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Abstract

We study the tractability of computing-approximations of the Fredholm problem of the second
kind: givenf € F; andg € Qaq, findu e Lp(1¢) satisfying

u(x) — /,/”x’ Nuy)dy=f(x) Vxel!=[0,1]"

Here, F; and Oy, are spaces af-variate right hand functions and/2ariate kernels that are continu-
ously embedded ifix(19) andLo(1%), respectively. We consider the worst case setting, masgthie
approximation error for the solutianin the L»(19)-sense. We say that a problem is tractable if the mini-
mal number of information operations gfandg needed to obtain arrapproximation is sub-exponential
in e~1 andd. One information operation corresponds to the evaluatfoone linear functional or one
function value. The lack of sub-exponential behavior maylefined in various ways, and so we have
various kinds of tractability. In particular, the problemstrongly polynomially tractable if the minimal
number of information operations is bounded by a polynoinial-! for all d.

We show that tractability (of any kind whatsoever) for thedinolm problem is equivalent to tractabil-
ity of the Ly-approximation problems over the spaces of right-handsséael kernel functions. So (for
example) if both these approximation problems are stropglynomially tractable, so is the Fredholm
problem. In general, the upper bound provided by this preadssentially non-constructive, since it
involves an interpolatory algorithm that exactly solves Bredholm problem (albeit for finite-rank ap-
proximations off andg). However, if linear functionals are permissible and thatand O, are tensor
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product spaces, we are able to surmount this obstacle;ghatiprovide a fully-constructive algorithm
that provides an approximation with nearly-optimal cost, ione whose cost is within a factordn?® of
being optimal.

1 Introduction

The Fredholm problem of the second kindnsists of finding @-variate functioru such that

u(x) —/ g u(dy = Fo) Vxerd =0, 1. 1)
Id

Here, f € F;, andg € Q4, WhereF,; and Q,, are given classes of functions that are respectively defined
over I’ and7/%?. We want to determine theomplexityof computing the solution of (1) to withina in the
worst case setting. This means that we want to findlgarithmthat solves this problem witlninimal cost.
Here, we measureostby a weighted sum of the total number of function values a@dirfunctionals of the
specific right hand function and the kernel, and the total Ioenof arithmetic operations.

The first paper on the complexity of the Fredholm problem e #econd kind was published by
Emelyanov and llin [3] already in 1967. The problem was torapipnate the solution with right hand
functions and kernels beingtimes continuously differentiable. Their result was ttts minimal worst
case error of algorithms that use at masfunction values is proportional te~"/?4. This means that
the complexity of computing as-approximation is proportional te~2#/", with the proportionality factor
depending o andd. After a quarter-century hiatus, researchers in infororathtased complexity began
looking once again at the complexity of this problem. A grtist of results includes Dick, Kritzer, Kuo,
and Sloan [2], Frank, Heinrich, and Pereverzev [4], Hemf&], Heinrich and Mathé [7], Pereverzev [14],
and [11, 17, 18, 19]). The results were also obtained for thaisn at a point as well as for global solution
and for various Sobolev spaces in the worst case and randdraéttings.

The papers [4, 14, 18, 19] treated the worst case settingdioolBv spaces, see also [17]. They found the
complexity to be proportional t@l/s)¢%, with a positivex dependent on the smoothness parameters of the
spaces but independentafAgain, the proportionality factors depend @mand the smoothness parameters.
Typically, it is not known if the dependence ahis exponential or maybe “only” polynomial.

These results are fine whérs so small that computing exponentially-many {innformation or arith-
metic operations doesn't faze us; so for many problems gnse and engineering, in which we hake 3,
these results are computationally relevant. But what happédnend is so large that we can no longer afford
to calculate (say)“2function values or linear functionals or arithmetic opamas? When this happens, we
are stymied by the exponential (if) behavior of thes-complexity for thed-dimensional problem, which
Bellman [1] called the “curse of dimensionality.” In fachere are many multivariate problems for which
the curse of dimensionality is indeed present. Since we @aérdy with complexity (minimal cost), there’s
no way that we can find a cleverer algorithm for the problemwdfreally want to solve the problem, we
have two choices:

1. We can weaken the assurance given by the worst case sétfiical choices being the average case,
probabilistic, or randomized settings.

2. We can stay with the worst case setting, but reformulageptioblem using different spaces féy
and Q2.



The papers by Heinrich [6] and by Heinrich and Mathé [7] pexsthe first choice, using the randomized
setting. For the second choice, we usuadiigrink the original spaceB; and 0, by introducing “weights”
that measured the importance of successive variables anggmof variables. Dick, Kritzer, Kuo, and
Sloan [2] pursued this latter path, a choice we also followhia paper.

Vanquishing the curse of dimensionality for multivariatolpems forms the heart of research into
tractability studies. A problem is tractable if theformation complexitys sub-exponential ia—* andd.
Information complexity is defined as the minimal number dbrmation operations needed to compute an
g-approximation, with one information operation being urstieod as the evaluation of one function value
or one linear functional. If we specify a particular non-erpntial behavior, we get a specific kind of
tractability. For examplepolynomialtractability means that there exist non-negaiivep andg such that
the information complexity is bounded Iy ~7?d? foralle € (0,1) and alld = 1,2,.... If ¢ = 0, then
we havestrong polynomiatractability. This is an especially challenging propetityce then the information
complexity has a bound independentdofit is good to know that strong polynomial tractability heltbr
many multivariate problems with properly decaying weights

Obviously, the information complexity is a lower bound oe total) complexity. Therefore, the com-
plexity is sub-exponential ia~* andd only if the problem is tractable. If the complexity is moreless
the same as the information complexity then the study of dexitly and tractability coincide. The last
assumption means that the total number of arithmetic opasaheeded to compute amapproximation is
almost the same as the number of information operationgrdstingly enough, the last assumption holds
for mostlinear problems and selectetnlinearproblems. The current state of the art of tractability stgdi
may be found in [9, 11, 12].

Since the Fredholm problemimtlinear, it is not clear a priori whether its total complexigyessentially
the same as its information complexity. Dick, Kritzer, Kaod Sloan [2] showed that these were essentially
(i.e., to within a logarithmic factor) equal for the probldhmat they studied; we show that this is also the
case for the problem studied in this paper, provided thaglirfunctionals are permissible and tligtand
Q@u are tensor product spaces.

Dick, Kritzer, Kuo, and Sloan [2] were the first to address tiiaetability of the Fredholm problem of
the second kind. They consideréévariate right hand functions andtvariate convolution kernels from
the same space, a weighted Korobov space pitlduct weights They obtained a result that is within a
logarithmic factor of being optimal, and proved strong palgnial and polynomial tractability under natural
assumptions on the decay of product weights. The algorithmwhich this holds is the lattice-Nystrom
method, which uses function values; the resulting » linear system has a special structure, allowing it to
be solved in0'(n In n) arithmetic operations. Tractability of the Fredholm pehl of the second kind is
also addressed in [11, Sect. 18.2].

In this paper, we study the Fredholm problem for kernel fiomst that may fully depend on alld2
variables. Moreover, we allow the spadésand Q», to be independent of each other, up to the final section
of this paper, in which we will need to impose some relatioasMeen these two spaces by assuming that
they are certain tensor product spaces. Thatjss thed-fold and Q. is the 2i-fold product space of some
spaces of univariate functions.

The Fredholm problem is similar to the quasi-linear proldestudied in [20, 21]. The main difference
is that the function spaces defining the linear and nonlipags of the problems studied in [20, 21] are both
defined over’¢, whereas for the Fredholm problem these spaces are respeaefined oved? and 7%,
and in general are not related. Moreover, the papers [20p1@¢]provided upper bounds on the complexity,
and here we provide both upper and lower bounds.

1But not always, see [13].



We present two results in this paper. The first result exditgtationships between the tractability of the
Fredholm problem and the tractability of approximating thght-hand side and kernel function appearing
in this Fredholm problem. Suppose that= {F,;},-12.. and Q = {Q,},=1.2 . are families of right-hand
sides and kernel functions for this problem. Under certaiiial konditions onF and Q, we show that

tractrep = traClpp, A traCtiep, - (2)

That is, tractability of the Fredholm problem is equivalémtractability of the approximation problem for
F and Q. We stress that this holds for all kinds of tractability. $inesult is useful since the tractability of
approximation has been studied for many spaces and muclovwerkabout this problem, see again [9, 11,
12]. Due to the equivalence, all these results can be aldeeddpr the Fredholm problem.

The lower tractability bounds for the Fredholm problem avéeatned by taking first a specigl or ¢ and
then showing that the Fredholm problem is equivalent to g@imation problem for functiong or f,
respectively. We get the results in this paper by choosiegpecial functiong = 1 andg = 0.

