,
New York, NY, USA (2007)

23. Wiegenstein, A., Weidemann, F., Schumacher, D.M., Schinzel, S.: Web application
vulnerability scanners - A benchmark (October 2006)

24. Wiens, J.: Rolling review: Web app scanners still have trouble with Ajax (2007),
http://www.informationweek.com/news/security/showArticle.jhtml?articleID=
202201216

25. Wood, M.: On web application scanner comparisons. The HP Security Laboratory
Blog (Feb 2010), http://h30507.www3.hp.com/t5/The-HP-Security-Laboratory-
Blog/On-Web-Application-Scanner-Comparisons/ba-p/33138

14 Baseline: Metrics for setting a baseline for web vulnerability scanners

Appendices: Results of the weakness ranking system

Table 6. The Top 10 most common web weaknesses from 1996-2010 by Baseline (order
merely by frequency score)

Weakness Name Count Avg.Score

Improper Sanitization of Special Elements 2528 7.37405
used in an SQL Command (‘SQL Injection’)

Failure to Preserve Web Page Structure (‘Cross-site Scripting’) 2218 4.24536

Permissions, Privileges, and Access Controls 1251 6.33941

Failure to Control Generation of Code 1083 7.69732

Improper Input Validation 1030 6.51184

Improper Limitation of a Pathname to 943 6.44464
a Restricted Directory (‘Path Traversal’)

Resource Management Errors 707 6.7512

Information Exposure 523 4.90841

Improper Authentication 462 7.10087

Numeric Errors 459 7.50741

Table 7. The Top 10 most dangerous web weaknesses from 1996-2010 by Baseline
(order merely by severity score)

Weakness Name Count Avg.Score

Improper Sanitization of Special Elements used 8.26562 32
in an OS Command (‘OS Command Injection’)

Failure to Control Generation of Code 7.69732 1083

Numeric Errors 7.50741 459

Uncontrolled Format String 7.4093 86

Improper Sanitization of Special Elements 7.37405 2528
used in an SQL Command (‘SQL Injection’)

Improper Authentication 7.10087 462

Resource Management Errors 6.7512 707

Improper Input Validation 6.51184 1030

Improper Limitation of a Pathname to 6.44464 943
a Restricted Directory (‘Path Traversal’)

Permissions, Privileges, and Access Controls 6.33941 1251

