
Trade-offs in Private Search

Vasilis Pappas, Mariana Raykova, Binh Vo, Steven M. Bellovin, Tal Malkin
{vpappas, mariana, binh, smb, tal}@cs.columbia.edu

Columbia University

Technical Report CUCS-022-10

Abstract

Encrypted search — performing queries on protected data — is a well researched problem. However,
existing solutions have inherent inefficiency that raises questions of practicality. Here, we step back from
the goal of achieving maximal privacy guarantees in an encrypted search scenario to consider efficiency
as a priority. We propose a privacy framework for search that allows tuning and optimization of the trade-
offs between privacy and efficiency. As an instantiation of the privacy framework we introduce a tunable
search system based on the SADS scheme and provide detailed measurements demonstrating the trade-
offs of the constructed system. We also analyze other existing encrypted search schemes with respect to
this framework. We further propose a protocol that addresses the challenge of document content retrieval
in a search setting with relaxed privacy requirements.

1 Introduction

Encrypted search — performing queries on protected data — has become increasingly interesting as con-
cerns about security and privacy continue to grow. There are a number of variants that differ primarily in
what we aim to keep private: the searchable data, queries, participant identities, etc. Schemes also differ
in their expected operational environment. The majority of encrypted search mechanisms concern data out-
sourcing [6–9,13,22,24] and to a lesser degree data sharing [10,15,21]. In the case of database outsourcing,
one party wants to store its encrypted data on an untrusted server and be able to search it; in database sharing,
one party provides a limited access to another to its database through a search protocol. This has implica-
tions for the privacy requirements. Furthermore, specific scenarios can differ in the exact results provided to
a query (e.g., number of matches, document identifiers, related content, etc.), number of participants, trust
assumptions, anonymity requirements, revocation of search capability and others.

All of these have profound implications for system performance. Choosing a different definition of what
is “enough” privacy can make a large difference in system cost. Making the right choice, in accordance with
the actual, rather than theoretical, threat model can lead to a very functional system, rather than one that is
theoretically perfect but in practice unusably costly.

In terms of privacy, intuitively the best possible result would be a protocol that yields exactly the match-
ing results to a querier, and nothing else, as well as revealing no information to any other party. In theory, this
solution could be used for all scenarios; however, this is an incomplete definition, as the intended “results”
can vary, and what suffices for one situation could constitute a leak in another. Furthermore, the efficiency

This material is based on research sponsored by IARPA under agreement number FA8750-09-1-0075. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of IARPA or the U.S. Government.

1

requirements may differ, as well as the costs for meeting the appropriate privacy guarantees. Fortunately,
privacy requirements in a scenario are often not as strict, allowing us to trade a theoretically weaker solution
for better performance.

In this paper we step back from the strongest possible privacy guarantees and consider efficiency and
actual requirements. These requirements include not just what may leak, but to whom; there may be other
parties who are at least partially trusted. Our goal is thus not so much absolute privacy as the best possible
privacy guarantees that meets the actual goals for a given scenario. Towards this end, we first present and
discuss areas where we can find trade-offs between privacy and efficiency in encrypted search schemes. We
define a tunable privacy framework that allows to construct a single search system that enables tuning the
trade-offs at different levels, and thus can be adjusted to address different settings.

Next, we address the issue of the required output. As mentioned above (and further discussed later on),
there is an important difference, both for performance and privacy, between the case where we intend to
simply identify matches (or some non-sensitive function of them such as their number) and the case where
we actually need to retrieve the matching document content. Accordingly, we decouple document retrieval
from the actual search; we model the difference as a search system with an optional retrieval system. That,
however, adds another layer to our analysis: the privacy guarantees that are made by the retrieval system. We
present a privacy-preserving data retrieval protocol that can be used on top of a search system that returns
document IDs.

Finally, we build and instrument a flexible encrypted search system based on the Secure Anonymous
Database Search (SADS) technology suggested by [21]. It provides the user with a wide range of trade-offs,
both in privacy guarantees and in document retrieval. We present performance measurements based on these
trade-offs, using several different sample databases.

Paper Organization. In Section 2 we overview related work on the subject. Section 3 introduces the
notions of the tunable privacy framework and search systems. We present the document retrieval protocol
as a building block for such systems in Section 4. An actual example of transformation of an encrypted
search scheme into a tunable privacy system and empirical evidence for the accompanying efficiency costs
are given in Section 5.

2 Related Work

The setting for PIR schemes allows one party to retrieve an item at a particular position in another party’s
database and approaches such as [11,14] protect the query index and do not reveal anything about the access
pattern that retrieves the corresponding item without revealing any additional information about the database
to the querier. This results in linear overhead in the size of the database. Chor et al. [10] generalizes the
approach to allow string matching between a keyword from one party and the entries of the database of
another without leaking information about the keyword and the matched string. However, their protocol
requires communication linear in the length of all strings in the database. Williams et al. [24] provide an
outsourcing solution that avoids touching every entry by reshuffling and reencrypting the data stored on the
untrusted server in a way that prevents the server from being able to correlate the data accessed between
searches.

A common technique used in encrypted search schemes [6, 22] is to use trapdoors derived from queries
with the ability to determine if a ciphertext matches the trapdoor to provide search ability over ciphertexts.
This capability is used to store private data at untrusted parties and execute searches on it while revealing
nothing about either the query or the data. Both [6] and [22] concern the data outsourcing scenario, where
a mail server is enabled to search over the encrypted emails that it stores. This method requires that the
search structures produced during preprocessing be computed per searchable token (i.e. to allow keyword

2

search, we would need encryptions of all searchable words). This implies the search complexity will be at
best linear in the number of searchable tokens. Searchable encryption can be either public key [6] (allowing
anyone to add to the searchable data) or private key [22] (limiting the querier himself to adding data). Either
way, only one who possesses the private key can produce trapdoors for search. In the data sharing scenario,
this would necessitate a trusted party to grant search capability to others.

