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ABSTRACT

Robust, Efficient, and Accurate Contact
Algorithms

David Harmon

Robust, efficient, and accurate contact response remains a challenging problem in the

simulation of deformable materials. Contact models should robustly handle contact between

geometry by preventing interpenetrations. This should be accomplished while respecting

natural laws in order to maintain physical correctness. We simultaneously desire to achieve

these criteria as efficiently as possible to minimize simulation runtimes. Many methods

exist that partially achieve these properties, but none yet fully attain all three. This thesis

investigates existing methodologies with respect to these attributes, and proposes a novel

algorithm for the simulation of deformable materials that demonstrate them all. This new

method is analyzed and optimized, paving the way for future work in this simplified but

powerful manner of simulation.
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Chapter 1

Introduction

For centuries physicists have described the behavior of galactic bodies, fluids, flexible sur-

faces, and many other physical materials. More recently, physical simulations have allowed

us to imitate these natural processes on a computer. By modeling the laws of physics

describing a system, we can recreate and study physical phenomena within a controlled

environment. Such study has contributed to advancements in medicine, industrial design,

engineering, and entertainment.

With these advancements comes a new set of challenges. Reproducing continuous pro-

cesses on finite machines introduces additional research opportunities. This begins with

the modeling process: describing the system one wishes to simulate by selecting the ap-

propriately representative physical laws. This choice has implications when the simulation

attempts to numerically solve the physical equations. A poorly chosen model often results

in an unnecessarily slow simulation or one that is unable to capture the intended behavior.

One particularly difficult aspect is the modeling of collisions and contact within a sim-

ulation. A collision occurs when two points on one or more objects attempt to occupy the

same location in space-time. This is impossible in nature, and thus a truly physical simula-

tion must be equally strict. After a collision, these points often remain in contact, exerting

equal and opposite forces on one another. These collision forces should not only be physi-

cally correct, i.e., derived from physical laws, but they should also be adept in maintaining

contact over time and keep objects well-separated (separated by at least machine preci-

sion). The simulation of physical contact models thus provides an intriguing computational
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problem in addressing the efficiency of algorithms with such strict requirements.

This becomes most apparent in the simulation of deformable surfaces, such as cloth.

With all deformable materials, every point on the body may collide with any other point,

vastly increasing the computational effort required. Deformable surfaces are even harder,

since their thickness ranges from extremely small to infinitesimal, and recovering from

missed contacts can be a far more troublesome geometric problem than preventing them in

the first place. Due to their particularly challenging nature, we focus on the simulation of

cloth and thin shells, although the techniques and models developed apply equally to the

simulation of many types of materials.

The contact model is responsible for most of the visual characteristics in a simulation,

with collisions often acting as the stimuli for seemingly unrelated points of interest, such as

the internal dynamics of a system. For instance, folds and wrinkles in a cloth simulation

often develop in response to contact of the fabric with an object such as a character’s body.

Hence a high-quality model is important, even when contact is not the focus of a simulation.

This thesis is interested in models that encompass the following three properties, chosen

for their ability to reliably produce animations of high-quality as well as high-fidelity:

1. The collision response model must be geometrically robust. Interpenetration of the

mesh geometry results in a visually unsatisfying simulation, and is generally unac-

ceptable for the strict requirements of applications such as feature film. Furthermore,

geometry can become “hooked” together once it collides, causing even more prob-

lems in the remainder of the simulation. Thus, it remains important to maintain

well-separated mesh geometry during the course of a simulation.

2. Additionally, the model must be physically accurate. In engineering applications, such

as the development and testing of mechanical parts, a collision model that violates

physical laws of nature is useless, no matter how robust it may be at separating mesh

geometry. Thus, realistic models must strive to preserve known physical quantities

conserved in nature, such as energy and momentum. This is also true when visual

realism is the main goal. The preservation of physical invariants provides a quan-

tifiable method of establishing a hard-to-identify quality: the physical behavior of
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a simulation. These invariants supply quantifiable guidelines towards establishing a

truly physically-behaving, and therefore looking, simulation.

3. Lastly, our contact models need to be computationally efficient. This becomes quite

difficult in the face of the previous two qualities, further concretizing the challenges

inherent in designing such models. To be considered reliable, a physically-based con-

tact model must never halt when given a physical input, making consistent simulation

progress. We further want our method to be efficient in the sense that it achieves max-

imum productivity with minimum wasted expense. Most of the computational effort

is devoted to the collision detection, but the importance of a method that rapidly

resolves impending collisions should not be underestimated.

1.1 Overview

In Chapter 2, we discuss existing physical models and evaluate them according to these

criteria. We shall see that despite impressive progress over the years, there exists no method

that achieves all of our requirements.

We address this concern by analyzing and extending existing methods of response (Chap-

ter 3). In doing so, we see a fundamental limitation with the existing approach. We demon-

strate that the problem must be revisited in order to construct a new method with our

requirements in mind from the start.

We present a new model in Chapter 4 that satisfies all three requirements—the first to

do so. We demonstrate how to implement this model, utilizing existing work in numerical

methods and computational geometry in a novel manner (Chapter 5). Chapter 6 provides

experimental and mathematical proofs that the proposed model retains our desirable prop-

erties.

Chapter 7 expounds upon the advantages provided by implementing the model on top

of theoretically sound work from computational geometry. As a result, we are free to benefit

from advancements in a separate area of research.

Chapter 8 offers analysis for evaluating and extending this method. We isolate and

quantify variables in the system in order to improve efficiency, demonstrating its desirability
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for applications ranging from computer graphics to mechanical engineering.
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Chapter 2

Background
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Figure 2.1: As the dis-

tance approaches zero, the

potential energy escalates

to infinity.

To begin, we evaluate existing classes of methods for dealing with

collisions in a physical simulation. Collision response algorithms

can be classified into three broad categories: penalty methods,

constraint-based formulations, and impulse-based methods.

Each of these methods attempts to respond to collisions by

modeling a physical force. During a contact scenario, the energy

potential of the contact can be given as a function of separation

distance between the contact points [Wriggers and Panagiotopou-

los, 1999]. The key property of this function is that the potential

rapidly increases to infinity as this distance approaches zero, as

demonstrated in Figure 2.1. Intuitively, this illustrates the idea

that penetration in nature is disallowed. Each method discussed

attempts to replicate this concept.

2.1 Penalty methods

The first class of collision response is penalty methods. Penalty methods operate by penal-

izing contact between two objects. This penalty can be given as any number of functions

that attempt to replicate the physical energy potential of Figure 2.1.

Figure 2.2 offers a few choices of potentials. A penalty potential must increase monoton-
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Figure 2.2: As the separation distance decreases (and the objects overlap), each of these

contact potentials increases monotonically.
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Figure 2.3: The potential is shifted and becomes non-zero when the objects are close, rather

than in contact.
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ically as penetration depth increases. Traditionally, the potential takes a value of zero when

separation depth is non-negative and becomes active when penetration occurs. However, it

is certainly possible to shift this potential (Figure 2.3), enabling contact when the objects

become close rather than actually touching. Ideally, this allows the contact force to repel

the objects before actual penetration occurs. This becomes necessary in the simulation of

cloth, where overlap is disastrous, and difficult to repair [Baraff et al., 2003]. A surface has

no volume and lacks any notion of inside or outside, so a missed collision no longer has a

reliable direction to apply response forces, leaving the cloth permanently tangled [Volino

and Magnenat-Thalmann, 2006].

x xn n+1

This reveals the first flaw with penalty methods. Before the penalty

resolves the contact, some overlap may occur [Baraff, 1989]. As the over-

lap increases, the force from the potential grows and acts against further

penetration. Even if the potential is shifted, there is no guarantee that

penetration will not occur. In some cases with narrow objects (and espe-

cially surfaces), objects can completely pass through one another in a single

timestep, without any force acting to stop it (see inset figure). Thus, penalty layers lack

robustness against interpenetrations.

Some choices of potentials (such as e−x [Terzopoulos et al., 1987]) are highly non-linear,

and rapidly accelerate to infinity as separation distance decreases. This is desired, as it

models the physical contact energy. However, as this distance diminishes, it becomes com-

putationally infeasible to integrate the force derived from these energies. The timestep must

continuously decrease for the force to be approximated by traditional solvers [Hauth et al.,

2003]. Due to their highly nonlinear nature–the very property that makes them desirable–a

predetermined stable timestep cannot be found. In the worst case, the force becomes un-

stable and “blows up.” In most cases, however, the timestep is still too large to guarantee

resolution of the contact, and the objects pass through one another. Implicitly integrated

penalty forces are an option for improving stability, but their dynamically activated nature

eliminates the possibility of a Jacobian with a fixed sparsity pattern. The matrix must

then be rebuilt every timestep and cannot be prefactored. Adaptive timestepping is also an

option for improving stability, although neither this nor implicit timestepping provide any
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guarantee of robustness, only stability.

This is the second problem with penalty methods. An associated stiffness must be chosen

pre-simulation, but this stiffness may not be adequate to resolve all collisions. Increasing the

stiffness requires starting the simulation anew, and with a smaller timestep (due to stability

criteria). Adjusting this stiffness “on the fly” destroys conservation and is unpredictable. In

short, for any chosen stiffness, there exists an impact of sufficiently high velocity such that

the force fails to stop the collision, allowing objects to tunnel through one another [Bridson

et al., 2002].

Due to the stability problems associated with non-linear penalties, simple linear forces

(quadratic potentials) are often used in practice, including in the simulation of volumes [Teran

et al., 2005; Faure et al., 2008]. These are easy to implement and simple to use, but still

must withstand the two main flaws of penalty methods. The penalty method’s physical ba-

sis (a conservative force derived from a contact potential) makes it a popular choice where

physical correctness is important, as it is in the engineering world [Wriggers and Laursen,

2007]. In practice, shifted penalty forces can perform adequately with deformable volumes

and / or sufficiently small timesteps that prevent tunneling. However, its poor robustness

properties have thus far made it unsuitable as the sole method of response in graphics

applications.

2.2 Constraints

Penalty methods are one approach to solving general constrained optimization problems, so

it is natural that their shortcomings would lead to the use of other algorithms designed for

handling these problems [Fletcher, 1987]. Such algorithms work by attempting to satisfy

constraint equations, or real-valued functions of the configuration (C(q) ∈ R, where q is

a point in configuration space) that represent some physical or geometric property to be

preserved [Lanczos, 1986].

These constraints may be strict equality constraints, called bilateral or two-sided con-

straints (C(q) = 0), or inequality constraints, called unilateral or one-sided constraints

(C(q) ≤ 0).
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Bilateral constraints arise when any relationship between geometry must be strictly

enforced. Inextensibility constraints as well as ball and socket constraints are of this form,

where drift resulting in geometric separation is undesirable [Goldenthal et al., 2007; Barzel

and Barr, 1988].

y=0

Unilateral constraints allow motion freely within some region of configuration

space defined by the constraint function, but restrict any motion which attempts

to leave this space. Contact constraints lie in this category. In the inset figure, a

particle collides with a floor. Downward motion is forbidden, while motion up (or

in any other direction) is permitted, making this a one-sided, unilateral constraint. In this

figure, the constraint is represented by requiring that the vertical axis remain non-negative,

or C(x, y) = −y ≤ 0.

The most popular method for satisfying constraints is the method of Lagrange multipli-

ers. Lagrange multipliers are used when minimizing or maximizing a function subject to a

set of constraints [Hadley, 1964]. In a physical simulation, these functions are the equations

of motion being integrated, with additional variables called Lagrange multipliers that act

as constraint-maintaining forces:

M q̈− F (q) + λT [∇C1∇C2...∇Ck]T = 0 (2.1)

∀i Ci(q) ≤ 0 (2.2)

∀j Cj(q) = 0. (2.3)

q̈ is the acceleration, F represents the forces in the system (both internal and external),

and Ci are the set of k inequality contact constraints to be met. The multipliers (λi) are the

magnitude of the constraint-maintaining force, while ∇Ci is the direction in which the force

is applied. Together these represent a force that exactly counteracts the violating motion.

Equations 2.1, 2.2, and 2.3 are the continuous constrained equations of motion. In order

to solve numerically, they must be discretized. Just like the equations of motion, there is a

choice of how to discretize the constraint equations.

Explicit For the timestep (qn,qn+1), explicit constraints compute corrections based on

violations of the positions from the beginning of the timestep, i.e., by measuring how much
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Ci(q
n) is violated [Witkin et al., 1990; Barth et al., 1995]. This makes solving the con-

strained system much simpler, since all dependent variables of the constraint function

are known [Ryckaert et al., 1977; Andersen, 1983]. However, this discretization suffers

from configurations that drift from the constraint manifold, leading to a number of cor-

rective regularization and stabilization schemes [Baumgarte, 1972; Lin and Huang, 2002;

Cline and Pai, 2003]. Furthermore, the solution may very well leave the configuration in

an inadmissible (penetrating) state at the end of the timestep [Hong et al., 2005]. Thus,

explicit constraints are generally not reliable enough for contact resolution.

Implicit An implicit discretization maintains constraints that are satisfied at the end of

the timestep: Ci(q
n+1) ≤ 0. An implicit discretization ensures that the contact constraints

are maintained at all times. Unfortunately, solving a constrained system with implicit

inequality constraints is a very difficult non-linear problem, and has not yet been shown

to be practical for resolving collisions. Under some circumstances, such as those involving

fixed or prescribed geometry, the constraints are linear functions of position and a solution

is easier to obtain [Baraff and Witkin, 1998].

First-order Another option, motivated by Baraff and Witkin [1998], is to linearize the

constraint equation to obtain a first-order approximation of the fully-implicit constraint [Hong

et al., 2005]. This does not have the drift problem of explicit constraints, but may not always

be robust enough for the demands of contact applications.

2.3 Impulses

Revisiting the original contact potential of Figure 2.1, we see that the increase in energy as

a function of separation is dramatic. In fact, to the unaided observer, this potential appears

to act instantaneously, as the increase can hardly be detected. Another class of methods

utilizes this observation, treating contact forces as if they occur instantaneously. A force

that acts instantaneously is called an impulse [Fowles and Cassiday, 1962]. Treating the

forces in this way no longer results in changes in acceleration, but rather direct changes

in momentum. When collisions are detected in the system, the troublesome velocities are
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directly modified to resolve the collision [Mirtich and Canny, 1995a].

The choice of impulse may vary. However, a physically-based model is usually preferred.

In this light, impulses that conserve momentum between two colliding bodies can be found.

For instance, consider a collision between two bodies, A and B. The bodies approach along

some direction n̂, called the collision normal, which defines the tangent plane of the contact.

We can then write the incoming relative velocity of the collision as

(vA − vB) · n̂.

We orient the normal to point from B to A so that a negative relative velocity indicates

the bodies are approaching, although this choice is arbitrary.

Letting primes denote post-collision quantities, conservation of momentum dictates that

(v′A − v′B) · n̂ = −e(vA − vB) · n̂,

where e is the coefficient of restitution of the collision. e = 1 reflects a perfectly elastic

collision where no kinetic energy is lost, while e = 0 indicates a perfectly inelastic collision,

with maximum dissipation.

To find the impulse that resolves this collision, we write the primed velocities in terms

of the pre-collision velocities with some impulse J applied:

v′A = vA −
J

mA
n̂

v′B = vB +
J

mB
n̂.

Through substitution and rearranging the momentum-conserving equation, we arrive at a

value for the impulse

J =
(1 + e)(vA − vB) · n̂

1
mA

+ 1
mB

.

This impulse acts entirely in the normal direction, which can be separated from the tangen-

tial sliding direction [Cirak and West, 2005]. This becomes non-trivial for more than two

bodies [Huh et al., 2001], so impulses delivered in this way are usually performed iteratively

per colliding pair [Hahn, 1988; Mirtich and Canny, 1995b]. However in doing this, it is easy

to get caught in a configuration that cannot be resolved, as illustrated in Figure 2.4.
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This remains the limitation of momentum-conserving impulses; there are configurations

which will cause this method to halt the simulation, unable to move forward in time without

violating a collision.

...
Figure 2.4: Resolving simultaneous inelastic collisions using iterative impulses. The right-

most particle is fixed, and is struck by two simulated particles moving together. Every odd

iteration k results in the initial setup, with velocities a fraction ( 1
2k−1 ) of the original. This

geometric series never converges, and the simulator cannot move forward in time without

resulting in an immediate penetration.
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Chapter 3

Inelastic projection

Many of the shortcomings of existing methods, such as iterative impulses, arise due to the

large number of simultaneous collisions and the method’s inherently local manner of dealing

with them. Satisfying constraints using the method of Lagrange multipliers is intended to

deal with this issue, but can be difficult to robustly solve in practice [Wriggers, 1995].

Existing penalty methods unfortunately lack the robustness needed to simulate highly-

deformable materials such as cloth in an appealing way.

This chapter builds on work in impulse-based methods, in particular work concerning

simultaneous collisions. The state-of-the-art’s main shortcomings are addressed, allowing

straight-forward simulation of a wide range of materials.

3.1 Previous work

Since introduced by Bridson et al. [2002], velocity filter response schemes have grown in

popularity [Bridson et al., 2003; Guendelman et al., 2003; Sifakis et al., 2008; McAdams et

al., 2009]. Bridson et al. [2002] introduced a complete framework for responding to collisions

in cloth simulations by entirely decoupling the process from the integration of forces. This

approach has been widely adopted in the graphics community.

Algorithm 1 describes the velocity filter framework. The system linearizes all motion

over a timestep by computing an average velocity, then filters offending velocities to attain

an end-of-step configuration satisfying some criteria, in this case absence of penetrations.
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This assumes that the initial configuration is free of penetrations.

Algorithm 1 Velocity filter

1: while simulating do

2: xn = xn+1

3: vn = vn+1

4: {xn+1, vn+1} = dynamics(xn, vn,∆t)

5: vn+ 1

2 = xn+1−xn

∆t

6: vn+ 1

2 = filter(xn, vn+ 1

2 )

7: xn+1 = xn + ∆tvn+ 1

2

8: n = n + 1

9: end while

The actual response presented by Bridson et al. [2002] inside the filter procedure is

comprised of three stages:

1. Penalties

The first pass of the algorithm applies weak penalty forces. They are not forces in the

true sense, i.e., they are not integrated as part of the system. Instead, the change in

velocity due to a linear spring is directly computed and accumulated as an impulse:

J = −kd∆t,

where ∆t is the timestep size, k is the penalty stiffness, and d is the overlap distance.

