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Abstract

We study the tractability of computingε-approximations of the Fredholm problem of the second
kind: givenf ∈ Fd andq ∈ Q2d , find u ∈ L2(I

d) satisfying

u(x) −
∫

I d

q(x, y)u(y) dy = f (x) ∀ x ∈ I d = [0, 1]d .

Here,Fd andQ2d are spaces ofd-variate right hand functions and 2d-variate kernels that are continu-
ously embedded inL2(I

d ) andL2(I
2d ), respectively. We consider the worst case setting, measuring the

approximation error for the solutionu in theL2(I
d )-sense. We say that a problem is tractable if the mini-

mal number of information operations off andq needed to obtain anε-approximation is sub-exponential
in ε−1 andd. One information operation corresponds to the evaluation of one linear functional or one
function value. The lack of sub-exponential behavior may bedefined in various ways, and so we have
various kinds of tractability. In particular, the problem is strongly polynomially tractable if the minimal
number of information operations is bounded by a polynomialin ε−1 for all d.

We show that tractability (of any kind whatsoever) for the Fredholm problem is equivalent to tractabil-
ity of the L2-approximation problems over the spaces of right-hand sides and kernel functions. So (for
example) if both these approximation problems are stronglypolynomially tractable, so is the Fredholm
problem. In general, the upper bound provided by this proof is essentially non-constructive, since it
involves an interpolatory algorithm that exactly solves the Fredholm problem (albeit for finite-rank ap-
proximations off andq). However, if linear functionals are permissible and thatFd andQ2d are tensor
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product spaces, we are able to surmount this obstacle; that is, we provide a fully-constructive algorithm
that provides an approximation with nearly-optimal cost, i.e., one whose cost is within a factor lnε−1 of
being optimal.

1 Introduction

TheFredholm problem of the second kindconsists of finding ad-variate functionu such that

u(x) −
∫

I d

q(x, y)u(y) dy = f (x) ∀ x ∈ I d = [0, 1]d . (1)

Here,f ∈ Fd andq ∈ Q2d , whereFd andQ2d are given classes of functions that are respectively defined
over I d andI 2d. We want to determine thecomplexityof computing the solution of (1) to withinε in the
worst case setting. This means that we want to find analgorithm that solves this problem withminimalcost.
Here, we measurecostby a weighted sum of the total number of function values or linear functionals of the
specific right hand function and the kernel, and the total number of arithmetic operations.

The first paper on the complexity of the Fredholm problem of the second kind was published by
Emelyanov and Ilin [3] already in 1967. The problem was to approximate the solution with right hand
functions and kernels beingr-times continuously differentiable. Their result was thatthe minimal worst
case error of algorithms that use at mostn function values is proportional ton−r/(2d). This means that
the complexity of computing anε-approximation is proportional toε−2d/r , with the proportionality factor
depending onr andd. After a quarter-century hiatus, researchers in information-based complexity began
looking once again at the complexity of this problem. A partial list of results includes Dick, Kritzer, Kuo,
and Sloan [2], Frank, Heinrich, and Pereverzev [4], Heinrich [6], Heinrich and Mathé [7], Pereverzev [14],
and [11, 17, 18, 19]). The results were also obtained for the solution at a point as well as for global solution
and for various Sobolev spaces in the worst case and randomized settings.

The papers [4, 14, 18, 19] treated the worst case setting for Sobolev spaces, see also [17]. They found the
complexity to be proportional to(1/ε)d α, with a positiveα dependent on the smoothness parameters of the
spaces but independent ofd. Again, the proportionality factors depend ond and the smoothness parameters.
Typically, it is not known if the dependence ond is exponential or maybe “only” polynomial.

These results are fine whend is so small that computing exponentially-many (ind) information or arith-
metic operations doesn’t faze us; so for many problems in science and engineering, in which we haved ≤ 3,
these results are computationally relevant. But what happens whend is so large that we can no longer afford
to calculate (say) 2d function values or linear functionals or arithmetic operations? When this happens, we
are stymied by the exponential (ind) behavior of theε-complexity for thed-dimensional problem, which
Bellman [1] called the “curse of dimensionality.” In fact, there are many multivariate problems for which
the curse of dimensionality is indeed present. Since we are dealing with complexity (minimal cost), there’s
no way that we can find a cleverer algorithm for the problem. Ifwe really want to solve the problem, we
have two choices:

1. We can weaken the assurance given by the worst case setting, typical choices being the average case,
probabilistic, or randomized settings.

2. We can stay with the worst case setting, but reformulate the problem using different spaces forFd

andQ2d .
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The papers by Heinrich [6] and by Heinrich and Mathé [7] pursued the first choice, using the randomized
setting. For the second choice, we usually1 shrink the original spacesFd andQ2d by introducing “weights”
that measured the importance of successive variables and groups of variables. Dick, Kritzer, Kuo, and
Sloan [2] pursued this latter path, a choice we also follow inthis paper.

Vanquishing the curse of dimensionality for multivariate problems forms the heart of research into
tractability studies. A problem is tractable if theinformation complexityis sub-exponential inε−1 andd.
Information complexity is defined as the minimal number of information operations needed to compute an
ε-approximation, with one information operation being understood as the evaluation of one function value
or one linear functional. If we specify a particular non-exponential behavior, we get a specific kind of
tractability. For example,polynomialtractability means that there exist non-negativeC,p andq such that
the information complexity is bounded byCε−pd q for all ε ∈ (0, 1) and alld = 1, 2, . . . . If q = 0, then
we havestrong polynomialtractability. This is an especially challenging property since then the information
complexity has a bound independent ofd. It is good to know that strong polynomial tractability holds for
many multivariate problems with properly decaying weights.

Obviously, the information complexity is a lower bound on the (total) complexity. Therefore, the com-
plexity is sub-exponential inε−1 andd only if the problem is tractable. If the complexity is more orless
the same as the information complexity then the study of complexity and tractability coincide. The last
assumption means that the total number of arithmetic operations needed to compute anε-approximation is
almost the same as the number of information operations. Interestingly enough, the last assumption holds
for mostlinear problems and selectednonlinearproblems. The current state of the art of tractability studies
may be found in [9, 11, 12].

Since the Fredholm problem isnot linear, it is not clear a priori whether its total complexityis essentially
the same as its information complexity. Dick, Kritzer, Kuo,and Sloan [2] showed that these were essentially
(i.e., to within a logarithmic factor) equal for the problemthat they studied; we show that this is also the
case for the problem studied in this paper, provided that linear functionals are permissible and thatFd and
Q@d are tensor product spaces.

Dick, Kritzer, Kuo, and Sloan [2] were the first to address thetractability of the Fredholm problem of
the second kind. They consideredd-variate right hand functions andd-variate convolution kernels from
the same space, a weighted Korobov space withproduct weights. They obtained a result that is within a
logarithmic factor of being optimal, and proved strong polynomial and polynomial tractability under natural
assumptions on the decay of product weights. The algorithm for which this holds is the lattice-Nyström
method, which uses function values; the resultingn × n linear system has a special structure, allowing it to
be solved inO(n ln n) arithmetic operations. Tractability of the Fredholm problem of the second kind is
also addressed in [11, Sect. 18.2].

In this paper, we study the Fredholm problem for kernel functions that may fully depend on all 2d
variables. Moreover, we allow the spacesFd andQ2d to be independent of each other, up to the final section
of this paper, in which we will need to impose some relations between these two spaces by assuming that
they are certain tensor product spaces. That is,Fd is thed-fold andQ2d is the 2d-fold product space of some
spaces of univariate functions.

The Fredholm problem is similar to the quasi-linear problems studied in [20, 21]. The main difference
is that the function spaces defining the linear and nonlinearparts of the problems studied in [20, 21] are both
defined overI d , whereas for the Fredholm problem these spaces are respectively defined overI d andI 2d,
and in general are not related. Moreover, the papers [20, 21]only provided upper bounds on the complexity,
and here we provide both upper and lower bounds.

1But not always, see [13].
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We present two results in this paper. The first result exhibits relationships between the tractability of the
Fredholm problem and the tractability of approximating theright-hand side and kernel function appearing
in this Fredholm problem. Suppose thatF = {Fd}d=1,2... andQ = {Qd}d=1,2,... are families of right-hand
sides and kernel functions for this problem. Under certain mild conditions onF andQ, we show that

tractFRED ≡ tractAPPF
∧ tractAPPQ

. (2)

That is, tractability of the Fredholm problem is equivalentto tractability of the approximation problem for
F andQ. We stress that this holds for all kinds of tractability. This result is useful since the tractability of
approximation has been studied for many spaces and much is known about this problem, see again [9, 11,
12]. Due to the equivalence, all these results can be also applied for the Fredholm problem.

The lower tractability bounds for the Fredholm problem are obtained by taking first a specialf or q and
then showing that the Fredholm problem is equivalent to the approximation problem for functionsq or f ,
respectively. We get the results in this paper by choosing the special functionsf = 1 andq = 0.

The upper tractability bounds for the Fredholm problem are obtained by using an interpolatory algorithm
that gives the exact solution of the Fredholm problem (1) with f andq replaced by their approximations. In
general, this kind of algorithm will be impossible to implement. It does not matter for negative tractability
results since, as we already mentioned, the total complexity is lower bounded by the information complexity.
On the other hand, positive tractability results are in question since it may theoretically happen that although
the information complexity is reasonable but the implementation cost may be too large.

So for our second result, we address the problem of how to actually implement a good algorithm for
the Fredholm problem. Suppose that linear functionals can be used, and thatFd andQ2d are tensor product
function spaces. In this case, we develop a modified interpolatory algorithm whose total cost is roughly
the same as the information complexity. More precisely, we exhibit a fixed-point iteration that produces
an approximation having the same error as the interpolatoryalgorithm, with a penalty that is at worst a
multiple of ln ε−1. This proves that the complexity and the information complexity are essentially the same
for tensor-product spaces, as long as linear functionals can be used.

We briefly comment on the case when only function values can beused. Using the results that relate the
power of function values and linear functionals, see [8, 16], it is possible to show that in many cases poly-
nomial or strong polynomial tractability is preserved. However, the tractability and complexity exponents
of ε−1 can be larger when function values are used. We omit the details of this study not to make our paper
even longer.