A different approach in the setting of database outsourcing is to use inverted indices, where the search
structures directly map all possible search terms to matches [9, 13]. Search then consists of finding the
appropriate entry in the search structure for a given query’s trapdoor. This suggests trade-offs between
security and efficiency based on the usage of randomized or deterministic encryption. Both [13] and [9] use
deterministic trapdoors and leak the search pattern to the search server. Their search complexities, though,
differ and [13] achieves linearity in the size of the matching set of document while [9] is merely linear in
the number of documents. Curtmola et al. [13] also suggest a scheme that achieves security against adaptive
adversaries at the price of increased storage requirements; it is linear in the number of all searchable tokens
in all documents per query word stored, as well as communication complexity linear in the maximal number
of tokens in a document.

Protecting the search pattern imposes efficiency costs. Bellare et al. [17] showed that in order to achieve
sublinearity of the search complexity over encrypted ciphertexts, deterministic encryption is required, which
leaks the search pattern. By relaxing this requirement, we can use deterministic encryption to compute tags
that are efficiently searchable. One way to compute such tags is to use hashes as tags for the encryptions.
However, such tags also introduce false positives in the search results due to collisions. Bloom filters [3]
extend the idea of hash functions by using multiple hash functions as labels for an entry, with a parametrized
false positive rate. They are used as search structures in [21] and [15] to represent the entries per document.
In this way, constant search time per document is achieved. Both schemes [21] and [15] use the same term
values across Bloom filters representing different documents, which allows them to improve the search time
across multiple documents using Bloom filter trees [15] and bitslice storage of the filters [21]. However, this
approach reveals similarity between the documents and further causes dependency between the false positive
rates for different queries. The work of [21] looks for ways to mitigate the privacy leaks coming from
the deterministic search structures and token by distributing limited trust to two independent intermediary
parties.

Search functionality that goes beyond simple keyword match and considers conjunctive and disjunctive
queries over several keywords can be achieve by providing way to generate trapdoors that handle conjunc-
tions and disjunctions directly, which requires encryptions and the search tokens with size linear in the
number of all searchable entries. A different approach has better efficiency but addresses a weaker adversar-
ial model in which there is an intermediary party who is trusted to follow the protocol and not collude with
other parties (but does not learn the data or queries).

In the case of multiple queriers in a system a revocation capability becomes an important requirement.
The solution of [13] uses one key to provide all users with search capability; for each revocation, a new
key is chosen by the data owner and distributed to the remaining valid users. This causes high overhead
for revocations. In [21] each user has its own key, which is granted search ability via the existence of
transformation keys stored at an intermediary and further provides anonymity for the querier. Revocation
is then possible on a key by key basis by invalidating the transformation key, avoiding the communication
overhead of distributing a new query key to everyone.

3 A Tunable Privacy Framework for Search

Encrypted search has been defined in many ways, each with its own solutions and security guarantees
reflecting a different perspective (c.f., [6–10, 13, 15, 21, 22, 24]). The exact definitions of a scenario for

3

private search depends on the answers of the following questions:
Who provides the databases and who is the querier? — One distinguishing factor here is whether or
not the data owner is the querying party. If he is, the setting is known as data outsourcing: one party
stores its data encrypted at some untrusted server and wants to be able to retrieve search results without
revealing information about the query or results. Papers addressing this setting are often based on searchable
encryption schemes [1, 6, 22, 23], which provide the capability to generate trapdoors that allow decryption
of ciphertexts that match a corresponding token, via knowledge of the secret key used to encrypt them.
Encrypted search scenarios where the data owner and the querying party are different are referred to as
controlled data sharing. PIR schemes [11, 14] provide solutions with strong security guarantees but high
computation costs.
Are there any additional parties that can serve as intermediaries in the protocol? — These parties may
bring utility such as computational or storage resources that are not available to the database provider or the
querier. They may also be able to shoulder some of the trust, from other parties, simplifying the protection
of privacy or security.
Do queries need to be authorized? — This question is relevant for data sharing. The granularity level
at which search capability will be granted, e.g. keywords, groups of keywords, documents, columns in a
database, has implications about how much will be leaked about the query and about the database. The
coarser the search granularity, the more privacy is granted to the querier since his possible queries will be
from a larger range; at the same time, though, he is given the ability to learn more about the database. At the
extremes, we have the case where the querier does not need to be authorized and can submit any possible
query, or where he is required to obtain a search token from some authorizing party for each query, resulting
in zero privacy.
What is the search functionality and the return results? — The first question here concerns the definition
of what is considered a match, whether this is an exact match between entries(keyword search), or is the
result of a Boolean expression over multiple terms or the results of other queries. Once a match has been
found, the next question is whether the return should be a simple handle identifying matching content, or a
partial or complete retrieval of relevant content.
Does the search system have multiple users? — In the case when multiple parties are allowed to make
queries to the database, protecting the identity of the querier in a specific query may be a requirement. Still,
we likely desire that parties be independently authorized (or de-authorized) to make queries in the first place.