These springs are weak, in that they readily handle resting contact, but lack the

robustness necessary to resolve high-speed impact. The idea is that this stage will

resolve the “easy” collisions, with only the persistent making it to step two. This

stage has the additional problem discussed in §2.1 of choosing the stiffness k.

2. Iterative impulses

The second pass of the algorithm iteratively applies the pairwise, momentum-conserving

impulses discussed in §2.3. Note that due to the velocity filter process, the response
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(a) A collision occurs dur-

ing a timestep.

(b) The correct solution

timesteps to the collision

and corrects the velocity.

(c) Velocity filters assume

the collision is instan-

taneous and respond

“early”.

Figure 3.1: Velocity filters introduce errors by treating all collisions as simultaneous.

appears to be activated before contact, since the average velocity is directly modi-

fied. This means a collision can appear to occur without the objects actually being

in contact (Figure 3.1).

This step handles the high-speed impact missed by the penalty forces. Continuous

time collision detection is used to guarantee no collisions occurring during the timestep

go undetected, contrasted with the static proximity tests used in stage one.

As discussed previously, these iterative impulses may not always find a collision-free

solution. Furthermore, each iteration can be expensive, requiring collision detection

using the updated velocities. For these reasons, the algorithm terminates the iterations

after a fixed, user-defined number. This possibly leaves penetrations and necessitates

a third, robust pass in the algorithm.

3. Rigid impact zones

Each stage in the algorithm applies increasingly aggressive response, acting as a pre-

conditioner for those down the line. The penalty springs efficiently process low-impact

situations such as resting contact, while the iterative impulses handle high-impact

points of contact. The last stage must robustly resolve the remaining sets of simulta-

neous collisions. Bridson et al. [2002] use the method of rigid impact zones originally

introduced by Provot [1997].

Rigid impact zones group collisions into disjoint sets based on shared vertices, called

impact zones (see Figure 3.2). The rigid body motion of this zone is extracted and
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Figure 3.2: Two islands of disjoint impact zones

then assigned as the velocity of the vertices contained within. This moves the zone as

a rigid body, guaranteeing no collisions within the region. Algorithm 2 describes how

the velocities in an impact zone are prescribed.

However, there may be collisions with nodes outside the region, so the procedure must

iterate, growing the impact zones. The algorithm’s guarantee comes in the limit case,

where the entire mesh is a single zone, moved as a rigid body. While this limit case

is highly unlikely, it is worthwhile as a proof of guaranteed algorithm convergence.

Algorithm 2 Rigid impact zones

1: xCM =
P

i
mixn

i
P

i
mi

2: vCM =
P

i
miv

n+ 1
2

i
P

i
mi

3: L =
∑

i mi(x
n
i − xCM )× (v

n+ 1

2

i − vCM )

4: I =
∑

i mi(|x
n
i − xCM |

2I3 − (xn
i − xCM )⊗ (xn

i − xCM ))

5: ω = I−1L

6: v
n+ 1

2

i = vCM + ω × (xn
i − xCM )

Shortcomings This algorithm has proved quite effective at resolving self collisions in

cloth simulation. So effective, in fact, that the basic framework has been adapted to rigid

body simulation [Guendelman et al., 2003] and hair simulation [Selle et al., 2008; McAdams

et al., 2009]. Furthermore, in practice this algorithm is used to resolve collisions between

cloth and scripted objects in the scene, beyond its original intent of resolving only self-

collisions.

The first two passes are easily adapted to use with non-simulated objects. Vertices in
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scripted objects are immovable, described in the system as having infinite mass. This has

no effect on the penalty forces, or on the impulse equations of §2.3. However, this proves

particularly disruptive in the rigid impact zones.

xCM =

∑

i mix
n
i

∑

i mi
(3.1)

Equation 3.1 computes the center of mass of the clump of vertices. When a node of infinite

mass is added to the system its location determines this expression. This filters down to

the rest of the rigid impact zone computation, resulting in this fixed object dominating the

zone, directly dictating the behavior. This means if the object motionless, the impact zone

is not allowed to move either.

Worse, in the case of multiple scripted objects in the same impact zone, if their motions

disagree then no solution can be found to move the impact zone rigidly. The only solu-

tion is to take a smaller timestep and hope collisions are resolved by the penalty springs

or geometric impulses before rigid impact zones are required. However, no guarantee is

provided.

3.2 Fail-safe

Algorithm 3 Fail-safe algorithm

1: while new collisions detected do

2: Insert each new collision into its own impact zone (IZ)

3: Merge all new and existing IZs that share vertices

4: for each impact zone (IZ) do

5: Reset IZ to pre-response velocities

6: Apply fail-safe

7: end for

8: end while

The core problem is not in the velocity filter algorithm, but rather in specifically treating

the colliding mass as a rigid body. In this light, we propose to generalize the third pass

of the algorithm. We accomplish this by slightly modifying the rigid impact zone method;
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(a) Vertex-Triangle (b) Edge-Edge (c) Vertex-Edge (d)

Vertex-

Vertex

Figure 3.3: The four types of collisions in a deformable triangle mesh.

instead of rigidifying the motion, we replace it with a generic fail-safe, a method designed

to resolve all collisions within an impact zone. Algorithm 3 gives pseudocode for this new,

generalized procedure.

This fail-safe could be completely unphysical, such as zeroing all velocities or applying

rigid impact zones. Instead, we revisit the idea of constraints to devise a new method that

addresses the shortcomings of rigid impact zones.

3.3 Constraints

General constraints were discussed in §2.2. Here we will introduce the constraints needed to

resolve contact between deformable, triangle meshes. We can then satisfy these constraints

using the method of Lagrange multipliers (§3.5).

Collision types In the simulation of deformable, triangle meshes there are four types of

collisions: vertex-triangle, edge-edge, vertex-edge, and vertex-vertex. Figure 3.3 illustrates

each of these types.

Usually, however, two of these types are deemed redundant, by considering vertex-vertex

and vertex-edge as degenerate cases of vertex-triangle and edge-edge. For instance, a vertex-

vertex collision can be thought of as nothing more than a vertex-triangle collision, where

the vertex collides with one of the corners of the triangle. We make use of this simplifying

assumption.
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Configuration space When discussing the motion and interaction of many vertices, it

makes sense to speak in terms of configuration space. Rather than dealing with n vectors

in R3, we treat the configuration of the system as a single point q in configuration space

Q = R3n, contact constraints involve many interacting degrees-of-freedom, so writing them

as functions of q facilitates computation. As these constraints are developed, we will make

note of any parallels to more familiar notions in R3.

Collision constraints We view each collision as the violation of a real-valued constraint

function, C(q), with C(q) > 0 whenever q is an inadmissible (penetrating) configuration.

This is consistent with the previous discussion of unilateral contact constraints being sat-

isfied when C(q) ≤ 0. Through collision detection, we associate one constraint function to

each impending vertex-triangle or edge-edge collision, taking care to avoid duplicates during

degenerate vertex-edge and vertex-vertex contacts.

The constraint for an impending collision between the triangle (X1(t),X2(t),X3(t)) and

the vertex X4(t) (Figure 3.3(a)) is

Cvt(q) = N · [X4 − (α1X1 + α2X2 + α3X3)] , (3.2)

where N(t) is the familiar 3D collision normal, and the three scalars α1(t), α2(t), and

α3(t) are the barycentric coordinates of the projection of X4(t) onto the plane spanned

by the triangle. Similarly, the constraint for an impending collision between the edges

(X1(t),X2(t)) and (X3(t),X4(t)) (Figure 3.3(b)) is

Cee(q) = N · [(α3X3 + α4X4)− (α1X1 + α2X2)] , (3.3)

where α1(t), α2(t), α3(t) and α4(t) are the parametric values of corresponding closest points

on the first and second edge, respectively. We refer to the rate of change of the constraint

function, Ċ, as the normal velocity, a high-dimensional analogue to the usual relative ve-

locity in the direction of the collision normal.

Unlike collision detection and response algorithms that solve these constraints as a

function of time [Snyder et al., 1993], we formulate them primarily to reason about and

resolve collisions in configuration space. While each constraint depends on only four vertices

(called the stencil), it is formally a scalar function of q, and can be differentiated with
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Inadmissable

(a) A convex admissible region

Inadmissable

(b) A concave admissible region

Figure 3.4: The importance of convexity in constraint satisfaction

respect to q to yield the constraint gradient, ∇C, a row vector in configuration space. By

the chain rule, we may rewrite the normal velocity as Ċ = ∇Cq̇. For a vertex-triangle

collision, the constraint gradient expressed in the local indices of the stencil is

∇Cvt = (−α1N,−α2N,−α3N,N) ; (3.4)

for an edge-edge collision, the gradient in local indices is

∇Cee = (−α1N,−α2N,α3N,α4N) . (3.5)

To elevate the constraint gradient to configuration space, we simply map the local indices

to their global positions, with zeros everywhere else, in the style of finite element stiffness

matrix assembly.

3.4 Convexity

When defining constraint functions, the most important problem is not whether the func-

tion is linear or non-linear, but rather whether the function is convex or not [Boyd and

Vandenberghe, 2004]. A convex constraint of the form C(q) ≤ 0 defines a convex region of

admissible configuration space.

Figure 3.4(a) illustrates a convex optimization problem. We are attempting to minimize

the scalar function defined over the rectangular domain, but are constrained to the circular

region. Solving problems of this form are relatively easy, since a local minima is also a

global minima, it is harder for the algorithm to become stuck.
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Contrast this with Figure 3.4(b), a concave constraint on the same domain. For this

particular example, local minima may be found within convex “pockets” of admissible space,

with no trivial manner of escaping.

The collision constraints of Equations 3.2 and 3.3 are non-linear functions of the config-

uration. As written, however, they are linear functions of the 3-dimensional collision normal

N(t) (which greatly simplifies evaluation of the constraint gradient). Linear functions are

both convex and concave, so the convexity of these constraints depends on the choice of

N(t).

Vertex-triangle constraints For vertex-triangle constraints, the triangle normal pro-

vides a good choice for N(t), as it is well-defined (assuming non-degenerate geometry) and

results in a convex constraint.

Collision constraints are usually defined in this manner: a single contact point colliding

with a plane [Baraff, 1989]. This may result in error, as discussed by Egan et al. [2003]; all

motion in the normal direction is restricted, so the vertex may drift past the triangle as if

the spanning plane were actually present.

Edge-edge constraints Choosing a well-defined direction for edge-edge constraints proves

more challenging. Defining the normal as the cross product between the two colliding edges

is inadequate and results in a non-convex constraint. When the two edges are parallel, the

normal vanishes, driving the value of the constraint to zero, even when the edges are clearly

separated.

This can be seen in Figure 3.5, which plots the value of an edge-edge constraint for a

2-dimensional subset of the 12-dimensional configuration space. While Cee is a function of

configuration space, it only actually uses the positions of four vertices (two for each edge),

so it is a function of 12 variables (assuming three degrees-of-freedom for each vertex).
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Figure 3.5: The function is non-convex, which means the admissible region is not convex.

The plot is for the function Cee, where N(t) is defined as the cross product between the

two edges (X1(t),X2(t)) and (X3(t),X4(t)), with the values

X1 = (0, 0, 0)

X2 = (0, 1, 0)

X3 = (x, 0, 0)

X4 = (1, 1, y).

We vary x from −1 to 1 and y from 0 to 1, so that the configuration passes through a point

where the edges are parallel. There is a saddle point at this configuration and the normal

N(t) vanishes, clearly making this constraint non-convex.

Defining a convex edge-edge constraint remains an open problem. Additionally, con-

straints must be developed on the αi weights for true edge-edge and vertex-triangle contact.

Otherwise, even if the primitives slip past one another, they will remain constrained as if

the edges were infinite lines and the triangle an entire plane.
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3.5 Linear complementarity problem (LCP)

We begin by first reproducing the collision-resolving impulses of §2.3, but in terms of the

more general constraint functions.

Impulse response for a single constraint Let unprimed and primed quantities refer to

the pre- and post-response states. A valid response satisfies two properties. First, it pushes

colliding objects apart by applying a nonnegative impulse along the constraint direction, i.e.,

p − p′ = ∇CTλ for some (unknown) nonnegative multiplier λ. Second, since the impulse

should prevent colliding points from approaching further, it must lead to a nonnegative

post-response normal velocity ∇Cq̇′ = ∇CM−1p′.

Henceforth we are interested in finding an inelastic response, although extending to ar-

bitrary coefficients of restitution is straightforward [Baraff, 1994]. For an inelastic collision,

we seek the maximally dissipative response, per the definition of purely inelastic. Thus, we

minimize post-response kinetic energy, 1
2‖p

′‖2M−1 = 1
2‖p + ∇CTλ‖2M−1 , with respect to λ,

which yields

λ =
−∇Cq̇

〈∇C,∇C〉M−1

.

This is analogous to the impulses of §2.3. One property of the above inelastic response is

that the normal velocity vanishes along the constraint direction: ∇Cq̇′ = 0.

Impulse response for multiple constraints Cirak and West [2005] treat the above case

of a single constraint in detail. We, however, are interested in the case of k simultaneous

constraints, i.e., k vertex-triangle and edge-edge collisions with possibly non-disjoint sten-

cils. These collisions come from the system’s collision detection subsystem, and can change

between timesteps as primitives collide and separate. Now let ∇C = [∇CT
1 , . . . ,∇CT

k ]T be

a k × 3n matrix whose rows span the possible impulse directions. For any vector λ ∈ Rk,

p′ = p + ∇CT
λ corresponds to the application of a linear combination of collision im-

pulses to p. As in the single-constraint case, we require that the λ1 . . . λk be nonnegative,

since constraint impulses can push but not pull, and that the impulse yields nonnegative

post-response relative velocities, i.e., that every row of ∇Cq̇′ = [∇C1q̇
′, . . . ,∇Ckq̇

′]T be

nonnegative.
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Solving for the λ that minimizes kinetic energy, subject to the above constraints on λ

and normal velocity, can be formulated as a linear complementarity problem (LCP) [Moreau,

1988], solvable using methods such as those described by Cottle, Pang, and Stone [1993].

For multiple collisions with overlapping stencils, some response impulses may be redundant,

i.e., responding to a subset of all the collisions may satisfy all collision constraints. The

LCP approach ensures that redundant collisions do not yield pulling impulses (λi < 0).

LCPs are well-studied in rigid body literature [Moreau, 1988; Baraff, 1994; Stewart and

Trinkle, 1996], and have even been used to resolve contact between quasi-rigid bodies [Pauly

et al., 2004]. However, little work has been done in applying them to the simulation of

deformable bodies.

Solving an LCP proves difficult in practice. The large number of possible contact points,

with strongly related constraint gradients, is stressful for solvers. We tested several examples

with implementation of Dantzig’s simplex algorithm [Cormen et al., 2001] and Lemke’s

algorithm [Hillier et al., 2004] for solving LCPs. Unfortunately, we found both algorithms

unsatisfactory for the demands of cloth simulation, with slightly better performance from

Dantzig’s iterative method. In retrospect, this seems consistent with findings in rigid body

research, where iterative methods such as Dantzig’s are usually preferred for their additional

robustness [Baraff, 1994].

More investigation is needed for exactly why these solvers fail, but work in rigid bodies

has shown that LCP solvers can be exacting, both in terms of the input and computational

effort. Furthermore, the velocity filter process may cause additional strain in finding a

solution, as it increases the number of contacts considered simultaneous. Treating contact

in order seems intractable for cloth simulation, as even more recent rigid body research

has drifted from this approach [Milenkovic and Schmidl, 2001; Guendelman et al., 2003;

Kaufman et al., 2008]. In particular, the addition of friction, a necessary parameter for

modeling a range of materials, is particular troublesome for contact solutions formulated in

this manner [Kaufman et al., 2005].

LCPs are a form of the more general quadratic programming (QP) problem, where

the minimum is unknown and no complementarity condition is present. While quadratic

programming problems are more general, it remains to be seen if this class of solvers can
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be more successful in addressing the problem.

3.6 Bilateral projection

We still require a method of resolving simultaneous contacts without the side effects of rigid

impact zones. Thinking of the problem in terms of a fail-safe, we see that we are looking

for a solution to a set of tightly clustered collisions. When the third pass is reached, the

“easy” collisions have been resolved, leaving only the persistent.

In this light, we relax the unilateral constraint requirement and instead resolve collisions

bilaterally. This approximates λ by assuming that post-response relative velocities are

exactly zero: ∇Cq̇′ = 0. This may result in some λi < 0, introducing artificial “sticking.”

This simplification affects only the fail-safe; since Bridson et al.’s framework resorts to

the fail-safe only after many iterations of repulsive impulses that are designed to prevent

sticking, we have not observed any significant sticking artifacts.

If we relax the conditions on a response being valid to allow both positive and negative

entries in λ, then q̇′ is the minimizer of

‖q̇− q̇′‖2M , subject to ∇Cq̇′ = 0 .

This minimization projects the velocity onto the orthogonal complement of the span of the

columns of ∇CT . Hence we call this the inelastic projection. We may repose the above as

an extremization of the augmented functional

W (q̇′,λ) =
1

2
‖q̇′ − q̇‖2M + (∇Cq̇′)T λ ,

with respect to (q̇′,λ), where λ is a vector of Lagrange multipliers. The corresponding

stationary equations are

0 = D1W (q̇′,λ) = p′ − p +∇CT
λ , (3.6)

0 = D2W (q̇′,λ) = ∇Cq̇′ . (3.7)

Here Di denotes the derivative with respect to the i-th argument. Equation (3.6) guarantees

that the response acts only along the ∇C direction, and (3.7) ensures vanishing normal
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velocities. Substituting (3.6) into (3.7), it follows that we can recover the inelastic response

for a set of k simultaneous collisions by solving the linear system

∇CM−1∇CT
λ = ∇Cq̇ (3.8)

for λ, and then substituting it into (3.6) to obtain the unique post-inelastic-collision momen-

tum, p′. Solving this linear system is far simpler than satisfying the inequality constraints.

In theory, the length of the gradient vectors does not matter, but we normalize the

constraint gradients to improve numerical robustness. Even so, when collision detection

creates a set of nearly parallel gradients, the above linear system can be poorly conditioned

or even singular. Thus we recommend the use of an iterative solver intended for near-

singular systems when solving (3.8).

3.7 Friction

For the realistic simulation of a wide range of materials, a contact model requires a method

of implementing friction. The most common model used is the Coulomb model, which

we incorporate into inelastic projection. Coulomb’s model states that static friction is

proportional to the normal contact force, while dynamic (kinetic) friction is limited by the

relative tangential motion of the contact.