We now give a brief overview of the paper. In Section 2, we define basic concepts, such as the problem
to be solved and various kinds of tractability for the problem. In Section 3, we show relations between
tractability of the Fredholm problem and tractability of the L2-approximation problems over the spacesFd

andQd . In Section 4, we apply the results of Section 3. We first show that if eitherFd or Qd is a space of
infinitely differentiable functions with the same role of all variables and groups of variables, then the Fred-
holm problem suffers from the curse of dimensionality. Thismeans that even sufficiently high smoothness
of functions does not imply tractability. Next, we look at the case whereFd andQ2d are general unweighted
tensor product spaces, finding both positive and negative tractability results. Then we examine the case of
weighted Sobolev spaces, once again getting both positive and negative results. In Section 5, we define gen-
eral weighted tensor product spaces. Finally, in Section 6 we suppose that continuous linear functionals are
permissible and that theFd andQ2d are weighted tensor product spaces (as in Section 5). We thenexhibit
a modified interpolatory algorithm, studying its implementation cost, and showing that the total cost of this
algorithm is nearly (i.e., to within a logarithmic factor) the same as the information complexity, so that this
method is nearly optimal.
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2 Basic concepts

Recall thatI = [0, 1] is the unit interval2, and thatd ∈ N = {1, 2, . . . } is a positive integer. Forq ∈ L2(I
2d),

let Tq be the compact Fredholm operator onL2(I
d) defined by

Tqv =
∫

I d

q(·, y)v(y) dy ∀ v ∈ L2(I
d).

We say thatq is thekernelof Tq . Clearly,

‖Tqv‖L2(I
d ) ≤ ‖q‖L2(I2d )‖v‖L2(I

d ) ∀ q ∈ L2(I
2d), v ∈ L2(I

d).

Therefore
‖Tq‖Lin[L2(I

d )] ≤ ‖q‖L2(I2d ) ∀ q ∈ L2(I
2d). (3)

Moreover, if‖q‖L2(I2d ) < 1 then the operatorI − Tq has a bounded inverse, with

‖(I − Tq)
−1‖Lin[L2(I

d )] ≤
1

1 − ‖q‖L2(I2d )

. (4)

Let Fd andQd be normed linear subspaces whose norms are denoted by‖ · ‖Fd
and‖ · ‖Qd

, respectively.
We assume thatFd andQd are continuously embedded subspaces ofL2(I

d) for all d ∈ N. Without essential
loss of generality, we also assume that

‖ · ‖L2(I
d ) ≤ ‖ · ‖Fd

and ‖ · ‖L2(I
d ) ≤ ‖ · ‖Qd

. (5)

GivenM1 ∈ (0, 1), let
Qres

d =
{
q ∈ Qd : ‖q‖Qd

≤ M1
}

∀ d ∈ N.

We define a solution operatorSd : Fd × Qres
2d → L2(I

d) as

u = Sd(f, q) iff (I − Tq)u = f ∀ (f, q) ∈ Fd × Qres
2d .

Note that
Sd(·, q) = (I − Tq)

−1 ∈ Lin[L2(I
d)] ∀ q ∈ Qres

2d .

In particular, forq = 0, we haveTq = 0, so that

Sd(f, 0) = f ∀ f ∈ Fd .

The operatorSd is linear in its first variable, but nonlinear in its second variable. Using (4) and (5), we have
the a priori bound

‖Sd(f, q)‖L2(I
d ) ≤

‖f ‖L2(I
d )

1 − M1
∀ (f, q) ∈ Fd × Qres

2d . (6)

Let BFd denote the unit ball ofFd . We want to approximateSd(f, q) for (f, q) ∈ BFd × Qres
2d , using

algorithms whoseinformationN(f, q) about a right-hand sidef and a kernelq consists of finitely many
information operations from a class3d of permissible functionals off and from a class32d of permissible
functionals ofq. These functionals can be either of the following:

2In fact, one can takeI as a measurable subset ofR with a positive Lebesgue measure and defineL2(I ) with a weightρ such
that

∫
I ρ(t) dt = 1. We takeI = [0, 1] for simplicity.
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• Linear Class. In this case, we are allowing the class of allcontinuous linear functionals. We write
3d = 3all

d or 32d = 3all
2d .

• Standard Class. In this case, we are allowing only function values and choose the spacesFd andQd

such that function values are continuous linear functionals. We write3d = 3std
d or 32d = 3std

2d .

That is, for some nonnegative integersn1 andn2 we have

N(f, q) =
[
L1(f ), L2(f ), . . . , Ln1(f ), Ln1+1(q), Ln1+2(q), . . . , Ln1+n2(q)

]
,

whereLi ∈ 3d for i = 1, 2, . . . , n1 andLi ∈ 32d for i = n1 + 1, n1 + 2, . . . , n1 + n2. The choice of the
functionalsLi and the numbersni may be determined adaptively.

An algorithmA : BFd × Qres
2d → L2(I

d) approximating the Fredholm problemSd has the form

A(f, q) = φ
(
N(f, q)

)
,

whereN(f, q) is the information aboutf andq andφ : N(BFd ×Qres
2d ) → L2(I

d) is acombinatory function
that combines this information and produces an approximation to the exact solution. For further discussion,
see (e.g.) [15, Sect. 3.2].

The (worst case)error of an algorithm is given by

e(A, Sd ) = sup
(f,q)∈BFd×Qres

2d

‖Sd(f, q) − A(f, q)‖L2(I d ).

Let
e(n, Sd,3d,2d) = inf

An

e(An, Sd)

denote thenth minimal worst case errorfor solving the Fredholm problem. Here, the infimum is over all
algorithmsAn using at mostn information operations of right-hand sides from3d and of kernel functions
from 32d , which we indicate by the shortcut notation3d,2d. That is, if we usen1 and n2 information
operations forf andq thenn1 + n2 ≤ n.

Finally, for ε ∈ (0, 1) we let

n(ε, Sd,3d,2d) = inf{ n ∈ N : e(n, Sd,3d,2d) ≤ ε }

denote theinformation complexity, i.e., the minimal number of information operations neededto obtain an
ε-approximation, i.e., an approximation with error at mostε.

Remark.The (total) complexity of a problem is defined to be the minimal cost of computing an approxima-
tion. We will discuss the total complexity of the Fredholm problem later.

Remark.In this paper, we will only deal with theabsolute error criterion. One could also use thenormalized
error criterion, in which

nnor(ε, Sd ,3d,2d) = inf{ n ∈ N : e(n, Sd,3d,2d) ≤ ε · e(0, Sd ,3d,2d) },

wheree(0, Sd,3d,2d) is the initial error , i.e., the minimal error we can achieve without doing any infor-
mation operations whatsoever. Under the normalized error criterion, we would be trying to determine the
minimal number of information operations needed to reduce the initial error by a factor ofε. For simplicity,
we restrict ourselves to the absolute error criterion in this paper. See [9, Sect. 4.4] for further discussion of
error criteria.
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How hard is it to solve our problem for larged? We have the following tractability hierarchy for the
problemS = {Sd}d∈N, see (e.g.) [9, Sect. 4.4]:

1. The problemS is strongly polynomially tractableif there existC ≥ 0 andp ≥ 0 such that

n(ε, Sd,3d,2d) ≤ C ε−p ∀ d ∈ N, ε ∈ (0, 1).

Should this be the case, the infimum of allp such that this holds is said to be theexponent of strong
(polynomial) tractability.

2. The problemS is polynomially tractableif there existC ≥ 0 andp, q ≥ 0 such that

n(ε, Sd,3d,2d) ≤ C ε−p d q ∀ d ∈ N, ε ∈ (0, 1).

We can speak ofε−1- andd-tractability exponents for a tractable problem. However,these need not
be uniquely determined; for example, we can sometimes decrease one of the exponents by allowing
the other exponent to increase.

3. The problemS is quasi-polynomially tractableif there existC ≥ 0 andt ≥ 0 such that

n(ε, Sd,3d,2d) ≤ C exp
(
t
(
1 + ln ε−1

)
(1 + ln d)

)
∀ d ∈ N, ε ∈ (0, 1). (7)

The infimum of allt such that (7) holds is said to be theexponent of quasi-polynomial tractability.
Quasi-polynomially tractability was introduced in [5]. The function appearing on the right-hand side
of (7) is in some sense the smallest non-exponential tractability function T for which the approxima-
tion problem for unweighted tensor product spaces isT -tractable (see below).

4. Let� be an unbounded subset of [1,∞) × [1,∞). Let T : [1,∞) × [1,∞) → [1,∞) be a function
that is non-decreasing in both its variables and that exhibits sub-exponential behavior, i.e.,

lim
(ξ,η)∈�
ξ+η→∞

ln T (ξ, η)

ξ + η
= 0.

The set� is called atractability domain, andT a tractability function.

The problemS is (T ,�)-tractableif there existC ≥ 0 andt ≥ 0 such that

n(ε, Sd,3d,2d) ≤ C T (ε−1, d)t ∀ (ε−1, d) ∈ �. (8)

The infimum of allt for which this holds is said to be theexponent of(T ,�)-tractability.

If the right-hand side of (8) holds withd = 1, so that

n(ε, Sd ,3d,2d) ≤ C T (ε−1, 1)t ∀ (ε−1, d) ∈ �,

thenS is strongly(T ,�)-tractable. In such a case, the infimum of allt for which this holds is said to
be theexponent of strong(T ,�)-tractability.

5. The problemS is weakly tractableif

lim
ε−1+d→∞

ln n(ε, Sd,3d,2d)

ε−1 + d
= 0.

A weakly tractable problem is one whose information complexity grows sub-exponentially in both
ε−1 andd.

If the problemS is not even weakly tractable, then its information complexity is exponential in eitherε−1

or d. We say thatS is intractable. If the information complexity is exponential ind, we follow [1] and say
that it suffers from thecurse of dimensionality.
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3 Tractability of Fredholm vs. tractability of approximation

In this section, we show that tractability of the Fredholm problem is strongly related to tractability of the
L2-approximation problems overFd andQd . Here, theL2-approximation problem overVd , whereVd is
a normed linear space that is continuously embedded inL2(I

d), is defined as approximating the canonical
injection APPVd

: Vd → L2(I
d) given by

APPVd
v = v ∀ v ∈ Vd .