In order to capture all possible variations for a private search scenario we give the following definition
that specifies the input and the output of each participant, similarly to a definition for secure multiparty
computation questions:

Definition 1 Encrypted search involves multiple parties, which fill the roles of Data Owner, Querier, or
Intermediate Party. In the case of data outsourcing, data owners are also queriers. Intermediate parties,
which may be required for some schemes, do not obtain any output of interest from the system as a whole.
An encrypted search functionality consists of the following three phases:

Setup: No participant has any input. Output for each is data necessary for other phases.

Search Preprocessing: Participants read their own output from Setup; Data Owners read their data. Data
Owners and/or some Intermediate Parties receive output which we will call search structures.

Search: Participants read their own output from the Setup; those with search structures read this as well,
while Queriers read queries. Queriers output search results for their queries.

The strongest notion of privacy for the above protocol requires that the output of the queriers from the
search protocol are exactly the matches for their queries, and no other party learns anything. In the interest

4

of efficiency, weaker privacy guarantees may be sufficient; it is often acceptable to leak some controlled
amount of information, such as:

• Information about the queries: Parties other than the querier may learn about a query, or multiple
queries, or correlations among them.

• Leakage from encrypted query — Deterministic encryption is one example known to leak certain
types of information, but as shown by Bellare et al. [17] is a necessity to achieve better than linear
complexity in the number of searchable entries. While the implications for a single query will depend
on knowledge of the encryption key by the other parties, for multiple queries this can lead to leakage
of the search patterns, such as when the same query is submitted more than once, perhaps by different
users.

• Leakage from results — The implications of such leakage depend on the party who learns the matching
results and what exactly constituted a result. If the data owner learns a pointer to the matching content
(document, record) or the actual return result includes the content and it is leaked to an intermediary
party, the exact matching content may allow inference about the submitted query. Another possibility
is pattern leakage; a party may learn only pointers to matching content such as document ids but be
able to detect overlap between the return results for different queries.

• Information about the database:

• Leakage from the return results — A system with a false positive rate may return excess results beyond
what is appropriate for a query. This is a privacy concern in the case of data sharing when the querier
is not the owner of the database and should not be able to view documents besides correct results.
Conversely, in data outsourcing this would not constitute a privacy leak since the querier owns the
database and can access its whole content. If this type of leak is equivalent to a false positive for the
matching functionality, it is natural to ask about the case of a false negative (i.e. not all matching
records are returned). While it is not a privacy leakage it affect the correctness of the output.

• Leakage from search structures: Here the search structures computed in the preprocessing stage may
leak information about the database such assimilarity of data records. This is a privacy concern when
the search structures are given to a party different from the owner which may be the case if we want
an intermediary party to execute the search in order to prevent search patter or result pattern leakage
to the data owner.

As we have discussed above, there are many different privacy and security settings that can be selected
for a given search scenario, given its security requirements, its efficiency requirements, and the available
resources. If we want to achieve a search system applicable to a range of different scenarios, we should
provide controls that would allow the user to tune the system at the appropriate privacy and efficiency levels
for his needs. We can do that by having a modular system with blocks of system functionality that can be
instantiated in several different ways according to our needs. We define a practical system as follows:

Definition 2 A tunable privacy search system is a one that implements a protocol such that:

• The protocol is partitioned into independent modules.

• The functionality of at least one of the modules can be instantiated with more than one implementation.

• The search schemes resulting from the different instantiations of the modules provide different privacy
guarantees and costs.

5

The flexibility of a tunable privacy search system will depend on the granularity of the protocol partitioning
and the different instantiations for each part, which in turn will depend on the approach of the search scheme.
In Section 5 we show how to transform the SADS scheme of [21] in such a system.

4 Document Retrieval

As we discussed in Section 3, the goal of a search protocol can either be to identify of the data of interest to
the querying party (output document IDs) or to retrieve the contents of the matching documents. Document
retrieval poses its own challenge, especially when the querier and the data owner are different parties. In
this scenario, returning additional data is a privacy leak for the data owner; at the same time, revealing the
matching documents to the owner is a privacy leak for the querier. Thus, a protocol that meets our strongest
security Definition 1 would need to touch the contents of the entire database [10]. This leads to a large
increase in both the computation and communication complexity compared to just returning document IDs.
One way to avoid this prohibitive cost is to relax our security definition and allow leakage of the search result
pattern. In the case of data outsourcing, this amount of privacy leakage easily suffices, since the untrusted
server just searches for and returns the encrypted files that he stores to the owner who has the corresponding
decryption keys [6, 9, 13]. This approach, however, is not applicable to the case of data sharing, where
leaking the matching documents to the data owner reveals more than the result pattern: the owner also
knows the content of the documents, from which he can infer information about the query.

We address this by constructing a document retrieval scheme that can be used on top of any other
scheme that returns document IDs. We maintain efficiency by introducing an intermediary party who stores
the encrypted files of the database and provides the matching ones to the querying party. This party is given
limited trust to perform the search, but he should not be able to decrypt the stored files. In this case we need
to provide the querier with the decryption keys for the result documents; these are known to the data owner,
who must be able to provide the correct keys obliviously without learning the search results. We present a
protocol that realizes the document retrieval functionality between a data owner (S) and a client (C) with the
help of an intermediary party (P), which utilizes encryption with the following property (defined in more
detail in [21]):

Definition 3 (Encryption Group Property) Let Π = (GEN,ENC,DEC) be a private key encryption scheme.
We say that Π has a group property if ENCk1(ENCk2(m)) = ENCk1·k2(m) holds for any keys k1, k2 and
any message m.