The complex interaction between collisions requires the careful selection of the direction

in which friction is applied, lest more collisions be instigated. We apply friction per impact

zone by again restricting q to be the configuration subspace corresponding to the vertices

of the impact zone. Vertices outside the impact zone remain untouched.

Building on Cirak and West [2005], we decompose the configurational velocity as

q̇′ = q̇′
fix + q̇′

norm + q̇′
slide .

These three global velocity vectors are characterized by the local velocities they induce on

each constraint: q̇′
fix corresponds to zero relative velocity (normal and tangential) for all

constraints; q̇′
norm corresponds to purely normal velocity for all constraints; q̇′

slide is the

sliding velocity for which friction must be applied.
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Following inelastic projection, q̇′
norm is zero. With that, we have

q̇′
slide = q̇′ − q̇′

fix . (3.9)

To find q̇′
fix, we project out motion that induces a relative velocity for any constraint. For

a single constraint, this relative velocity is

Vrel = ∇hq̇′ , (3.10)

where h(q) = X4 − (α1X1 + α2X2 + α3X3) for a vertex-triangle collision and h(q) =

(α3X3 + α4X4) − (α1X1 + α2X2) for an edge-edge collision, using the same notation as

in §3.3. For multiple constraints, we project out any velocity in the row space of ∇H =
[

∇hT
1 , ...,∇hT

k

]T
, where ∇H is a 3k × 3n matrix and k is the number of constraints in the

impact zone, leaving us with q̇′
fix. To implement this projection, observe that q̇′

fix is the

minimizer of

‖q̇′ − q̇′
fix‖

2
M , subject to ∇Hq̇′

fix = 0 .

We solve the linear system ∇HM−1∇HT
λ
′ = ∇Hq̇ for λ

′ ∈ R3n to recover q̇′
fix =

q′ + M−1∇HT
λ
′ and q̇′

slide (see (3.9)).

From the sliding velocity q̇′
slide, we can apply an approximation of Coulomb friction. We

would like the friction to be proportional to the normal force, which is simply the change

in relative velocity, bounded by the pre-collision sliding velocity. Given a pre-projection

velocity q̇, post-projection velocity q̇′, and friction coefficient µ, the change in velocity due

to friction is

∆q̇ = min
(

µ‖q̇′ − q̇‖, ‖q̇′
slide‖

)

̂̇q′
slide .

Note that the amount of friction applied is dictated by the magnitude of the normal force

in configuration space. Thus a large normal force for one constraint may induce a larger

friction impulse on other constraints. This operation is performed per impact zone, so

in practice the colliding region is small and local enough that this approximation yields

plausible results. A correct treatment could build on the work of Kaufman et al. [2005],

who intersect with a limit curve for each constraint, preventing extraneous friction.
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Figure 3.6: Shoving cloth through a narrow funnel yields free-flowing motion, despite the

complex network of contact regions.

3.8 Results

We tested our method on several challenging scenarios that exercise two possible fail-safes—

the original rigid impact zones and inelastic projection.

Figure 3.6 shows frames from our simulation of a square cloth being plunged into a small

funnel by a scripted ball. This example highlights the importance of allowing free-flowing

tangential motion, since otherwise the cloth rigidifies and halts inside the chute. Unlike

the inelastic projection, the rigid impact zones fail-safe fails to give a plausible response.

We also ran this example using two passes of collisions response, where the first pass treats

only cloth-ball and cloth-funnel collisions, and the second pass solely responds to cloth-cloth

collisions (where rigid impact zones behave as expected). This ensures that the simulation

does not fail due to an invalid input into the rigid impact zone computation. Again rigid

impact zones fail, this time by allowing the cloth to penetrate the funnel, even with an

object thickness 100 times larger than the cloth thickness, and a timestep of 10−4 seconds.

Figure 3.7 shows a scenario where tangential sliding is key and rigid impact zones have

a fundamental limitation. In this example, we drop a sequence of small (2-triangle) squares

onto an incline. The projection method allows the squares to smoothly slide despite the

long chain of simultaneous, interacting collisions. We repeat this example with friction, to

reinforce that free-flowing tangential sliding still allows control of friction. As an example

where rigid impact zones have an advantage over inelastic projection, we drop a large

number of cloth squares in a stack on a flat plane; here the rigid response is physically

correct, and linear projection is wasted work.

Figure 3.8 shows a thin ribbon falling through a trough under varying coefficients of
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Figure 3.7: Our projection method easily handles a multitude of simultaneous collisions with

overlapping stencils, allowing each piece of stacked fabric to freely flow down the inclined

plane.

Figure 3.8: Simulated ribbons with varying coefficients of friction
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Table 3.1: Timing (in seconds) for examples executed on a single thread of a 2.66 Ghz Intel

Core 2 Duo with 4GB RAM, comparing RIZ (shaded rows) and inelastic projection (white

rows).

friction. Notice that the linear projection fail-safe gives markedly different behaviors as

friction is increased, whereas with rigid impact zones even the frictionless ribbon sticks.

Timing Table 1 lists timings for many of the above examples. Notice that simulations run

with the inelastic projection fail-safe have run times comparable to the rigid impact zones

fail-safe, with linear projection at worst 15% slower than rigid impact zones. Indeed, since

most simulation time is spent performing collision detection, and not collision response, the

additional linear solve in the proposed fail-safe does not substantially decrease the speed of

simulation. In fact, by allowing heavily colliding regions to smoothly slide past one another,

contact clumps tend to dissipate quicker, reducing overall runtime.

3.9 Discussion

Limitations Our method suffers from all the usual limitations of impulse-based collision

response. Large timestep sizes tend to be disagreeable, as internal forces are disrupted by

the discontinuities introduced by velocity filters. Also, large timesteps render the repulsive

penalty forces useless, and instead cause collision response to rely heavily on the geometric

impulses, which do not always behave in a physically plausible manner within the velocity

filter framework (see Figure 3.1).

Additionally, treating all collisions occurring over a timestep as simultaneous may in-
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troduce artificial dissipation: if collisions were handled instead in causal order, responding

to earlier collisions could prevent subsequent ones. This approach to collisions also violates

conservation of energy and momentum. Thus, this work and all other that continues in

its direction is clearly delineated by the fact that it is only useful in the context of purely

graphical applications, i.e., situations where only the visual plausibility of the material

matters, and not true physical accuracy.

The linear system solved during inelastic projection can be ill-conditioned or singular;

since it is not acceptable for the fail-safe itself to fail, a numerical method suited for ill-

conditioned matrices (such as SVD or GMRES) is strongly recommended. We also tested

QLP factorization [Stewart, 1999], but unfortunately it did not approximate the singular

values well enough for our needs.

Our method has two friction-related limitations. The magnitude of friction is governed

by the magnitude of the collision response impulse in configuration space. This magnitude

dictates the amount of friction for an entire impact zone, potentially resulting in large

collision impulses increasing the applied friction for another part of the impact zone. Our

method also supports only one coefficient of friction per impact zone.

Conclusion Since inelastic projection requires a straightforward linear solve, we hope

that it can be quickly incorporated into existing frameworks based on the velocity filter of

Bridson et al. [2002]. Our method is compatible with an approximation of Coulomb friction

that does not create additional collisions; this allows for the efficient simulation of a wide

range of materials, including cloth and thin shells.

The possibility of incorporating LCP as a fail-safe is intriguing. However, preliminary

tests have not been promising. Nonetheless, the ability to use such a method to resolve

collisions would eliminate the need for the second pass of iterative impulses. We believe that

while the penalty forces would not technically be necessary, they would alleviate much of

the burden from the LCP solver, both by removing the “easy” collisions from consideration,

and in aiding the numerics by keeping the geometry well-separated.

The shortcomings that this method resolves leaves a new set of research opportunities.

In particular, current deformable simulations ignore the causality of collisions, treating
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any that occur within a timestep as simultaneous. While rigid body simulations can treat

collisions in order by stepping to the collision time, resolving it, and starting with new

initial conditions [Witkin and Baraff, 2001], the large number of degrees of freedom in cloth

simulation have thus far prohibited such methods. This motivates our ongoing investigation

of asynchronous methods for resolving collisions in causal order.
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Chapter 4

Discrete penalty layers

Chapter 3 reviewed and presented the state-of-the-art in collision response for deformable

materials; the work of Bridson et al. [2002] with the novel extension of inelastic projection.

The state-of-the-art can guarantee absence of penetrations, up to some pre-determined

epsilon amount. The difficulty is in determining this epsilon, which can vary between

simulations based on scale, system stiffnesses, and other factors. Once found, the user

enjoys robust simulations for that particular setup. However, any small, unpredictable

change could disturb the delicate balance and require a re-tweaking of these parameters.

Using velocity filters requires a tradeoff: exchanging physical correctness for speed. By

treating all collisions over a timestep as simultaneous, simulation times are substantially

reduced, but any hope of maintaining conservative properties is lost. One consequence of

this is that any advancements made in this area are useful only to those purely interested

in the visuals of a simulation, ignoring any application to engineers. Furthermore, even in

graphics applications the objective is blurred, as users attempt to replicate physical behavior

with very non-physical parameters. With no reliable intuition, the meaning of parameters

changes with any modification to the underlying method, confusing and frustrating the

users.

We wish to retain all these properties: robustness, efficiency, and physical accuracy. In

Chapter 2, we covered the broad classes of methods used for simulation. The velocity filter

approach is a type of impulse, since it modifies velocities. For it to regain some semblance of

the physical accuracy we desire it must treat collisions in order, integrating up to collision
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times, resolving offending velocities, then resuming the simulation. Unfortunately, this

counteracts the advantages that make velocity filters desirable, and while straightforward

to implement, the enormous number of possible impact events during a timestep make this

approach unfeasible [Cirak and West, 2005].

Constraint-based formulations seem promising, but would require continued work on

simulating fully deformable materials. Some work has been conducted in applying this

class of methods for more robust simulations, but has mostly been restricted to rigid body

simulations, with some work addressing deformable materials, but only in the quasi-rigid

or quasi-deformable regime [Pauly et al., 2004; Kaufman et al., 2008]. However, these

formulations, and their respective solvers, have not been demonstrated to have the necessary

numerical robustness for the simulation of cloth and thin shells.

This leaves penalty-based methods. Penalty methods are the only class that has no

problems with correctness or efficiency in the simulation of deformable materials, while

much has been attempted to regain these lost characteristics for the other classes. We revisit

penalty-based schemes in an attempt to make them robust against interpenetrations.

4.1 Previous work

General penalty methods were discussed in §2.1. They are conservative forces, derived

from an energy potential. This quality makes them very popular in mechanical engineering

applications, where they are referred to as constitutive equations [Wriggers and Laursen,

2007]. In this domain, physical correctness is so important users are willing to tolerate the

robustness deficiencies of the penalty method, namely that for any chosen stiffness there

exists a relative momentum large enough to cause interpenetration. This mindset of placing

physical correctness on equal footing with robustness motivates our work in this area.

Sections 2.1 and 3.1 covered previous work in the graphics literature. Here we briefly

revisit the contact mechanics literature.

Most formulations express a contact in terms of a gap function [Stein and Wriggers,

1982; Pires and Oden, 1983; Endo et al., 1984; Bathe and Chaudhary, 1985; Chaudhary

and Bathe, 1986; Rabier et al., 1986; Wriggers and Van, 1990; Peric and Owen, 1992;
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Papadopoulos and Taylor, 1993; Taylor and Papadopoulos, 1993; Wriggers and Imhof, 1993;

Wriggers and Scherf, 1995; Wriggers and Zavarise, 1997],

g = Xa −Xb,

where Xa and Xb are the projections of the closest points between two bodies a and b onto

the normal direction.

This gap functions has the property that it is positive when the contact surfaces are

separated, zero when touching, and negative when penetrating. The Hertz-Signorini-Moreau

law of unilateral contact can then be expressed in terms of the gap g and some contact force

f , determined by the response method [Wriggers and Panagiotopoulos, 1999]:

g > 0

f > 0

gf = 0.

The preceding conditions state that either the separation distance between two contact

points is zero or the force is zero, yet only one is true. If two contact points are not

touching, then g > 0 and f must be zero for the third condition to hold. Likewise, if

some force is active, f > 0, then impenetrability is being enforced, and the contact gap

must therefore be zero. Requiring that the force be nonnegative ensures the absence of

adhesion, or any force that pulls separating bodies back together. The inelastic projection

of Chapter 3 relaxed this requirement for computational speed. The third condition is called

a complementarity condition.

As discussed in §2.1, one method to satisfy these conditions is the penalty method, and

we gave a few choices of contact energies, written in terms of the contact gap g (Figure 2.2).

The commonly seen collision response penalty forces in graphics can be thought of as a

single iteration of penalty methods in optimization, also known as barrier methods [Auslen-

der, 1999]. In simulation, the functions being optimized are the equations of motion, which

are, naturally, dynamic in nature. Barrier methods could be thought of as a quasi-static

solution, treating a configuration as a stationary point until a penetration-free solution is

found. This solution is found iteratively, with subsequently stiffer penalties applied un-

til convergence (see Algorithm 4 for one barrier method). However, such a function must
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also have unbounded second derivative, ruling out stable fixed-step time integration for

any choice of step size [Hairer et al., 2002]. Additionally, as with the penalty method, ill-

conditioning can occur. Most solutions also require the algorithm to find a feasible starting

point which satisfies all constraints (Algorithm 4). Due to these drawbacks, barrier methods

are not often used in computational contact mechanics [Wriggers and Nettingsmeier, 2008].

Algorithm 4 Barrier method for function f augmented with penalty forces

Require: ǫ > 0, η > 1, and initial penalty stiffness c0

1: Choose x0 that violates at least one constraint

2: k = 1

3: repeat

4: Minimize xk = f(ck−1, x
k−1)

5: ck = ηck−1

6: k = k + 1

7: until ‖xk−1 − xk‖ < ǫ

The deficiencies of both penalty methods and Lagrangian methods have led to the

development of Augmented Lagrangian methods, which combine the strengths of traditional

penalty and Lagrangian methods [Wriggers, 1995]. As the penalty method becomes ill-

conditioned, its contribution is then used to update a Lagrange multiplier to maintain

the contact. This method has proved popular and successful for many applications. We,

however, are drawn to the simplicity of penalty methods and focus our efforts on making

them provably robust against contact violations.

4.2 Penalty layers

Consider a simple penalty method that penalizes proximity between bodies. To begin, we

modify the gap function to take into account a given surface thickness η

gη(q) = Xb −Xa − η,
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which tracks signed proximity between moving points Xa and Xb, rather than distance.

When g < 0, the points are said to be proximate. In engineering literature, this proximity

distance η is often called “bond”, “film”, or the “interface.” We can express a half-quadratic

contact potential and force in terms of g

V r
η (g(q)) =











1
2rg2 if g ≤ 0

0 if g > 0 ,

F =











−rg∇g if g ≤ 0

0 if g > 0 ,

where r is the contact stiffness. Choosing a penalty stiffness is the most criticized problem

of the penalty method [Baraff, 1989]. For any fixed stiffness r, there exists a sufficiently

large approach velocity such that the contact potential will be overcome by the momentum,

allowing the configuration to tunnel illegally through an inadmissible region (§2.1).

We propose a construction consisting of an infinite family of nested potentials

V
r(l)
η(l) , l = 1, 2, . . . , (4.1)

where η(l) is a monotonically decreasing proximity (or “thickness”) for the l-th potential,

and r(l) is a monotonically increasing penalty stiffness. These functions have the property

that as l →∞, η(l) → 0 and r(l)→∞. We call the region η(n + 1) ≤ g(q) ≤ η(n), where

exactly n of the potentials are nonzero, the n-th discrete penalty layer (see Figure 4.2).

Given a distance d between Xa and Xb, we can compute the active penalty layer l as

l = η−1(d).

The potential energy of the contact is then the sum of all active penalty potentials

V =

l
∑

i=1

V
r(i)
η(i) .

Layer strength and distribution The strength of successive penalty layers is deter-

mined by the functions r(l), while the distribution is given by η(l). The choice of functions

has practical considerations, covered in §6.1. We use r(l) = r(1)l3 and η(l) = η(1)l−1/4,

where r(1) and η(1) are a simulation-dependent base stiffness and proximity thickness for
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Figure 4.1: As separation distance decreases, increasingly stronger penalty layers are acti-

vated.

(a) η(l) = l−
1

4 (b) η(l) = l−1

Figure 4.2: Plots showing the distribution of layers for two functions.
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the outermost layer. These choices provide a sufficiently “front-heavy” distribution of lay-

ers and growth of layer stiffness. Other choices, such as η(l) = η(1)l−1, gives a sparse

distribution, with layers densely packed near a separation distance of zero, where numerical

precision rapidly decreases (see Figure 4.2).

4.3 Dissipation

Energy near-conservation is imperative for the reliability of the simulator. Controlled dis-

sipation, however, in the form of friction and coefficients of restitution, is often desired

in practical simulations. Thus we extend the discrete penalty layers model to incorporate

these effects.

Coefficient of restitution The coefficient of restitution eCOR is a “melting pot” approx-

imation, accounting for various unresolved micro-level phenomena [Brilliantov and Pöschel,

2004; Schwager and Pöschel, 2007] including viscosity and plasticity. To model plastic work,

we replace the nested penalty potentials with biphasic potentials [Choi and Ko, 2005]

V r
η (g(q)) =











1
2rcg(q)2 g ≤ 0

0 g ≥ 0,

where c is eCOR if the primitives are separating, 1 otherwise. The penalty layers exert their

full force during compression, then weaken according to the coefficient of restitution during

decompression. We could (but did not) further extend this model to account for viscous

damping during impact, measuring strain rate by (some monotonic function of) the change

in the gap function g(q).

Friction The Coulomb friction model serves as a simple approximation of an extremely

complicated physical interaction. Consider the Coulomb friction force Ff = µFn, where µ is

the coefficient of friction and Fn is the normal force. The force opposes relative tangential

motion between points in contact (§3.7).

We apply friction along with each penalty force, separately for each penalty layer. Just as

increasingly stiff penalty forces are applied for contact forces, friction forces are increasingly

applied (bounded by each Fn) to correctly impede high-speed tangential motion.
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4.4 Discussion

The nested penalty layers form a barrier potential, by construction. For every possible

impact there is a high enough layer such that the cumulative potential is strong enough to

counteract the collision, before penetration occurs, making them robust against interpene-

trations. Chapter 6 formalizes this argument.