The upper tractability bounds for the Fredholm problem dtaimed by using an interpolatory algorithm
that gives the exact solution of the Fredholm problem (1hvfitandg replaced by their approximations. In
general, this kind of algorithm will be impossible to implert. It does not matter for negative tractability
results since, as we already mentioned, the total complexibwer bounded by the information complexity.
On the other hand, positive tractability results are in tjoassince it may theoretically happen that although
the information complexity is reasonable but the impleragan cost may be too large.

So for our second result, we address the problem of how takgtimplement a good algorithm for
the Fredholm problem. Suppose that linear functionals eanded, and that, and Q,, are tensor product
function spaces. In this case, we develop a modified intatpgl algorithm whose total cost is roughly
the same as the information complexity. More precisely, whilet a fixed-point iteration that produces
an approximation having the same error as the interpolaadgrithm, with a penalty that is at worst a
multiple of In e~1. This proves that the complexity and the information comipjeare essentially the same
for tensor-product spaces, as long as linear functionaldeaused.

We briefly comment on the case when only function values carsbd. Using the results that relate the
power of function values and linear functionals, see [8, it6$ possible to show that in many cases poly-
nomial or strong polynomial tractability is preserved. Hmwer, the tractability and complexity exponents
of e~ can be larger when function values are used. We omit thelsletiahis study not to make our paper
even longer.

We now give a brief overview of the paper. In Section 2, we aebasic concepts, such as the problem
to be solved and various kinds of tractability for the prableln Section 3, we show relations between
tractability of the Fredholm problem and tractability okth,-approximation problems over the spadés
and Q,. In Section 4, we apply the results of Section 3. We first shwat if either F; or Q, is a space of
infinitely differentiable functions with the same role of @riables and groups of variables, then the Fred-
holm problem suffers from the curse of dimensionality. Timieans that even sufficiently high smoothness
of functions does not imply tractability. Next, we look aetbase wheré&, andQ,, are general unweighted
tensor product spaces, finding both positive and negatagability results. Then we examine the case of
weighted Sobolev spaces, once again getting both posiid@egative results. In Section 5, we define gen-
eral weighted tensor product spaces. Finally, in Sectiore &uppose that continuous linear functionals are
permissible and that thg;, and Q,,; are weighted tensor product spaces (as in Section 5). Weettighit
a modified interpolatory algorithm, studying its implemaindn cost, and showing that the total cost of this
algorithm is nearly (i.e., to within a logarithmic factof)e same as the information complexity, so that this
method is nearly optimal.



2 Basic concepts

Recall that/ = [0, 1] is the unit interval, and that/ € N = {1, 2, ...} is a positive integer. Far € L,(I1%),
let 7, be the compact Fredholm operator bs(1?) defined by

Iv = /dq(', Ny dy  Yve LY.
1
We say thay is thekernelof 7,. Clearly,
1T vl iy < Mgllpaznllvli,ae, Vg € La(I?), v e La(I).
Therefore

||Tq||Lin[L2(1d)] = ||Q||L2(12d) Vg e L2(12d)- (3)
Moreover, if||lg]l .2y < 1 then the operataf — T, has a bounded inverse, with

B 1
1 —T,) 1||Lin[Lz(1d)] = 1— “

||C]||L2(12d)

Let F;, andQ, be normed linear subspaces whose norms are denotgd|lpy and]| - | o, , respectively.
We assume thaf; and Q, are continuously embedded subspaces6f ) for all 4 € N. Without essential
loss of generality, we also assume that

I Nzpaay = 11 gy and |- llz,a0) < 1 o, 5)
GivenM; € (0, 1), let

0r°={q€0a:lqllg, <M1} VdeN
We define a solution operatsy: F; x Q5° — L(19) as

u=S:(f,q) iff U-Tpu=f V(fq)€Fix Q05

Note that
SaCq) = —T) telin[L,(I))]  Vqe 05

In particular, forg = 0, we havel, = 0, so that
Sa(f,00=f VfeF.

The operatolS, is linear in its first variable, but nonlinear in its secondiable. Using (4) and (5), we have

the a priori bound

||f||L2(1d)
1-M

Let BF, denote the unit ball of;. We want to approximaté,(f, ¢) for (f,q) € BF; x Q%;, using

algorithms whoseénformation N (f, ¢) about a right-hand sid¢ and a kernel consists of finitely many

information operations from a clags; of permissible functionals of and from a class\,,; of permissible

functionals ofg. These functionals can be either of the following:

1Sa(f, @l Lyray < V(f.q) € Fy x 0% (6)

2|n fact, one can také as a measurable subsetlfwith a positive Lebesgue measure and defin€/) with a weightp such
that [, p(1) dt = 1. We takel = [0, 1] for simplicity.



e Linear Class In this case, we are allowing the class of @htinuous linear functionalsWe write
Ag = A or Ay = AT

e Standard Classin this case, we are allowing only function values and ckdbs space$, andQ,
such that function values are continuous linear functien@le writeA,; = Aj‘d or Ay = Agg,d.

That is, for some nonnegative integersandn, we have

N(f’ Q) = [Ll(f)’ LZ(f)’ e Lnl(f)v Ln1+l(q)’ Ln1+2(q)’ ey Ln1+n2(q)]a

whereL; € Ay;fori =1,2,...,nyandL; € Ay;fori =ny+ 1, n1+ 2,...,n1+ ny. The choice of the
functionalsL; and the numbers; may be determined adaptively.
An algorithm A: BF,; x Q%% — L,(I1?) approximating the Fredholm problef has the form

Af, ) = o(N(f. ),

whereN (f, q) is the information abouf andg and¢: N(BF,; x Q%)) — L,(I?) is acombinatory function
that combines this information and produces an approxanat the exact solution. For further discussion,
see (e.g.) [15, Sect. 3.2].

The (worst casegrror of an algorithm is given by

e(A, Sg) = sup 1Sa(fs @) — ACS, @) yr4y-

(f.9)€BFyx Q57

Let
e(n, Sq, Ng2a) = igfé’(An, Sa)

denote the:th minimal worst case errofor solving the Fredholm problem. Here, the infimum is ovér al
algorithmsA,, using at most information operations of right-hand sides frofiy and of kernel functions
from A,;, which we indicate by the shortcut notatiax, ;. That is, if we usen; andn, information
operations forf andqg thenny + n, < n.

Finally, fore € (0, 1) we let

n(e, Sq, Aa2q) =inf{n e N:e(n, Sq, Ag2q) < ¢}

denote thenformation complexityi.e., the minimal number of information operations neettedbtain an
g-approximation i.e., an approximation with error at mast

Remark.The (total) complexity of a problem is defined to be the miriowst of computing an approxima-
tion. We will discuss the total complexity of the Fredholnolpiem later. O

Remark.In this paper, we will only deal with thabsolute error criterion One could also use tm@rmalized
error criterion, in which

n"'(e, Sq, Aa24) = inf{n € N:e(n, Sy, Aa2a) < € -0, Sq, A 2q) },

wheree(0, Sy, Ay 24) is theinitial error, i.e., the minimal error we can achieve without doing anyinf
mation operations whatsoever. Under the normalized entarion, we would be trying to determine the
minimal number of information operations needed to redtedrtitial error by a factor of. For simplicity,

we restrict ourselves to the absolute error criterion i faper. See [9, Sect. 4.4] for further discussion of
error criteria. O



How hard is it to solve our problem for largé? We have the following tractability hierarchy for the
problemsS = {S,}.cn, See (e.g.) [9, Sect. 4.4]:

1. The problents is strongly polynomially tractabld there existC > 0 andp > 0 such that
n(e, Sq, Ng2q) <Ce™* YdeN,e €(0,1).

Should this be the case, the infimum of alkuch that this holds is said to be teeponent of strong
(polynomial) tractability

2. The problems is polynomially tractablaf there existC > 0 andp, ¢ > 0 such that
n(e, Sq, Ng2g) < Ce P d1 VdeN,e € (0,1).

We can speak of ~1- andd-tractability exponents for a tractable problem. Howetleese need not
be uniquely determined; for example, we can sometimes dserene of the exponents by allowing
the other exponent to increase.

3. The problems is quasi-polynomially tractablé there existC > 0 ands > 0 such that
n(e, Sq, Aa2a) < Cexp(t (L+Ine ) (1+1Ind))  VdeN,ee (1. @)

The infimum of allz such that (7) holds is said to be thgponent of quasi-polynomial tractability
Quasi-polynomially tractability was introduced in [5]. @lunction appearing on the right-hand side
of (7) is in some sense the smallest non-exponential traitgaflonction T for which the approxima-
tion problem for unweighted tensor product spaceB-isactable (see below).