Protocol for Document Retrieval
Storage Reencryption (performed during the search preprocessing phase)
Inputs: S ← documents D1, . . . , Dn, keys k1, . . . kn and k′1, . . . k

′
n;

P ← permutation π of length n ;
S, P ← (GEN,ENC,DEC), an encryption scheme meeting Definition 3

Outputs: S ←⊥; P ← ENCk′
π(i)

(Di) for 1 ≤ i ≤ n
1. S sends to P ci = ENCki(Di) for 1 ≤ i ≤ n.
2. For 1 ≤ i ≤ n S and P execute oblivious transfer protocols that allow P to obtain k′′ = k−1i · k′π(i).
3. For 1 ≤ i ≤ n P computes ENCk′′i (ci) = ENCk−1

i ·k′π(i)
(ENCki(Di)) = ENCk′

π(i)
(Di).

6

Document Retrieval (performed at the end of the search phase)
Inputs: S ← keys k′1, . . . k

′
n;

P ← permutation π of length n , ENCk′
π(i)

(Di) for 1 ≤ i ≤ n;
C ← query Q;
S, P,C ← encrypted search scheme EncSearch that returns IDs of matched documents to P,C.

Outputs: S ← cardinality of the output set from EncSearch for query Q;
P ← IDs of documents matching query Q from EncSearch;
C ← the content of the documents matching Q from EncSearch.

1. S, P,C run EncSearch for query Q. Let i1, . . . , iL be the IDs of the matching documents.
2. P sends Sign(π(i1), . . . , π(iL)) to C together with the encrypted documents ENCk′

π(i1)
(Di1),

. . . , ENCk′
π(iL)

(DiL).

3. C sends π(i1), . . . , π(iL), Sign(π(i1), . . . , π(iL)) to S.
4. S verifies Sign(π(i1), . . . , π(iL)) and returns k′π(i1), . . . , k

′
π(iL)

.
5. C decrypts ENCk′

π(i1)
(Di1), . . . , ENCk′

π(iL)
(DiL) to obtain the result documents.

Intuitively, the security of this protocol is based on the secrecy of the permutation π, known only to
P . Because it is not known to S, S cannot correlate the keys k′πi that are requested by C with the original
indices of the matching documents. He learns only the search pattern of the querying party. We can take
two approaches to mitigate this leakage. The querying party may aggregate requests for decryption keys
to the server for the search results of several queries. Another solution is to extend the scheme to include
additional keys pertaining to no real documents, which P can add to the sets of requested keys so that S
cannot tell how many of the keys he returns correspond to query results. Step 4 of the re-encryption can be
implemented using protocols for oblivious transfer [2, 12, 19].

5 SADS as a Tunable Private Search System

We now extend the SADS scheme for encrypted search [21] into a tunable search system by identifying
parts that permit different implementations with tradeoffs between privacy guarantees and efficiency. These
controls provide choices between functionality, architecture, and underlying algorithms. Such flexibility
allows the search system to be mapped to the specific requirements of various settings.

5.1 Secure Anonymous Database Search (SADS)

We start with a brief overview of the SADS scheme; for further detail refer to [21]. SADS offers a search
protocol between a data owner/server (S) and a search client (C) with the help of two neutral intermediary
parties, an Index Server(IS) and Query Router (QR), involving the following three protocols:
Re-routable Encryption. This protocol allows for a party that is responsible for routing messages between
senders and receivers. This party is trusted to match senders and receivers, but not to learn the messages.
Optionally, the party may be required to transform the messages before forwarding.
PH-DSAEP+. PH-SAEP+ is a private key encryption scheme which combines the Pohlig-Hellman function
[20] and the SAEP+ (short for Simple-OAEP) padding construction introduced in [5]. This encryption
scheme has the group property (as in Definition 3), which is necessary to implement re-routable encryption.
PH-DSAEP+ is a deterministic variant of PH-SAEP+.
Bloom Filters. Bloom filters [4] allow efficient testing of set membership. A Bloom filter (BF) is an m-bit
array B. Initially, all bits are set to zero. There are n independent hash functions Hi, 1 ≤ i ≤ n, with
outputs in the range [0,m − 1]. To add an entry W to the Bloom filter, we calculate the following values:

7

b1 = H1(W), b2 = H2(W), · · · , bn = Hn(W) and set B[bi] = 1 for each 1 ≤ i ≤ n. To check whether
W is present in the filter, we compute the indexes b1, . . . , bn as above. If B[bi] = 1 for all 1 ≤ i ≤ n, the
entry is present; if any of the bits are 0, W is not present. In the SADS scheme blocks from the deterministic
PH-DSAEP+ encryption ciphertexts of the entries are used as the corresponding hash values for the Bloom
filters.

SADS Construction. (Figure 1) Given a server(S), a client (C), a query router (QR), and an index server
(IS), a secure anonymous database search (SADS) scheme is defined with the following algorithms:
• Key Generation: S chooses an encryption key. IS chooses an encryption key. A client C generates

two keys for query submission and result return. To authorize C to search S, QR and C run a key
exchange protocol twice, producing a ratio key for QR between S’s encryption key and C’s query
submission key, and another ratio key between IS’s encryption key and C’s result return key.
• Preprocessing: S generates for each of its documents a Bloom filter from the encryptions of its words

under PH-DSAEP+ under his key. S sends the resulting Bloom filters to IS.
• Query Submission: The query is delivered using the following re-routable encryption protocol: C

encrypts his query with PH-DSAEP+ with his key and sends it to QR, QR re-encrypts the ciphertext
with its transformation key for C, extracts Bloom filter indexes from the new encryptions, and sends
them to IS.
• Search: IS uses the obtained indexes to execute BF search to get the result R.
• Query Return: The query result is also returned using re-routable encryption: IS encrypts R with

PH-SAEP+ and sends it to QR; QR re-encrypts the ciphertext with the result return transformation
key for C, and sends it to the client.