However, this is a continuous construction, and we encounter difficulties when imple-

menting in a discrete setting. Forces of increasing stiffness cannot always be integrated

stably at the same timestep. The smallest stable timestep is required, but in the context of

penalty layers, this may not always be known. The next chapter addresses these difficulties.
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Chapter 5

Asynchronous contact mechanics

The Discrete Penalty Layers (DPL) presented in Chapter 4 guarantee, by construction, the

absence of penetration in a simulation. In doing so, however, we introduce two additional

computational difficulties in the simulation:

1. Each successive penalty layer has an increasing force stiffness, and thus, a correspond-

ingly decreasing stable timestep. Timestepping the entire simulation at the smallest

timestep is wasteful, especially when considering the localized nature of heavy con-

tact regions (high penalty layers). Thus, penalty layers necessitate the use of an

adaptive or multi-rate integrator that can integrate forces with different stability re-

quirements [Neal and Belytschko, 1989].

2. It cannot be known, a priori, the deepest penalty layer that will be activated (have

a non-zero energy) in a simulation. Hence, even if one desired to simulate the entire

mesh with the smallest timestep, it cannot be known at startup time. Deciding on a

maximum penalty layer beforehand eliminates any robustness guarantees.

However, recall the half-quadratic design of the penalty potentials. When separation

distance is greater than η(l) for a given layer l, that force evaluates to exactly 0,

and thus may be safely ignored from the force computation. Furthermore, any layers

below it can also be ignored. Based on this observation we introduce a method of

continuously culling these inactive forces, and dynamically adding successive penalty

layers as they are needed.
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} η(1)

} η(1)

(a) A separating slab

KDS is created as proof

of no contact.

(b) A new separating

slab is scheduled.

(c) No efficient slab ex-

ists, so a penalty force is

activated.

Figure 5.1: A few snapshots of a simple simulation.

5.1 Walkthrough

To introduce the method of asynchronous contact mechanics, we walk through a simplified

example of the entire algorithm, which operates around the notion of distinct events, sorted

in time order on a priority queue. We encourage the reader to refer back to this section

after each concept is discussed.

Consider a single particle free-falling towards a fixed floor in two dimensions. At some

time t the particle will reach a height of η(1) above the floor, and enter the first penalty

layer. The algorithm must activate the penalty force for this layer no later than at time

t—activating the force earlier is conservative. The queue is initialized with two events: a

gravity force event and a separation slab event (§5.3) between the particle and the floor

that represents the moment they will be in proximity.

We assume there exists an η(1)-slab–a line extruded to thickness η(1)–that separates

the particle from the floor. The existence of such a slab provides a provable guarantee,

or certificate, that the distance between the particle and the floor is at least η(1). This

guarantee remains valid until either the floor or the particle hits the slab, at which point

the certificate fails, and the algorithm can either try to find a new separating slab, or if

doing so is too costly, activate the penalty force.

More concretely, begin by confirming the existence of such a slab and place it between

the particle and the floor (Figure 5.1(a)). To schedule this as an event on the queue, a

certificate failure time must be computed. Compute the failure time as the time at which
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either primitive (the particle or the floor) comes into contact with the slab. This time, t1cf ,

is a conservative time for when the particle will enter the first penalty layer.

During simulation, at time t1cf , the event representing the certificate failure is popped

off the queue. We check the separation distance and see that it is greater than η(1). A

new slab is found, and the event is rescheduled using the failure time of the new slab, t2cf

(Figure 5.1(b)).

As the simulation proceeds, an event at time tg < t2cf , representing a gravity force event,

is popped off the queue. This event modifies the velocity of the particle. However, the sep-

arating slab event time was computed using this particle’s original velocity. The computed

failure time t2cf for the slab may no longer be conservative, so it must be rescheduled to

guarantee no penetrations occur.

Simulation continues in this manner, until the frequency of separation slab creation /

destruction is high enough that it becomes computationally cheaper to activate the out-

ermost layer’s penalty force and stop creating slabs (Figure 5.1(c)). The choice for what

is considered “high enough” is a simulation parameter that affects performance, but not

correctness.

When the outermost penalty force is activated, the η(1)-slab is no longer required, and

instead becomes an η(2)-slab, providing a proof for the culling of the layer-2 penalty force.

If the layer-1 force ever evaluates to 0 (separation distance is greater than η(1)) and the

particle is separating from the floor, the force is de-activated and the slab is elevated back

to a thickness of η(1). This “lazy” approach to force de-activation is safe.

5.2 Asynchronous variational integrators

Asynchronous variational integrators (AVIs) [Lew et al., 2003], were developed in mechanics

for the integration of non-uniform meshes. Take, for instance, the mesh in Figure 5.2;

element sizes across the mesh vary greatly. In a traditional simulation setting, the smallest

element would determine a timestep for the entire simulation to guarantee stability (Figure

5.2(a)). This greatly affects the speed of simulations, as the large elements, along with

their larger stability requirement, are forced to be timestepped at a much smaller step than
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(a) Near degenerate geome-

try requires small timesteps

(b) In synchronous simula-

tion the timestep is limited

(c) Asynchronous integra-

tion timesteps independently

Figure 5.2: In synchronous simulations, near-degenerate geometry determines the stable

timestep for the entire simulation. Asynchronous simulation allows integration of each

element with its own stability requirement.

required (Figure 5.2(b)).

AVIs alleviate this difficulty. They allow the smooth integration of a non-uniform mesh

with each element running at its own stable timestep (Figure 5.2(c)). AVIs are a subclass of

a larger class of integrators called variational integrators. To derive these integrators, and

understand their importance, we revisit ideas from continuous as well as discrete Lagrangian

dynamics. For a detailed treatment, see Marsden and West [2001] or Kharevych et al. [2006].

Continuous dynamics Given a configuration q ∈ Q and corresponding configurational

velocity q̇, we can write the Lagrangian of the system as

L(q, q̇) =
1

2
q̇T M q̇− V (q),

where M is a symmetric mass matrix and V is the potential energy of the system.

In Lagrangian mechanics, the action functional is written by integrating the Lagrangian

along a curve q(t):

S(q) =

∫ T

0
L(q(t), q̇(t))dt.
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We then take a first-order variation of this action and apply integration by parts:

δS(q) = δ

∫ T

0
L(q(t), q̇(t))dt

=

∫ T

0

[

∂L

∂q
· δq +

∂L

∂q̇
· δq̇

]

dt

=

∫ T

0

[

∂L

∂q
−

d

dt

(

∂L

∂q̇

)]

· δqdt +

[

∂L

∂q̇
· δq

]T

0

.

We assume the variation at the endpoints is zero, so δq(T ) = δq(0) = 0, eliminating the

last term. Applying Hamilton’s principle, which states that the variation of the action must

be zero at all times [Goldstein et al., 2002], results in the Euler-Lagrange equations

∂L

∂q
(q, q̇)−

d

dt

(

∂L

∂q̇
(q, q̇)

)

= 0.

This is simply a form of Newton’s second law of motion.

Discrete dynamics We will now perform an analogous derivation for a discrete trajec-

tory. Let q0 and q1 be two points on the parameterized discrete trajectory, separated by a

time step h ∈ R.

Following the above, we begin by writing a discrete approximate to the Lagrangian Ld,

which takes the time step as an additional parameter,

Ld(q0,q1, h) = h

[

1

2

(

q1 − q0

h

)T

M

(

q1 − q0

h

)

− V (q0)

]

.

This choice of Lagrangian uses a simple first-order approximation to velocity, but other

choices are available. We shall see that different approximations for the discrete Lagrangian

lead to different timestep rules for the integrator.

The action integral becomes a sum in the discrete setting, on which we can compute
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variations. The action is a function of the discrete trajectory of the system, the set {qk}
N
k=0.

δSd(qk) = δ

N−1
∑

k=0

Ld(qk,qk+1, h)

=
N−1
∑

k=0

[D1Ld(qk,qk+1, h) · δqk + D2Ld(qk,qk+1, h) · δqk+1]

=

N−1
∑

k=0

[D2Ld(qk−1,qk, h) + D1Ld(qk,qk+1, h)] · δqk+

D1Ld(q0,q1, h) · δq0 + D2Ld(qN−1,qN , h) · δqN .

Here Di denotes the derivative with respect to the i-th argument. Recall again, as in the

continuous case, that we require the action to be zero at the end points δq0 = δqN = 0.

This gives the discrete Euler-Lagrange equations

D2Ld(qk−1,qk, h) + D1Ld(qk,qk+1, h) = 0.

Our choice of Ld now takes effect, where we compute

D2Ld(qk−1,qk, h) = M

(

qk − qk−1

h

)

D1Ld(qk,qk+1, h) = −

[

M

(

qk − qk−1

h

)

+ h∇V (qk)

]

.

We can then concretely rewrite the discrete Euler-Lagrange equations as

M

(

qk+1 − 2qk + qk−1

h2

)

= −∇V (qk),

a discretization of Newton’s equations which uses finite differences to approximate the

derivative.

Specifying initial configurations q0 and q1 allows us to give a recursive definition for

each successive qi for i > 1, or, in other words, a timestepping scheme. In this case, we

arrive at

qk+1 = qk + hq̇k+1

q̇k+1 = q̇k − hM−1∇V,

or the symplectic Euler timestepping rules.
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Variational integrators An integrator which is the discrete Euler-Lagrange equation

for some discrete Lagrangian is called a variational integrator. Many common integrators,

such as symplectic Euler and Newmark, are variational integrators [Suris, 1990; Kane et

al., 2000]. The preceding was a brief treatment, but this class of integrators is well-studied

throughout the literature [Kane et al., 2000; Marsden et al., 2001; Marsden and West, 2001;

West, 2003].

Variational integrators satisfy a discrete form of Noether’s Theorem, which leads to

momentum conservation laws [West, 2003]. Furthermore, variational integrators are au-

tomatically symplectic, guaranteeing that the energy of the system does not drift over

exponentially long runtimes, which can be verified both computationally [Wendlandt and

Marsden, 1997] and mathematically [Marsden et al., 1998]. In our context, we wish to obey

known conservation laws, including energy and momentum. Thus, we are drawn to varia-

tional integrators for their provably correct manner of preserving these quantities [Hairer

et al., 2002]. However, the discrete Lagrangian used here takes a single, constant time step

parameter h. We wish to allow variable timestep sizes based on varying stiffnesses in the

system.

Asynchronous dynamics To allow for asynchronous time integration, we follow Lew et

al. [2003] and split up the energy potential into discrete elements,

L(q, q̇) =
1

2
q̇T M q̇−

∑

i∈T

Vi(q),

where Vi is the potential for the i-th mesh element. In the simple case of strain energy on a

triangle mesh, Vi is a function of the degrees of freedom in q that comprise the i-th triangle.

For discretization, instead of choosing a single timestep h we choose a timestep hi per

energy potential, derived from stability requirements. The i-th element is then updated at

times tki = khi, for k ∈ N. Note that the timesteps hi and hj for two elements i and j are

not necessarily integer multiples.

The discrete action sum that results from an asynchronous Lagrangian is

Sd =
∑

a

Na−1
∑

i=1

1

2
ma(t

i+1
a − tii)‖

xi+1
a − xi

x

ti+1
a − tia

‖2 −
∑

k

Nk−1
∑

j=0

(tj+1
k − tjk)Vk(x

j+1
k ),
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where xj
k is the position in R3 of the k-th node during its j-th timestep. Na is the number

of nodal positions for node a, ma is the lumped mass at node a, and Nk is the number of

evaluations of the k-th energy potential.

Setting this sum to zero and taking the variations gives the discrete Euler-Lagrange

equation

p
i+ 1

2
a − p

i− 1

2
a = Ii

a,

where

p
i− 1

2
a ≡ ma

xi
a − xi−1

a

tia − ti−1
a

≡ mav
i− 1

2
a

and

Ij
k ≡ −(tjk − tj−1

k )
∂

∂xj
k

Vk(x
j
k).

For the full derivation, see Lew et al. [2003].

Lew et al. [2003] applies AVIs to problems in elasticity, where elements consist of tri-

angles or tetrahedra undergoing strain. We are still interested in integrating the internal

dynamics of a system, so our simulations include these elements, but we extend AVIs to

include elements representing contact between regions of a mesh. West [2003] and Lew et

al. [2003] both allude to this possibility, but never fully explore it.

Asynchronous timestepping The above formulation gives rise to an explicit asyn-

chronous variational integrator. Algorithm 5 reproduces the resulting asynchronous timestep-

ping algorithm.

This algorithm is simple to implement, with every force computation represented by an

event on a time-sorted priority queue. While a force computation repeats infinitely through

time, it is sufficient to only have it represented by a single event at any instant. When that

event is processed and trajectories updated, it is pushed back onto the queue at time t+hi,

where hi is that force element’s timestep.

Penalty layers We apply the asynchronous algorithm to accurately and efficiently inte-

grate the discrete penalty layers of Chapter 4. In fact, it is a perfect match; just as different

size mesh elements have different stability requirements, so do the penalty layers. Events



CHAPTER 5. ASYNCHRONOUS CONTACT MECHANICS 49

Algorithm 5 AVI timestepping algorithm

1: {Let Q be a priority queue of events, sorted by event times E.t.}

2: q ← q0; q̇ ← q̇0 {Set up initial conditions}

3: for all Vi do

4: Compute hi {Stable timestep for the i-th potential}

5: Ei ← (Vi, h
i) {Add all potentials to the queue as events}

6: Q.push(Ei)

7: end for

8: loop

9: (E, t)← Q.pop

10: for i ∈ E do

11: Xi ← Xi + (t− ti)Ẋi {advance vertex to current time}

12: q̇ξ ← q̇ξ − hM−1
ξ ∂V /∂qξ {local impulses, local mass}

13: Q.push(E,V, t + hi) {Return the event to the queue, with new time}

14: ti ← t {update vertex’s clock}

15: end for

16: end loop
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on the priority queue are extended to include penalty force events for each layer, in addition

to the events representing elastic forces.

The problem of which penalty layers to integrate remains. A ”brute-force” solution,

putting every possible force event on the queue, is not tractable for a single penalty layer

(there are theoretically a quadratic number of potentials, since every primitive could possible

collide with every other) and impossible for the theoretically infinite number of penalty

layers. We must be able to dynamically add penalty force events to the queue.

5.3 Kinetic data structures

One last difficulty remains: at what layer must the simulation be integrated? The answer

is simply, the deepest layer that the simulation needs. The difficulty here arises from the

fact that the deepest layer needed is not known at the beginning, or at any other point in

the simulation. If it were, simple penalty forces with an appropriate stiffness would suffice.

Rather, we only know the deepest layer required right now, with a given configuration.

Recall the potential of Chapter §4:

V r
η (g(q)) =











1
2rg2 if g ≤ 0

0 if g > 0 ,

F =











−rg∇g if g ≤ 0

0 if g > 0.

When separation distance exceeds a threshold η(l), the potential energy (and hence force)

for that layer evaluates to zero. This holds for the vast majority of the layers (for a contact

in layer i, the set of potentials for layers [i + 1,∞) are all zero). Thus, they may be safely

pruned from integration, even though their clock with timestep hi is still ticking. It is only

a tick where the potential is non-zero that cannot, indeed, must not, be missed. For this,

we must continuously monitor proximities to safely detect when separation distance passes

a threshold, and activate the appropriate layer.

This is the problem statement for kinetic data structures. A kinetic data structure

(KDS) is a data structure maintained under continuous motion of the underlying data. The

data structure is usually a combinatorial structure of mesh geometry. For instance, a kinetic

data structure could maintain an axis-aligned bounding box for a set of points {xi} with

velocities {vi} (Figure 5.3). See Guibas [2004a] for a recent survey.
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Figure 5.3: An axis-aligned bounding box around seven points.

Certificates KDSs maintain the data structure through a set of certificates. A certificate

is an assertion that some property of the data structure currently holds. Together, these

individual certificates guarantee that the data structure is valid. However, the geometry is

undergoing motion, and thus the data structure may change over time.

For a bounding box, a certificate asserts that a particular point forms the boundary

of the box. Therefore, for a 2-dimensional axis-aligned bounding box, four certificates are

created.

Additional, “helper” certificates may be created that do not necessarily define the data

structure, but assist in maintaining the combinatorial structure. These certificates are

called internal, because if the data structure were a black box, their presence would be

unknown. Similarly, certificates that maintain visible properties of the data structure are

called external .

Events Using the known trajectories of the underlying data, the times at which these

certificates are no longer valid are computed. These certificate failure times are called

events. The certificates must be repaired either by revalidating the existing certificate or

updating the data structure and creating new certificates. In this way, the data structure

is valid at all instances in time.

In the case of a bounding box, an event occurs when a point on the boundary of the

box is overtaken by another point within (Figure 5.4). In repairing this certificate, a new

certificate must be created, establishing the new vertex as the extent of the boundary.

With the introduction of events, we begin to see the asynchronous nature of KDSs.

Certificate failures can happen at any moment in time, not necessarily synchronously with
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Figure 5.4: When the faster point overtakes the boundary point, a new certificate is created

asserting that it now forms the left boundary.

motion of the data. When certificate failure times are computed, they are inserted into

a time-sorted priority queue. Events are then processed in order through time. If the

trajectories are changed at any time, all certificates which depend on the altered trajectories

must have their failure time recomputed.

Evaluation Four measures have been proposed to evaluate the quality of a particular

KDS [Guibas, 1998; Basch et al., 1999; Guibas, 2004b]. They are:

1. Responsiveness: A KDS is responsive if the cost of repairing the set of certificates

and updating attributes is small. “Small” is defined as polylogarithmic in the problem

size.

2. Efficiency: A KDS is efficient if the total number of certificate failures that must be

processed is comparable to the number of combinatorial attribute changes. In other

words, the ratio must be small.

3. Compactness: A KDS is compact if the number of certificates required is close to

linear to the number of degrees of freedom in the dynamic system.

4. Locality: A KDS is local if no single object participates in too many certificates.

The existence of these properties can be a theoretical question for many classes of

problems [Guibas, 2004a].

Kinetic separation slabs For narrow-phase (primitive level) collision detection, we use

a new construct we call kinetic separation slabs. Separation slabs certify the separation of
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n

Figure 5.5: The projection of the closest points onto the normal vector.

geometric primitives by a given proximity thickness. They are inspired by the rigid motion

separation planes of Guibas et al. [2001].

A separation slab certificate certifies that the geometry is separated by at least η(l). A

valid certificate for layer l guarantees the existence of a valid certificate for layers l+1, l+2, ...,

so their explicit construction is not necessary.

When a valid separation slab can no longer be constructed, we activate the penalty force

for layer l, and then create a separation slab certificate for layer l +1. This guarantees that

the activation of any penalty force is never missed, and enforces an ordering on penalty

layer activation.