4. Let2 be an unbounded subset of fb) x [1, 00). LetT: [1, co0) x [1, 0c0) — [1, c0) be a function
that is non-decreasing in both its variables and that et¢hgib-exponential behavior, i.e.,

. InT (&,

||m ﬁ — 0
Ene@ £+
§+n—00

The setQ is called atractability domain andT atractability function
The problemS is (T, 2)-tractableif there existC > 0 ands > 0 such that

n(e, Sq, Aa2g) <CT(e 1 d)! V(1 d)eq. (8)
The infimum of allt for which this holds is said to be tlexponent of ', 2)-tractability.
If the right-hand side of (8) holds witih = 1, so that

n(e, Sq.Ag2g) <CTEL D V(e thdeq,

thensS is strongly (T, 2)-tractable In such a case, the infimum of alfor which this holds is said to
be theexponent of strongr’, 2)-tractability.

5. The problent is weakly tractabldf
Inn(e, Sq, Aa2q)

lim =0.
e~ l4d—o0 871 + d
A weakly tractable problem is one whose information comipyegrows sub-exponentially in both

¢ landd.

If the problems is not even weakly tractable, then its information compieis exponential in eithes—*
or d. We say thafS is intractable If the information complexity is exponential i, we follow [1] and say
that it suffers from theurse of dimensionality



3 Tractability of Fredholm vs. tractability of approximation

In this section, we show that tractability of the Fredholmokdem is strongly related to tractability of the
Lo-approximation problems ovef; and Q,. Here, theL,-approximation problem oveV,, whereV, is

a normed linear space that is continuously embedddd:in“), is defined as approximating the canonical
injection APPy, 1 V; — Lo(I%) given by

APPy, v =1 YveV,.

We approximate from the unit ballBV, of V,, with error being measured in the,(1¢)-norm. Algorithm
errors, minimal errors, and information complexity for thg-approximation problem ovér; are all defined
analogously to the way they were defined for the Fredholmlprobthe same is true for the various kinds of
tractability forAPPy = {APPy, },en, as well as intractability. Our assumption (5) is equivalkenrequiring
that

| APPE, Ity Loy < 1 and || APPg, llLinfoy: Lo < 1, 9
so that the initial errors of thé -approximation problems oveF, and Q, are at most one. Note that if
the bounds in (5) are sharp, then we have equality in (9), laewl thel ,-approximation problems ovef,
and Q. are properly scaled.

3.1 Lower bounds

We are ready to prove lower bounds for the Fredholm probleinst,ve show that the Fredholm problesy
is not easier than the,-approximation problem oveF,.

Proposition 3.1. We have
n(e, Sq, Ag2q) > n(e, APPg,, Ag) Vee (0,1), d eN.

Proof. Let A, be an algorithm for approximating the Frgdholm probl&psuch that(4,, S;) < e, using
n information operations from, ,. Define an algorithmy,, for APPg, by

A(f)=A(f,00  VfeBF,.

SinceAPPg, = S,(-, 0), we have
e(An, APPE,) < e(A,, Sq) < &,

which suffices to establish the desired inequality. O

We now wish to show that the Fredholm probleinis not easier than th&,-approximation problem
over Q,. Before doing so, we need a bit of preparation. For a funafiod? — R, let us define functions
QX»QY: I2d — IRby

ax(x,y) =qx) and gy(x,y) =q(y) Vx,yel’
We say that the sequence of spages- {Q,}4cn Satisfies thextension propertyf for all 4 € N, we have

q€ Qi = qx.qy € Qu Vg e Qu,

with
”‘IXHde = ”‘I”Qd and ”qy”de = ”‘I”Qd' (10)



Let
_ 21+ M@ - M)

11
2 Mi(1— M) (D
Clearly, M> > 1 and goes to infinity a8/, goes to zero. Using Mathematica, we checked that
My > 32.7757.. .,
taking its minimal value when
1 1/ 1 1 2
My=Z-2. -+ —\3/656— 7283+ —\3/82+ 983
2 2y 3 3 3
11 42
+53]-2- \3/656— 7283 - 2\3/82-1— 983+
~1 4+ 17656 72/83+ 2/82+ 94/83
= 0.455213

Proposition 3.2. Suppose thap satisfies the extension property, and that B F;. Then

1
n(e, Sa, Aa2a) = n (Mze, APPg,, Ay) Ve e (O, m] , deN.

Proof. Forq € BQ,, the extension property tells us thetgx, M1gy € Q%> Asin [11, Sect. 18.2.1], we
have

1
S.(1, M1gy) = . (12)
AT S TTM [q Gy dy
Moreover, it is easy to see that
Mg
Sa(1, Migx) = + 1
¢ S Py VA Jraa) dy
Combining these results and solving fgrwe see that
Sa(L, M -1 Sa(L, M -1
_ Sa(1, Maigx) a(1, Magx) (13)

© MiSi(L, Migy)  Ma [0 Sa(L, Magy)dy’

the latter holding because (12) tells us tlsatl, M,qy) is a number. Now letd,, be an algorithm for
approximatingS, over BF,; x Q%7 such that it uses information operations from\, o, ande(A4,, S;) < ¢,

where
1

e< ————.
2(1+ M)
Guided by (13), we define an algoritha), for approximatingappy, by
i Ay(1, Migx) — 1
nq =
Ml f[a’ An<1v MlQY)()’) dy
We now compute an upper bound on the erroApf First, some algebra yields that
~ 1

—Apg = Sa(1, M1gx) — An(1, Magx)+

O =M T AL Mag) () dy [ o T o
(1 — 84(1, Magx)

Sa(1, M1gy)

Vg e BQ,.

(14)

) / [S4(L Migy) — An(L, Migr)(»)] dy].
[d

9



Using the inequality

< I1Sa(1, Magy) — An(L, Magy) |l L9y,

/ [Sa(1, M1gy) — A, (1, M1gy)(y)] dy
[d

along with the fact that¢(A,,, S;) < €, equation (14) yields the inequality

1

M| [0 An(L, Migy)(y) dy|

1+11S4(1, M1gx) |l ,0)
Sa(L, M —A, (LM 15
1S4 (1, Magy)| 1S4(1, M1gy) (1, M1gy)ll L4y (15)

) 1 [1 1+ |1S.(1, Mqu)lle(m] e
- Ml |f1z1 An(l, Mqu)(y) dy| |Sd(l’ Mqu)| |

SinceMigx € Q%;, we have

lg — Ang ) < [IlSd(l, Migx) — An(1, M1gx) |l a0+

15a (L, M1g)ll Ly <

1-M;
SinceMiqy € Q5;andS,(1, Migy) € R, we have

<S,(L, M < .
130 = a( 1qY)_1—M1

Now our restriction ore implies that

A%

Sa(1, M1gy) — ‘/ [Sa(1, M1gy) — A, (1, Ma1gy)(y)] dy‘
Id

1 1
—e> ——.
1+ M, 2(1+ My)

/ An(l7 M1QY)(y) dy‘
14

A%

Substituting these last three inequalities into (15), we fin
~ 2(1+ My)
lg — Anqll L4y < M ! |:1+ (1+
1

Sincegq is an arbitrary element a8 Q,;, we see that

1_Ml)(1+M1)]8=M2'8.

e(Ay, Sq) <My .
This suffices to establish the desired inequality. O

Using Propositions 3.1 and 3.2, we have the following cargll

Corollary 3.1. Suppose thaf satisfies the extension property. Then the approximatioblpmsapp and
APP, are at least as hard as the Fredholm problémThat is:

1. If the Fredholm problens is strongly polynomially tractable, then so asepr and APP,. Moreover,
the exponents of strong polynomial tractability of the apgimation problems are no larger than those
for the Fredholm problem.

2. If the Fredholm problens is polynomially tractable, then so areePr and APP,. Moreover,e ~1- and
d-exponents for the approximation problems are no largenttiese for the Fredholm problem.

10



3. Ifthe Fredholm probleny is quasi-polynomially tractable, then so axePr and APP,. The exponent
of quasi-polynomial tractability for the approximationgiemApPpP, is no larger than this for the
Fredholm problem. However, the exponent of quasi-polyabiractability for the approximation
problemAPP, may be larger than this for the Fredholm problem by the fadtarin Mo.

4. Suppose that for atk > 0, the tractability function?” satisfies
T(ak,n) =O(T(E, n) asé, n — oo. (16)

If the Fredholm problens is (strongly) (7, Q)-tractable, then so areapp; and APP,. Moreover, the
exponents of (strond)l", )-tractability for the approximation problems are no largiwan those for
the Fredholm problem.

5. If the Fredholm problens is weakly tractable, then so arPPr and APP,.

6. If eitherAPP; or APP, are intractable, then so is the Fredholm problem

Proof. All these statements follow from Propositions 3.1 and 3.@8wkver the statements regarding quasi-
polynomial tractability and 7, 2)-tractability are a bit more subtle than the others, so we gisme details

for these cases.
Suppose first that the Fredholm problehis quasi-polynomially tractable. This means that theratexi
C > 0 andr > 0 such that

n(e, Sq, Aa2a) < Cexp(t (L+Ine ) (L+1Ind))  VdeN,ee (1.