Index Server
IS

Query Router
QR

Server Client

document BFs
 under
Server's key

c = PH-DSAEP+(query,
 Client's key)

BF_indices(c')
= {i1, ..., ik}

BF_Search(i1, ..., ik)=
 {r1, ..., rn} = res_v

res' = PH-SAEP+(res_v,
 IS key)

res" = PH-SAEP+(res',
tranform key for Client)c'= PH-DSAEP+(c,

transform key for S)

Figure 1: SADS Query.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 5000 10000 15000 20000 25000

T
im

e
(s

ec
s)

Number of Records Retrieved

MySQL SADS

Figure 2: Comparison between our scheme and
MySQL.

5.2 Tunable Controls

We now identify potential tuning switches that can vary privacy and efficiency trade-offs.
Search Functionality. SADS returns to the user identifiers for matched documents. This scheme can
optionally be extended with the document retrieval protocol from Section 4 to additionally deliver content
for matching documents. We then have the following choices:
• If the client directly requests decryption keys from the data owner, it leaks information about the

pattern of results over multiple queries. To avoid this the client may request the keys for them all at
once or in subsets over different times. Furthermore, he can avoid requesting multiple times a key that
repeats in multiple queries. However, since complete results need to be signed by the IS, this requires
additional per-key signatures.

8

• As we discussed in Section 4 encryption schemes with the group property are generally not efficient.
We can instead use a more efficient encryption scheme for long documents and then apply encryption
with the group property to protect the encryption keys used for for the documents as described in
Section 4. An obvious implementation is to encrypt the documents with AES and then use PH-
SAEP+ for encryption of the AES keys. A trade-off here may be connected to the security guarantees
provided by the two encryption schemes.

Search Architecture. The architecture suggested by the SADS scheme distributes trust to the intermediary
parties. If the existence of two non-colluding intermediary parties is not viable for a particular scenario,
and client anonymity is not required (for example, there is only one client), we can remove the QR. Client
authentication and revocation, normally enforced by the QR, can be guaranteed by other means such as
separate authentication protocols, revocation lists, or regular updates of all client keys.
Preprocessing. During the preprocessing stage, a Bloom filter is generated per document containing all
keywords. In the SADS scheme, adding a keyword to a document involves encryption of the keyword under
the key of the server. Thus, preprocessing documents containing the same keyword incurs repeated effort.
In order to avoid this unnecessary preprocessing cost, we can cache the BF indices for keywords. This
will avoid some recomputation, but requires additional storage space. Whether to do this, and how much
to cache, will depend on the nature of the documents and repeat frequency. This is also applicable if the
preprocessing of a keyword is not identical but shares a common intermediary result that can be reused,
which is the case if we use different hash function sets per document as we discuss next.
Bloom Filters Over Multiple Documents. The Bloom filters of different documents in SADS share the
same hash functions, and the same BF indices for identical keywords. This is exploited by using a bit-slicing
storage structure to improve query time. However, this has clear consequences for privacy.
• Due to commonality of indices for shared keywords, the search structures leak information to the IS

about the similarity of the corresponding documents.
• The false positive rate of a single Bloom filter — the probability that a search query is matched

incorrectly by it — with n bits, k hash functions, and m entries is FPsingle = (1 − (1 − 1
n)mk)k.

If the false positive probabilities across different Bloom filters are independent, the expected number
of false positive results in a database with N documents will be FPsingle ·N . However, in the given
situation, the false positive rates are not independent if documents share keywords. Let D1 and D2 be
two documents where p fraction of the words in D2 are also in D1 and the query w is a false positive
for the Bloom filter for D1. The probability of a bit in BFD2 to be set to 1 is p + (1 − p)(1 − (1 −
1
n)mk)) and therefore the probability D2 has a false positive (all k search bits of w are set to 1) is
(p+ (1− p)(1− (1− 1

n)mk)))k, which tends to 1 as p tends to 1.

We can avoid these issues by using different hash functions for the Bloom filter of each document. The
BF indices for an entry would not be derived from its PH-DSAEP+ encryption but instead from keyed hashes
of said encryption.

5.3 Trade-off Measurements

We now analyze a number of different trade-offs for the SADS scheme, which is roughly 4 Klocs of C++. We
measured both the preprocessing and the search phases. More precisely, we measured the performance gain
for various workloads when we (i) cached some computation results and (ii) parallelized the preprocessing
phase. In addition, we quantify the trade-offs between privacy and performance in the search phase by
computing the average query time over a set of 100 queries, while changing the dataset size. We repeated
that for different configurations using the switches previously described.
Datasets used. We used two distinct datasets of different type: a large collection of text documents from
the Enron Database (as in [21]) and a 51-column CSV (Comma Separated Values) file with random data. In

9

the case of the Enron database we created a Bloom filter per email with stemmed words as the entries; for
the CSV data we created a Bloom filter per record with entries of the form ”column name || column value”.
Hardware and evaluation setup. Our measurement platform was two servers and a laptop. The servers
had two four-quad Intel Xeon 2.5GHz CPUs, 16 GB of RAM, two 500 GB hard disk drives, and a 1 Gbit
ethernet interface. The laptop was equipped with an Intel Core2 Duo 2.20GHz CPU, 4 GB of RAM, a 220
GB hard disk drive, and a 100 Mbit ethernet interface. All of them where connected through a Gigabit
switch; they all ran a 64-bit flavor of the Ubuntu operating system.