To compute the failure time of the separation slab, we calculate the closest points

between the geometry. This vector defines an axis of separation. We then project all

vertices of the geometry onto this axis, and take the maximum / minimum velocities to

conservatively compute the time when they will be proximate (Figure 5.5).

Given the closest points Xa and Xb, with respective velocities Va and Vb, it is then

straight-forward to compute the certificate failure time as

t =
Xa −Xb

Vb − Va
.

Because the velocities used may not belong to the closest points, this time may not

actually represent the exact time to activate a penalty force. When an event fires we check

the distance, and if it is less than some arbitrary threshold (we use 11
10η(l)), we go ahead

and activate the penalty force. If it is not, we recompute the failure time and reschedule

the certificate. This approach is conservative.
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Figure 5.6: A sample scene (left) with its corresponding BVH (right).

Bounding volume hierarchies A bounding volume (BV) of a set of objects is a closed

volume that completely contains the union of the objects in the set. A bounding volume

hierarchy (BVH) is a tree of BVs such that a parent BV completely contains all the objects

contained by its children BVs.

This structure permits logarithmic time collision queries by recursively testing for BV

overlap against a BV’s children until no overlap is found and the query ends, or a leaf node

is reached and low-level collision detection takes over. Since BVs completely enclose the

objects they represent, if two BVs do not overlap their respective objects cannot possibly

be in collision.

BVs are usually convex, due to the simplicity of construction and overlap tests provided

by such geometry. The choice of BV is a balance of construction speed, as some volumes

are more expensive to compute, query speed, as complicated volumes take longer to test for

overlap, and the amount of culling provided, as tighter fitting BVs provide better culling

for objects in close proximity, saving expensive low-level tests. The optimal choice is often

dependent on the scene, geometry, and type of simulation.

For more information about choices of BVHs, their construction, fitting, querying, and

more, see Ericson [2004].

Frontier In a synchronous setting, to detect all collisions, a BVH representing the entire

scene is queried against itself. The root nodes (which are equal) trivially overlap, and the

queries recurse to testing each child node against itself and all others. At some point this

query ends, either by arriving at leaf nodes or successfully culling sub-branches of the tree
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Figure 5.7: Two intersected BVHs, and the resulting frontier

from further consideration (Algorithm 6).

Algorithm 6 BVH Traversal Algorithm

1: traverse(A, B)

2: if A and B do not overlap then

3: return

4: end if

5: if A and B are leaves then

6: flag A and B as potentially-colliding

7: else

8: for each child Ai of A and Bj of B do

9: traverse(Ai, Bj)

10: end for

11: end if

The pairs of nodes reached during a hierarchy traversal is called the frontier, because

it describes the extent to which BV overlap tests traversed. Not surprisingly, the temporal

coherency of physical simulations results in very little movement of the frontier between

successive queries. Notwithstanding, this information is lost and the full traversals are

usually repeated, only to arrive at or very near the same frontier.

For this reason, the technique of front tracking was developed [Li and Chen, 1998]. Front

tracking “remembers” the frontier and continues traversal from this set during successive

queries (Figure 5.7). The frontier can be stored as a list of BV pairs that represent the

traversal’s termination point. This list is called a separation list.

This notion of using temporal coherency to incrementally update geometric data struc-
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tures leads very naturally to a KDS for tracking the frontier of a BVH.

Kinetic separation list The broad-phase algorithm we use is a slightly modified version

of the separation lists KDS described by Weller and Zachmann [2006]. Separation lists use

the concept of a frontier to maintain a list describing the last-known separating nodes in a

BVH. This list is incrementally updated using the dynamics of the simulation.

In the modified structure, there is only a single certificate for each separation pair in

the list:

• The two BVs in the pair do not overlap.

This is a modification because leaf nodes are treated differently than by Weller and

Zachmann [2006]. When leaf BVs (representing triangles in 3D) overlap, control is handed

over to the separation slab KDS and is no longer represented by a separation list.

This additionally simplifies the events corresponding to a certificate failure:

• The two BVs in the pair overlap. Clearly at the time that the BVs overlap no certifi-

cate exists and the structure must be modified by creating new certificates, one for

each child-child pair of the two BVs.

• The two parents of the two BVs in the pair no longer overlap. By definition of fron-

tier, a separation pair only exists if the parents in the tree overlap, otherwise the

frontier would be one level higher. While the previous event corresponds to the fron-

tier “moving down”, this event represents the frontier “moving up” as separation

between objects occurs. When this event occurs the separation pair is removed from

the list and replaced by a separation pair for the two parent nodes.

During each rescheduling, the times of the preceding two events is computed with the

earlier one scheduled on the queue. Of course, this event may never come to fruition, as

a modification of flightplans (via a force event) may occur sooner, altering the scheduled

time.

Since we are concerned with convex BVs (as is most work in collision detection), the

problem of rescheduling simplifies to finding the interval in time during which the BVs are
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overlapping. For two parent BVs, the end of this interval is the time they no longer overlap,

and for two separation pair BVs, the start of this interval is the beginning of overlap.

No mention so far has been mode of the choice of BV. In Weller and Zachmann [2006],

Axis Aligned Bounding Boxes (AABBs) were used, and all analysis is presented based on

these. For our implementation, we use k-DOPs [Klosowski et al., 1998; Zachmann, 1998] as

our bounding volume, with k = 18. The use of alternative BVs is investigated in Chapter

7.

5.4 Algorithm

As mentioned in §5.2, AVIs are implemented using a priority queue. This priority queue

consists of events representing elemental forces that occur throughout time. When that

event is reached, the new simulation time is the time of that event, and positions and

velocities are updated appropriately.

In §5.3, we saw that KDSs are also implemented using a priority queue consisting of

time-sorted events. These events, however, represent changes in some geometrical structure

(external events), or “helper” events that support the maintenance of this structure (internal

events). The times of these events are computed based on the current trajectories, and thus

the events are subject to a recomputation of these times whenever those trajectories are

altered.

Here we present a unified algorithm that integrates forces, including contact using the

discrete penalty layers of Chapter 4, using asynchronous variational integrators, and dy-

namically adds in contact force events as they are needed using kinetic data structures. The

full construction is given in Algorithm 7.

We see in this algorithm the core elements of Algorithm 5, upon which our method

is based. The whole procedure operates around the notion of events, which have distinct

meanings for both AVIs and KDSs. We unify this into a single concept.

Events Quite simply, we view an event as an occurrence that can be represented by a

distinct moment in time. This time allows insertion of the event into the time-sorted priority

queue.
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Algorithm 7 The full asynchronous contact mechanics algorithm

1: loop

2: (E, t)← Q.pop

3: for i ∈ stencil(E)
⋃

support(E) do

4: Xi ← Xi + (t− ti)Ẋi {advance vertex to current time}

5: ti ← t {update vertex’s clock}

6: end for

7: if E is a force event then

8: q̇ξ ← q̇ξ − hM−1
ξ ∂V /∂qξ {local impulses, local mass}

9: Q.push(E,V, h, t + h) {Return the event to the queue, with new time}

10: for j ∈
i∈ξ
⋃

contingent(i) do

11: s← failureTime(Ej) {compute new event time}

12: Q.update(Ej , s) {reschedule the contingent event}

13: end for

14: else if E is certificate failure then

15: update KDS certificate, reschedule in Q

16: (de)activate penalty forces

17: end if

18: end loop
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Event Support Stencil

Force

Gravity ∅ Entire mesh

Stretching ∅ Triangle

Bending ∅ Hinge

Penalty ∅ Pair of primitives

Contingent
Separation slab Pair of primitives ∅

k-DOP separation pair Those in k-DOP ∅

Benign Snapshot ∅ ∅

Table 5.1: Events and their associated supports and stencils.

We can partition events into three disjoint sets:

1. Force events are distinguished by the fact that they alter the trajectory of elements in

the mesh by applying impulses to velocities. This category includes events representing

gravity, internal strain, and contact forces.

We call the set of vertices whose trajectories are altered by this event the event’s

stencil. This is useful in determining which events need to be rescheduled on the

queue.

2. Contingent events are those events which do not modify any trajectories, but whose

scheduled times are dependent on trajectories of some subset of the mesh. We call

the vertices on which an event depends the support of the event.

Whenever the trajectory of any vertex in an event’s support is altered, the event’s

scheduled time may be invalid, and thus recomputation of this time is necessary.

In our implementation, contingent events are entirely represented by KDS certificate

failure events.

3. Benign events are those events which do not depend on any vertices and do not

alter any vertices. Both the stencil and the subset of a benign event are empty.

Our simulator contains only one benign event: a snapshot event that outputs recorded

frames of the configuration at fixed points in time.
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As expected, force events are fixed throughout time, since they do not depend on any

particular configuration of the mesh. Technically, this includes contact force events. How-

ever in practice, it is far too inefficient to always process penalty layer events. Furthermore,

one can never know a priori the deepest penalty layer to activate. As a result, penalty

layer events can be added and removed from the queue. They are added when a KDS event

determines that a penalty force between two primitives is active (non-null).

We remove penalty force events in a lazy manner. When the force event fires, we check

if the force evaluates to zero. If it is null, and we see the primitives are separating, we

remove the event from the queue.

Note that although penalty forces are added and removed dynamically, their force com-

putations are fixed throughout time. When we determine at a time t that a penalty force

with timestep hi is to be activated, the penalty force event is not scheduled for time t, but

rather for time nhi, where n ∈ N is the smallest positive integer for which nhi > t. This

ensures the integrator’s conservative properties are maintained.

Rescheduling An important consideration in our algorithm is the rescheduling of events.

Rescheduling of force events is straightforward. All force events have a constant timestep

associated with them, and thus the next occurrence of the event is trivial to determine.

Rescheduling of contingent events is more problematic. Whenever a force event alters

trajectories, we must recompute the event time for all contingent events whose support

contains one or more of the altered vertices. This can be quite expensive, especially when

force events occur frequently, such as during periods of heavy contact.

The new event time is found in the same manner as finding certificate failure times, only

with the new trajectories used as input.

5.5 Discussion

This chapter addressed the two main problems in implementing the discrete penalty layer

method of Chapter 4.

First, we augment the method of asynchronous variational integrators to include in-

tegration of penalty forces, rather than forces associated with fixed mesh elements. This
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allows us to freely integrate any number of penalty layers independently.

Second, we modify our integration algorithm to include kinetic data structure event

handling. This efficiently tells us precisely when to add new penalty layers to the collection

of force events. With this addition, we never need to know at what depth penalty layer

a simulation must be running; the algorithm will automatically adapt to whatever layer

is needed at that time. This includes the continuous movement to shallower layers (or no

layers at all) when mesh primitives separate.

AVIs are one method of independently timestepping elements. There is an existing

body of work in multistepping algorithms, which substep stiffer forces [Smolinski et al.,

1996; Daniel, 1997; Daniel, 1998; Smolinski and Wu, 1998]. These methods are not purely

asynchronous, but rather result in the integration of weak forces at integer multiples of

the stiff forces in the system [Neal and Belytschko, 1989]. We have not investigated the

use of these methods to implement discrete penalty layers, but it would be an interesting

experiment to compare performance between AVIs and this class of methods. Kinetic data

structures would not be as cleanly integrated into the system, as enabled by the AVI priority

queue. Traditional KDSs or other means of predictive proximity detection would be required

to enable penalty layers.
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Chapter 6

Results

This chapter presents results obtained from our implementation of discrete penalty layers

using the technologies presented in Chapter 5.

6.1 Guarantees

The integration of the preceding construction provides four guarantees:

Safety Safety represents a method’s robustness in preventing collisions and maintaining

contact. More than just experimental evidence of safety, a proof of safety is strongly desired.

Here we prove, given functions r(l) and η(l), the conditions for which safety is guaran-

teed, with the sequence of discrete penalty layer potentials forming a barrier at g = 0.

Theorem 6.1.1. The nested potentials of Equation 4.1 form a barrier.

Proof. For these nested potentials to be a barrier, the cumulative energy of these potentials

must diverge as the distance between two primitives vanishes. Let d = ‖Xb −Xa‖ be the

separation distance between two objects a and b. Then l = ⌊η−1(d)⌋ is the currently active

penalty layer. We take the limit as the separation distance approaches zero:

lim
d→0

l=⌊η−1(d)⌋
∑

i=1

1

2
r(i)gi(d)2 = lim

d→0

l=⌊η−1(d)⌋
∑

i=1

1

2
r(i) (d− η(i))2
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As the distance approaches zero, the penalty layer goes to infinity.

lim
d→0

l=⌊η−1(d)⌋
∑

i=1

1

2
r(i) (d− η(i))2 =

1

2

∞
∑

i=1

r(i)η(i)2

Thus, as long as r(i)η(i)2 is a divergent series, a barrier is formed at d = 0.

Looking at our common choice of r(l) = r(1)l3 and η(l) = η(1)l−
1

4 , we see that the

summation above diverges. A poor choice of functions would be η(l) = η(1)l−2 and r(l) =

r(1)l2, since

1

2

∞
∑

i=1

r(i)η(i)2 =
1

2

∞
∑

i=1

r(1)l2(η(1)l−2)2

=
1

2
r(1)η(1)2

∞
∑

i=1

l2l−4

=
1

2
r(1)η(1)2

∞
∑

i=1

l−2,

which is a bounded series.

Progress Progress conveys a solution’s ability to reliably move forward in simulation time

in reference to real time, or wall-clock time. When evaluated in an absolute sense, a method

either guarantees progress is made or has the potential of finding itself in situations it is

unable to solve.

Our construction guarantees progress for a well-posed problem with bounded energy.

Theorem 6.1.2. Given a well-posed problem with finite energy, a simulation that uses the

nested potentials of Equation 4.1 is guaranteed to progress.

Proof. For a given separation distance d at a contact point, the active penalty layer is

l = ⌊η−1(d)⌋. By construction, η−1(d)→∞ as d→ 0, and η−l(d) =∞ only if d = 0, so for

d 6= 0, a condition guaranteed by the barrier proof, l is finite. A finite l implies a finite r(l),

the stiffness of the active penalty layer. Every finite stiffness of a linear force (quadratic
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η(l) r(l) Kinetic Energy Cloth Vertex ( cm
s ) Sheet Metal Vertex ( cm

s )

1
l 1000l3 6.93375 × 105 5.8880 × 103 3.0406 × 102

l−
1

4 1000l3 9.17877 × 108 2.14228 × 105 1.10627 × 104

l−
1

4 1000l4 5.81644 × 1011 5.39279 × 106 2.78482 × 105

Table 6.1: Practical bounds for choices of layer distribution and stiffness functions. We

give the bounds on kinetic energy and the velocity a cloth vertex (density 0.02 g
cm2 ) and

sheet metal vertex (density 7.5 g
cm2 ) would have to attain to successfully tunnel through the

barrier. We see these bounds are far beyond the needs of most simulations.

potential) has a non-zero stable timestep, and hence the simulation always moves forward

in time.

This theoretical proof has one implicit assumption: that every real number is repre-

sentable by a computer. We know this assumption to be false; computers have finite preci-

sion. Thus, when a layer’s stable timestep drops below the machine epsilon (the number ǫ

for which 1 + ǫ = 1), the integrator is unable to move forward in time.

In terms of penalty layers, this means that there exists a finite amount of energy that

will be able to halt progress. Note that safety is not violated, the simulator does not step

past the point where d = 0, but rather is unable to move forward.

Appendix A contains Mathematica code that computes this amount of energy given

functions r(l) and η(l). In practice this bound is large, far beyond the traditional needs of

the physical configurations we are interested in simulating. Table 6.1 gives these bounds

on kinetic energy for different choices of distribution and stiffness functions, along with the

corresponding velocities for a typical cloth and sheet metal vertex.

Correctness Correctness represents the degree to which a proposed solution is physically

consistent, in particular its ability to satisfy known physical laws, including conservation

of energy and momentum. While there has been some research into human perception of

physicality, all simulators essentially have are known physical laws to gauge correctness and

provide a quantitative measure for realistic simulations.
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(a) Canonical 1D example
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(b) Ball striking a plate
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Figure 6.1: Three energy plots

The construction of discrete penalty layers asserts correctness; indeed, each layer is

constructed from a potential energy, leading to conservative forces. Respect of physical

laws past this construction relies on the method of integration, a problem discussed in §5.2.

Figure 6.1 shows total energy (kinetic and potential) profiles for a few illustrative exam-

ples. Figure 6.1(a) is a canonical 1-dimensional construction [Wriggers and Panagiotopoulos,

1999]. A particle is attached to a wall by a spring, then placed close to another wall. An

initial load is placed on the spring, causing the particle to collide repeatedly. We see the

oscillations in energy expected from variational integrators, but energy neither consistently

increases nor decreases, instead oscillating about the conserved amount.

Figure 6.1(b) repeats an example from Cirak and West [2005]. In this setup, a ball

strikes a stiff plate, sending vibrations through the materials. We again see reliable energy

behavior throughout.

The last setup (Figure 6.1(c)) is from Pandolfi et al. [2002]. In this example, a stiff

ball impacts between two wedges, causing the ball to repeatedly bounce as it falls into the

crevice. Our algorithm efficiently handles this configuration while delivering the desired

correctness.

In addition to conservation of energy and momentum, correctness ideally includes the

notion of causality. Causality dictates a strict ordering on events in nature. Fortunately

the penalty layers treat collisions strictly in causal order. No velocity filter “grouping” is
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Figure 6.2: The importance of causality is illustrated by this example, where a scripted ball

pushes a dense stack of curtains into one another.

required to guarantee simulation progress. Figure 6.2 demonstrates the importance (and

satisfaction) of causality. A high-speed ball pushes through a sequence of densely-packed

curtains. Very clearly, the ball pushes curtains into each other in a well-defined order.

Stability Penalty layers are quadratic forces, yielding constant second derivatives. This

results in a timestep that is unconditionally stable for each penalty layer. Asynchronous

variational integrators allow integration of each layer at its own stable timestep. The cu-

mulative energy approximates the non-linear potential of Chapter 2 without the stability

issues.

6.2 Parameters

Another benefit of asynchronous contact mechanics is a vast reduction in the number of

user-defined parameters. Existing methods require adjusting a large number of parameters

that are essentially arbitrary, i.e., have no physical basis. As a result, the success of the

simulation depends heavily on these “magic numbers.”

Material parameters are the minimal set of acceptable system parameters, excluding

contact parameters. They encompass those parameters that define the behavior of a mate-

rial in a simulation.