From Proposition 3.1, we immediately find thetpy is quasi-polynomially tractable, with the same esti-
mate

n(e, APPE,, Ag) < n(e, Sq, Aa2s) <Cexp(t (L+Ine ) (1+Ind))  VdeNee (1.
What aboutapp,? Proposition 3.2 yields that
n(Mae, APPy,, Ag) < n(e, Sq, Na,24) Vd eN,e € (0,1).
ReplacingM,e by ¢, and remembering that/, > 1, we get
n(e, APPy,, Ay) < n(My'e, Sy, Ay)
<Cexp[t(L+InMa+Ine ) (1+1Ind)]

Ian
_ -1 _Z
= Cexp|:t (1+Ine )@ +Inad) <1+ 1+Insl>}

<Cexp(t(l+In My (1+Ine ) (1+1Ina)).

HenceAPPy, is quasi-polynomially tractable, with an exponent at mo$#-In M»). This exponent is clearly
larger than that of the Fredholm problem.

Now suppose that the Fredholm problehis (strongly) (T, 2)-tractable, with a tractability functiof
satisfying (16). FonPPg, we find that

n(e, APPg,, Ay) <n(e, Sq, Aa2s) =T(ehd)'  VYdeN,ee (0.
For APPy, we find that
n(e, APPg,, Ag) < n(Myte, Sq, Ay) = O(T (Mae™t,d)') = O(T(¢7',d)')  VdeN,ee (1.

Thus both approximation problems are (strongly) ©2)-tractable, with exponents at most as large as the
exponent for the Fredholm problem, as claimed. O

11



3.2 Upper bounds
Having found lower bounds, we now look for analogous uppemiois.

Lemma3.l. Letu = S,(f, q) andii = Sy(f,§) for (f,q), (f,q) € BF; x Q5> Then

lu — il pyay < [Hf = fllepaay + Nl e llg — é||L2(12d)] .

1- M
Proof. Since(I — T,)u = f and(I — T;)i = f, we find that

f—fzu—ﬁ—Tqu-l—T,;ii=u—IZ—Tq_qu—T,;(u—ﬁ),

and so
(I —Tyu—i)=f— f+T, qu.
Hence
u—ii=(I—T)f - f+ T, ;ul.
Using (3) and (4), we get the desired inequality. O

We now use Lemma 3.1 to find upper bounds for the Fredholm enopin terms of upper bounds for
the L,-approximation problems faf, andQ,.

Proposition 3.3. For e > 0andd € N, we have

1-M 1— Mp)?
n(e, Sq, Na2q) < n <<Tl)8 APPE,, Ad> +n (% APPg,,, AZd) . (17)
1

Proof. Let A,r).r, and A, o). o,, (respectively) be algorithms using F) andn(Q) information operations
for the L,-approximation problems ovef, and Q,, such that

- (1— My)e ~ (11— My)?e
e (An(F),Fau APPFd) < T and e (A"(Q)qQZd’ APPQZ:I) < 2—1‘41 (18)

Letn = n(F) + n(Q). Define an algorithmi,, for the Fredholm problem as

Au(fs @) = Sa (Aury. iy (F)s Ani).00(@) YV (f.q) € BFy x Q2.

Clearly, A, usesn information operations. To compute the errordf, let (f, q) € BF; x Q%;. By (18),
we have

~ 11— My)e (1 — My)e
| f — Aury, ra ()l yrdy < %Ilflla, < Tl
and ) )
~ (1—M1)8 (1—M1)8
g — Anc0), 00 (@l Lyr24y < 27Ml||CI||Q2d =< — 5

Using Lemma 3.1 and inequality (6), we now have

e(An, Sq) (1 = Ay, mll Loty + 1SaCFs DN Ly 1g = Ancoy, 020 (@l 2]

IA

1— M,
1 A — Mype N 1 (1-— M2
1— M, 2 1— M, 2

= €£.

A
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Since(f, ¢) is an arbitrary element a8 F, x QF7, we see that
E(An, Sd) < é&.

The algorithmsA,, ) £, andA, (o). o,, are arbitrary and satisfy (18). We can then take them to barigtigns
using the minimal number of information operations needeshtisfy (18). Inequality (17) now follows. [

We now discuss the argumentsmaf, APP;,, A,) andn(-, APPg,,, Az) in (17). For alle € (0, 1), the
argument(1 — M1)e/2 is less than A2; however, the argumeril — M1)%s/(2M,) may be larger than one
if M is small enough and close enough to one. In this case, the second term

<(1_M1)28 (1—M1)28
n| —— - - >

1,
2M4 -

,APPo, ., A =0 for
oM, 024 2d>

since we now can tak&q = 0 with error at most 1.
Using Proposition 3.3, we have the following corollary.

Corallary 3.2. The Fredholm problenS is no harder than than the approximation probleArs; andAPP,.
That is:

1. If ApPr and APP, are strongly polynomially tractable, then so is the FreahgroblemS. Moreover,
the exponent of strong polynomial tractability fSris no larger than the greater of those fapPPg
andAPPy.

2. If APP; and APP, are polynomially tractable, then so is the Fredholm probl§mMoreover, the
e~1-exponents and thé-exponents folS are no larger than the greater of the t-exponents and the
d-exponents fonPPr and APPy.

3. If APP; and APP, are quasi-polynomially tractable, then so is the Fredholmbpem S. Moreover,
the exponenty of quasi-polynomial tractability fof satisfies

.. 2 2Mq
tg < t5 = maxi tr (l+ In 1= Ml) to (l-i- max{o, In 7(1_ Ml)z}) (1+1In 2)} . (19)

4. Suppose that the following are true:

(@) APPy is (strongly)(Tr, Q)-tractable, with (strong) exponent.
(b) APPy is (strongly)(Ty, 2)-tractable, with (strong) exponeny.
(c) Foranya > 0, the tractability functiong’» and T, satisfy

Tr(ag,n) = O(Tr(5,n)) and To(ag,n) = 0(TeE,n)  asé,n— oo.
Then

(a) The Fredholm problens is (Ts, ©2)-tractable, withTs = maxTr, Tp}. Moreover, strong
(T, ©2)-tractability holds forS iff it holds for bothAPP, and APPy.

(b) The (strong) exponent ¢f’s, Q)-tractability is at mosmaxtg, ¢y }.

5. If ApPr andAPP, are weakly tractable, then so is the Fredholm probleém

13



6. If the Fredholm problens is intractable, then eitheaPPg is intractable orAPP is intractable.

Proof. All this follows from Proposition 3.3 (as mentioned abowahng with the definitions of the various
kinds of tractability. To illustrate, we prove the quasiygmmial case (part 3), if for no other reason than to
explain the somewhat odd-looking result f¢r

Since APP; and APP, are quasi-polynomially tractable, there exist posittve and Cy, as well as
nonnegative, andz,, such that

n(e, APPr,, Ay) < Crexp(tr(L+1In e H(1+In d))

and
n(e, APPg,,, Azg) < Coexp(to(L+1In e H(L1+In 2d)).

By Proposition 3.3, we have

(1— Mpe\™*
n(e, Sy, Agog) < Crexpltr|1+1In (#> A+Ind) )+

M2\
5:Co exp(zQ [l-i- In <M) i| (1+1In Zd)) ., (20)
2M;

wheres, = 0 for (1 — M1)%¢/(2M1) > 1, ands, = 1, otherwise.
Clearly, forc € (0, 1] we have

14+Ince)t<@+neH@A+Inc™h Ve e (0, 1),

as well as
1+IN2d<A+In2)(1+1Ind) VdeN.