5.3.1 Memory consumption

Along with the timing measurements, we also monitored the memory consumption of our system to de-
termine scaling limits. We found out that the only significant factor was the type of Bloom filter storage.
Bloom filters are stored either sequentially in a flat file or transposed using a slicing optimization. In the
sequential storage case memory usage was constant; it grew consistently with the dataset size in the slicing
case, because the structures are kept in memory and written to files at the end. During the search phase,
both the client and the query router used a small, constant amount of memory (∼2MB). On the other hand,
the index server’s memory usage grew with the dataset size. In the sequential storage case, the file was
mmap’ed; the amount of memory used was the Bloom filter size in bytes times the number of them (e.g.
1KB * 50K = 50MB). When the slicing optimization was enabled, we saw higher memory usage, ∼109MB
for the same dataset. That was most likely due to the extensive use of C++ vectors, which we can further
optimize in the case of much larger databases where the available RAM may become an issue.

5.3.2 Caching exponentiation values

The first experiment measured the impact of caching the exponentiation values during the preprocessing
phase. The caching capability we added uses LRU removal policy.

 0

 1200

 2400

 3600

 4800

 6000

 7200

 8400

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

T
im

e
(s

ec
on

ds
)

Dataset Size (files)

No Cache
Cache-100
Cache-500

Cache-1000
Cache-2000
Cache-5000

Cache-10000

 0

 600

 1200

 1800

 2400

 3000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

T
im

e
(s

ec
on

ds
)

Dataset Size (lines)

No Cache
Cache-100
Cache-500

Cache-1000
Cache-2000
Cache-5000

Cache-10000

Figure 3: Duration of the preprocessing phase for text files (left) and CSV data (right).

Figure 3 shows the caching effect on the preprocessing phase for both the text and CSV datasets. The x
axis is the dataset size and the y axis is the preprocessing time in seconds. It is clear from these figures that
the exponentiation values cache has a greater impact on the text files than the CSV data; this is a result of
the greater randomness of the CSV data. Figure 4 shows the cache hit ratio for the same cases.

5.3.3 Parallel preprocessing optimization

Multicore architectures are dominant in today’s computers. To take full advantage of such architectures,
one has to “parallelize” applications so they can run simultaneously on all available cores. For SADS
preprocessing, this was straightforward. As stated earlier, SADS processes each item independently, and

10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

1000 2000 5000 10000 20000 30000 40000 50000

C
ac

he
 H

it
%

Dataset Size (files)

Cache-100
Cache-500

Cache-1000
Cache-2000

Cache-5000
Cache-10000

 0

 10

 20

 30

 40

 50

 60

 70

1000 2000 5000 10000 20000 30000 40000 50000

C
ac

he
 H

it
%

Dataset Size (lines)

Cache-100
Cache-500

Cache-1000
Cache-2000

Cache-5000
Cache-10000

Figure 4: Cache hit ratio on exponentiation values during preprocessing phase for text files (left) and CSV data (right).

 1

 2

 3

 4

 5

 6

 7

 8

 9

1 2 3 4 5 6 7 8 9 10 11 12

S
pe

ed
up

Number of Threads

1000
2000

5000
10000

20000
30000

40000
50000

Figure 5: Speedup in parallel preprocessing on an 8-
core server.

 0

 50

 100

 150

 200

 250

 300

 350

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
T

im
e

(m
s)

Dataset Size (files)

Normal
Multiple Hashing

Slice Optimization
Parallel Multiple Hashing

Figure 6: Average query time of the normal case,
the slicing optimization, the multiple hashing scheme
and the parallelized multiple hashing scheme (using 8
threads on an 8-core server).

furthermore handles each element of each item separately. For example, an item can be a file and an element
can be a word; alternatively, an item can be a line in a CSV file and an element can be a value in that line.
For each item being processed, a distinct Bloom filter is created and the item’s elements are inserted after the
cryptographic transformations take place. This computational independence makes for simple and robust
parallelization.

After analyzing the source code we found out that there is just one integer counter that we need to
synchronize among the different threads: the Bloom filters counter. We used the open source Threading
Building Blocks library [16]. It is easy to use and well-integrated with C++. It took roughly 10 lines of code
to parallelize the entire preprocessing phase for the CSV data handler.

Figure 5 shows the speedup we gained from parallelizing the preprocessing phase while executing it on
our 8-core servers using different sizes of datasets. The speedup grew with the number of threads, maxing
at 8, the number of the cores of the server. After that point, there were no further gains, and in fact a minor
loss due to thread scheduling overhead.

In addition to parallelizing the preprocessing phase, we also implemented a parallel version of the Search
phase when using multiple hash functions, as described below.

5.3.4 Same vs Multiple hash functions

The next trade-off we considered is the Bloom filter implementation. There are two options; we can either
use the same hash functions among all the documents in the dataset, with expected performance gains and
the use of bit-slicing optimizations, or we can use different hash functions for improve privacy guarantees.

In practice, rather than using distinct hash functions, we key our has function off of the document

11

identifiers. We additionally need to support a number of different hash functions per document. We im-
plemented that by using the technique presented in [18] for generating a group of hash functions using
a family of 2-universal hash functions. In our implementation, we used HMAC using MD5 and SHA1
(using the document’s ID as their key) to generate BF hash functions, where the i-th hash function was
Hi(w) = H1(w) + (i− 1)H2(w) mod P , where P is a prime, H1(w) is HMAC(SHA1, ID, w) and H2(w)
is HMAC(MD5, ID, w).