For our simulations of deformable surfaces, this includes gravity, mass damping, bending

stiffness, bending damping, stretching stiffness, and stretching damping. This list is identical

for a synchronous simulation of the same material.
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We differentiate between these parameters and others in that there exists some physical

intuition, or a physical analogue guiding the selection of material parameters. For instance,

if a material appears too stretchy, it is natural to assume an increase in stretching stiffness

would alleviate the problem.

Contact parameters are those defining the behavior of contacts. For ACM simulations

one must define the stiffness function r(l) and the distribution function η(l). §6.1 outlines

the requirements for these two functions. In particular, the divergence property must be

met in order for the enumerated guarantees to hold. Fortunately, this property is easy to

verify mathematically.

Given choices for η(l) and r(l) that satisfy this property, behavior can still vary between

identical simulations. These parameters control how quickly contacts are resolved and how

many layers are used. Figure 6.3 shows the trajectory for a particle thrown towards a

fixed floor in two dimensions, for two different choices of η(l). For high-impact situations

it is advantageous to enter deeper layers earlier, while this could be unnecessarily slow for

low-impact velocities and resting contact.

Additionally, coefficient of restitution and friction coefficients for each simulated material

must be specified to fully determine the behavior of contacts. These are similar to material

parameters, where intuition and desired output guide parameter selection.

One key characteristic of ACM simulations is the lack of arbitrary parameters. Arbi-

trary parameters are those that have no physical guidance or means of non-experimental

verification. In the model described in Chapter 3, these included the number of iterations

taken in the second pass as well as different tolerances and thresholds that are simulation

dependent. The only means of selection for these parameters is trial and error, yet the

robust resolution of contact relies on finding optimal values. This non-intuitive parameter

manipulation can be frustrating for users.

ACM simulations have no such parameters. Stiffness and distribution functions can be

verified mathematically, and therefore are not arbitrary. All prior guarantees hold regard-

less of choices for material and contact parameters (as long as the combined stiffness and

distribution functions diverge). This allows the user to spend time designing a simulation,
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Figure 6.3: The height of a 2D particle plotted as a function of time with two different

distributions. The particle has an initial velocity of (2,−10000). The first distribution,

η(l) = η(1)l−4, resolves the contact sooner, leaving a discrepancy between the two trajec-

tories. This quicker resolution comes at the cost of smaller timesteps earlier in the contact.

rather than manipulating arbitrary parameter choices.

6.3 Experiments

We described simple experiments and empirical measurements supporting the guaranteed

safety and good energy behavior of the proposed contact algorithm. We turn our attention

to challenging problems involving complex contact geometries, sharp features, and sliding

during extremely tight contact.

Knots We simulate the tying of ribbons into reef and bowline knots (see Figures 6.4

and 6.5, respectively). The ribbons are modeled as a loose knot, assigned a material with

stiff stretching and weak bending, and their ends are pulled by a prescribed force; the

bowline knot requires also the prescription of fixed vertices behind the cylinder where a

finger normally holds the material in place. The final configuration is faithful to the shape

of actual “boyscout manual” knots.
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(a) Reef knot

(b) Reef knot closeup

Figure 6.4: Simulated tying of ribbons into a reef knot.

This example demonstrates the strength of asynchrony in allocating resources to loci of

tight contact. As the knot tightens, progressively finer time steps are used for the tightest

areas of contact. If instead of prescribing reasonable forces we directly prescribe an outward

motion of the two ends of the ribbon, the simulations execute to the point where the mesh

resolution becomes the limiting factor, i.e., a tighter knot cannot be tied without splitting

triangles; past this point, the computation slows as penalty interactions burrow to deeper

layers and the mean time step decays. This highlights both a feature and a potential artistic

objection to the method: when presented with an impossible or nearly-impossible situation

(non-stretchy ribbon with prescribed diametrically opposing displacements at its ends) the

method halts as the bound on kinetic energy is surpassed.

Bed of nails We crafted a problem to test the handling of isolated point contacts and

sharp boundaries. Four sliver triangles are assembled into a nail, and many such nails are

placed point-up on a flat bed. We drape two stacked fabrics over the bed of nails (see

Figure 6.6), and observe that the simulated trajectory is both realistic and free of pene-

trations, oscillations, or any other artifacts typically associated to contact discontinuities.

Next, we prescribe the motion of one end of the fabric, tugging on the draped configuration

to demonstrate sliding over sharp features.
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Figure 6.5: Simulated tying of a ribbon into a bowline knot.

(a) (b)

Figure 6.6: Experiments with a bed of nails highlight the method’s ability to deal with

sharp boundaries, isolated points of contact, sliver triangles, and localized points of high

pressure between two nearly incident surfaces.

We extend the bed of nails into a landing pad for various coarsely-meshed projectiles.

Variably-sized to barely fit or not fit between the nails, and thrown with different initial

velocities and angles, the projectiles exhibit a wide array of behaviors, including bouncing,

rolling, simple stacking, ricochetting at high frequencies (this requires resolving each colli-

sion when it occurs, as resolving collisions over a fixed collision step size can cause aliasing

that prevents the ricochet); sliding and getting stuck between nails (the sliding requires

a deformable model and friction, since a perfectly rigid object would be constrained to a

sudden stop by the distance).
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Figure 6.7: As the bunny is compressed by the scripted walls, a larger percentage of vertices

participate in deeper penalty layers.
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(a) Synchronous reef knot

(b) ACM reef knot

Figure 6.8: Synchronous simulation takes over an order magnitude longer to achieve com-

parable results, without any guarantees.

Comparison with synchronous We ran the reef knot tying example with the syn-

chronous simulation framework of Chapter 3. Despite giving the method over 12 times

as much time to run, the synchronous simulation fails to simulate as far as ACM without

allowing penetrations. Figure 6.8 shows the last, penetration-free frame obtained from this

simulation, side-by-side with the final frame of the ACM simulation.

Timing We list computation time for the various examples, as executed on a single thread

of a 2.33Ghz Intel Xeon with 8GB RAM (Table 6.2). Over 99% of runtime is allocated to

the maintenance of the kinetic data structures used for collision detection.

Parameters We list parameters for the various examples. Bending and stretching stiff-

ness refers to the Discrete Shells [Grinspun et al., 2003] and common edge spring models.
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Examples Vertices
Simulation 

seconds

Total time 

(hours)

Bunny Compactor 1768 2.0 1.6775

Bowline Knot 3995 5.0 86.5775

Reef Knot 10642 5.4 35.2347

Two Sheet Drape 15982 2.5 77.6616

Table 6.2: Timings (in hours) for examples executed on a single thread of a 2.33Ghz Intel

Xeon with 8GB RAM.

Example Density COR r(1) (1)
Stretching 

Stiffness

Stretching 

Damping

Bending 

Stiffness

Reef Knot 0.1 0.0 1000.0 0.1 750.0 0.1 0.01

Bowline Knot 0.01 0.0 1000.0 0.1 100.0 0.1 0.01

Bunny Compactor 0.01 0.01 10000.0 0.05 1000.0 0.0 1000.0

Trash Compactor 0.001 0.01 1000.0 0.05 1000.0 15.0 10.0

Two Sheets Draped 0.001 0.0 1000.0 0.1 1000.0 1.0 0.1

Reef Knot Untied 0.1 0.0 1000.0 0.1 1000.0 0.1 0.01

Two Sheets Pulled 0.001 0.0 1000.0 0.1 1000.0 1.0 0.1

Balls on Nails 0.016 0.3 10000.0 0.1 50000.0 1.0 100000.0

2D Sludge - 0.0 1000.0 0.1 - - -

Additionally, we examine the effect proximity thickness of the first layer has on the

runtime of a simulation.

In this setup, we simulate a thin-shell bunny model between two walls scripted to crush

the bunny. We vary the proximity thickness of the first penalty layer and measure compu-

tation time for a portion of the simulation (The first 1.15 simulated seconds). The latter

segment of the simulation, where the bunny is entirely crushed, is not representative of

normal contact situations, so we exclude it from our measures.
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Figure 6.9: Higher proximity thickness for the first layer allows for more room between

successive layers, giving each layer more distance to prevent the collision. As thickness in-

creases, elements are identified as being in contact sooner, and reach deeper layers quickly.

However, as these contacts are initially resolved, the system maintains contact within shal-

low layers and runs quickly.

Figure 6.9 plots the results of this experiment. Increasing proximity thickness decreases

overall runtime. The increased distance between penalty layers gives each layer more time to

act and prevent further contact before entering the next layer. At the beginning of the sim-

ulation, close elements quickly enter higher penalty layers for larger proximity thicknesses.

After this initial contact is resolved, the simulation returns to low penalty layers.

Based on this data, we recommend users construct η(l) with η(1) as high as possible

without compromising visual quality in order to achieve faster simulation runtimes.

Dissipation To test the energy behavior for a variety of coefficients of restitution, we

simulated a box of 900 particles with random initial velocities. Figure 6.10 shows the

energy of the system as a function of time for multiple values of eCOR; in all cases energy

decays smoothly and predictably.

Pöschel and Schwager [2005] describe experiments with granular media. They observe

that large numbers of particles participating in frequent, dissipative collisions form clusters,

or groups of proximate particles with very little relative velocity, over time. Figure 6.11

illustrates that our method reproduces this clustering when the above experiment is run
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Figure 6.10: Energy over time of a closed box of particles, for different coefficients of

restitution.

with eCOR = 0.

Impulse-based collision response methods cap the magnitude of the Coulomb friction

force, so that a large normal impulse does not cause relative tangential motion to reverse

direction. Our implementation does not cap, because we have not identified a capping

strategy that is compatible with order-independence of simultaneous events. For a pair of

primitives in contact, friction is applied piecemeal, at the ticks of the penalty layer clocks,

instead of as a single impulse. This serves as a reasonable discretization of kinetic friction,

but it is certainly a crude approximation of static friction. In particular, it is possible for a

friction update to reverse relative tangential motion; the magnitude of this reverse motion is

bounded by µr(l)η(l)h, so it can be limited by choosing sufficiently small stiffness function

r or time step h. Structures whose stability depends on static friction, such as the house

of cards simulated by Kaufman et al. [2008], would benefit from future work developing a

more complete treatment of friction.

As a test of our friction model, we applied gravity to the box of particles described

above, and allowed the particles to come to rest on the floor of the box. We then removed

the right side of box and replaced it with a downwards slope. Figure 6.12 shows the

configuration of the balls 2.5s after removal of the wall; the result varies with the coefficient

of friction. When no friction is applied, the particles flow freely down the slope. As friction
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Figure 6.11: Dissipative collisions form

characteristic clusters.

µ = 0.0 µ = 0.2

µ = 0.5 µ = 1.0

Figure 6.12: Friction alters the flow of

sludge down an incline.

is increased, the rate of flow decreases. Note that a simulation of granular materials should

store as a state variable the angular momentum of each grain [Pöschel and Schwager, 2005];

our implementation neglects this, evidence a small vertical stack of grains that slides down

the inclined plane without tipping.

Source code The full source code implementing everything described here can be found

at the project page, http://www.cs.columbia.edu/cg/ACM/.

6.4 Discussion

Discrete penalty layers satisfy the criteria set forth in Chapter 1. Their fundamental nature

in quadratic penalty potentials firmly establishes its physical roots, and the non-linear

nature of the sum of the potentials solidifies robustness. The fixed clock timesteps of linear

forces gives the guarantee of progress through time.

Limitations When properly implemented, discrete penalty layers will never move into a

configuration that violates unilateral contact laws. However, there is a practical limit to the

energy that they can tolerate, after which the method will halt in the name of safety. This

limit depends on the growth functions of the potential energy, and there exists easy choices

that guarantee reliable progress with “normal” simulations (non-extreme momentum).

We further equipped this construction with a dissipation model capturing both coeffi-

cient of restitution and a Coulomb model for friction. This allows the model to represent
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the widest possible variety of simulations. While simple, our approach has a drawback in

the inelastic limit eCOR = 0: the penalty impulses can leave as residue a small separating

relative velocity; a side effect of the penalty method approximation and the imprecise effect

of coefficients of restitution. The magnitude of this velocity is at most r(l)η(l)h, where h

is the layer’s time step, so it can be limited by choosing a small enough r(l) or h. It would

be interesting to critically damp the linear half-spring so that this residual velocity is elim-

inated. Experimental evidence has suggested that coefficients of restitution are functions

of relative velocity [Hunt and Crossley, 1975; Marhefka and Orin, 1996], giving such an

implementation physical merit.

We experience further difficulties when handling static friction. This is a known problem

within penalty-based methods. It is difficult to determine the exact limit on the amount

of friction applied, and thus the tangential direction could end up reversed. This reversal

is a function of the timestep size—an undesirable result. We alleviate this problem using

the notion of virtual particles [Lee and Herrmann, 1993]. When a contact is activated, we

record the point of contact and insert a 0-length tangential spring between those contact

points. In this way, the total displacement since contact is used to compute the magnitude

of the tangential force [Bell et al., 2005].

Conclusion The asynchronous contact mechanics (ACM) algorithm allows the simulation

of materials and setups that are impossible with today’s state of the art. On the surface,

however, they seem to perform at speeds much slower than what is considered acceptable

today. Side-by-side speed comparisons of simple animations such as a cloth draping put

ACM at a significant disadvantage. On the other hand, for an existing method to even

begin to run one of the simulations presented here, such as the ribbon knots, ACM not

only out-performs in speed, but manages to progress in the simulation past the point where

other methods fail.

An additional advantage to our method is the lack of artificial parameters. The velocity

filter model requires adjusting collision “epsilons”, which are simulation-dependent. We

guarantee resolution up to floating point epsilon, the smallest number representable on a

finite machine. This introduces a new paradigm to simulation, where the user no longer
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worries about modifying arbitrary numbers, and instead may focus on adjusting material

properties to get the desired results. The physics “just work.”

The separation lists were one choice of KDS to act as a broad-phase proximity detector.

One advantage of this AVI and KDS integration is the plug-and-play nature of KDSs; we can

cleanly exchange separation lists for any other kinetic data structure that serves the same

purpose. Chapter 7 provides some preliminary investigation in making such a substitution.

A new approach to simulation opens opportunities for improvements. In Chapter 8, we

offer improvements to ACM to enable faster simulation times. In the process, we begin to

analyze the variables affecting ACM simulations, as a gateway to continuous improvements

in asynchronous simulation.
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Chapter 7

Broad-phase kinetic data

structures

Chapter 5 presented a complete algorithm for the asynchronous simulation of deformable

materials. One key to this algorithm is the use of kinetic data structures (KDS). KDSs pro-

vide the foresight to activate penalty forces as necessary: a necessity to claim the guarantees

of Chapter 6.

We proposed the use of separation lists for broad-phase culling of potential collisions.

Separation lists are built around a bounding volume hierarchy; our initial implementation

used a k-DOP.

In this chapter, we explore alternative bounding volumes for broad-phase collision de-

tection. In addition to separation lists, we also investigate the use of a kinetic spatial

partitioning scheme; no prior work exists in this area. These grid-based methods prove

quite efficient at pruning collisions in a traditional framework, so their use in a kinetic

setting is a natural direction of inquiry.

7.1 Related work

Kinetic data structures were developed in computational geometry to maintain combina-

torial structures of data in motion by exploiting the coherence that often exists in such

motion [Guibas, 1998; Basch et al., 1999; Guibas, 2004b]. Each KDS maintains some ge-
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ometric attribute of the entire system. For instance, this could be a minimum spanning

tree in a mobile ad hoc network [Agarwal et al., 1998b] or the closest pair of objects in an

interactive simulation [Basch et al., 1997].

Good KDSs have been developed for a variety of problems pertinent to collision detec-

tion, including spatial proximity [Basch et al., 1997; Erickson et al., 1999; Agarwal et al.,

2002a; Gao et al., 2003; Agarwal et al., 2004; Gao et al., 2005] (e.g., collision detection,

closest pair, clustering), extent or partitioning [Agarwal et al., 1997a; Basch et al., 1999;

Agarwal et al., 2002b; Agarwal et al., 2005b] (e.g., diameter, convex hull, k-d trees), visibil-

ity [Agarwal et al., 1997b; Agarwal et al., 1998a] (e.g., binary space partitions, occlusions),

and connectivity [Agarwal et al., 1998b; Guibas et al., 2000; Karavelas and Guibas, 2001;

Gao et al., 2006] (e.g., minimum spanning trees, sparse spanners). In particular, general-

izations of the spanner KDS may be relevant to our work.

Collision detection often uses structures that provide high-level pruning capabilities.

Detection of this type is called broad-phase, since it allows for quick rejection of large

batches of potential collisions. Due to the nature of these structures, it is natural that

they would be kineticized. Our initial implementation of asynchronous contact mechanics

used the kinetic data structure presented by Weller and Zachmann [2006], called separation

lists, which extended the kinetic bounding volume hierarchy structures of Zachmann and

Weller [2006]. We slightly modify the method as presented to include support for our novel

separation slabs. See §5.3 for those details.

We restrict our investigation here to bounding volume hierarchies, with the exception of

spatial partitioning. Due to the plug and play nature of KDSs in our framework, opportunity

remains for the exploration of existing and future KDSs appropriate for the activation of

penalty layers.

7.2 Bounding volume hierarchies

Section 5.3 described bounding volume hierarchies, frontiers, and separation lists. In short,

the data structure “remembers” where the last traversal ended and computes the times

when this structure will change.
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For every frontier node, we put two events on the queue: one scheduled at the time when

two bounding volumes will overlap and the other when the two parent bounding volumes

will no longer overlap. We did this for simplicity of implementation, although performance

could be improved by combining these two events into a single event.

We initialize by simply pushing one event on the queue. This event represents the time

the root node for the entire scene will overlap with itself. This time is trivially zero, so

new child events will instantly (and automatically) be scheduled. This continues until the

representative frontier is on the queue and simulation time moves past zero.

In the following, we describe the choices of Bounding Volumes (BV) investigated, along

with a discussion of the potential effect each may have on the KDS quality. We then detail

how certificate failure times are computed for each. We do this in terms of time intervals

where the BVs either overlap or not.

(a) AABB (b) k-DOP (for k = 8) (c) Sphere

Figure 7.1: Three choices of bounding volumes

Axis-aligned Bounding Boxes (AABBs) AABBs [Larsson and Akenine-Möller, 2001;

Van Den Bergen, 2005] are one of the most common bounding volumes. In 3D, they

are rectangular six-sided boxes (four-sided in 2D), oriented such that the sides are

aligned to the coordinate axes. For this reason they can be examined quickly by just

looking at individual coordinate values.