Applying these inequalities to (20) we conclude that

2
n(e, Sq, Ag.2q) <Cr exp(tF <1+ In T ) L+nebH@A+1n d)) +

— 1
2M4

m}) A+In2A+IneH@A+In d)) .
- 1

Cyexp (tQ (1 + maxiO, In

Using this we get the formula fag.
The proof of the remaining parts of the corollary is easy. O

Remark.In Section 2, we said that there was no essential loss of gliiyein assuming that (5) (equiva-
lently, (9)) holds. To see why this is true, note the follogiin

o If || APPE, IlLin[F,: 1,4y > 1, the bound (17) in Proposition 3.3 becomes

(e, Sy, Ay 2g) < ((1_M1)8 APP A)+ < (- My7e APP A)
ni&, vy, Ng2q) =N\ ——F—> Fy»> 1\d n > s g ) -
2 ¢ 2M1 || APPE, |Ling F4: Lo(14)] Qe

14



Hence if sup.y | APPE, llLin £y 114y < 00, then

. ( (1—My)? &, | APPE, IlLin{Fy: Lo14y)» Ad) =
2 || APPE, IILing Fu; Lo(1)]
(1— My)? e, | APPE, | ay A
, Fg ILin[Fg; Lo(ID)]> £3d
2My supll APPE, [ILin Fy: Lo(14)] P
deN

Thus the tractability results of Corollary 3.2 hold as stiataut with a slight change in the denominator
of the first argument ok (-, APPy,,, A;). However, if

Supll APPE, llLin[Fy: Loc1dy] = OO,
deN

then the approximation problem f@f; is badly scaled.

o If [[APPy, lILinf,: 1,14y > 1, We can renormaliz€, under the (equivalent) norm

lallg, = /1a12, 0+ a3,  ¥q e Qu

calling the resulting spacéd. We now replace), by Qd and Q'7° by

Ares

®={ge0u:lgly, <M}

Sinceq € /Q\[fsimplies thatllg|l .4y < M1 and|lqllg, < M1, we see that all our results go through
as before under this relabelling. O

4 Someexamples

We now study the tractability of the Fredholm for three exteapeach being defined by choosing particular
spaces of right-hand side functions and kernel functiome first example shows us that we may be stricken
by the curse of dimensionality even if the right-hand sideher kernel function is infinitely smooth. In
the second example, we look at unweighted isotropic spdicesng that the Fredholm problem is quasi-
polynomially tractable, but not polynomially tractablen the third example, we explore tractability for a
family of weighted spaces, getting both positive and nggatsults for polynomial tractability.

4.1 Intractability for C° functions

Let C>* (1) be the space of infinitely many times differentiable funesiavith the norm
IVl cooray = SUP | D"Vl (1) -
aeNg

Here,a = (ay, oz, . . ., a0g) € N¥ is a multi-index with|ar| = Z‘jzl a;, and
gled

D% = .
aalxlaCUZxZ e aadxd

15



Let F;, = G, = C®(I4). The L,-approximation problems foF, and G, satisfy the assumption (5).
Moreover, sincd|l|lz, = 1o, = lI11lz,q,), We have
Il APPE, Lin £y; Lor4y) = 1| APPo, lILin 0g: Lory) = 1.
This also shows that £ BF;, as needed in Proposition 3.2. Moreover,= {Qg}ac]posints Satisfies the
extension property, with equality holding in (10). This medhat we can use all the results presented in the
previous section.
The functions inF,; and Q, are of unbounded smoothness. As in [10], it is easy to cheakftr
Ag € {AY) ASY, we have
e(n,APPg,, Ay) = C(n™") and e(n, APPy,, Ag) = O(n™") asn — 00,

for anyr > 0, no matter how large. This implies that we also have

e(n, Sy, Ag2q) = O(n™") asn — oo,
and

n(e, Sq, Agog) = O V") ase - 0

for the Fredholm problem. Sincecan be arbitrarily large, this might lead one to hope thatRiexlholm
problem does not suffer from the curse of dimensionalityhis tase. We now crush this hope, showing that
the Fredholm problem is intractable if eithgy = C> (1) or Q,; = C*(I%?) and F, satisfies (5) as well
as 1e BF,. This holds for the clasa?', and therefore also for the claas'.

First, suppose thal; = C*(I%). Using [10, Remark 3], we find that

e(n, APPg,, A3 =1 forn < 214/41,
Hence, thd.,-approximation problem ovef, is intractable, with
n(e, APPE,, A3y > 2144 ve e (0,1).
From Proposition 3.1, we immediately see that
n(e, Sq, Ag.2q) = n(e, APPE,, Ag) =214 Ve e (0,1).

Hence the Fredholm problem is also intractable.
Now suppose thap, = C>(I%), and thatF, satisfies (5), with I BF,. Again, [10, Remark 3] tells
us that
e(n, APPy,,, A3y =1 forn < 214/21,

and so thd.,-approximation problem ove®, is intractable, with

n(e, APPy,, A3y > 219/21  vge(0,1).
Noting that
. i 1 1 } 1
mny —, ———— ¢ = —,
M2 2(1+M1) M2

Proposition 3.2 yields that

1
n(e, Sy, Ad,Zd) > n(Moe, APPg,,, Ay) > 2Ld/2J Ve e (0, ﬁi| .
2

Thus the Fredholm problem is intractable also in this case.
In short, the Fredholm problem suffers from the curse of disienality if F;, = C>(%) or Q; =
C>(1%) and F, satisfies (5) as well as4 BF,. Using these extremely smooth spaces avails us not.
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4.2 Resultsfor unweighted tensor product spaces

We now start to explore tractability for tensor product ssmcOur first step is to look at unweighted tensor
product Hilbert spaces, as per [9, Sect. 5.2]. We will thexklat weighted tensor product Hilbert spaces in
Section 5.

Since the space for the univariate case is a building blocthfotensor product space, we first start with
the univariate case, and then go on to define the tensor gredace for general.

For the univariate case, |&l; C L,(I) be an infinite-dimensional separable Hilbert space of uita
functions. Suppose that the embeddawmp,: H; — Lo(/) is compact. TheW; = APP; APP, : H; — H;
is a compact, self-adjoint, positive definite operator. {egt;cn be an orthonormal basis fdf; consisting
of eigenfunctions o#¥, = APP; APP;, ordered so that

Wlej:)“jej V]EN

with A1 > A > --- > 0. Clearly,|| W1|lLincn,) = A1. SinceH; is infinite-dimensional, the eigenvalugsare
positive. Note that forf € H; we have

LA ) = (fs oy = (APPLE APPL £y = (fs Waf) i < Mllf11%,.

Hence, the assumption (5) holds if we assumeihat 1. For simplicity, we also assume that= 1 € Hy,
with ||1]| 5, = 1, so thatr, = 1.

We now move on to the general cage> 1, defining the tensor product spatlg = H1®d, which is a
Hilbert space under the inner product

d d
< v,~,®wj> :1_[<Uj’w./)H1 Vv, ...,vg, W,..., wy € Hy,

where
d

d
<® Uj)(x) = l_[vj(xj) Vx = (x1,x2,...,xq) € 19
j=1 j=1
Let APP; denote the canonical embedding/f into Lo(1¢) given by
APP;v = Yve Hy.

Clearly, | APP; || = 1. Let W, = APP APP,. For a multi-indexa € N¢, let

d
e = ®eaj and Ao = H)‘“/“
j=1 j

Then
Wiea = Aaa YVa e N

and
(ea7 eﬁ)Hd :8a,ﬁ Va,,@ € Nd

Thus{eq}ene IS @an orthonormal system of eigenfunctionsigy.
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Knowing the eigensystem d&¥,, we can determine theth minimal errore(n, APPy,, A, Let

{Aa,j}jen = {Aa)aend,

with
Ad1>Ag2>--->0

and lete, ; be the eigenfunction correspondingig;. It is well-known (see, e.g., [15, Sect. 4.5]) that

e(n’ APPHd’ Aa”) = v )“d,n+la

this error being attained by the algorithm

n

A,(v) = Z(v, €d,j) Hy€d,j-

j=1

We now letF, = H; and O, = Hy,;. Then the assumptions (5) and (10) hold and 1B F; with
117 = 11,44 = 1. What can we say about the tractability of the Fredholm lerol?

If A, = 1, then [9, Theorem 5.5] tells us that tihg-approximation problem foH, is intractable for
the classA?' (and thus also fonst). Hence the Fredholm problem is also intractableA8Y (and ASt) by
Corollary 3.1.

We now suppose that, € (0, 1). In addition, for the remainder of this subsection, we stestrict our
attention to the case where there exists sgme 0 such that

Li=03"") asj — oo.

From [9, Theorem 5.5], we find that tHe-approximation problem foF, is not polynomially tractable
for the classA?' (and so forASt9). Again using Corollary 3.1, we see that the Fredholm pnobig also not
polynomially tractable fora@' (and AS'Y). So let’s see what we can say about quasi-polynomial trditya

First, suppose that the claa$" is used. From [5, Sect. 3.1], we find that thg-approximation problem
for H, is quasi-polynomially tractable with

Hence Corollary 3.2 tells us that the Fredholm problem is glsasi-polynomially tractable and
n(e, Sa, Ay < Cexp(1i(L+Ine YL+ Inad))

with

tg =t max{1+ln ,1+maxio, In

7{1 iA;\I/lll)Z} 1+1In 2)} .

Now suppose that we use the clas®d. Unfortunately, there are currently no general resultstifier
case of standard information; we only know of some examiesm [5, Sect. 3.2], we know that there is a
piecewise-constant function space for which quasi-patyiabtractability is the same fak?' and A and
there is a Korobov space for which quasi-polynomial traititglxloes not hold. So in the former case, the
Fredholm problem will be quasi-polynomially tractabletive latter case, it will not be quasi-polynomially
tractable.