Figure 6 shows the comparison for the above three schemes: normal with slicing optimization, with
multiple hash functions, and with the parallelized version of multiple hash functions. As expected, the
average query time grows linearly in the “Normal” case, as the actual search is done linearly over all the
Bloom filters. Next, we can see that the slicing optimization is of great value as it keeps the average
query time almost constant over the corpus size. Using the multiple hashing scheme, we do get better
privacy guarantees, but with the cost of increasing the Normal case by a another factor that is proportional
to the corpus size. That is because for each document we want to search, we have to recalculate the hash
functions. Finally, we see that taking advantage of the commonly used multicore architectures does increase
the performance of the search in the multiple hashing scheme. More precisely, the speedup when we used 8
threads on our 8-core servers was from 1.3 to almost 4 for the dataset sizes shown in the Figure 6.

In conclusion, the cost of the multiple hashing is twofold. Firstly, it makes the slicing optimization
unusable; second, it adds the additional overhead of recalculating the hash functions per document.

5.3.5 Boolean operations on query terms

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

T
im

e
(m

s)

Dataset Size (files)

Slicing
Normal

Multiple

5000040000300002000010000

Figure 7: Average query time of the normal case, the
slicing optimization and the multiple hashing scheme.
Each cluster is for a different dataset size and each bar
is for a different term count (from 2 to 5).

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

1 2 5 10 20 50 100 200 500 1000 2000 5000

T
im

e
(s

ec
on

ds
)

Dataset Size (files)

Doc. Ret. SSH

Figure 8: Average time for retrieving documents
anonymously, compared to retrieving them non-
anonymously using ssh file transfer. Average size of
files being transferred was 27.8 Mb

SADS also supports Boolean Queries. One naive way to do this is to compute term queries separately
and union or intersect the results. However, Bloom Filters can more efficiently handle ANDs by combin-
ing indices into a superset, and ORs can be handled in parallel when using a bit-slicing optimization as
described in SADS1. In the normal case, where we search linearly over the documents, the optimization we
implemented was to skip documents that already contained one of the terms. That way we avoided searching
over such documents, thus reducing the overall querying time. In the case where the slicing optimization
was enabled, we run each of the ORed queries in parallel. This approach has two main benefits. First, it has
better cache behavior because we fetch each slice once and use it for all the result vectors; second, in some
cases it permits us to avoid reading several slice portions if the corresponding bits of all the result vectors
have been zeroed out.

1As mentioned in [21]

12

Figure 7 shows the results of timing Boolean OR queries of variable terms. The y axis is the query time
in milliseconds. Each cluster of bars is for a different dataset size; each bar is for a different term count.
The first bar is for two terms, the second for three, and the last two for four and five, respectively. As we
expected, the best configuration as far as the performance is concerned is when the slicing is enabled; these
are the red parts that can be hardly distinguished on the bottom of the bars.We see that the overall time is
again almost constant across the different dataset sizes (as on Figure 6), but it does increase with respect to
the number of terms. The same thing is also true for the normal and the multiple hashing case. In both of
these cases we see that the search time increases with the number of terms, and of course with the dataset
size. The performance gain we have in all cases is sub-linear in the number of query terms.

5.4 Document Retrieval

As mentioned earlier, a parameter in functionality of the search system is whether it returns IDs of matching
documents or the actual documents themselves. We implemented this as a privacy-preserving document-
retrieval add-on module.

We implemented document retrieval using PH-SAEP and using standard RSA signatures to sign query
results. Using PH-SAEP puts a (likely over-restrictive) limit on the length of plaintext values. To handle
this, we encrypt larger files using AES private key encryption, and store the key encrypted with PH-SAEP
as a header in the encrypted file. The files can thus be read by decrypting the header with the appropriate
PH-SAEP key and using the result to decrypt the content of the file. We preprocess in a way that provides
an intermediate party with AES encrypted files under different AES keys and encryptions of these AES keys
under some permutation of the keys k′1, . . . k

′
n. The client will receive as results from the intermediary party

the encrypted files, the encrypted AES keys, and the indices of the keys k′ used for their encryptions. When
he receives the decryption keys k′ from the server, the client will first decrypt the AES keys and then use
them to decrypt the remainder of the files.

Figure 8 shows the average time to retrieve documents using our scheme versus the number of documents
being retrieved. This is shown in comparison to a non-privacy-preserving SSH-based file transfer. As we
can see, our scheme adds very little overhead compared to the minimum baseline for encrypted transfer. The
time also shows linear growth, suggesting that it is dominated by file encryption and transfer, rather than for
the encryption and verification of the results vector itself.

5.5 Overall Performance

In this section we compare the performance of our scheme with a real world DBMS, MySQL. In order to do
that, we implemented a SQL front-end for our system that could parse simple conjunctive and disjunctive
queries. Then, we loaded the CSV dataset to both systems and we executed a number of queries of variable
resultset size. During that evaluation, SADS was configured to use multiple hash functions and document
retrieval was enabled, so as to be able to retrieve the actual data. Figure 2 shows the total duration of both
the query and the retrieval of the data for SADS and MySQL. As show, our scheme performs just 30% worse
on average than MySQL, where on the same time it provides privacy.