We approximatev from the unit ballBVd of Vd, with error being measured in theL2(I
d)-norm. Algorithm

errors, minimal errors, and information complexity for theL2-approximation problem overVd are all defined
analogously to the way they were defined for the Fredholm problem; the same is true for the various kinds of
tractability for APPV = {APPVd

}d∈N, as well as intractability. Our assumption (5) is equivalent to requiring
that

‖ APPFd
‖Lin[Fd ;L2(I

d )] ≤ 1 and ‖ APPQd
‖Lin[Qd ;L2(I

d )] ≤ 1, (9)

so that the initial errors of theL2-approximation problems overFd andQd are at most one. Note that if
the bounds in (5) are sharp, then we have equality in (9), and then theL2-approximation problems overFd

andQd are properly scaled.

3.1 Lower bounds

We are ready to prove lower bounds for the Fredholm problem. First, we show that the Fredholm problemSd

is not easier than theL2-approximation problem overFd .

Proposition 3.1. We have

n(ε, Sd,3d,2d) ≥ n(ε, APPFd
,3d) ∀ ε ∈ (0, 1), d ∈ N.

Proof. Let An be an algorithm for approximating the Fredholm problemSd such thate(An, Sd) ≤ ε, using
n information operations from3d,2d . Define an algorithm̃An for APPFd

by

Ãn(f ) = An(f, 0) ∀ f ∈ BFd .

SinceAPPFd
= Sd(·, 0), we have

e(Ãn, APPFd
) ≤ e(An, Sd) ≤ ε,

which suffices to establish the desired inequality.

We now wish to show that the Fredholm problemSd is not easier than theL2-approximation problem
overQd . Before doing so, we need a bit of preparation. For a functionq : I d → R, let us define functions
qX, qY : I 2d → R by

qX(x, y) = q(x) and qY (x, y) = q(y) ∀ x, y ∈ I d .

We say that the sequence of spacesQ = {Qd}d∈N satisfies theextension propertyif for all d ∈ N, we have

q ∈ Qd H⇒ qX, qY ∈ Q2d ∀ q ∈ Qd,

with
‖qX‖Q2d

≤ ‖q‖Qd
and ‖qy‖Q2d

≤ ‖q‖Qd
. (10)
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Let

M2 =
2(1 + M1)(3 − M2

1)

M1(1 − M1)
. (11)

Clearly,M2 > 1 and goes to infinity asM1 goes to zero. Using Mathematica, we checked that

M2 ≥ 32.7757. . . ,

taking its minimal value when

M1 =
1

2
−

1

2

√

−
1

3
+

1

3

3
√

656− 72
√

83+
2

3

3
√

82+ 9
√

83

+
1

2

√√√√√1

3


−2 − 3

√
656− 72

√
83− 2

3
√

82+ 9
√

83+
42√

−1
3 + 1

3
3
√

656− 72
√

83+ 2
3

3
√

82+ 9
√

83




.= 0.455213,

Proposition 3.2. Suppose thatQ satisfies the extension property, and that1 ∈ BFd . Then

n(ε, Sd,3d,2d) ≥ n
(
M2ε, APPQd

,3d

)
∀ ε ∈

(
0,

1

2(1 + M1)

]
, d ∈ N.

Proof. Forq ∈ BQd , the extension property tells us thatM1qX,M1qY ∈ Qres
2d . As in [11, Sect. 18.2.1], we

have

Sd(1,M1qY ) =
1

1 − M1
∫
I d q(y) dy

. (12)

Moreover, it is easy to see that

Sd(1,M1qX) =
M1q

1 − M1
∫
I d q(y) dy

+ 1.

Combining these results and solving forq, we see that

q =
Sd(1,M1qX) − 1

M1Sd(1,M1qY )
=

Sd(1,M1qX) − 1

M1
∫
I d Sd(1,M1qY ) dy

, (13)

the latter holding because (12) tells us thatSd(1,M1qY ) is a number. Now letAn be an algorithm for
approximatingSd overBFd ×Qres

2d such that it usesn information operations from3d,2d ande(An, Sd) ≤ ε,
where

ε ≤ 1

2(1 + M1)
.

Guided by (13), we define an algorithm̃An for approximatingAPPQd
by

Ãnq =
An(1,M1qX) − 1

M1
∫
I d An(1,M1qY )(y) dy

∀ q ∈ BQd .

We now compute an upper bound on the error ofÃn. First, some algebra yields that

q − Ãnq =
1

M1
∫
I d An(1,M1qY )(y) dy

[
Sd(1,M1qX) − An(1,M1qX)+

(
1 − Sd(1,M1qX)

Sd(1,M1qY )

)∫

I d

[Sd(1,M1qY ) − An(1,M1qY )(y)] dy

]
.

(14)
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Using the inequality
∣∣∣∣
∫

I d

[Sd(1,M1qY ) − An(1,M1qY )(y)] dy

∣∣∣∣ ≤ ‖Sd(1,M1qY ) − An(1,M1qY )‖L2(I
d ),

along with the fact thate(An, Sd) ≤ ε, equation (14) yields the inequality

‖q − Ãnq‖L2(I
d ) ≤

1

M1

∣∣∫
I d An(1,M1qY )(y) dy

∣∣

[
‖Sd(1,M1qX) − An(1,M1qX)‖L2(I

d )+

1 + ‖Sd(1,M1qX)‖L2(I
d )

|Sd(1,M1qY )|
‖Sd(1,M1qY ) − An(1,M1qY )‖L2(I

d )

]

≤
1

M1

∣∣∫
I d An(1,M1qY )(y) dy

∣∣

[
1 +

1 + ‖Sd(1,M1qX)‖L2(I
d )

|Sd(1,M1qY )|

]
· ε.

(15)

SinceM1qX ∈ Qres
2d , we have

‖Sd(1,M1qx)‖L2(I
d ) ≤

1

1 − M1
.

SinceM1qY ∈ Qres
2d andSd(1,M1qY ) ∈ R, we have

1

1 + M1
≤ Sd(1,M1qY ) ≤

1

1 − M1
.

Now our restriction onε implies that
∣∣∣∣
∫

I d

An(1,M1qY )(y) dy

∣∣∣∣ ≥ Sd(1,M1qY ) −
∣∣∣∣
∫

I d

[Sd(1,M1qY ) − An(1,M1qY )(y)] dy

∣∣∣∣

≥
1

1 + M1
− ε ≥

1

2(1 + M1)
.

Substituting these last three inequalities into (15), we find

‖q − Ãnq‖L2(I d ) ≤
2(1 + M1)

M1

[
1 +

(
1 +

1

1 − M1

)
(1 + M1)

]
ε = M2 · ε .

Sinceq is an arbitrary element ofBQd , we see that

e(Ãn, Sd) ≤ M2 · ε .

This suffices to establish the desired inequality.

Using Propositions 3.1 and 3.2, we have the following corollary.

Corollary 3.1. Suppose thatQ satisfies the extension property. Then the approximation problemsAPPF and
APPQ are at least as hard as the Fredholm problemS. That is:

1. If the Fredholm problemS is strongly polynomially tractable, then so areAPPF andAPPQ. Moreover,
the exponents of strong polynomial tractability of the approximation problems are no larger than those
for the Fredholm problem.

2. If the Fredholm problemS is polynomially tractable, then so areAPPF andAPPQ. Moreover,ε−1- and
d-exponents for the approximation problems are no larger than those for the Fredholm problem.
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3. If the Fredholm problemS is quasi-polynomially tractable, then so areAPPF andAPPQ. The exponent
of quasi-polynomial tractability for the approximation problemAPPF is no larger than this for the
Fredholm problem. However, the exponent of quasi-polynomial tractability for the approximation
problemAPPQ may be larger than this for the Fredholm problem by the factor1 + ln M2.

4. Suppose that for allα > 0, the tractability functionT satisfies

T (αξ, η) = O
(
T (ξ, η)

)
asξ, η → ∞. (16)

If the Fredholm problemS is (strongly)(T ,�)-tractable, then so areAPPF andAPPQ. Moreover, the
exponents of (strong)(T ,�)-tractability for the approximation problems are no largerthan those for
the Fredholm problem.

5. If the Fredholm problemS is weakly tractable, then so areAPPF andAPPQ.

6. If eitherAPPF or APPQ are intractable, then so is the Fredholm problemS.

Proof. All these statements follow from Propositions 3.1 and 3.2. However the statements regarding quasi-
polynomial tractability and(T ,�)-tractability are a bit more subtle than the others, so we give some details
for these cases.

Suppose first that the Fredholm problemS is quasi-polynomially tractable. This means that there exist
C > 0 andt ≥ 0 such that

n(ε, Sd,3d,2d) ≤ C exp
(
t
(
1 + ln ε−1

)
(1 + ln d)

)
∀ d ∈ N, ε ∈ (0, 1).

From Proposition 3.1, we immediately find thatAPPF is quasi-polynomially tractable, with the same esti-
mate

n(ε, APPFd
,3d ) ≤ n(ε, Sd ,3d,2d) ≤ C exp

(
t
(
1 + ln ε−1

)
(1 + ln d)

)
∀ d ∈ N, ε ∈ (0, 1).

What aboutAPPQ? Proposition 3.2 yields that

n(M2ε, APPQd
,3d) ≤ n(ε, Sd,3d,2d) ∀ d ∈ N, ε ∈ (0, 1).

ReplacingM2ε by ε, and remembering thatM2 > 1, we get

n(ε, APPQd
,3d) ≤ n(M−1

2 ε, Sd ,3d)

≤ C exp
[
t
(
1 + ln M2 + ln ε−1

)
(1 + ln d)

]

= C exp

[
t
(
1 + ln ε−1

)
(1 + ln d)

(
1 +

ln M2

1 + ln ε−1

)]

≤ C exp
(
t (1 + ln M2)

(
1 + ln ε−1

)
(1 + ln d)

)
.

HenceAPPQ is quasi-polynomially tractable, with an exponent at mostt (1+ln M2). This exponent is clearly
larger than that of the Fredholm problem.

Now suppose that the Fredholm problemS is (strongly)(T ,�)-tractable, with a tractability functionT
satisfying (16). ForAPPF , we find that

n(ε, APPFd
,3d) ≤ n(ε, Sd ,3d,2d) = T (ε−1, d)t ∀ d ∈ N, ε ∈ (0, 1).

For APPQ, we find that

n(ε, APPQd
,3d) ≤ n(M−1

2 ε, Sd ,3d) = O
(
T (M2ε

−1, d)t
)

= O
(
T (ε−1, d)t

)
∀ d ∈ N, ε ∈ (0, 1).

Thus both approximation problems are (strongly)(T ,�)-tractable, with exponents at most as large as the
exponent for the Fredholm problem, as claimed.
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3.2 Upper bounds

Having found lower bounds, we now look for analogous upper bounds.