- 1
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4.3 Resultsfor aweighted Sobolev space

The results reported in Section 4.2 tell us that if we wanfRrezlholm problem to be polynomially tractable,
then the right-hand side and kernel must belongndo-isotropic spacesn which different variables or
groups of variables play different roles. In this sectiorg @xamine a particular weighted spakig ,, ~,
wherem e N is a fixed positive integer that measures the smoothnessdadghce, ang is a sequence
of weights that measure the importance of groups of vargablehis will motivate the general definition
presented in Section 5.

Our analysis uses the results and ideas found in [22]. Wd buil spacéd, ,, ~ in stages, starting with a
unweighted univariate spaé#, ,,, then going to an unweighted multivariate spatg,,, and finally arriving
at our weighted multivariate spacg; ,, ~.

So we first look at the casé¢ = 1. The spaceHy,, consists of real functions defined dn whose
(m — 1)st derivatives are absolutely continuous and whe#ederivatives belong té.»(7), under the inner
product

(v, whg,,, = /v(x)w(x) dx +/v(’")(x)w(’")(x) dx Yv,we Hyy.
1 1

Ford € N, defineH, ,, = Hf’,ﬁ as ad-fold tensor product of{; ,,, under the inner product

m\u\ m\u\
(v, w)g,, = / v(x)w(x)dx + Z / T (x) w(x) dx Yv,we Hyp.
d uC[d] d
u#£(
Here, [u| denotes the size af C [d] := {1, 2,...,d}, andx, denotes the vector whose components are

those components; of x for which j € u.
We are now ready to define our weighted Sobolev space. Let

¥ = {Vauducial

be a set of non-negatiweeights For simplicity, we assume tha; s = 1. Then we let

am\u\
Hy oy~ = {veHd,m: Yiu=0 = Py UEO},
u

under the inner product

(v, Wy, = / vw@ dx + Y vis /

ucCld]
u#£(
Yd,u>0

mlul mlul
w(x)dx Vv, w e Hyp~.
U

Interpreting Q0 as 0, we may rewrite this inner product in the simpler form

amlul am\u\
(v, W, , = Z Ya. /d 8mxuv(x) amxuw(x) dx Yo, we Hyp~- (21)

uc[d]

Let Fy = Hymp~p andQ, = Hd,mQ,"yQ- Here, the weightsyr = {ys...r} and~yQ = {Yasu.0} May
be different but we have, s r = yap.0 = 1. Again, the assumption (5) is satisfied, moreover, since
117, = I12ll,4) = 1, we have le BF;.
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Recall that ifQ = {Q4}4en Satisfies the extension property, then the Fredholm proidem easier than
the Ly-approximation problem foD,. So what does it take fof to satisfy the extension property? The
key inequality (10) clearly depends on the weights. Forinsg, (10) holds whenever

Vi 0 = V2d.u,0 foralld e N,u C [d].

As a particularly simple case, this inequality holds whea Weightsy, ., o are independent aof, a case
that has been well-studied in many papers that have dedittkaittability. So although we cannot say that
there is no lack of generality in assuming that the extengioperty holds, it is certainly not an unwarranted
assumption.

So let us assume th@ satisfies the extension property. What can we say aboutdbtability of the
Fredholm problem?

The first result is as follows:

If mp > 1ormg > 1, then the Fredholm problem is intractable for the clas¥ (and obviously also for
A%, no matter how the weights are chosen

The reason for this is that the,(/¢)-approximation problem is intractable fdf, ,, , whenevern > 1,
see [22, Theorem 3.1]. This last result may seem somewhat@&eutuitive, since it tells us that increased
smoothness (i.e., increasimg) is bad. The reason for this intractability is tHat || #,,,., = || - Iz, ON
the m?-dimensional space?, ,,_; of d-variate polynomials having degree at mast- 1 in each variable,
which implies that

e(n, APPy,,, Ay =1  foralln <m,

and therefore
n(e, APPy, . A > m forall e € (0, 1).

Thus in the remainder of this subsection, we shall assuntertha= m, = 1, so that
Fd = Hdil,ﬂyF and Qd = Hd_l,ﬂyQ.

For simplicity, we only look at familiesy of bounded product weightsvhich have the form

Vaux = [vajx ~ Yuc<ld]
Jjeu
for a non-negative sequence
Vd,1L,X Z Vd2x = 2 Vdd,X>

foranyd € N. HereX € {F, Q}, which indicates that we may use different weights for thecepsequences
F ={F;}sen andQ = {Q}sen. The boundedness of these product weights means that

M = supmaXyq.1,r, Ya,1,0} < 0.
deN
It is easy to see that if
Yd,j,0 < Y2d,j,0 forall d e N, J € [d]

then Q satisfies the extension property. In particular, this iredty holds when the weightg,; ; do not
depend onl.

We first considerA?!. Since tractability results for the Fredholm problem aggltio those of the ap-
proximation problem, we will use the results found in [22].
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e Strong polynomial tractability: We know that the problemmpr; is strongly polynomially tractable iff
there exists a positive numbef such that

d
limsup> ;" < oo. (22)
d— o0 =1 -

Define r}; to be the infimum ofrr such that (22) holds. Then the strong exponentABPy is
max{1, 2r;}. The situation foraAPPy, is analogous. From Corollaries 3.1 and 3.2, we see that the
Fredholm problens is strongly polynomially tractable iff both (22) and its g (with F replaced

by Q) hold, in which case the strong exponent for the Fredholnblpro is max1, 2z, 27/}

e Polynomial tractability: The problemppy is polynomially tractable iff there exists a positive num-
bertr such that

d—00

d

. 1 .

lim supm E Ya.jp < 00 (23)
j=1

The situation forappy, is analogous. From Corollaries 3.1 and 3.2, we see that tb@hbtm prob-
lem S is polynomially tractable iff both (23) and its analog (wikhreplaced byQ) hold.

e Quasi-polynomial tractability: If we replace al; ; » andy,, j ¢ by their upper boundv then the
approximation problem becomes harder. The latter apprattam problem is unweighted with the
univariate eigenvalues; = 1 > A, andi; = O(j~2). Therefore it is quasi-polynomially tractable
(see Section 4.2). This implies that the weighted case isigpadynomially tractable for any bounded
product weights. Therefore the Fredholm is also quasifpmtyially tractable.

e Weak tractability: Since the Fredholm problem is quasipomially tractable, it is also weakly
tractable.

We now turn to the case of standard informatiafi?. We will use the results found in [22] for polyno-
mial tractability for the approximation problem, upon whiwe will base the polynomial tractability results
for the Fredholm problem.

e Strong polynomial tractability: The problearp; is strongly polynomially tractable iff

d
lim supZ Ya,j,F < OO. (24)

d—00 =1

The situation forappy, is analogous. From Corollaries 3.1 and 3.2, we see that tb@hbtm prob-
lem S is strongly polynomially tractable iff both (24) and its do@ (with F replaced byQ) hold.
When this holds, the strong exponents for all three problisria the interval [1 4].

¢ Polynomial tractability: The problemppy is polynomially tractable iff

d
. 1
lim sup:— > yajr < 0. (25)

I
d—00 j=1

The situation forappy is analogous. From Corollaries 3.1 and 3.2, we see that tb@hbtm prob-
lem S is polynomially tractable iff both (25) and its analog (wikhreplaced byQ) hold.
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At this time, we do not have conditions that are necessarysaffetient for the approximation problem to
be quasi-polynomially tractable or weakly tractable fargtard information. This means that the same is
true for the Fredholm problem.

5 Waeighted tensor product spaces

In Section 4.2, we saw that that the Fredholm problem is niytneonially tractable if eitherF,; or Q,, is
from a family of unweighted tensor product spaces. Howeweddction 4.3, we saw that our problem can
be polynomially tractable (or even strongly polynomialigdtable) if bothF,; and Q,,; are from families of
weighted Sobolev spaces. This leads us to wonder whethlecieg the unweighted tensor product spaces
of Section 4.2 by weighted tensor product spaces can rehddfredholm problem polynomially tractable,
or maybe even strongly polynomially tractable.

So with the spaces#l, ,,  as a guide, we now give the general definition afe@ighted tensor product
space which captures this idea that different variables or geoapvariables can play different roles. In
Section 6, we will study a modified interpolatory algorithor the Fredholm problem, and our analysis of
this algorithm will draw heavily on the properties of weighttensor product spaces.

Our presentation is based on that found in [9, Sect. 5.3 cvéinould be consulted for additional details.

Let {y4 u}uca) b€ @ set of non-negative weights. We assume the followingtahese weights:

® Vig = 1, and
e yyy <1forallu C [d].
e There is at least one nonemptyC [d] for which y, ,, > 0.

Let H, be defined as in Section 4.2. That i, is an infinite dimensional space with = 1 € H; and
lesllm, = 1. Let .
Hi={feHi: (fiex)m, =0}

be the subspace @f; of functions orthogonal te; = 1. We now define

Hd,’y = @ ﬁl,w (26)
uc[d]

whereHy , = H"" is the|u|-fold tensor product off;. Thatis,v € H, -, has the unique decomposition
vEx) = Y wvux)  Vxel (27)
uc[d]

where
vy € Hyy YuC[d].