Certificate failure The certificate fails in two cases: either the BVs overlap or the

two parent volumes in the hierarchy are no longer overlapping. Either way, we need

to compute the time interval when two BVs overlap, since the latter is simply the
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0t

(a) The time interval

the two AABBs over-

lap.

0t

(b) The time interval

the x-axes overlap.

0t

(c) The time interval

the y-axes overlap.

Figure 7.2: The time interval two AABBs overlap is taken as the intersection of the time

intervals when the x bounds and the y bounds overlap.

complement of the former.

Two AABBs overlap when the spatial interval defined by the AABB’s bounds along

each axis overlap. Consider these bounds along one axis for two objects A and B:

(xA
min, xA

max) and (xB
min, xB

min).

These intervals overlap when xA
max > xB

min and xA
min < xB

max.

Each bound xA
min and xA

max has a corresponding velocity vA
min and vA

max, so we can

compute when the above inequalities are true as a polynomial function of time. In

fact, these functions are linear in the positions. Furthermore, we can modify it to

detect when they are distance h, rather than actually touching,

f(A,B) =
xB

min − xA
max − h

vA
max − vB

min

.

We are interested in the interval where f < 0.

This only accounts for one set of bounds, to account for the other, we take the inter-

section of the resulting intervals. The start of the resulting interval is the time when

the two original intervals along one axis overlap. If the interval is empty, then they

never overlap.

We repeat this process for each of the three axes, taking the intersection of intervals.

If at any point the resulting interval is empty, we can safely short-circuit the test. If
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testing for the time when two BVs will not overlap, simply take the end of the final

interval. Figure 7.2 illustrates this for a simple 2D AABB.

k-Discrete-orientation Polytopes (k-DOPs) k-DOPs [Klosowski et al., 1998; Zach-

mann, 1998] can be thought of as generalizations of AABBs. Whereas AABBs are

aligned so that their six bounding faces have normals in the three coordinate axis di-

rections, k-DOPs have their k bounding faces oriented along k
2 fixed directions. This

allows for potentially tighter fitting BVs at the expense of more axes to iterate over,

both during fitting and overlap tests.

Certificate failure The process to find the times of overlap is identical to AABBs,

whereas instead of three axes, we repeat the interval intersections for all k
2 directions.

Spheres Sphere trees [Hubbard, 1996; Palmer and Grimsdale, 1995] provide an interesting

case study: intersections between them only require looking at two rates of change

(the radii of each sphere and the motion of the sphere center). This one comparison

is quadratic, compared to the linear equations of k-DOPs and AABBs.

Certificate failure The overlap times for spheres is somewhat simpler than for k-DOPs;

instead of k bounds there is only one direction. The condition for two spheres to be

a distance h apart is

‖xA − xB‖ − rA − rB − h < 0,

where xA and xB are the centers of spheres A and B, with rA and rB their respective

radii.

With spheres in motion, the centers have a velocity and the radii have a rate of change.

We can then write this condition as a function of time

f(t) = ‖(xA − xB) + t(vA − vB)‖ − (rA + rB + h)− t(rv
A + rv

B) < 0.

This is a non-linear function, due to the distance calculation, but we can square both
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Figure 7.3: Left: A grid that is too fine. Left-center: A grid that is too coarse (with respect

to object size). Right-center: A grid that is too coarse (with respect to object complexity).

Right: A grid that is both too fine and too coarse.

sides to rewrite as a polynomial function of time

f(t) = [(xA − xB) + t(vA − vB)] · [(xA − xB) + t(vA − vB)]+

2 [(xA − xB) + t(vA − vB)] [(rA + rB + h)− t(rv
A + rv

B)] +

[(rA + rB + h)− t(rv
A + rv

B)]2 .

This polynomial is quadratic in time.

7.3 Spatial partitioning

The collision detection discussed thus far works by tracking the motion of simulated primi-

tives using convex hulls. This is a Lagrangian view of tracking collisions, and we now discuss

the complementary Eulerian view of collision detection.

Instead of identifying elements and explicitly following their locations in space, space can

be discretized into regions, or cells, and the flow of primitives in and out can be monitored.

This class of methods are referred to as Eulerian grids, or spatial partitioning [Ericson,

2004].

By tracking individual regions, the objects contained in any given cell are known at

any time. An object being co-located with another object in a cell is a necessary, but not

sufficient condition for collision. This provides the pruning necessary for efficient collisions.

All objects contained in a cell must be tested pairwise for collision, so reducing the

number of these potential pairs is a key consideration in designing grids. Use cells that
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are too large in relation to the size of primitives and a large number of pairwise tests are

necessary, reducing to brute force O(n2) in the worst case. Conversely, extremely small cells

require far too many cells updates as objects move through space [Cohen et al., 1995].

We investigate the use of fixed size grids within ACM simulations. Fixed size grids use a

pre-determined cell size, dx for 1D simulations, (dx, dy) for 2D simulations, and (dx, dy, dz)

for 3D simulations. Note that this does not assume a uniform cell size (i.e., cells may not

form cubes). To be used by ACM, Eulerian grids must be kineticized, or adapted to work

within the KDS framework. No prior work exists in this direction.

Kinetic Eulerian grids Every pair of primitives that share a cell must have a separation

slab event to guarantee safety. Therefore a kinetic grid must track the time at which objects

share cells, to create the appropriate slab. It must also track the time objects no longer

share cells so that separation slab events can be removed from the queue. As an alternative,

this can be done in a lazy manner, by simply removing events when they are noticed to be

in separate cells, rather than actively tracking when this occurs.

Both of these events can be combined into the maintenance of a single certificate per

primitive (assuming an ordering on the cells in the grid):

• Primitive i is contained by cell j.

At any moment, a primitive can be contained by more than one cell, but we simplify by

combining all these certificates into a single event.

Certificate failure We want to know when the primitive enters or leaves a cell, so we

rasterize all vertices to the grid and compute the earliest time one passes through a neigh-

boring cell. We break this process down further, by computing the times when individual

vertices enter / leave cells.

For each vertex, we look at its velocity in each coordinate direction. If the velocity is

zero, then the vertex is not moving and will thus never pass into a neighboring cell; the

event time is ∞. If the velocity is positive in the direction of the coordinate axis, then the

vertex is moving into the next cell. We can compute the boundary of that cell using the

grid’s corner and the cell width, from which we can compute the time it passes through the
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(a) 2D Box of balls (b) Reef knot (c) Bunny com-

pactor

(d) Spike drape (e) Bowline knot

boundary. Similarly, if the velocity is negative, the vertex is moving towards the previous

cell. The minimum of all these times is the time the vertex will pass into a neighboring cell.

The minimum of all vertices’ times is the scheduled event time. When this event is

processed, it may not result in the primitive passing in or out of a cell, but it is conservative

and will catch all the instances in which this does occur.

7.4 Results

All broad-phase algorithms are tested and analyzed for quality in a variety of situations.

The following set of examples will serve as a core testing suite to verify the efficiency of

each method:

(a) 2D Box of balls This example tests the method’s ability to handle large numbers of

disparate objects. Contact between the balls comes and goes quickly and should be

handled efficiently.

(b) Reef knot In this example a reef knot is tied out of ribbons by forces acting on each of

the four ends. The knot gets extremely tight, stressing the robustness of the method. As

the contacts grow and penalty layers deepen, any advantages provided by optimizations

will be made visible.

(c) Bunny compactor This example purposely puts ACM in an unphysical situation. As

the walls get closer, the penalty layers grow, eventually reaching its practical limits as

the walls eventually touch, leaving the simulated bunny in between with nowhere to go.
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Box of Balls Bunny Crusher Reef Knot Bowline Two Cloth Drape

AABB

8-DOP

18-DOP

Sphere

Grid

96.062 2.180 54.202 120.641 82.107

66.430 - - - -

- 1.825 44.678 86.578 77.689

- - - - -

- 0.516 - - -

Table 7.1: Timings (in hours) for examples executed on a single thread of a 2.33Ghz Intel

Xeon with 8GB RAM.

(d) Cloth drape on spikes Two long cloth sheets are draped on a bed of spikes, with the

bottom one pulled off. This examples tests devious geometry, as each spike is composed

of only four extremely narrow triangles.

(e) Bowline knot Similar to the reef knot example, this simulation forms a tight knot out

of ribbon. However, it has the additional constraint of being tied around a simulated

cylinder. This scene tests asynchrony’s ability to handle separate, yet competing forces.

The force pulling on the end of the ribbon, the internal cylinder forces, the contact forces

of the ribbon with the cylinder, and the internal contact forces maintaining the knot

all struggle to maintain equilibrium.

Timings Table 7.1 gives timing results. All timings were run in a single thread on a 2.33

Ghz Intel Xeon processor with 8GB RAM.

Timings for sphere trees are not specified, due to the extremely poor performance (on

the order of weeks). Two factors contributed to this: First, sphere trees provide very poor

bounds for most geometry. This caused the frontier to be much lower in the tree than a

tighter fitting volume. As a direct result, the number of events on the queue was over twice

that of the other bounding volume choices.

Sphere trees are also slow to fit. We used an implementation of the Miniball sphere

fitting algorithm [Gärtner, 1999], which is recognized for its speed. While there exists many

other methods for achieving tight-fitting spheres, it seems unlikely that they will have a

significant effect on the overall runtime, due to the large number of events.
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However, that the polynomials associated to sphere certificate failure times were quadratic

rather than linear did not appear to deteriorate performance. This is positive, since it means

linear polynomials are not necessary for efficient KDS simulations. Russel [2007] investigates

this trade-off for higher-degree problems.

In the remaining bounding volumes, we see a noticeable improvement in using k-DOPs

over AABBs. The extra bounds provide a tighter fit and additional culling, reducing queue

size by a small, but noticeable amount. The overhead of fitting additional bounding planes

is worth the additional cost in computation. For the example in 2D, we used an 8-DOP,

while all 3D examples were simulated using 18-DOPs.

Our timing information for the Eulerian grids is incomplete as well. The kinetic data

structure performed beautifully for the Bunny Crusher example, vastly outperforming the

k-DOPs. However, they did not scale well. We had much difficulty in sizing the grid

appropriately for the other examples. If the cells were too large, far too many separation

slab events were on the queue from the start. Making the cells small enough to keep the

queue size appropriately small required too much overhead to store the grid in memory.

7.5 Discussion

We have seen that our initial choice for bounding volume, the k-DOP, was a particularly

good one. The pruning provided by the extra bounding planes is easily worth the additional

computation. Furthermore, they lend themselves well to many forms of optimization, as we

discover in Chapter 8.

Sphere trees were surprisingly disappointing. Besides being slow to fit, the poor culling

behavior resulted in a larger number of events on the queue, along with more refitting and

even slower performance.

The most criticized problem of Eulerian grids, how to appropriately size them, is mag-

nified in the kinetic setting. We believe the performance offered justifies future research

into a kinetic grid. A good starting point is in hierarchical grids, such as octrees, which can

give performance comparable to grids without the difficulty in choosing a cell size [Ericson,

2004]. Adaptive grids may also show significant advantages here.
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There are still many opportunities for KDS exploration within the ACM framework. In

particular, deformable spanners are of interest, even though they currently only apply to

point sets [Gao et al., 2006]. We are investigating their extension to represent arbitrary

convex shapes. This could be particularly advantageous, since it would eliminate the need

for kinetic separation slabs and have a single data structure providing broad-phase and

narrow-phase detection.
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Chapter 8

Analysis and optimizations

0%%%%%%%%%%%%%%%%%%%000000000000000000000000000%%%%%%%%%%%%%%%%%%000000000000000000000000%%%%%%%%%%%%%%%%%%%%%%%%%%2%

98%

ACM Profile

Rescheduling Processing Maintenance

Most runtime in an ACM simulation is spent main-

taining KDS certificates. When a force event fires, in-

cluding penalty forces, some subset of certificate fail-

ures are invalidated and require a recomputation of the

scheduled event time. This rescheduling time quickly

accumulates as heavy contact regions form and penalty

force events fire at a rapid rate.

We wish to understand this process in order to im-

prove it. Event rescheduling dominates the simulation runtime. The total cost of reschedul-

ing can be broken down into three variables:

1. Rescheduling cost

Clearly, a slow rescheduling time contributes to a slow simulation. In this area, we

wish to investigate why particular events are more expensive to schedule than others,

and how we can reduce this cost safely.

2. Rescheduling frequency

Stiff forces require small timesteps. These small timesteps mean more event reschedul-

ing. However, as the timestep decreases, the actual change in trajectories also de-

creases, yet we are still required to reschedule all affected events. This is highly
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wasteful, since most events never actually come to fruition. We examine a few alter-

natives to reduce this unnecessary rescheduling.

3. Number of contingent events

A large number of contingent events not only means more rescheduling, but more over-

head throughout the simulation. Reducing this number may mean slower rescheduling

for a fewer number of events, so we explore whether this tradeoff results in an overall

faster simulation.

We analyze these three problems and offer optimizations for each. Section 8.4 presents

the results of these optimizations.

8.1 Rescheduling cost

There are two types of non-trivially rescheduled events in our simulations: separation list

events and separation slab events.

Separation slab events are generally fast. They have very small supports of only four

vertices. Their failure time is a linear polynomial. We instead focus on bounding volume

events. These are relatively expensive, becoming moreso the higher the BV is in the hier-

archy. This is because the support size grows larger for these bounding volumes, requiring

many vertices to be visited to refit along each direction.

We also found that these events based higher on the hierarchy are less likely to fire

during the course of a simulation. This can be seen as top-level events having more inertia

and requiring the overall motion of a large number of vertices to affect change.

We present two optimizations intended to reduce bounding volume event computation

time by reducing the fitting of unnecessary bounds.

Short-circuited scheduling In order for two k-DOPs to overlap, all of their bounding

planes must overlap. This requires iterating over all k
2 directions and finding the time of

overlap. Since the overlap time of the bounding volumes is the intersection of each axis’

overlap time, the earliest time two BVs can overlap is the latest time any individual axes

planes overlap.
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Combining this observation with the observation that there will almost always be some

force event, usually gravity, that affects all vertices with a steady clock, rescheduling can

be short-circuited. If any bounding plane overlap time is encountered that is past when

the next gravity even is scheduled, it is assured that this event will have to be revisited

at that time (since gravity affects all events), and thus further refinement of the event

time is unnecessary. This myopic view of event scheduling is valuable, and is an important

consideration in the development of future KDS optimizations.

Bounding plane ordering Not all k-DOP axes are created equal. Depending on the

configuration, some excel while others fail in establishing separation. Can one process only

the the useful axes, taking the intersection of their bounds, and thus reducing by a constant

factor the O(nd) computation of extremal velocities and positions? We achieve this in two

steps: first assume that the k axes are already (nearly) sorted from most- to least-useful,

and progressively improve the bound by incorporating an additional axis, until an axis fails

to improve the bound; in the second step, improve the sorting (for next time) by promoting

the axis to the front of the list that provided the most useful bound. For surface meshes,

where k-DOPs have high aspect ratios described by a couple of axes, this approach is very

effective. This idea can be understood in the language of coresets [Agarwal et al., 2005a];

dynamically updating the coreset constituency as the system evolves.

8.2 Rescheduling frequency

Rescheduling frequency is determined by the frequency of force events. AVIs are explicit

integrators, which usually necessitate small timesteps to maintain stability. For instance,

in the simulation of the reef knot, a timestep of 10−5 is required for bending forces. This

results in over 600 force events (and resulting reschedules) for every frame. As penalty

forces are activated this number grows.

Even so, the average impulse for a non-gravity force event is less than 1
10 (cm / s).

With only a very small number of contingent events (less than 1
100000 ) in a time of interest

(before the next snapshot), very few of these reschedules are critical to maintain program

correctness.
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We offer two optimizations which alleviate this in different ways. The first enables events

to “ignore” rescheduling when flightplans of its support are altered. The second reduces

the number of distinct flightplan adjustments.

Fuzzy trajectories Every velocity update requires the rescheduling of dependent events.

This rescheduling tends to be too costly and so frequent that it becomes intractable; these

drawbacks are recognized in the KDS literature [Guibas et al., 2001; Guibas et al., 2004].

We introduce the notion of vague trajectories to safely reduce the frequency of rescheduling.

Certificates are rescheduled when a supporting trajectory is altered. Using KDSs specif-

ically in the context of contact mechanics brings into play physical insights that would oth-

erwise not be available. As an illustrative example, consider Newton’s apple, which after

being tossed into the air follows a parabolic trajectory before hitting the ground. Now split

the apple and connect the two halves with a stiff spring. Toss the apple once more, what

happens? Since the two halves quickly oscillate against each other, the trajectory of each

half has many wiggles—changes in velocity. Even so, the trajectory of the center of mass

is exactly parabolic and, ignoring the high-frequency wiggles, the trajectory of each half

is “overall” parabolic. Most importantly, unless the half-apple is very close to the floor,

the parabola serves as an excellent predictor of the collision time with the floor, while the

velocity associated to the rapid oscillations is noisy. This noise is twice detrimental: it

impoverishes the collision time estimate, and, worse, it causes frequent rescheduling.

To harness this insight, consider trajectories with bounded uncertainty. In place of

precise linear trajectories, imagine “cones” wide enough to encompass the noisy oscillations.

On the one hand, this requires computing certificate expiration times that are conservative

in the sense that they are valid for any precise trajectory that fits in the cone. On the other

hand, the certificate will remain valid, despite noisy changes to the future trajectory, or

flightplan, so long as the current trajectory remains inside the cone. If the predicted cone

is not too thick, and if the actual trajectory remains inside the predicted cone for sufficient

time, it could potentially reap a (safe, correct) dramatic reduction in rescheduling.

This thesis pursues a simple implementation motivated by this idea. Recall the schedul-

ing approach for the simple separating slab KDS. After creating a new certificate (say at
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time t = t0), a certificate failure time was scheduled by solving for the time at which the

particle enters the slab assuming a constant velocity. Because of this restrictive assumption,

even a small impulse necessitated event rescheduling.

To introduce vagueness, weaken the assumption to allow for a time-varying velocity.

Therefore let the velocity of the particle Ẋ(t) = Ẋ(t0) + u(t), where u(t) is a time-varying

vector of bounded length ‖u(t)‖ ≤ ǫ. The relaxed assumption has two implications. First,

it is now possible for many impulse events to affect the particle without necessitating a

certificate rescheduling, so long as each impulse keeps ‖Ẋ(t) − Ẋ(t0)‖ ≤ ǫ. Indeed, for

ǫ < |Ẋ(t0)|, there is a cone of trajectories that avoid rescheduling. Second, the computation

of the failure time must be conservative over all future trajectories satisfying the relaxed

assumption, i.e., it must compute the earliest possible failure time. For the separating slab,

the trajectory producing the earliest failure “worst case” failure is the one maintaining

‖u(t)‖ = ǫ with u(t) in the direction of the slab.