Lemma 3.1. Letu = Sd(f, q) and ũ = Sd(f̃ , q̃) for (f, q), (f̃ , q̃) ∈ BFd × Qres
2d . Then

‖u − ũ‖L2(I
d ) ≤

1

1 − M1

[
‖f − f̃ ‖L2(I

d ) + ‖u‖L2(I
d )‖q − q̃‖L2(I

2d )

]
.

Proof. Since(I − Tq)u = f and(I − Tq̃)ũ = f̃ , we find that

f − f̃ = u − ũ − Tqu + Tq̃ ũ = u − ũ − Tq−q̃u − Tq̃(u − ũ),

and so
(I − Tq̃)(u − ũ) = f − f̃ + Tq−q̃u.

Hence
u − ũ = (I − Tq̃)

−1[f − f̃ + Tq−q̃u].

Using (3) and (4), we get the desired inequality.

We now use Lemma 3.1 to find upper bounds for the Fredholm problem, in terms of upper bounds for
theL2-approximation problems forFd andQd .

Proposition 3.3. For ε > 0 andd ∈ N, we have

n(ε, Sd,3d,2d) ≤ n

(
(1 − M1) ε

2
, APPFd

,3d

)
+ n

(
(1 − M1)

2 ε

2M1
, APPQ2d

,32d

)
. (17)

Proof. Let Ãn(F ),Fd
andÃn(Q),Q2d

(respectively) be algorithms usingn(F ) andn(Q) information operations
for theL2-approximation problems overFd andQ2d such that

e
(
Ãn(F ),Fd

, APPFd

)
≤

(1 − M1) ε

2
and e

(
Ãn(Q),Q2d

, APPQ2d

)
≤

(1 − M1)
2 ε

2M1
. (18)

Let n = n(F ) + n(Q). Define an algorithmAn for the Fredholm problem as

An(f, q) = Sd

(
Ãn(F ),Fd

(f ), Ãn(Q),Q2d
(q)
)

∀ (f, q) ∈ BFd × Qres
2d .

Clearly,An usesn information operations. To compute the error ofAn, let (f, q) ∈ BFd × Qres
2d . By (18),

we have

‖f − Ãn(F ),Fd
(f )‖L2(I

d ) ≤
(1 − M1)ε

2
‖f ‖Fd

≤
(1 − M1)ε

2
and

‖q − Ãn(Q),Q2d
(q)‖L2(I

2d ) ≤
(1 − M1)

2ε

2M1
‖q‖Q2d

≤
(1 − M1)

2ε

2
.

Using Lemma 3.1 and inequality (6), we now have

e(An, Sd) ≤
1

1 − M1

[
‖f − Ãn(F ),Fd

‖L2(I
d ) + ‖Sd(f, q)‖L2(I d )‖q − Ãn(Q),Q2d

(q)‖L2(I2d )

]

≤
1

1 − M1

(
(1 − M1)ε

2
+

1

1 − M1

(1 − M1)
2ε

2

)

= ε.
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Since(f, q) is an arbitrary element ofBFd × Qres
2d , we see that

e(An, Sd) ≤ ε.

The algorithms̃An(F ),Fd
andÃn(Q),Q2d

are arbitrary and satisfy (18). We can then take them to be algorithms
using the minimal number of information operations needed to satisfy (18). Inequality (17) now follows.

We now discuss the arguments ofn(·, APPFd
,3d) andn(·, APPQ2d

,32d) in (17). For allε ∈ (0, 1), the
argument(1 − M1)ε/2 is less than 1/2; however, the argument(1 − M1)

2ε/(2M1) may be larger than one
if M1 is small enough andε close enough to one. In this case, the second term

n

(
(1 − M1)

2 ε

2M1
, APPQ2d

,32d

)
= 0 for

(1 − M1)
2 ε

2M1
≥ 1,

since we now can takeA0 = 0 with error at most 1.
Using Proposition 3.3, we have the following corollary.

Corollary 3.2. The Fredholm problemS is no harder than than the approximation problemsAPPF andAPPQ.
That is:

1. If APPF andAPPQ are strongly polynomially tractable, then so is the Fredholm problemS. Moreover,
the exponent of strong polynomial tractability forS is no larger than the greater of those forAPPF

andAPPQ.

2. If APPF and APPQ are polynomially tractable, then so is the Fredholm problemS. Moreover, the
ε−1-exponents and thed-exponents forS are no larger than the greater of theε−1-exponents and the
d-exponents forAPPF andAPPQ.

3. If APPF and APPQ are quasi-polynomially tractable, then so is the Fredholm problemS. Moreover,
the exponenttS of quasi-polynomial tractability forS satisfies

tS ≤ t∗S := max

{
tF

(
1 + ln

2

1 − M1

)
, tQ

(
1 + max

{
0, ln

2M1

(1 − M1)2

})
(1 + ln 2)

}
. (19)

4. Suppose that the following are true:

(a) APPF is (strongly)(TF ,�)-tractable, with (strong) exponenttF .

(b) APPQ is (strongly)(TQ,�)-tractable, with (strong) exponenttQ.

(c) For anyα > 0, the tractability functionsTF andTQ satisfy

TF (αξ, η) = O
(
TF (ξ, η)

)
and TQ(αξ, η) = O

(
TQ(ξ, η)

)
asξ, η → ∞.

Then

(a) The Fredholm problemS is (TS,�)-tractable, withTS = max{TF , TQ}. Moreover, strong
(TS,�)-tractability holds forS iff it holds for bothAPPF andAPPQ.

(b) The (strong) exponent of(TS,�)-tractability is at mostmax{tF , tQ}.

5. If APPF andAPPQ are weakly tractable, then so is the Fredholm problemS.
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6. If the Fredholm problemS is intractable, then eitherAPPF is intractable orAPPQ is intractable.

Proof. All this follows from Proposition 3.3 (as mentioned above),along with the definitions of the various
kinds of tractability. To illustrate, we prove the quasi-polynomial case (part 3), if for no other reason than to
explain the somewhat odd-looking result fort∗S .

Since APPF and APPQ are quasi-polynomially tractable, there exist positiveCF and CQ, as well as
nonnegativetF andtQ, such that

n(ε, APPFd
,3d) ≤ CF exp

(
tF (1 + ln ε−1)(1 + ln d)

)

and
n(ε, APPQ2d

,32d) ≤ CQ exp
(
tQ(1 + ln ε−1)(1 + ln 2d)

)
.

By Proposition 3.3, we have

n(ε, Sd,3d,2d) ≤ CF exp

(
tF

[
1 + ln

(
(1 − M1)ε

2

)−1
]

(1 + ln d)

)
+

δε CQ exp

(
tQ

[
1 + ln

(
(1 − M1)

2ε

2M1

)−1
]

(1 + ln 2d)

)
, (20)

whereδε = 0 for (1 − M1)
2ε/(2M1) ≥ 1, andδε = 1, otherwise.

Clearly, forc ∈ (0, 1] we have

1 + ln(c ε)−1 ≤ (1 + ln ε−1)(1 + ln c−1) ∀ ε ∈ (0, 1),

as well as
1 + ln 2d ≤ (1 + ln 2) (1 + ln d) ∀ d ∈ N.

Applying these inequalities to (20) we conclude that

n(ε, Sd,3d,2d) ≤ CF exp

(
tF

(
1 + ln

2

1 − M1

)
(1 + ln ε−1)(1 + ln d)

)
+

CQ exp

(
tQ

(
1 + max

{
0, ln

2M1

(1 − M1)
2

})
(1 + ln 2)(1 + ln ε−1)(1 + ln d)

)
.

Using this we get the formula fort∗S .
The proof of the remaining parts of the corollary is easy.

Remark. In Section 2, we said that there was no essential loss of generality in assuming that (5) (equiva-
lently, (9)) holds. To see why this is true, note the following:

• If ‖ APPFd
‖Lin[Fd ;L2(I

d )] > 1, the bound (17) in Proposition 3.3 becomes

n(ε, Sd,3d,2d) ≤ n

(
(1 − M1) ε

2
, APPFd

,3d

)
+ n

(
(1 − M1)

2 ε

2M1 ‖ APPFd
‖Lin[Fd ;L2(I

d )]
, APPQ2d

,3d

)
.
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Hence if supd∈N ‖ APPFd
‖Lin[Fd ;L2(I

d )] < ∞, then

n

(
(1 − M1)

2

2‖ APPFd
‖Lin[Fd ;L2(I

d )]
ε, ‖ APPFd

‖Lin[Fd ;L2(I
d )],3d

)
≤

n


 (1 − M1)

2

2M1 sup
d∈N

‖ APPFd
‖Lin[Fd ;L2(I

d )]
ε, ‖ APPFd

‖Lin[Fd ;L2(I
d )],3d


 .

Thus the tractability results of Corollary 3.2 hold as stated, but with a slight change in the denominator
of the first argument ofn(·, APPQ2d

,3d). However, if

sup
d∈N

‖ APPFd
‖Lin[Fd ;L2(I

d )] = ∞,

then the approximation problem forFd is badly scaled.

• If ‖ APPQd
‖Lin[Qd ;L2(I

d )] > 1, we can renormalizeQd under the (equivalent) norm

‖q‖Q̂d
=
√

‖q‖2
L2(I d )

+ ‖q‖2
Qd

∀ q ∈ Qd,

calling the resulting spacêQd . We now replaceQd by Q̂d andQres
d by

Q̂res
d =

{
q ∈ Q̂d : ‖q‖Q̂d

≤ M1
}
.

Sinceq ∈ Q̂res
d implies that‖q‖L2(I d ) ≤ M1 and‖q‖Qd

≤ M1, we see that all our results go through
as before under this relabelling.

4 Some examples

We now study the tractability of the Fredholm for three examples, each being defined by choosing particular
spaces of right-hand side functions and kernel functions. The first example shows us that we may be stricken
by the curse of dimensionality even if the right-hand side orthe kernel function is infinitely smooth. In
the second example, we look at unweighted isotropic spaces,finding that the Fredholm problem is quasi-
polynomially tractable, but not polynomially tractable. In the third example, we explore tractability for a
family of weighted spaces, getting both positive and negative results for polynomial tractability.

4.1 Intractability for C∞ functions

Let C∞(I d) be the space of infinitely many times differentiable functions with the norm

‖v‖C∞(I d ) = sup
α∈N

d
0

‖Dαv‖L2(I
d ) .