Although H, -, can algebraically be identified with a subspace of the sphcgescribed in Section 4.2,
the space¢i; and H, ~ generally have different topologies. The inner productARr., is given by
(v, W), , = Z ydflll(vu, Wy) H, Vv, we Hy . (28)
ucld]

For this to be well-defined, we assume that= w, = 0 whenevery,, = 0, interpreting @0 as O.
(Compare with (21) in Section 4.3.) The decomposition (2% tus that we writey as a sum of mutually
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orthogonal functions, each term) depending only on the variablesin The formula (28) tells us that the
contribution made byv,| #, to [|v| &, , is moderated by the weight ..

Let
d
ea(¥) =] Jew@)  ¥Yx=(xpx2....x0) €l
k=1
for any multi-indexa = [a1, @, ..., as] € N¢. Note that ifay = 1, thene,, = 1, and sce,, does not

depend onx,. Defining
W) = {keld]:ou =2},

we may write
ea(x) = l_[ e, (X)) Vx=(x1,x2,...,%X5) € 14,
keu(o)
For further details, once again see [9, Sect. 5.3].
Let Wy = APP};, _ APP, . Defining

1/2 d
ea,d,‘y:yd,/u(a)ea VaEN .
we see thafeq 4~} aene IS an orthonormal basis df; -, consisting of eigenfunctions ¥, -, with
d
Wd,yea,d,y = )»a,d,yea,d,y Va e N R

where
d

Aady = Vd,u(o) l_[)\ak Vae N
k=1

Note that all eigenvalues, 4 4 € [0, 1] since we assumed that &] , < 1 and allx; < 1. Furthermore,
infinitely manyA, 4 ~ are positive. Indeed, since there exists a nonemty which y, ,, > 0, it is enough
to take indicesx such thatu(a) = u; sincer,, > 0 fork € [d], all the A, 4 ~ are positive. The condition
u(a) = uholds ifa, > 2 for k € u, anday, = 1 for k ¢ u. For a nonempty, we have infinitely many such
indicesa, and therefore we have infinitely many positive eigenvglasslaimed.

In what follows, it will be useful to order the eigenvaluesWf ~ in non-increasing order. So we order
the multi-indices ilN? asa[1], o[2], ..., with

1=Aap)d~ = raf2d~y = > 0. (29)

We stress the last inequality in (29), which holds since itdip many eigenvalues are positive. This also
implies thaty, y«f;1) > O.
It will often be useful to writex ; ; ,, ande; 4 -, rather thark 1,4~ andeqy;1.4,~, SO that

Wineja~n = Ajd~e)d~
with
1= )\.:Ld.»-y > )\2.d.'y >...>0.

We shall do so when this causes no confusion.

Remark.A sequence of weighted tensor product spdée- }.-1,», ... defined in this section has the extension
property if
Yau=<Vvaun foralldeNuc[d]. O
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For tensor product spaces, the eigenfunctiens -, of W, -, are related to the eigenfunctioas, ~
of Wy ~,- Indeed, the eigenfunctions &, ~, have the form

12

where
aljl = [(@[jD1. @[iDa. ..., (@[jD2] € N*
has 2/ components. Let
aalj] = [@[jD1. @[jD2. ... @[j]d] € N’
and
azlj] = [@[jDa+1. @[jDas2, - - -, (@[ jD2d] € N

Sinceeq(j] = eaylj] ® eayj] WE obtain

12
eafjl.2d.y = Vog u(afj]) €eulil ® €al)]»
y1/2
2d,u(a j])
€aljl.2dy = 172 172 Cauljl.dy ® Caljld~-
Ya weal i) Y, uieal D)

6 Interpolatory Algorithm for Tensor Product Spaces

We now define aimterpolatory algorithmwhose error for the Fredholm problem will be expressed imger
of the L,-approximation errors foF, and Q, as in Lemma 3.1. Then we analyze the implementation cost
of this algorithm. As we shall see, the implementation coiditlve quite small as long as we use tensor
product spaces faF, andQ,.

We first specify the spaces & = Hy~, and Q; = Hy~,, WhereH, - is defined as in Section 5.
This means thayr = {y4...r} andvyo = {ya.u o} are sequences of weights for the spatigs,, and H, ~,
satisfying the assumptions of Section 5. Note that the waghiuences and~, may be different, or they
may be the same. Thys; , ,,}jen iS a F;-orthonormal system, consisting of the eigenfunctionsi¥r, .,
and{e; 24.y,} jen IS @ Qz4-0rthonormal system, consisting of the eigenfunctionsifgy -, . In both cases,
the corresponding eigenvalugs, ~, anda; »; ~, are ordered.

Let n(F) andn(Q) be two positive integers. The information abguwill be given as the firsk (F)
inner product with respect t; 4, } jen, and the information about as the first:(Q) inner products with
respect tde; 24, }jen- That is, we use the clags®, and for(f, q) € BF, x Q'Fwe compute

T
Nury () = [(f, €Ldvp ) Hamp s (S €20 98 Hyyps -+ -5 (S, en(F),d,»yF)Hdﬂ,F]

T
Nn(Q)(‘I) = [(q’ el,Zd,‘yQ)HZdﬂQ ) <q’ 82,2d,~yQ>H2d,.YQ [T (q’ en(Q),Zd,‘yg)HZdﬂQ] .

Define the orthogonal projector operators

n(F)
Puryd e = Zh €j.d.vr) Hayp €).d vr
j=1
and
n(Q)
Pn(Q),d,‘YF = Z<’ ej,Zd,‘rQ>H2d,yQ €j.2d,vp-
j=1
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Knowing N, s (f) andN,g)(q), we know

f = Puryayf and G = Pu0).2d.109-
Observe that f, §) € BF; x o5 Furthermore( f, §) interpolatethe data, i.e,

n(F)(f) Nury(f) and  Nu)(@) = Nuo)(@).

We define thénterpolatory algorithm

ANL o (fr @) = Su(f. ) forall (f.q) € BFy x Q%

as the exact solution of the Fredholm problem(fﬁra). Lemma 3.1 gives an error bound Az, , o, in
terms of the errors of thé ,-approximation problems foF,; and Q,,. As in the proof of Proposition 3.3,
we can choose(F) andn(Q) to make the approximation errors féf; and Q,, be at most(1 — M;)e/2
and (1 — My)%e/(2M,), respectively; this guarantees that the erroﬂm)_n(@ for the Fredholm problem
is at moste.

Our next step is to reduce the computatioriiot AT n().ncoolS> @) to the solution of a linear system of
equations. To do this, we will use the notation and resultSeiftion 5, suitably modified to take account
of the fact that we are dealing with two sequences of weigktsv a [ j] is the d-component multi-index
giving the jth-largest eigenvalue &, -, anda [ j] is the 2Z-component multi-index giving th¢th-largest
eigenvalue oW, ~,. Thus

_ _ .12
€jdr = €arljldyr = Yawar[j)),F €arli]

and
1/2
€j.2d,vg = €agljl.2d,vg = V2d wagli), 0 €euolil ® €y o1

Here,a1 o[ j] denotes the first indices ofay[ j], anda o[ j] denotes the remaining indices af[j], as
at the end of Section 5.
We have
(e, %)Hd = 5a,ﬂ and (e, €[3>L2(1d) = 5a,[3 Aes
and so the functione, } e are orthogonal in the unweighted spaldg, as well as in the spade,(19).

SinceA,\r) .«o) IS @n interpolatory algorithm, we see thasatisfies the equation

=/a«wmw@+ﬁ
Id

which can be rewritten as

n(Q) n(F)
U= Z (€a olj1+ ) Lo(rd)€aus o] T ZQ Carljl> (30)
with
1/2 1/2

§j = (4 €j.2d.70) Haiyy Vad w(exgl 1.0 and 0 = ([, €j.dve) Hinp Vi el ). F-
This proves that

i € Enryno) = SPAN a1, €apf2l: - - - » Carln(F)s Cau oltls Cau of2]s - - - » €an glng]} -
Note that the elements,,[; are orthogonal forj = 1,2,...,n(F). Moreover, the elements,, ,; are

orthogonal for differentry o[ j]. However, two kinds of “overlap” are possible:
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e We might havenr[j] = a1 g[j'] forsomej € {1, 2,....n(F)}andj’ € {1,2,...,n(Q)}.
e We might haveny o[ j] = a1, ¢[j'] for somej, j' € {1,2, ..., n(F)}.

Therefore
m :=diME,r) o) € {(n(F),n(F)+1,...,n(F)+n(Q)}.