6 Conclusion

When we consider the question of encrypted search in practical settings, the privacy guarantees of a scheme
are no longer the only relevant issue: a perfectly secure scheme that is too inefficient will see no use. The
efficiency of an approach becomes a major factor in determining its usability given the available resources.
Schemes that leak nothing beyond the exact matching results to the querying party are often too expensive
to be usable. Furthermore, in many cases looser privacy guarantees suffice; such a relaxation of the security

13

definitions allows us to achieve much better efficiency, which in turn makes the scheme a viable solution
a for a much wider range of problems. The most appropriate trade-offs between privacy and efficiency
are different in different settings. We have proposed a privacy framework based on the SADS [21] search
protocol that makes a step in the direction of relaxing security guarantees to gain efficiency by using deter-
ministic encryption for search structures and achieving better than linear search complexity in the number of
searchable tokens. Our framework provides the following privacy setting options with their corresponding
efficiency trade-offs:

• Document search providing document indices as return results without leaking any information to the
document owner. The search is executed by the intermediary party(IS) that receives search structures
from the owner.

• Document retrieval of the search result documents leaking only the number of accessed documents to
the owner. Data owner and IS have to execute a document re-encryption protocol during the prepro-
cessing phase.

• Access control and querier anonymity when the system is used by multiple users. A query router(QR)
transforms and routes the queries.

• Encryption options for the database documents: using expensive transformable public key encryption
for the whole documents, or using weaker AES encryption for the documents and encrypting only the
keys with the more expensive scheme.

• Slicing techniques for search structure storage which improve performance, or less efficient structures
that protect against document similarity leakage.

Furthermore, we enable caching and multithreading optimizations that improve the efficiency of the system
for the appropriate data and hardware. Our implementation consists of well defined modules handling
cryptography functions, search structure storage, and data handlers that facilitate easy extension of the
system.

References
[1] Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja Lange, John Malone-Lee,

Gregory Neven, Pascal Paillier, and Haixia Shi. Searchable encryption revisited: Consistency properties, relation
to anonymous IBE, and extensions. J. Cryptol., 21(3):350–391, 2008.

[2] William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How to sell digital goods. In
EUROCRYPT ’01: Proceedings of the International Conference on the Theory and Application of Cryptographic
Techniques, pages 119–135, London, UK, 2001. Springer-Verlag.

[3] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communications of the ACM,
13(7):422–426, 1970.

[4] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun. ACM, 13(7):422–426,
1970.

[5] Dan Boneh. Simplified OAEP for the RSA and Rabin functions. Lecture Notes in Computer Science, 2139:275–
291, 2001.

[6] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key encryption with
keyword search. In Proceedings of EUROCRYPT’04, pages 506–522, 2004.

[7] Dan Boneh, Eyal Kushilevitz, Rafail Ostrovsky, and William E. Skeith III. Public key encryption that allows PIR
queries. In Proceedings of CRYPTO’07, 2007.

14

[8] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted data. In the Theory of
Cryptography Conference (TCC, pages 535–554. Springer, 2007.

[9] Yan cheng Chang and Michael Mitzenmacher. Privacy preserving keyword searches on remote encrypted data.
In ACNS, volume 3531, 2005.

[10] Benny Chor, Niv Gilboa, and Moni Naor. Private information retrieval by keywords. Technical Report TR-
CS0917, Dept. of Computer Science, Technion, 1997.

[11] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private information retrieval. J. ACM,
45(6):965–981, 1998.

[12] Giovanni Di Crescenzo, Tal Malkin, and Rafail Ostrovsky. Single database private information retrieval implies
oblivious transfer. In EUROCRYPT, pages 122–138, 2000.

[13] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. Searchable symmetric encryption: improved
definitions and efficient constructions. In CCS ’06: Proceedings of the 13th ACM conference on Computer and
communications security, pages 79–88, New York, NY, USA, 2006. ACM.

[14] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting data privacy in private information retrieval
schemes. Journal of Computer and System Sciences, 60(3):592–629, 2000.

[15] Eu-Jin Goh. Secure indexes. Cryptology ePrint Archive, Report 2003/216, 2004. http://eprint.iacr.
org/2003/216/.

[16] Intel. Threading building blocks 2.2. http://www.threadingbuildingblocks.org/, 2009.

[17] A. Boldyareva M. Bellare and A. O’Neill. Deterministic and efficiently searchable encryption. In Proceedings
of CRYPTO’07, 2007.

[18] Michael Mitzenmacher and Salil Vadhan. Why simple hash functions work: Exploiting the entropy in a data
stream. In In Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 746–755,
2008.

[19] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In SODA ’01: Proceedings of the Twelfth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 448–457, Philadelphia, PA, USA, 2001. Society
for Industrial and Applied Mathematics.

[20] Stephen Pohlig and Martin Hellman. An improved algorithm for computing logarithms over GF(p)and its cryp-
tographic significance. IEEE Transactions on Information Theory, 24(1):106–110, 1978.

[21] Mariana Raykova, Binh Vo, Steven Bellovin, and Tal Malkin. Secure anonymous database search. In CCSW
2009., 2009.

[22] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for searches on encrypted data.
In SP ’00: Proceedings of the 2000 IEEE Symposium on Security and Privacy, page 44, Washington, DC, USA,
2000. IEEE Computer Society.

[23] B. Waters, D. Balfanz, G. Durfee, and D. Smetters. Building an encrypted and searchable audit log. In NDSS
2004., 2004.

[24] Peter Williams and Radu Sion. Usable PIR. In NDSS, 2008.

15