Here,α = (α1, α2, . . . , αd) ∈ N
d is a multi-index with|α| =

∑d
j=1 αj , and

Dαv = ∂ |α|

∂α1x1∂α2x2 · · · ∂αd xd

.
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Let Fd = Gd = C∞(I d). The L2-approximation problems forFd and Gd satisfy the assumption (5).
Moreover, since‖1‖Fd

= ‖1‖Qd
= ‖1‖L2(Id ), we have

‖ APPFd
‖Lin[Fd ;L2(I

d )] = ‖ APPQd
‖Lin[Qd ;L2(I

d )] = 1.

This also shows that 1∈ BFd , as needed in Proposition 3.2. Moreover,Q = {Qd}d∈]posints satisfies the
extension property, with equality holding in (10). This means that we can use all the results presented in the
previous section.

The functions inFd and Qd are of unbounded smoothness. As in [10], it is easy to check that for
3d ∈ {3all

d ,3std
d }, we have

e(n, APPFd
,3d) = O(n−r) and e(n, APPQd

,3d) = O(n−r) asn → ∞,

for anyr > 0, no matter how large. This implies that we also have

e(n, Sd,3d,2d) = O(n−r) asn → ∞,

and
n(ε, Sd,3d,2d) = O(ε−1/r) asε → 0

for the Fredholm problem. Sincer can be arbitrarily large, this might lead one to hope that theFredholm
problem does not suffer from the curse of dimensionality in this case. We now crush this hope, showing that
the Fredholm problem is intractable if eitherFd = C∞(I d) or Q2d = C∞(I 2d) andFd satisfies (5) as well
as 1∈ BFd . This holds for the class3all, and therefore also for the class3std.

First, suppose thatFd = C∞(I d). Using [10, Remark 3], we find that

e(n, APPFd
,3all

d ) = 1 for n < 2⌈d/4⌉.

Hence, theL2-approximation problem overFd is intractable, with

n(ε, APPFd
,3all

d ) ≥ 2⌊d/4⌋ ∀ ε ∈ (0, 1).

From Proposition 3.1, we immediately see that

n(ε, Sd,3d,2d) ≥ n(ε, APPFd
,3d) ≥ 2⌊d/4⌋ ∀ ε ∈ (0, 1).

Hence the Fredholm problem is also intractable.
Now suppose thatQd = C∞(I d), and thatFd satisfies (5), with 1∈ BFd . Again, [10, Remark 3] tells

us that
e(n, APPQ2d

,3all
2d) = 1 for n < 2⌈d/2⌉,

and so theL2-approximation problem overQd is intractable, with

n(ε, APPQd
,3all

d ) ≥ 2⌊d/2⌋ ∀ ε ∈ (0, 1).

Noting that

min

{
1

M2
,

1

2(1 + M1)

}
=

1

M2
,

Proposition 3.2 yields that

n(ε, Sd,3d,2d) ≥ n(M2ε, APPQ2d
,3d) ≥ 2⌊d/2⌋ ∀ ε ∈

(
0,

1

M2

]
.

Thus the Fredholm problem is intractable also in this case.
In short, the Fredholm problem suffers from the curse of dimensionality if Fd = C∞(I d) or Qd =

C∞(I d) andFd satisfies (5) as well as 1∈ BFd . Using these extremely smooth spaces avails us not.
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4.2 Results for unweighted tensor product spaces

We now start to explore tractability for tensor product spaces. Our first step is to look at unweighted tensor
product Hilbert spaces, as per [9, Sect. 5.2]. We will then look at weighted tensor product Hilbert spaces in
Section 5.

Since the space for the univariate case is a building block for the tensor product space, we first start with
the univariate case, and then go on to define the tensor product space for generald.

For the univariate case, letH1 ⊆ L2(I ) be an infinite-dimensional separable Hilbert space of univariate
functions. Suppose that the embeddingAPP1 : H1 → L2(I ) is compact. ThenW1 = APP∗

1 APP1 : H1 → H1

is a compact, self-adjoint, positive definite operator. Let{ej }j∈N be an orthonormal basis forH1 consisting
of eigenfunctions ofW1 = APP∗

1 APP1, ordered so that

W1ej = λjej ∀ j ∈ N

with λ1 ≥ λ2 ≥ · · · > 0. Clearly,‖W1‖Lin(H1) = λ1. SinceH1 is infinite-dimensional, the eigenvaluesλi are
positive. Note that forf ∈ H1 we have

‖f ‖2
L2(I ) = 〈f, f 〉L2(I ) = 〈APP1 f, APP1 f 〉L2(I ) = 〈f,W1f 〉H1 ≤ λ1‖f ‖2

H1
.

Hence, the assumption (5) holds if we assume thatλ1 ≤ 1. For simplicity, we also assume thate1 ≡ 1 ∈ H1,
with ‖1‖H1 = 1, so thatλ1 = 1.

We now move on to the general cased ≥ 1, defining the tensor product spaceHd = H⊗d
1 , which is a

Hilbert space under the inner product

〈 d⊗

j=1

vj ,

d⊗

j=1

wj

〉

Hd

=
d∏

j=1

〈vj , wj 〉H1 ∀ v1, . . . , vd , w1, . . . , wd ∈ H1,

where ( d⊗

j=1

vj

)
(x) =

d∏

j=1

vj (xj ) ∀ x = (x1, x2, . . . , xd) ∈ I d .

Let APPd denote the canonical embedding ofHd into L2(I
d) given by

APPd v = v ∀ v ∈ Hd .

Clearly,‖ APPd ‖ = 1. LetWd = APP∗
d APPd . For a multi-indexα ∈ N

d , let

eα =
d⊗

j=1

eαj
and λα =

d∏

j=1

λαj
.

Then
Wdeα = λαeα ∀ α ∈ N

and
〈eα, eβ〉Hd

= δα,β ∀ α,β ∈ N
d .

Thus{eα}α∈Nd is an orthonormal system of eigenfunctions ofWd .
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Knowing the eigensystem ofWd , we can determine thenth minimal errore(n, APPHd
,3all). Let

{λd,j}j∈N = {λα}α∈Nd ,

with
λd,1 ≥ λd,2 ≥ · · · > 0

and leted,j be the eigenfunction corresponding toλd,j . It is well-known (see, e.g., [15, Sect. 4.5]) that

e(n, APPHd
,3all) =

√
λd,n+1,

this error being attained by the algorithm

An(v) =
n∑

j=1

〈v, ed,j 〉Hd
ed,j .

We now letFd = Hd andQd = H2d. Then the assumptions (5) and (10) hold and 1∈ BFd with
‖1‖Fd

= ‖1‖L2(I d ) = 1. What can we say about the tractability of the Fredholm problem?
If λ2 = 1, then [9, Theorem 5.5] tells us that theL2-approximation problem forHd is intractable for

the class3all (and thus also for3std). Hence the Fredholm problem is also intractable for3all (and3std) by
Corollary 3.1.

We now suppose thatλ2 ∈ (0, 1). In addition, for the remainder of this subsection, we shallrestrict our
attention to the case where there exists somep > 0 such that

λj = 2(j−p) asj → ∞.

From [9, Theorem 5.5], we find that theL2-approximation problem forHd is not polynomially tractable
for the class3all (and so for3std). Again using Corollary 3.1, we see that the Fredholm problem is also not
polynomially tractable for3all (and3std). So let’s see what we can say about quasi-polynomial tractability.

First, suppose that the class3all is used. From [5, Sect. 3.1], we find that theL2-approximation problem
for Hd is quasi-polynomially tractable with

t = max

{
2

p
,

2

ln λ−1
2

}
.

Hence Corollary 3.2 tells us that the Fredholm problem is also quasi-polynomially tractable and

n(ε, Sd ,3
all
d,2d) ≤ C exp

(
t∗S (1 + ln ε−1)(1 + ln d)

)

with

t∗S = t max

{
1 + ln

1

1 − M1
, 1 + max

{
0, ln

2M1

(1 − M1)
2

}
(1 + ln 2)

}
.

Now suppose that we use the class3std. Unfortunately, there are currently no general results forthe
case of standard information; we only know of some examples.From [5, Sect. 3.2], we know that there is a
piecewise-constant function space for which quasi-polynomial tractability is the same for3all and3std, and
there is a Korobov space for which quasi-polynomial tractability does not hold. So in the former case, the
Fredholm problem will be quasi-polynomially tractable; inthe latter case, it will not be quasi-polynomially
tractable.

18



4.3 Results for a weighted Sobolev space

The results reported in Section 4.2 tell us that if we want theFredholm problem to be polynomially tractable,
then the right-hand side and kernel must belong tonon-isotropic spaces, in which different variables or
groups of variables play different roles. In this section, we examine a particular weighted spaceHd,m,γ,
wherem ∈ N is a fixed positive integer that measures the smoothness of the space, andγ is a sequence
of weights that measure the importance of groups of variables. This will motivate the general definition
presented in Section 5.

Our analysis uses the results and ideas found in [22]. We build our spaceHd,m,γ in stages, starting with a
unweighted univariate spaceH1,m, then going to an unweighted multivariate spaceHd,m, and finally arriving
at our weighted multivariate spaceHd,m,γ.

So we first look at the cased = 1. The spaceH1,m consists of real functions defined onI , whose
(m − 1)st derivatives are absolutely continuous and whosemth derivatives belong toL2(I ), under the inner
product

〈v,w〉H1,m
=
∫

I

v(x)w(x) dx +
∫

I

v(m)(x)w(m)(x) dx ∀ v,w ∈ H1,m.

Ford ∈ N, defineHd,m = H⊗d
1,m as ad-fold tensor product ofH1,m, under the inner product

〈v,w〉Hd,m
=
∫

I d

v(x)w(x) dx +
∑

u⊆[d ]
u6=∅

∫

I d

∂m|u|

∂mxu

v(x)
∂m|u|

∂mxu

w(x) dx ∀ v,w ∈ Hd,m.

Here, |u| denotes the size ofu ⊆ [d] := {1, 2, . . . , d}, andxu denotes the vector whose components are
those componentsxj of x for which j ∈ u.