Increasing ǫ reduces rescheduling frequency, since it widens the cone of covered trajecto-

ries; unfortunately, it also increases the frequency of certificate failures, since the worst-case

trajectory reaches the slab sooner; these two considerations must be balanced. Fortunately,

any choice of ǫ keeps the system safe—the choice of ǫ cannot alter the actual simulated

trajectory.

We control the choice of ǫ through a quality loss parameter, so-named because it controls

the quality, or accuracy, of scheduled times. This parameter varies between 0 and 1, with

a value of 0 corresponding to zero quality loss, i.e., the actual scheduled time is used. A

value of 1 should not be used, for it corresponds to 100% quality loss and no simulation

progress would be made. We smoothly interpolate between the current simulation time

tcurrent and the event time tevent using this parameter QL, so that the scheduled time is

tscheduled = QL tcurrent + (1−QL) tevent.

With this time, we can work backwards to compute the permitted ǫ per vertex. If two

objects xA and xB with velocities vA and vB are approaching one another, the time they

will collide is xB−xA

vA−vB
. Instead of velocities vA and vB we will use velocities with an epsilon
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built-in, vA + ǫ and vB − ǫ. We also know the schedule time, so the formula becomes

tscheduled =
xB − xA

vA − vB + 2ǫ
.

We rearrange and solve for ǫ,

ǫ =
1

2

(

xB − xA

tscheduled
+ vB − vA

)

.

When an event is scheduled, we store the velocity vi and ǫi for each vertex in the support.

Then, during rescheduling we check each vertex using the current velocity vcurrent
i . If

‖vcurrent
i −vi‖ < ǫi for all vertices in the support, the event does not need to be rescheduled.

Super-elements AVIs, as presented, have one force event for every force stencil, such as

the four vertices of a hinge for a bending force, or a triangle for a constant strain force. Given

the stiffness of these forces, the timestep required for stability is automatically chosen based

on the size of the stencil. These forces are then integrated asynchronously as presented in

§5.2.

As demonstrated by Lew et al. [2003], this can be quite computationally efficient given

meshes with large dicrepancies in the size of the elements. However, it is just as common to

have a regular, evenly-sampled mesh. In this case, all force stencils tend to run at essentially

the same size and any computational advantage is lost.

For this reason, the concept of super-elements was developed concurrently by Huang et

al. [2007]. We are mainly interested in asynchrony for its advantages in handling contact,

so events running with roughly the same clock are combined and integrated together, with

the union of their stencils rescheduled only after all combined events have been processed.

This can be enhanced even further by applying the concept specifically to ACM. Each

penalty force in the discrete penalty layers of Chapter 4 has a unique stiffness and thus

timestep. These timesteps are unique across layers, but not across different colliding stencils,

i.e., penalty layer 2 for one collision and penalty layer 2 for another have the same penalty

stiffness and timestep. Following the reasoning of super-elements, these penalty forces can

be combined into penalty layer super-events, which integrate all penalty forces at that layer

and then reschedule the union of their respective stencils.
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Figure 8.1: Distance between farthest features is much higher than closest features.

This optimization vastly reduces the number of force events that require rescheduling,

at the cost of larger stencils. For a cloth simulation, the number of force events is reduced

from O(T +E), where T is the number of triangles (for constant strain triangle “stretching”

events) and E is the number of edges (for hinge-based bending events) down to a small

constant. For a uniform mesh this would be 3 (gravity, grouped stretching, and grouped

bending) plus the number of the deepest penalty layer.

8.3 Number of rescheduled events

Fewer contingent events means less rescheduling. However, as contact regions form, the

number of such events necessarily increases. We investigate two methods of reducing this

cost.

Triangle-triangle slabs The separation slabs in Chapter 5 estimate the time of collision

for vertex-triangle and edge-edge pairs. These 15 pairs are created when a broad-phase

triangle-triangle separation pair longer exists. Regardless, many of these 15 pairs are still

relatively far apart and are in no danger of colliding (Figure 8.1). Thus it seems largely

wasteful that all 15 events should be scheduled (and more severely, rescheduled).

As a second layer of defense, we implemented triangle-triangle separation slabs. These

events will describe the separation of triangles, squeezing out more performance before the

triangles are in collision and lower-level events must be created.

Any separation slab event could be created between convex sets, yet it becomes more

expensive as the set grows because the closest point between the sets must be found. This
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is trivial for vertex-triangle and edge-edge pairs and only moderately more intensive for

triangle pairs, yet becomes prohobitively expensive for larger sets. Hence it seems unlikely

that higher-phase slabs would provide any benefit over existing broad-phase methods.

Triangle-triangle penalty forces As touched upon in the preceding section, compu-

tational effort grows quickly when triangle-triangle pairs are broken down into their 15

constituent feature pairs.

This cost comes in the form of event scheduling as well as bookkeeping to keep track of

which triangle-triangle pair leads to which primitive pairs, since there are multiple triangle

pairs that lead to the same vertex-triangle and edge-edge primitives.

Bookkeeping can be messy and bug-prone. Simple code usually leads to fewer bugs

and faster runtimes. For this reason, we modify the ACM framework to keep all events at

the triangle-triangle level. Instead of creating 15 primitive pair children events when two

triangles are within proximity, a single penalty force will be created for the triangle pair,

while the triangle-triangle slab will be incremented to check the next penalty layer.

Within the penalty force event we check the 15 primitive pairs, with penalty forces

applied where necessary. This may seem to be wasted computation, but the triangle slabs

can remember the closest feature sets, as discussed in the previous section. Furthermore,

the Lin-Canny algorithm [Lin and Canny, 1991], given a pair of closest features, gives the

sequence of features to check to find those that are next closest. Following this ordering,

distance computations are short-circuited when a feature separation distance greater than

the penalty layer proximity is reached.

It is true that the same vertex-triangle and edge-edge pairs will still show up in the

penalty force computations. However, this time, the system knows that they will show up

repetitively. This way, the penalty force for a vertex-triangle collision can be scaled by 1
k ,

where k is the valence of the vertex, and is precisely the number of triangle-triangle penalty

forces this same vertex-triangle pair will show up inside. The sum of the penalty forces

will therefore be the same as if bookkeeping existed that eliminated the pair from the other

force events.
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Box of Balls Bunny Crusher Reef Knot Bowline Two Cloth Drape

Baseline

k-DOP Plane Reordering

k-DOP  Short-circuiting

Triangle Separation Slabs

Triangle Penalty Forces

Fuzzy Trajectories

66.430 1.825 44.678 86.578 104.216

59.690 1.656 35.235 79.458 71.928

61.571 1.460 32.129 75.551 66.759

- 1.535 66.991 159.134 78.421

- 1.498 29.631 75.382 69.317

- 0.705 14.947 44.793 41.492

Table 8.1: Timings (in hours) for examples executed on a single thread of a 2.33Ghz Intel

Xeon with 8GB RAM.

8.4 Results

Table 8.1 shows the timing results for all of our optimizations. All timings were collected

as a single process on a 2.33 Ghz Intel Xeon processor with 8GB of RAM. We run the same

set of experiments as in Chapter 7.

The super-elements optimization is not listed. Without it, simulations were proho-

bitively slow, and thus we included them as part of the initial implementation.

Optimizations were implemented sequentially, so each number is a cummulative effect

of all optimizations up to and including that row. Incomplete data is signified by a dash,

for instance where optimizations do not apply.

Unsuprisingly, we see a consistent benefit with each successive optimization, as each

one reduces total rescheduling costs. The one exception is triangle-based separation slabs,

which performed poorly. We believe this happens for two reason. First, the separation

slabs may not provide any additional culling, and very quickly descend to its 15 children

events. Second, because separation slabs separate in a lazy manner, i.e., time of separation

is not explicitly computed, the hierarchy is unlikely to ever move back up to the bounding

volume level when primitives eventually separate. This keeps the queue much larger for

much longer.

Figure 8.2 shows the additional pruning provided by adaptively reordering k-DOP

planes. With this optimization, over 99% of reschedules are short-circuited before the

third plane is evaluated.
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Figure 8.2: By adaptively reordering the axes tested, 99% of rescheduled events can be

shortcircuited by the 2nd axis.
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We tested the Bunny Compactor with a range of

quality loss parameters to find the optimal value. Re-

call that a higher quality loss means less rescheduling

but pushes the event closer to the front of the queue,

while a low quality loss maintains event times close to

the actual time, but with smaller epsilon bounds. For

this example we see an optimal value around QL = 0.7,

as illustrated by Figure 8.3.

We additionally measure the reduction in rescheduling obtained through these optimiza-

tions. Figure 8.4 gives a bar graph representing currently rescheduled events as a fraction

of the initial implementation, where all events must be rescheduled.

Figure 8.5 plots the number of events during the course of the cloth draping simulation,

both before and after optimization. The 15% decrease in total number of events on the

queue is reflected by the faster runtimes. Notice that the overall event creation / deletion

patterns remain the same.
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Figure 8.5: Switching to triangle-based events yields a 15% reduction in queued events.

Cummulatively, these optimizations result in rescheduling taking about 75% of total

runtime, averaged across all the simulations in our test suite. This is a noticeable improve-

ment, but leaves opportunity for continued research in this area.

8.5 Discussion

We understand that simulation costs are dominated by three factors: rescheduling an event,

the number of events that need to be rescheduled, and the frequency rescheduling is required.

Reducing any of these factors has a noticeable effect on runtimes.

We offered a set of optimizations based on these three observations, yet many opportu-

nities remain. We still require a more fundamental approach to resolving this rescheduling

problem.

The vast majority of events never come to fruition, yet they occupy more than their share

of memory and computation time. They must always be present, but only as safeguards

in an unlikely event. An elegant solution would be aware of their existance, but not focus

unnecessary energy on maintaining them.

One direction is to focus rescheduling effort based on the underlying physics. For in-

stance, each penalty layer acts as a linear half-spring. During a contact there is compression,
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yet we know they will never penetration because of our layer construction. Nevertheless,

nodes in a shared event separated by a surface are constantly rescheduled, despite our high-

level knowledge that they cannot collide. The fuzzy trajectories begin to exploit this idea,

but are physics agnostic.

Fuzzy trajectories are currently controlled through an arbitrary “quality loss” parameter.

This parameter gives a new scheduled time, and the method computes the allowable change

in velocity based on that new time. We have begun initial experiments with reversing this

setup: we tell the scheduler how much change in velocity we would like to have, and it

schedules with that variability built in. In this way, if no vertex is modified by more than

the built-in amount, absolutely no events need be rescheduled. On the other hand, if it

does exceed that amount, all events must be rescheduled. This all or nothing approach has

shown promising so far.

Advancement in area of scheduling could not only benefit asynchronous simulations, but

all applications of kinetic data structures. Therefore, while solutions utilizing the underlying

physics or other special knowledge of the problem domain, an ideal solution would be general

and indifferent to the nature of the underlying trajectories.
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Chapter 9

Conclusion

This thesis covered the advantages and challenges of designing contact models that ro-

bustly prevent interpenetrations, accurately portray the physics of real-world contact, and

efficiently move forward in simulation time.

The previous state-of-the-art makes a conscious exchange of accuracy for speed in the

development of the velocity filter model. Chapter 3 augmented this approach through the

novel inelastic projection. In doing so, we examined the viability of regaining physical

accuracy in this model. We concluded that to do so is currently an intractable problem,

and would require forgoing any of the advantages originally offered by the model.

This conclusion required revisiting the problem from the ground up to design a model

with all criteria in mind. This resulted in the discrete penalty layers model (Chapter 4),

the first to offer guarantees of safe, penetration-free simulations, physical correctness, and

steady progress of the simulator (Chapter 6).

This model requires a new simulation framework to ensure the guarantees remain valid.

We offered one such solution that combines the power of asynchronous variational inte-

grators with the foresight of kinetic data structures to efficiently integrate discrete penalty

layers (and all other forces in the system) while preserving both geometric (penetration-free)

and physical (conservation laws) properties (Chapter 5). Alternative kinetic data structures

are investigated in Chapter 7.

We then presented measurements and analysis to extend this asynchronous contact

mechanics framework (Chapter 8). This becomes advantageous in guiding optimizations of
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the simulator. Overall, we improve the performance of the simulator by a factor of 2, while

preserving all of its desired properties.

In the process, we gained numerous insights into how asynchronous simulations work,

which will prove valuable in extending the asynchronous simulation framework.

9.1 Future work

This thesis focused on the contact mechanics of asynchronous simulation. There is still

much to research in this area, as well as other aspects where asynchronous simulation may

demonstrate potential.

1. Considering how much time is spent maintaining kinetic data structures, it is natural

to continue to develop alternative data structures that can specifically be applied to

asynchronous contact mechanics.

Maintaining a sorted list is a well-studied KDS problem, so a kinetic sweep and prune

style algorithm could be efficient. Here, three sorted lists would be maintained, one

for each spatial dimension.

Deformable spanners, as mentioned in Chapter 7, could make for an useful broad-phase

collision algorithm, even eliminating the need for separation slabs. As presented, they

work only with point sets, but could be extended to deal with arbitrary convex objects.

In our application, triangles would be of particular interest.

Not all broad-phase algorithms should simply be kineticized versions of existing algo-

rithms. A more difficult, but equally more interesting, problem is to develop a broad-

phase KDS specifically to address the known constraints within the asynchronous

simulation framework.

2. We use discrete penalty layers to resolve unilateral contact constraints. They could

easily be extended to maintain bilateral constraints. This would introduce new chal-

lenges in the kinetic data structures. For example, as-is it would double the number

of separation slab events, exacerbating the difficulties with scheduling.
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3. Augmented Lagrangian formulations have become a popular solution in contact me-

chanics, combining the benefits of penalty methods with Lagrangian methods. An

augmented Lagrangian method that uses AVIs could greatly benefit simulation speed.

As the penalty layers grow, their accumulated force contribution could be “handed

over” to a Lagrange multiplier in the system, with the penalty layers continuing to

keep accelerating impact in check. This could potentially keep simulations in shallower

penalty layers, improving overall performance.

Furthermore, momentum-conserving impulses applied during initial contact may take

pressure off of the penalty layers and accelerate contact resolution.

4. Our implementation only simulates cloth and thin shells, but it is simple to extend to

include the dynamics of rigid bodies, volumes, and even particle-based fluids. Events

on the queue know how to handle themselves, and so would know how to integrate

the appropriate material it represents.

Such an implementation, which includes discrete penalty layers, would allow the seam-

less coupling of many simulated materials. This kind of coupling is often achieved

through a variety of awkward interleavings of integration steps. AVIs provide the

timestepping rules to do so in a single simulator, while still maintaining good energy

and momentum properties.

5. The bottleneck in simulations continues to be the required rescheduling of kinetic data

structure certificates. When examined, however, we see that most of these events never

come to fruition. This means all the effort in rescheduling them is essentially wasted,

disrupting our claims of true simulation efficiency.

A smarter rescheduling algorithm would take advantage of the underlying data to

intelligently focus effort where it is needed; this is the strategy guiding the rest of the

simulator, and so should be extended to this domain.

How to accomplish this remains a challenging open problem.

6. As with most algorithms, parallelization is an interesting problem. AVIs have been

parallelized, but without considering contact [Kedar G. Kale, 2007]. Contact intro-
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duces considerable difficulties, since coupling is essentially unpredictable. Rolling

back simulations would be expensive, as it requires maintaining states throughout the

simulation, although there has been progress in this direction for rigid body simula-

tions [Mirtich, 2000].
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Appendix A

Finite penalty layers energy

On a finite precision machine, the infinitely sequenced penalty layers are eventually trun-

cated; any deeper layer would have a stable timestep that is computationally zero. Adding

this timestep to the current simulation time returns the same time and hence time will not

progress.

Our guarantee of progress assumed that it would take an infinite amount of kinetic

energy to overpower an infinite number of penalty layers. We In practice only a finite

number of layers is representable, thus a finite amount of kinetic energy is able to power

through them. Therefore it is useful to investigate the practical bounds on kinetic energy

for a given construction.

The following is Mathematica source code, which given a defined penalty layer distri-

bution function, a stiffness growth function, and a machine’s floating point epsilon (the

smallest number representable by that machine) returns the amount of energy required to

halt the simulation.

(* r defines layer stiffness growth *)

r[l_] := 1000*l^3;

(* eta gives the distribution of the penalty layers *)

eta[l_] := 0.1*l^(-(1/4));
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(* Floating point epsilon, as defined by your architecture *)

FloatEps = 1.11*10^-16;

(* MaxLayer is the deepest layer allowed, based on the timestep *)

MaxLayer = Power[1/(1000*(10/(2 \[Pi])*FloatEps)^2), (9)^-1];

V = 0.0;

(* Accumulate potential contribution from each layer *)

For[l = 1, l <= MaxLayer, l = l + 1,

(* The linear half-spring cannot be compressed past MaxLayer,

so subtract off that distance *)

V = V + 1/2 r[l] (eta[l] - eta[MaxLayer])^2;

];

Print[V]
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[Faure et al., 2008] François Faure, Sébastien Barbier, Jérémie Allard, and Florent Falipou.

Image-based collision detection and response between arbitrary volumetric objects. In

ACM Siggraph/Eurographics Symposium on Computer Animation, SCA 2008, July, 2008,

Dublin, Irlande, July 2008.

[Fletcher, 1987] R. Fletcher. Practical Methods of Optimization. John Wiley & Sons Ltd.,

Hoboken, NJ, USA, 1987.

[Fowles and Cassiday, 1962] G.R. Fowles and G.L. Cassiday. Analytical mechanics. Holt,

Rinehart and Winston New York, 1962.

[Gao et al., 2003] J. Gao, L. Guibas, J. Hershberger, L. Zhang, and A. Zhu. Discrete mobile

centers. Discrete and Computational Geometry, 30(1):45–65, 2003.

[Gao et al., 2005] J. Gao, L. J. Guibas, and A. Nguyen. Distributed proximity maintenance

in ad hoc mobile network. In IEEE International Conference on Distributed Computing

in Sensor System (DCOSS’05), pages 4–19, June 2005.

[Gao et al., 2006] Jie Gao, Leonidas Guibas, and An Nguyen. Deformable spanners and

their applications. Computational Geometry: Theory and Applications, 35(1-2):2–19,

2006.
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