We remove all redundant,, ,(;;, as well as alkq, ,[;) that belong to spd@e, (11, earf2); - - - » €arnm}s
calling the remaining elements,, ,i,], €ay ylia]s - - - » €a plimnir]- 1 NEIEfOrE

Eury.n0) = SPazy, z2, ..., Zm},

where
2. = ) ¢erlil for j € {1,2,...,n(F)},
j €ay olljnir] forje{n(F)+Ln(F)+2,...,m}.

The elements; .. ., z,, are L»(1¢)-orthogonal, I.8.{z, 2k) 1,14y = O for j # k, with

1/2

a2
« d,

12l Locrey Z{ elildar
a;LQ[lj—n(F)],d,'yQ

forj e{l, 2, ...,n(F)},
forje{n(F)+Ln(F)+2,...,m}.

We know that

for some real coefficients,, vy, ... v,. From (30) we conclude that

m n(Q) n(F)
U= Z Uk (Z Cjleay oljls Tk) La(14) eal.g[./]> + Z Ojecl)]-
j=1

k=1 j=1
This leads to the system
(I —Kyu=b (31)

of linear equations, wheredenotes the: x m identity matrix and then x m matrix K = [«; z]1<ik<m IS
given by
n(Q)

{eay o[j1> 2k) Lo14) (Can ol 10 Zi) Lo(14)
Kik = Z ¢j—= . £ —,
i=1 (zi, Zi)Lz(Id)
with .
0 0 0
b=[ S 2 . ) ,0,0,...,0} eR"
(21, Zl)Lz(Id) (22, Zz)Lz(Id) (Zn(F)> Zn(F))Lz(Id)
and

T
u= [Ul, U2, -« s Un(F)s Un(F)+1s - - - » Um] e R™.

We can now look at some important propertiegfincluding the structure d and the invertibility of
| — K.

Lemma6.1l. Define

I ={agljl = (a1 oljl, a20lj]) eN*:1< j <n(Q)}.
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1. We have

o — é‘j}‘az.g[j] if (l,k) = (aLQ[j],az,Q[j]) for Somej € {l, 2,,n(Q)}
o if G, k) & .7,

and so the matriX has at most:(Q) non-zero elements.
2. IKILinfearmy) < M1 < 1.

3. The matrid — K is invertible, with

1
1- My

10— K) ™l Lingep@my <

Proof. For part 1, note that the coefficient, may be nonzero only if there exists an integes [1, n(Q)]
such that
Zi = €ayglj] and Lk = €aygljl>

that is, when(i, k) € .#. In this case, there is at most one nonzero term in the suminigfy,, since.¥
consists of distinct elements. Then
2 1/2
Kik = gj”eaz,g[j] ”LZ(M) = gj)‘az,g[j] = (g, ej,Zdv'YQ)HZd,'yQ VZd,u(aQ[j]),Q)‘az,Q[j]'

Obviously, if (i, k) ¢ .# thenk;, = 0. Hence, the number of nonzero coefficients of the matrig at most
|.Z| =n(Q), as claimed in part 1.

To see that part 2 holds, we eStimﬁiéllfin[lzanm)] by the square of the Frobenius no@;ﬁg{Q:)l K%
and then apply part 1. Recall thap-approximation is properly scaled fap, i.e., thatin, ,[;; < 1 and
Y2d.uc), 0 < 1 for all eigenvalues and weights. Thus we have

n(Q) n(Q) n(Q)
2 2 242 2 2
1K gy = D Kk = D Mot = D14, €5.24.99 ) Hyy yy V2 000l ). 0y 1]
ik=1 j=1 j=1
n(Q)
2 _ 2 2 2
< ;“” €290 1y = I1Pac0).20404 Iy, < NGy, < MF <1,
j=
which proves part 2. Part 3 follows immediately from part 2. O

We now discuss the implementation of the interpolatory igm A'n“;})’n(Q), which is equivalent to
solving the linear equatiofl — K)u = b. Note that then x m matrix K is sparse, in the sense that it
has at most(Q) nonzero elements; moreover, its horm is at mdst < 1, independent of the size of.
Therefore, it seems natural to approximate the solutieia the simple fixed-point iteration

u“ D =Ku®+b  0=<t<r),

u® =o. (32)

Letting
u® = [U;(Lr) Uér) U(r)]T
9 9t m 9
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we shall write
n(F) n(Q) = ka Lk

for our r-step fixed-point approximation to the exact solutlon

m
Alz(}) n(Q)(f’ q) = Z U Z-
k=

Let us write
(V) IN
Up(Fy,n) = An(F) n(Q), ),

calling A%, .(0).- themodified interpolatory algorithm

We now analyze the cost of computiig= A}\7, 0, (f. ¢). How much do we lose when going from
the interpolatory algorithm to the modified interpolatodga@ithm? The answer is, “not much,” if the
parameter is properly defined. Let cogt) denote the overall cost of an algorithanfor approximating the
Fredholm problem, including the cost of both informatiord mombinatory operations. We shall make the
usual assumption, commonly made in information-based &xitp theory, that arithmetic operations have

unit cost and that one information operationfoandg have a fixed cost; > 1. Now let

coste, AN, A2, ) = inf { COSUANT, g)) € (AT, 0, Sas ATy,) < s}
and
coste, A::JJ—MOD’ Asl,|2d) = inf { COS(Aln’\;Tn(Q),r) Le (AL’\H,I(Q)J, Sy, A3[|2d> <e }

respectively denote the minimal cost of using the intefpojaand modified interpolatory algorithms to find
an e-approximation of the Fredholm problem. That is, we minientke cost by choosing proper parame-
tersn(F), n(Q) andr of the modified interpolatory algorithm, and the parametdi®) andn(Q) of the
interpolatory algorithm.

Proposition 6.1.

1
cosie, ANTMP A% ) =¢,; - © (n (3e, AN, AZ,)) In <—>) ,
’ ’ &
where thed-factor is independent of ands. Hence if
n (36, AL Niza) = O (n(e, ALJL AG5) (33)

with 0-factor independent af ande, then

1
coste, AL, ) = o+ (n (e A% A2) n (£ )).

Proof. Recall thatk hasn(Q) non-zero elements, see Lemma 6.1. Hence each iteratio?)ot48 be done
in ©(n(F)+n(Q)) arithmetic additions and multiplications. Thus the totafmber of arithmetic operations
needed to compute, , ,, Will be ©((n(F) +n(Q))r).

For a given value of € (0, 1), let us choose(F) andn(Q) so that the solutioi of the interpolatory

algorithm satisfies

~ 1
lu —ullpyiay < 36
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Obviously, it is enough to choosesuch that

~ () 1
llu — unr(p),n(Q)”Lz(Id) =3¢, (34)

and then our approximation|/(;, , o, € L2(I¢) will satisfy

"
=ty my Loy < & (35)

as required.
So let’s analyze the convergence of the fixed-point iteraf82). From Lemma 6.1, we know that

IK lLinepemyy < M1 <1 sothat  [|(1 — K) ™ HlLingepmmy < T
- 1

Each iteration of (32) reduces the error by a factoMf i.e.,

lu—u @y < Mau—u© @ (0<€<r),
and so ,
Iu = U llepqmy = MUz = Mpll(H = K)blleym = 77 jwl 11l ) -
Finally, sincef € BF,, we have
n(F) n(F)
B2,y = D Fr €ty )5 VautartihF < Y _ASs iy s, = I Purraedlleg < I1F1IZ, < 1,
j=1 j=1
and thus the previous inequality becomes
R ﬁljwl
Taking
. [ln(z/(ll—nzf/l;l):r In 1/8“ o <In :8_L> | 36)
we thus have
U — U@ < 3e. 37)

We now claim that with- given by (36), we have (34). Indeed, note that sincelth@?) approximation
problem is properly scaled ovef; and overQ,, we havei o, [j1.d.yr» Aoy oll;-n(F)l.dye < 1 forall j € N.
Then

m

~ (r) 2 _ (r)\2 2
=, (py neo) I Ly00) = Z<Ui = U )Nz )

j=1
n(F) m

_ ()2 (r)\2

=Y Wi = ety + Y, W) = V) ke oltnPia v
Jj=1 j=n(F)+1

m
(r)\2
<Y @ = v = lu—u| gy,
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and so

") .
i =ty o lloay < U= U fl@n < 3e,

establishing (34), as claimed.

Since (34) holds, we have our desired result (35). Hence we bamputed ar-approximation with
information cost® (¢, (n(F) + n(Q))) and combinatory cos(‘r')([n(F) +n(Q)] In(l/s)), and so the result
follows. O

Using Proposition 6.1, along with the results in Section 8,see that when (33) holds, the modified
interpolatory algorithm is within a logarithmic factor okelmg optimal. Such is the case when the Fred-
holm problem (or, alternatively, the,-approximation problemspprr andAPPy) is strongly polynomially
tractable or polynomially tractable. Obviously, the extaator In(1/¢) does not change the exponents of
strong polynomial or polynomial tractability.
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