We are now ready to define our weighted Sobolev space. Let

γ = {γd,u}u⊆[d ]

be a set of non-negativeweights. For simplicity, we assume thatγd,∅ = 1. Then we let

Hd,m,γ =
{

v ∈ Hd,m : γd,u = 0 H⇒
∂m|u|

∂mxu

v ≡ 0

}
,

under the inner product

〈v,w〉Hd,m,γ
=
∫

I d

v(x)w(x) dx +
∑

u⊆[d ]
u6=∅

γd,u>0

γ −1
d,u

∫

I d

∂m|u|

∂mxu

v(x)
∂m|u|

∂mxu

w(x) dx ∀ v,w ∈ Hd,m,γ.

Interpreting 0/0 as 0, we may rewrite this inner product in the simpler form

〈v,w〉Hd,m,γ
=
∑

u⊆[d ]

γ −1
d,u

∫

I d

∂m|u|

∂mxu

v(x)
∂m|u|

∂mxu

w(x) dx ∀ v,w ∈ Hd,m,γ. (21)

Let Fd = Hd,mF ,γF
andQd = Hd,mQ,γQ

. Here, the weightsγF = {γd,u,F } andγQ = {γd,u,Q} may
be different but we haveγd.∅,F = γd,∅,Q = 1. Again, the assumption (5) is satisfied; moreover, since
‖1‖Fd

= ‖1‖L2(I d ) = 1, we have 1∈ BFd .
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Recall that ifQ = {Qd}d∈N satisfies the extension property, then the Fredholm problemis no easier than
theL2-approximation problem forQd . So what does it take forQ to satisfy the extension property? The
key inequality (10) clearly depends on the weights. For instance, (10) holds whenever

γd,u,Q ≤ γ2d,u,Q for all d ∈ N, u ⊆ [d].

As a particularly simple case, this inequality holds when the weightsγd,u,Q are independent ofd, a case
that has been well-studied in many papers that have dealt with tractability. So although we cannot say that
there is no lack of generality in assuming that the extensionproperty holds, it is certainly not an unwarranted
assumption.

So let us assume thatQ satisfies the extension property. What can we say about the tractability of the
Fredholm problem?

The first result is as follows:

If mF > 1 or mQ > 1, then the Fredholm problem is intractable for the class3all (and obviously also for
3std), no matter how the weights are chosen.

The reason for this is that theL2(I
d)-approximation problem is intractable forHd,m,γ wheneverm > 1,

see [22, Theorem 3.1]. This last result may seem somewhat counter-intuitive, since it tells us that increased
smoothness (i.e., increasingm) is bad. The reason for this intractability is that‖ · ‖Hd,m,γ

= ‖ · ‖L2(I
d ) on

themd-dimensional spacePd.m−1 of d-variate polynomials having degree at mostm − 1 in each variable,
which implies that

e(n, APPHd,m,γ
,3d) = 1 for all n < md,

and therefore
n(ε, APPHd,m,γ

,3all) ≥ m d for all ε ∈ (0, 1).

Thus in the remainder of this subsection, we shall assume that mF = mQ = 1, so that

Fd = Hd,1,γF
and Qd = Hd,1,γQ

.

For simplicity, we only look at familiesγ of bounded product weights, which have the form

γd,u,X =
∏

j∈u

γd,j,X ∀ u ⊆ [d]

for a non-negative sequence
γd,1,X ≥ γd,2,X ≥ · · · ≥ γd,d,X,

for anyd ∈ N. HereX ∈ {F,Q}, which indicates that we may use different weights for the space sequences
F = {Fd}d∈N andQ = {Qd}d∈N. The boundedness of these product weights means that

M := sup
d∈N

max{γd,1,F , γd,1,Q} < ∞.

It is easy to see that if
γd,j,Q ≤ γ2d,j,Q for all d ∈ N, j ∈ [d]

thenQ satisfies the extension property. In particular, this inequality holds when the weightsγd,j do not
depend ond.

We first consider3all. Since tractability results for the Fredholm problem are tied to those of the ap-
proximation problem, we will use the results found in [22].
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• Strong polynomial tractability: We know that the problemAPPF is strongly polynomially tractable iff
there exists a positive numberτF such that

lim sup
d→∞

d∑

j=1

γ
τF

d,j,F < ∞. (22)

Define τ ∗
F to be the infimum ofτF such that (22) holds. Then the strong exponent forAPPF is

max{1, 2τ ∗
F }. The situation forAPPQ is analogous. From Corollaries 3.1 and 3.2, we see that the

Fredholm problemS is strongly polynomially tractable iff both (22) and its analog (with F replaced
by Q) hold, in which case the strong exponent for the Fredholm problem is max{1, 2τ ∗

F , 2τ ∗
Q}.

• Polynomial tractability: The problemAPPF is polynomially tractable iff there exists a positive num-
berτF such that

lim sup
d→∞

1

ln d

d∑

j=1

γ
τF

d,j,F < ∞. (23)

The situation forAPPQ is analogous. From Corollaries 3.1 and 3.2, we see that the Fredholm prob-
lemS is polynomially tractable iff both (23) and its analog (withF replaced byQ) hold.

• Quasi-polynomial tractability: If we replace allγd,j,F andγd,j,G by their upper boundM then the
approximation problem becomes harder. The latter approximation problem is unweighted with the
univariate eigenvaluesλ1 = 1 > λ2 andλj = O(j−2). Therefore it is quasi-polynomially tractable
(see Section 4.2). This implies that the weighted case is quasi-polynomially tractable for any bounded
product weights. Therefore the Fredholm is also quasi-polynomially tractable.

• Weak tractability: Since the Fredholm problem is quasi-polynomially tractable, it is also weakly
tractable.

We now turn to the case of standard information3std. We will use the results found in [22] for polyno-
mial tractability for the approximation problem, upon which we will base the polynomial tractability results
for the Fredholm problem.

• Strong polynomial tractability: The problemAPPF is strongly polynomially tractable iff

lim sup
d→∞

d∑

j=1

γd,j,F < ∞. (24)

The situation forAPPQ is analogous. From Corollaries 3.1 and 3.2, we see that the Fredholm prob-
lem S is strongly polynomially tractable iff both (24) and its analog (with F replaced byQ) hold.
When this holds, the strong exponents for all three problemslie in the interval [1, 4].

• Polynomial tractability: The problemAPPF is polynomially tractable iff

lim sup
d→∞

1

ln d

d∑

j=1

γd,j,F < ∞. (25)

The situation forAPPQ is analogous. From Corollaries 3.1 and 3.2, we see that the Fredholm prob-
lemS is polynomially tractable iff both (25) and its analog (withF replaced byQ) hold.
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At this time, we do not have conditions that are necessary andsufficient for the approximation problem to
be quasi-polynomially tractable or weakly tractable for standard information. This means that the same is
true for the Fredholm problem.

5 Weighted tensor product spaces

In Section 4.2, we saw that that the Fredholm problem is not polynomially tractable if eitherFd or Q2d is
from a family of unweighted tensor product spaces. However in Section 4.3, we saw that our problem can
be polynomially tractable (or even strongly polynomially tractable) if bothFd andQ2d are from families of
weighted Sobolev spaces. This leads us to wonder whether replacing the unweighted tensor product spaces
of Section 4.2 by weighted tensor product spaces can render the Fredholm problem polynomially tractable,
or maybe even strongly polynomially tractable.

So with the spacesHd,m,γ as a guide, we now give the general definition of aweighted tensor product
space, which captures this idea that different variables or groups of variables can play different roles. In
Section 6, we will study a modified interpolatory algorithm for the Fredholm problem, and our analysis of
this algorithm will draw heavily on the properties of weighted tensor product spaces.

Our presentation is based on that found in [9, Sect. 5.3], which should be consulted for additional details.
Let {γd,u}u⊆[d ] be a set of non-negative weights. We assume the following about these weights:

• γd,∅ = 1, and

• γd,u ≤ 1 for all u ⊆ [d].

• There is at least one nonemptyu ⊆ [d] for which γd,u > 0.

Let H1 be defined as in Section 4.2. That is,H1 is an infinite dimensional space withe1 ≡ 1 ∈ H1 and
‖e1‖H1 = 1. Let

H̃1 = {f ∈ H1 : 〈f, e1〉H1 = 0}

be the subspace ofH1 of functions orthogonal toe1 ≡ 1. We now define

Hd,γ =
⊕

u⊆[d ]

H̃1,u, (26)

whereH̃1,u = H̃
⊗|u|
1 is the|u|-fold tensor product ofH1. That is,v ∈ Hd,γ has the unique decomposition

v(x) =
∑

u⊆[d ]

vu(xu) ∀ x ∈ I d, (27)

where
vu ∈ H̃1,u ∀ u ⊆ [d].

AlthoughHd,γ can algebraically be identified with a subspace of the spaceHd described in Section 4.2,
the spacesHd andHd,γ generally have different topologies. The inner product forHd,γ is given by

〈v,w〉Hd,γ
=
∑

u⊆[d ]

γ −1
d,u〈vu, wu〉Hd

∀ v,w ∈ Hd,γ. (28)

For this to be well-defined, we assume thatvu = wu = 0 wheneverγd,u = 0, interpreting 0/0 as 0.
(Compare with (21) in Section 4.3.) The decomposition (27) tells us that we writev as a sum of mutually

22



orthogonal functions, each termvu depending only on the variables inu. The formula (28) tells us that the
contribution made by‖vu‖Hd

to ‖v‖Hd,γ
is moderated by the weightγd,u.

Let

eα(x) =
d∏

k=1

eαk
(xk) ∀ x = (x1, x2, . . . , xd) ∈ I d

for any multi-indexα = [α1, α2, . . . , αd ] ∈ N
d . Note that ifαk = 1, theneαk

≡ 1, and soeα does not
depend onxk. Defining

u(α) = { k ∈ [d] : αk ≥ 2},

we may write
eα(x) =

∏

k∈u(α)

eαk
(xk) ∀ x = (x1, x2, . . . , xd) ∈ I d .

For further details, once again see [9, Sect. 5.3].
Let Wd,γ = APP∗

Hd,γ
APPHd,γ

. Defining

eα,d,γ = γ
1/2
d,u(α)eα ∀ α ∈ N

d,

we see that{eα,d,γ}α∈Nd is an orthonormal basis ofHd,γ, consisting of eigenfunctions ofWd,γ, with

Wd,γeα,d,γ = λα,d,γeα,d,γ ∀ α ∈ N
d,

where

λα,d,γ = γd,u(α)

d∏

k=1

λαk
∀ α ∈ N

d .

Note that all eigenvaluesλα,d,γ ∈ [0, 1] since we assumed that allγd,u ≤ 1 and allλj ≤ 1. Furthermore,
infinitely manyλα,d,γ are positive. Indeed, since there exists a nonemptyu for which γd,u > 0, it is enough
to take indicesα such thatu(α) = u; sinceλαk

> 0 for k ∈ [d], all theλα,d,γ are positive. The condition
u(α) = u holds ifαk ≥ 2 for k ∈ u, andαk = 1 for k /∈ u. For a nonemptyu, we have infinitely many such
indicesα, and therefore we have infinitely many positive eigenvalues, as claimed.

In what follows, it will be useful to order the eigenvalues ofWd,γ in non-increasing order. So we order
the multi-indices inNd asα[1],α[2], . . . , with

1 = λα[1],d,γ ≥ λα[2],d,γ ≥ · · · > 0. (29)

We stress the last inequality in (29), which holds since infinitely many eigenvalues are positive. This also
implies thatγd,u(α[j ]) > 0.

It will often be useful to writeλj,d,γ andej,d,γ, rather thanλα[j ],d,γ andeα[j ],d,γ, so that

Wd,γej,d,γ = λj,d,γej,d,γ

with
1 = λ1,d,γ ≥ λ2,d,γ ≥ · · · > 0.

We shall do so when this causes no confusion.

Remark.A sequence of weighted tensor product space{Hd,γ}d=1,2,... defined in this section has the extension
property if

γd,u ≤ γ2d,u for all d ∈ N, u ⊆ [d].
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For tensor product spaces, the eigenfunctionsej,2d,γ of W2d,γQ
are related to the eigenfunctionsej,d,γ

of Wd,γQ
. Indeed, the eigenfunctions ofW2d,γQ

have the form

ej,2d,γQ
= eα[j ],2d,γQ

= γ
1/2
2d,u(α[j ]),Qeα[j ],

where
α[j ] = [(α[j ])1, (α[j ])2, . . . , (α[j ])2d ] ∈ N

2d

has 2d components. Let
α1[j ] = [(α[j ])1, (α[j ])2, . . . , (α[j ])d ] ∈ N

d

and
α2[j ] = [(α[j ])d+1, (α[j ])d+2, . . . , (α[j ])2d ] ∈ N

d .

Sinceeα[j ] = eα1[j ] ⊗ eα1[j ] we obtain

eα[j ],2d,γ = γ
1/2
2d,u(α[j ]) eα1[j ] ⊗ eα2[j ],

eα[j ],2d,γ =
γ

1/2
2d,u(α[j ])

γ
1/2
d,u(α1[j ])γ

1/2
d,u(α2[j ])

eα1[j ],d,γ ⊗ eα2[j ],d,γ.

6 Interpolatory Algorithm for Tensor Product Spaces

We now define aninterpolatory algorithmwhose error for the Fredholm problem will be expressed in terms
of theL2-approximation errors forFd andQd as in Lemma 3.1. Then we analyze the implementation cost
of this algorithm. As we shall see, the implementation cost will be quite small as long as we use tensor
product spaces forFd andQd .

We first specify the spaces asFd = Hd,γF
andQd = Hd,γQ

, whereHd,γ is defined as in Section 5.
This means thatγF = {γd,u,F } andγQ = {γd,u,Q} are sequences of weights for the spacesHd,γF

andHd,γQ

satisfying the assumptions of Section 5. Note that the weight sequencesγF andγQ may be different, or they
may be the same. Thus{ej,d,γF

}j∈N is aFd -orthonormal system, consisting of the eigenfunctions forWd,γF
,

and{ej,2d,γQ
}j∈N is aQ2d-orthonormal system, consisting of the eigenfunctions forW2d,γQ

. In both cases,
the corresponding eigenvaluesλj,d,γF

andλj,2d,γQ
are ordered.

Let n(F ) andn(Q) be two positive integers. The information aboutf will be given as the firstn(F )

inner product with respect to{ej,d,γF
}j∈N, and the information aboutq as the firstn(Q) inner products with

respect to{ej,2d,γQ
}j∈N. That is, we use the class3all, and for(f, q) ∈ BFd × Qres

2d we compute

Nn(F )(f ) =
[
〈f, e1,d,γF

〉Hd,γF
, 〈f, e2,d,γF

〉Hd,γF
, . . . , 〈f, en(F ),d,γF

〉Hd,γF

]T

Nn(Q)(q) =
[
〈q, e1,2d,γQ

〉H2d,γQ
, 〈q, e2,2d,γQ

〉H2d,γQ
, . . . , 〈q, en(Q),2d,γQ

〉H2d,γQ

]T
.

Define the orthogonal projector operators

Pn(F ),d,γF
=

n(F )∑

j=1

〈·, ej,d,γF
〉Hd,γF

ej,d,γF

and

Pn(Q),d,γF
=

n(Q)∑

j=1

〈·, ej,2d,γQ
〉H2d,γQ

ej,2d,γQ
.
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KnowingNn(F )(f ) andNn(Q)(q), we know

f̃ = Pn(F ),d,γF
f and q̃ = Pn(Q),2d,γQ

q.

Observe that(f̃ , q̃) ∈ BFd × Qres
2d . Furthermore,(f̃ , q̃) interpolatethe data, i.e,

Nn(F )(f̃ ) = Nn(F )(f ) and Nn(Q)(q̃) = Nn(Q)(q).

We define theinterpolatory algorithm

AINT
n(F ),n(Q)(f, q) = Sd(f̃ , q̃) for all (f, q) ∈ BFd × Qres

2d

as the exact solution of the Fredholm problem for(f̃ , q̃). Lemma 3.1 gives an error bound forAINT
n(F ),n(Q) in

terms of the errors of theL2-approximation problems forFd andQ2d . As in the proof of Proposition 3.3,
we can choosen(F ) andn(Q) to make the approximation errors forFd andQ2d be at most(1 − M1)ε/2
and(1 − M1)

2ε/(2M1), respectively; this guarantees that the error ofAINT
n(F ),n(Q) for the Fredholm problem

is at mostε.
Our next step is to reduce the computation ofũ = AINT

n(F ),n(Q0(f, q) to the solution of a linear system of
equations. To do this, we will use the notation and results ofSection 5, suitably modified to take account
of the fact that we are dealing with two sequences of weights.Now αF [j ] is thed-component multi-index
giving thej th-largest eigenvalue ofWd,γF

andαQ[j ] is the 2d-component multi-index giving thej th-largest
eigenvalue ofW2d,γQ

. Thus

ej,d,γF
= eαF [j ],d,γF

= γ
1/2
d,u(αF [j ]),F eαF [j ]

and
ej,2d,γQ

= eαQ[j ],2d,γQ
= γ

1/2
2d,u(αQ[j ]),Q eα1,Q[j ] ⊗ eα2,Q [j ].

Here,α1,Q[j ] denotes the firstd indices ofαQ[j ], andα2,Q[j ] denotes the remaining indices ofαQ[j ], as
at the end of Section 5.

We have
〈eα, eβ〉Hd

= δα,β and 〈eα, eβ〉L2(I
d ) = δα,β λα,

and so the functions{eα}α∈Nd are orthogonal in the unweighted spaceHd , as well as in the spaceL2(I
d).

SinceAINT
n(F ),n(Q) is an interpolatory algorithm, we see thatũ satisfies the equation

ũ =
∫

I d

q̃(·, y) ũ(y) dy + f̃ ,

which can be rewritten as

ũ =
n(Q)∑

j=1

ζj 〈eα2,Q[j ], ũ〉L2(I
d )eα1,Q[j ] +

n(F )∑

j=1

θjeαF [j ], (30)

with
ζj = 〈q, ej,2d,γQ

〉H2d,γQ
γ

1/2
2d,u(αQ[j ]),Q and θj = 〈f, ej,d,γF

〉Hd,γF
γ

1/2
d,u(αF [j ]),F .

This proves that

ũ ∈ En(F ),n(Q) = span
{
eαF [1], eαF [2], . . . , eαF [n(F )], eα1,Q[1], eα1,Q[2], . . . , eα1,Q [nq ]

}
.

Note that the elementseαF [j ] are orthogonal forj = 1, 2, . . . , n(F ). Moreover, the elementseα1,Q[j ] are
orthogonal for differentα1,Q[j ]. However, two kinds of “overlap” are possible:
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• We might haveαF [j ] = α1,Q[j ′] for somej ∈ {1, 2, . . . , n(F )} andj ′ ∈ {1, 2, . . . , n(Q)}.

• We might haveα1,Q[j ] = α1,Q[j ′] for somej, j ′ ∈ {1, 2, . . . , n(F )}.

Therefore
m := dimEn(F ),n(Q) ∈ {n(F ), n(F ) + 1, . . . , n(F ) + n(Q)}.

We remove all redundanteα1,Q[j ], as well as alleα1,Q[j ] that belong to span{eαF [1], eαF [2], . . . , eαF [n(F )]},
calling the remaining elementseα1,Q[l1], eα1,Q[l2], . . . , eα1,Q[lm−n(F)]. Therefore

En(F ),n(Q) = span{z1, z2, . . . , zm},

where

zj =
{

eαF [j ] for j ∈ {1, 2, . . . , n(F )},
eα1,Q[lj−n(F)] for j ∈ {n(F ) + 1, n(F ) + 2, . . . , m}.

The elementsz1 . . . , zm areL2(I
d)-orthogonal, i.e.,〈zj , zk〉L2(I

d ) = 0 for j 6= k, with

‖zj‖L2(I
d ) =

{
λ

1/2
αF [j ],d,γF

for j ∈ {1, 2, . . . , n(F )},
λ

1/2
α1,Q[lj −n(F )],d,γQ

for j ∈ {n(F ) + 1, n(F ) + 2, . . . , m}.

We know that

ũ =
m∑

k=1

υk zk

for some real coefficientsυ1, υ2, . . . υm. From (30) we conclude that

ũ =
m∑

k=1

υk

(n(Q)∑

j=1

ζj 〈eα2,Q [j ], zk〉L2(I
d ) eα1,Q[j ]

)
+

n(F )∑

j=1

θjeαF [j ].

This leads to the system
(I − K)u = b (31)

of linear equations, whereI denotes them × m identity matrix and them × m matrix K = [κi,k ]1≤i,k≤m is
given by

κi,k =
n(Q)∑

j=1

ζj

〈eα2,Q [j ], zk〉L2(I
d ) 〈eα1,Q[j ], zi〉L2(I

d )

〈zi, zi〉L2(I
d )

,

with

b =
[

θ1

〈z1, z1〉L2(I
d )

,
θ2

〈z2, z2〉L2(I
d )

, . . . ,
θn(F )

〈zn(F ), zn(F )〉L2(I
d )

, 0, 0, . . . , 0

]T

∈ R
m

and
u = [υ1, υ2, . . . , υn(F ), υn(F )+1, . . . , υm]T ∈ R

m.

We can now look at some important properties ofK, including the structure ofK and the invertibility of
I − K.

Lemma 6.1. Define

I = { αQ[j ] = (α1,Q[j ],α2,Q[j ]) ∈ N
2d : 1 ≤ j ≤ n(Q) }.
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1. We have

κi,k =
{

ζjλα2,Q[j ] if (i, k) = (α1,Q[j ],α2,Q[j ]) for somej ∈ {1, 2, . . . , n(Q)}
0 if (i, k) 6∈ I ,

and so the matrixK has at mostn(Q) non-zero elements.

2. ‖K‖Lin[ℓ2(R
m)] ≤ M1 < 1.

3. The matrixI − K is invertible, with

‖(I − K)−1‖Lin[ℓ2(R
m)] ≤

1

1 − M1
.

Proof. For part 1, note that the coefficientκi,k may be nonzero only if there exists an integerj ∈ [1, n(Q)]
such that

zi = eα1,Q[j ] and zk = eα2,Q[j ],

that is, when(i, k) ∈ I . In this case, there is at most one nonzero term in the sum defining κi,k , sinceI

consists of distinct elements. Then

κi,k = ζj‖eα2,Q[j ]‖2
L2(I

d )
= ζjλα2,Q[j ] = 〈q, ej,2d,γQ

〉H2d,γQ
γ

1/2
2d,u(αQ[j ]),Qλα2,Q[j ].

Obviously, if(i, k) /∈ I thenκi,k = 0. Hence, the number of nonzero coefficients of the matrixK is at most
|I | = n(Q), as claimed in part 1.

To see that part 2 holds, we estimate‖K‖2
Lin[ℓ2(R

n(F))]
by the square of the Frobenius norm

∑n(Q)

i,k=1 κ2
i,k

and then apply part 1. Recall thatL2-approximation is properly scaled forQ, i.e., thatλα2,Q[j ] ≤ 1 and
γ2d,u(α),Q ≤ 1 for all eigenvalues and weights. Thus we have

‖K‖2
Lin[ℓ2(R

n(F))] ≤
n(Q)∑

i,k=1

κ2
i,k ≤

n(Q)∑

j=1

ζ 2
j λ2

α2,Q[j ] =
n(Q)∑

j=1

〈q, ej,2d,γQ
〉2
H2d,γQ

γ2d,u(αQ[j ]),Qλ2
α2,Q[j ]

≤
n(Q)∑

j=1

〈q, ej,2d,γQ
〉2
H2d,γQ

= ‖Pn(Q),2d,γQ
q‖2

H2d,γq
≤ ‖q‖2

Q2d
≤ M2

1 < 1,

which proves part 2. Part 3 follows immediately from part 2.

We now discuss the implementation of the interpolatory algorithm AINT
n(F ),n(Q), which is equivalent to

solving the linear equation(I − K)u = b. Note that them × m matrix K is sparse, in the sense that it
has at mostn(Q) nonzero elements; moreover, its norm is at mostM1 < 1, independent of the size ofm.
Therefore, it seems natural to approximate the solutionu via the simple fixed-point iteration

u(ℓ+1) = Ku(ℓ) + b (0 ≤ ℓ < r),

u(0) = 0.
(32)

Letting
u(r) = [υ(r)

1 , υ
(r)
2 , . . . , υ(r)

m ]T,
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we shall write

u
(r)

n(F ),n(Q) =
m∑

k=1

υ
(r)
k zk

for our r-step fixed-point approximation to the exact solution

ũ = AINT
n(F ),n(Q)(f, q) =

m∑

k=1

υkzk.

Let us write
u

(r)

n(F ),n(Q) = AINT
n(F ),n(Q),r(f, q),

calling AINT
n(F ),n(Q),r themodified interpolatory algorithm.

We now analyze the cost of computing̃u = AINT
n(F ),n(Q)(f, q). How much do we lose when going from

the interpolatory algorithm to the modified interpolatory algorithm? The answer is, “not much,” if the
parameterr is properly defined. Let cost(A) denote the overall cost of an algorithmA for approximating the
Fredholm problem, including the cost of both information and combinatory operations. We shall make the
usual assumption, commonly made in information-based complexity theory, that arithmetic operations have
unit cost and that one information operation off andq have a fixed costcd ≥ 1. Now let

cost(ε,AINT
ε,d ,3all

d,2d) = inf
{

cost(AINT
nf ,n(Q)) : e

(
AINT

nf ,n(Q),, Sd,3
all
d,2d

)
≤ ε

}

and
cost(ε,AINT-MOD

ε,d ,3all
d,2d) = inf

{
cost(AINT

nf ,n(Q),r) : e
(
AINT

nf ,n(Q),r, Sd,3
all
d,2d

)
≤ ε

}

respectively denote the minimal cost of using the interpolatory and modified interpolatory algorithms to find
an ε-approximation of the Fredholm problem. That is, we minimize the cost by choosing proper parame-
tersn(F ), n(Q) andr of the modified interpolatory algorithm, and the parametersn(F ) andn(Q) of the
interpolatory algorithm.

Proposition 6.1.

cost(ε,AINT-MOD
ε,d ,3all

d,2d) = cd · 2

(
n
(

1
2ε,A

INT
ε,d ,3all

d,2d

)
ln

(
1

ε

))
,

where the2-factor is independent ofd andε. Hence if

n
(

1
2ε,A

INT
ε,d ,3all

d,2d

)
= O

(
n(ε,AINT

ε,d ,3all
d,2d)

)
(33)

with O-factor independent ofd andε, then

cost(ε,AINT-MOD
ε,d ,3all

d,2d) = cd · 2
(

n
(
ε,AINT

ε,d ,3all
d,2d

)
ln

(
1

ε

))
.

Proof. Recall thatK hasn(Q) non-zero elements, see Lemma 6.1. Hence each iteration of (32) can be done
in 2

(
n(F )+n(Q)

)
arithmetic additions and multiplications. Thus the total number of arithmetic operations

needed to computeu(r)

n(F ),n(Q) will be 2
(
(n(F ) + n(Q))r

)
.

For a given value ofε ∈ (0, 1), let us choosen(F ) andn(Q) so that the solutioñu of the interpolatory
algorithm satisfies

‖u − ũ‖L2(I
d ) ≤ 1

2ε.
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Obviously, it is enough to chooser such that

‖ũ − u
(r)

n(F ),n(Q)‖L2(I
d ) ≤ 1

2ε, (34)

and then our approximationu(r)

n(F ),n(Q) ∈ L2(I
d) will satisfy

‖u − u
(r)

n(F ),n(Q)‖L2(I
d ) ≤ ε, (35)

as required.
So let’s analyze the convergence of the fixed-point iteration (32). From Lemma 6.1, we know that

‖K‖Lin[ℓ2(R
m)] ≤ M1 < 1 so that ‖(I − K)−1‖Lin[ℓ2(R

m)] ≤
1

1 − M1
.

Each iteration of (32) reduces the error by a factor ofM1, i.e.,

‖u − u(ℓ+1)‖ℓ2(R
m) ≤ M1‖u − u(ℓ)‖ℓ2(R

m) (0 ≤ ℓ < r),

and so

‖u − u(r)‖ℓ2(R
m) ≤ Mr

1‖u‖ℓ2(R
m) = Mr

1‖(I − K)−1b‖ℓ2(R
m) ≤ Mr

1

1 − M1
‖b‖ℓ2(R

m) .

Finally, sincef ∈ BFd , we have

‖b‖2
ℓ2(R

n) =
n(F )∑

j=1

〈f, ej,d,γF
〉2
Fd

γd,u(αF [j ]),F ≤
n(F )∑

j=1

〈f, ej,d,γF
〉2
Fd

= ‖Pn(F ),d,γF
q‖Fd

≤ ‖f ‖2
Fd

≤ 1,

and thus the previous inequality becomes

‖u − u(r)‖ℓ2(R
m ≤ Mr

1

1 − M1
.

Taking

r =
⌈

ln
(
2/(1 − M1)

)
+ ln 1/ε

ln 1/M1

⌉
= 2

(
ln

1

ε

)
, (36)

we thus have
‖u − u(r)‖ℓ2(R

m ≤ 1
2ε. (37)

We now claim that withr given by (36), we have (34). Indeed, note that since theL2(I
d) approximation

problem is properly scaled overFd and overQd , we haveλαF [j ],d,γF
, λα1,Q[lj−n(F )],d,γQ

≤ 1 for all j ∈ N.
Then

‖ũ − u
(r)

n(F ),n(Q)‖
2
L2(I

d )
=

m∑

j=1

(υj − υ
(r)
j )2‖zj‖2

L2(I
d )

=
n(F )∑

j=1

(υj − υ
(r)
j )2 λαF [j ],d,γF

+
m∑

j=n(F )+1

(υj − υ
(r)
j )2 λα1,Q[lj −n(F )],d,γQ

≤
m∑

j=1

(υj − υ
(r)
j )2 = ‖u − u(r)‖ℓ2(R

n),
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and so
‖ũ − u

(r)

n(F ),n(Q)‖L2(I
d ) ≤ ‖u − u(r)‖ℓ2(R

m ≤ 1
2ε,

establishing (34), as claimed.
Since (34) holds, we have our desired result (35). Hence we have computed anε-approximation with

information cost2(cd(n(F ) + n(Q))) and combinatory cost2
(
[n(F ) + n(Q)] ln(1/ε)

)
, and so the result

follows.

Using Proposition 6.1, along with the results in Section 3, we see that when (33) holds, the modified
interpolatory algorithm is within a logarithmic factor of being optimal. Such is the case when the Fred-
holm problem (or, alternatively, theL2-approximation problemsAPPF andAPPQ) is strongly polynomially
tractable or polynomially tractable. Obviously, the extrafactor ln(1/ε) does not change the exponents of
strong polynomial or polynomial tractability.
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information for multivariate approximation in the worst case setting.J. Approx. Theory, 158(1):97–
125, 2009.
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